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Leads to a stochastic target problem under expected loss.
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Motivation

Following B., Touzi, Elie (2009), we provide a direct PDE
representation of the associated pricing function.

Singular quasi-linear operator.

Novelty
e controls in the form of bounded variation process,

e state constraint.

Under “good conditions” on the model : comparison holds.

Start with a general model (which suits also well to models with
proportional transaction costs).
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General model

Set of controls : U x L with
e U : prog. meas. process in L2([0, T] x Q) with values in
U cRY,
e L : continuous non-decreasing R%-valued adapted processes L
st. E [12] < oo,

Dynamics of Z = (X, Y) € R xR :

dX? = ux(X?,v)dr + Bx(X?)dL + ox(X?,v)dW
dY? = uy(Z%,v)dr + By (Z®) " dL + oy (Z%,v) T dW .

Problem : (y,x) € O(s) and y' >y = (¥/, x) € O(s).

v(t,x) = inf {y 3peUx Lt Z0,(s)€O(s)Vt<s< T} .
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Relation between both problems

VWAP problem of the form
v(t,x;p) := inf {y : ¢ st Z,_f{’x’y €0 and E [G;%X,y] > p} .
with G2, , == G(Z{, ,(T)).

t7X7y )

Assume G,_??XJ €12 Then, Ja e L% such that
T
Gloy =P +/ asdWs = Pip(T) with p=E [GFy., | .
t

Hence, (Z7,,.Pg,) € O xR and G(Z{, (T)) = P2, (T).

Prop. : v(t,x; p) = inf {y : (o, @) s.t. (Zf?xw Pfp) € @} ,
with O := O x Rl ) +{(x,y,p) € O xR: G(x,y) > p}liTy.



Relation between both problems

VWAP problem of the form
v(t,x;p) := inf {y : 3¢ st Zf?&y €0 and E [G;{’X’y] > p} .
with Gy, i= G(Z{, ,(T)).

Assume G € L2 for all t,x,y,v). Then, 3 a € L% such that
tx,y P

-
Giny =P+ / asdWs = Pip(T) with p = E |Gy, | .
t
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[Right-continuity of the target] For all sequence
(tn, zn)n of [0, T] x R+ such that (t,,z,) — (t,z), we have

th>thy1and 2z, € O(t))Vn>1 = ze€ O(t).



Key tool : Geometric dynamic programming

e First introduced by Soner and Touzi for super-hedging under
Gamma constraints

e Extended to American type contraints : obstacle version of B.
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Theorem :

7,0
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Key tool : Geometric dynamic programming

e First introduced by Soner and Touzi for super-hedging under
Gamma constraints

e Extended to American type contraints : obstacle version of B.
and Vu.

Theorem : Forall g €U x L and 6 € Tz 17 :
GDP1 :

ZP, € Oont, T = Y, (0) > v(0, X .(6))
GDP2 :

y <v(t,x) =P [Y;ffz(e) > v(0, X$(0)) and Z¢, € O on [t,e]} <1
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Formal derivation of the PDE

Assume that v is smooth and the inf is achieved.
For y = v(t,x), 3 ¢ such that Z,_?{’z €QOon [t, T].
Then Yffz(H—) > v(t+, Xt x(t+)) and

py (z,v)dt + oy (z,v:)dW; + [By(2) " — Dv(t, x)Bx(x)]dL;
> LZv(t, x)dt + Dv(t, x)ox(x,ve)dW; +

Ok if
max{[By(z)" — Dv(t,x)Bx(x)]{, £ € AL} >0

with A4 :=R9 N 9B (0).



Formal derivation of the PDE

Set
Fov = sup{uy(:,v,u) — Lv, ue Nev}
Gv = max {[5Y(z)T — Dv(t,x)Bx(x)]L, L € A+}
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Nov = {ueU:loy(,v,u) — Dvox(-,u)| <&}

Ay = RINIB(0).
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Formal derivation of the PDE

Set

Fev = Sup{:u’Y('7 v, U) - ﬁg(V, uc Nev}
Gv max {[ﬂy(z)—r — Dv(t,x)Bx(x)]¢, ¢ € A+}

PDE characterization in the interior of the domain
max{Fov , Gv} =0 on (t,x,v(t,x)) € int(D)
where D := {(t,x,y) : (x,y) € O(t)}.

Need to be relaxed in ¢, t, x, v, Dv, D?v to ensure proper
definitions.
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Domain is
D:=A{(t.x,y): (x,y) € O(¢t)}.

D € CY2 (or intersection of C? domains).

Take § € C2? such that § > 0 in int(D), § =0 0on D and § <0
elsewhere.

The state constraints imposes dd(Zt‘{’z(t)) >0if (t,z) € OD.

As above it implies : or

max{D4(t,x,y)B) (x,y)l, L€ Ay} > 0.
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PDE on the space boundary (x,y) € 00(t)

The GDP and the need for a reflexion on the boundary leads to the
definition of

NBy = {ue Nv:|DS(-,v)oz(-v,u)| <&}

Fiy = sup min{uy(,,v,u) — L%v, L£%5(t,x,y)}
ueNiny

Gy = max min {[m(-, T — DvBx]e, DS(-,v)B] (-, v)zz}
ey

Then, the PDE on the boundary reads
max{Fi"v , G®v} =0 on (t,x,v(t,x)) €D .
Need to be relaxed as above.

As usual, the constraint appears only on the subsolution part.
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Terminal condition at t =T

Must have

v(T—,) > g(x):=inf{y: (x,y) € O(T)}.
Must also have

either Néin)v(T —)#£0 or GIMy(T—,)>0.

This writes

min {v — g, max{RUM(. v Dv), G(i“)v}} (T—,-)=0.
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Price dynamics :
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Cumulated liquidation cost : dYt = Xb1ldL,

Volume weighted market price : dX5? = 9dX51.

Cumulated # of sold stocks : Xt3 := L € [A\A] = {K}

Pricing function (with W(x,y) = £(y — vx?) and v > 0)
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Representation as a stochastic target problem

v(t,x, p)

inf{y >0:3L s.t. X35> € [AA], E [W(ZE,,(T))] = p}

inf{y >0:3(L,v) st. X752 € [AA], W(ZE, ,(T)) = P (T)}

with v € L% and P, :=p+ [, vsdWs.



PDE characterization

Proposition Under “good assumptions”, v, is a viscosity
supersolution on [0, T) of

max {Fop , x' +x'BDap — D} =0 if A< x* <A

and v* is a subsolution on [0, T) of

min {¢, max{Fop , x! +x'BDap — Dt} =0 if A<x3<A
min {gp, xl—i—BDXlgo—Dngo} =0 if A=x3
min{¢ , Fop} =0 if x3=A,
where
(x'o)? 22 2
Fop = —Lxp—=— (IDaa¢/ Dpp? D = 2(Dap/ Do) D 2 -

Moreover, v.(T,x,p) = v*(T,x,p) = W 1(x, p).
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The “good assumptions”
On AN

AANeCH A< Aon[0,T), DA, DA € (0, M]

On the loss function ¢ :

Je>0st.e<D ¥, DM <el,

and lim D™4(r) = lim D {(r).
r—o0o r—oo

Proposition v, is a viscosity supersolution of
min {Dpp — €, (Dyrp — CDpp)1,1+9 , —Dyap+ CDpp} =0 (%)
and v* is a viscosity subsolution of
maX{_DP(p + €, (Dxltp - CDP@)1X1>O ) _DXISO + CDP(P} =0. (**)

where C is continuous and depends only on x.

Provides a control on the ratio D,1¢/Dp¢p.
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More controls on v

It also implies that 3 > 0 s.t.
0 < v(t,x,p) <€ Hp—€0) + (L + |x]),
and that for (t,, xn, pn)n S.t- (tn, xa) — (t,x) :

lim vi(tn, Xn, Pn) = lim v*(tn, xn, pn) =0 if p, = —00,
n—oo

n—o0

. w(En,X pn) . V*(tn Xnapn) 1 .

lim YelnXapn) _ jipy . = if p, = 00.
n—oo Pn n—00 Pn Di(sc) " Pn

A little more : v is continuous in p and x3.
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Uniqueness

Want a comparison resul in the class of function with the aboves
limit and growth conditions.

Recall that

(xto)
2

Fop := —Lxp— (!Dxlso/Dpw\zDﬁso - 2(Dx1<p/Dpso)D(2x1,p)<p) :

We now control D,1¢/Dpp.

This is not enough... If we need to penalize in x! (stock price) then
the term \Dxu,p/Dpap|2Dggo will blow up as n — oo, where n comes
from the usual penalisation n|xi — x3|? du to the doubling of
constants.
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Uniqueness

Want a comparison resul in the class of function with the aboves
limit and growth conditions.

Recall that

(x1o)? 212 2
5 (]Dx:lgp/Dpcp\ ngo—Q(Dxl@/DpSo)D(xl,p)‘p) .

Fop := —Lxp—

We now control D,1¢/Dpp.

It >0st p(F)<0=0(x).

Bound on the stock price...



Comparison

Theorem : Let U (resp. V') be a non-negative super- and
subsolutions which are continuous in x3. Assume that

U(t,x,p) > V(t,x,p) if t = T or x! € {0,2%'},

and that 3 ¢; >0 and c_ € Rs.t.

womstp JVEP PSS Imint o VR
t' x',p")—(t,x,00 Y Y
lim sup V(' x',p)<c < liminf uit',y',p') .
(' x",p" )= (t,x,—00) (t'y",p") = (t,y,—00)

If either U is a supersolution of (*) which is continuous in p, or V
is a subsolution of (**) which is continuous in p, then

Uu>Vv.



Remarks on models with proportional transaction
costs

Typical model

)
th,x(s) = X +/ udr+/ X&X(r)odW,
t

X2L() s s
XCH(s) = x2+/ XL )dX1( /dL}+/ dL2
t t t

thy(s) = y+/ (1—A)dL}—/ (1+M\)dL? .
t

t

Our general results allow for pricing derivatives under loss
constraints, ...



Remarks on optimal management under shortfall
constraints

Serves as a building block for problems of the form

sup E [U(ZZ(T))
PEAL, 2

with
Az i={p€A:Z¢, € Oon[t, T]}.

see B., Elie and Imbert (2010).
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