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Abstract

Within a general abstract framework, we show that any optimal control problem in
standard form can be translated into a stochastic target problem as defined in [17], when-
ever the underlying filtered probability space admits a suitable martingale representation
property. This provides a unified way of treating these two classes of stochastic con-
trol problems. As an illustration, we show, within a jump diffusion framework, how the
Hamilton-Jacobi-Bellman equations associated to an optimal control problem in stan-
dard form can be easily retrieved from the partial differential equations associated to its
stochastic target counterpart.
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1 Introduction

In their simplest form, stochastic target problems can be formulated as follows. Given a
controlled process Zνt,x,y = (Xν

t,x, Y
ν
t,x,y), associated to the initial condition Zνt,x,y(t) = (x, y) ∈

Rd×R at time t, find the set S(t) of initial conditions (x, y) such that Ψ(Xν
t,x(T ), Y ν

t,x,y(T )) ≥ 0
P− a.s. for some control ν ∈ U , where Ψ is a given real valued Borel measurable map and U
is a prescribed set of controls.
When y 7→ Y ν

t,x,y(T ) and y 7→ Ψ(·, y) are non-decreasing, for all ν ∈ U , then the set S(t) can
be identified to {(x, y) ∈ Rd × R : y ≥ v(t, x)} where v(t, x) := inf{y ∈ R : ∃ ν ∈ U s.t.
Ψ(Zνt,x,y(T )) ≥ 0 P− a.s.}, whenever the above infimum is achieved.
Such problems can be viewed as a natural generalization of the so-called super-hedging prob-
lem in mathematical finance. In this case, Y ν

t,x,y is interpreted as the wealth process asso-
ciated to a given investment policy ν, Xν

t,x as stock prices or factors (that can possibly be
influenced by the trading strategy) and Ψ takes the form Ψ(x, y) = y − g(x) where g is
viewed as the payoff function of an European option. Then, Ψ(Xν

t,x(T ), Y ν
t,x,y(T )) ≥ 0 means

Y ν
t,x,y(T ) ≥ g(Xν

t,x(T )), i.e. the value of the hedging portfolio is greater at time T than the
payoff g(Xν

t,x(T )) of the European claim. The value function v(t, x) then coincides with the
super-hedging price of the option, see e.g. [13] for references on mathematical finance.
Motivated by the study of super-hedging problems under Gamma constraints, Soner and
Touzi [15] were the first to propose a direct treatment of a particular class of stochastic target
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problems. It relies on a Geometric Dynamic Programming Principle (GDP) which essentially
asserts that S(t) = {(x, y) ∈ Rd ×R : ∃ ν ∈ U s.t. Zνt,x,y(θ) ∈ S(θ) a.s.} for all [t, T ]-valued
stopping time θ. The main observation of Soner and Touzi is that it actually allows one to
provide a direct characterization of the associated value function v as a viscosity solution of
a non-linear parabolic partial differential equation. This approach was further exploited in
[6] and [18], in the context of super-hedging problems in mathematical finance. A general
version of the GDP was then proved in [17], where the authors also used this methodology
to provide a new probabilistic representation of a class of geometric flows. The link with
PDEs in a general Markovian framework for Brownian diffusion processes was established in
[16], and extended to jump diffusion processes in [1] whose main motivation was to apply this
approach to provision management in insurance. Finally, an extension to path dependent
constraints was proposed in [8].
This approach turned out to be very powerful to study a large family of non-standard stochas-
tic control problems in which a target has to be reached with probability one at a given time
horizon T . However, it was limited to this case, up to the paper [5] who showed how the
a.s. constraint Ψ(Zνt,x,y(T )) ≥ 0 can indeed be relaxed in moment constraints of the form
E
[
Ψ(Zνt,x,y(T ))

]
≥ p, where the real number p is a given threshold, typically non-positive.

This relaxed version was called stochastic target problem with controlled loss in [5].
The result of [5] (extended by [14] to jump diffusion processes) opened the door to a wide
range of new applications. In particular in mathematical finance, in which a P−a.s. constraint
would typically lead to degenerate results, i.e. v ≡ ∞ or v much too large in comparison to
what can be observed in practice, while the above relaxation provides meaningful results. A
good illustration of such a situation in given in [3] which discusses the pricing of financial book
liquidation contracts. See also the forthcoming paper [9] on the problem of P&L matching in
option hedging or optimal investment problems.
In view of all the potential practical applications of the technology originally proposed by
Soner and Touzi in [15], and given the fact that the theory is now well-established, it seems
natural to consider this recently developed class of (non-standard) stochastic control problems
as a part of the general well-known tool box in optimal control. However, it seems a-priori
that stochastic target problems and optimal control problems in standard form (i.e. expected
cost minimization problems) have to be discussed separately as they rely on different dynamic
programming principles.
This short note can be viewed as a teacher’s note that explains why they can actually be
treated in a unified framework. More precisely: any optimal control problem in standard
form admits a (simple and natural) representation in terms of a stochastic target problem.
In the following, we first discuss this equivalence result in a rather general abstract framework.
In the next section, we show through a simple example how the Hamilton-Jacobi-Bellman
equations of an optimal control problem in standard form can be easily recovered from the
PDEs associated to the corresponding stochastic target problem.
We will not provide in this short note the proof of the PDE characterization for stochastic
target problems. We refer to [5] and [14] for the complete arguments.

Notations: We denote by xi the i-th component of a vector x ∈ Rd, which will always be
viewed as a column vector, with transposed vector x>, and Euclidean norm |x|. The set Md is
the collection of d-dimensional square matrices A with coordinates Aij , and norm |A| defined
by viewing A as an element of Rd×d. Given a smooth function ϕ : (t, x) ∈ R+ × Rd → R, we
denote by ∂tϕ its derivative with respect to its first variable, we write Dϕ and D2ϕ for the
Jacobian and Hessian matrix with respect to x. The set of continuous function C0(B) on a
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Borel subset B ⊂ R+ ×Rd is endowed with the topology of uniform convergence on compact
sets. Any inequality or inclusion involving random variables has to be taken in the a.s. sense.

2 The equivalence result

Let T be a finite time horizon, given a general probability space (Ω,F ,P) endowed with a
filtration F = {Ft}t≤T satisfying the usual conditions. We assume that F0 is trivial.

Let us consider an optimal control problem defined as follows. First, given a set U of deter-
ministic functions from R+ to Rκ, κ ≥ 1, we define

Ũ = {ν : F-predictable process s.t. t 7−→ ν(t, ω) ∈ U for P-almost every ω ∈ Ω} .

The controlled terminal cost is a map

ν ∈ Ũ 7−→ Gν ∈ L0(Ω,FT ,P) .

Without loss of generality, we can restrict to a subset of controls U ⊂ Ũ such that

U ⊂
{
ν ∈ Ũ : Gν ∈ L1(Ω,FT ,P)

}
.

Given (t, ν) ∈ [0, T ]× U , we can then define the conditional optimal expected cost:

V ν
t := ess inf

µ∈U(t,ν)
E [Gµ | Ft] , (2.1)

where
U(t, ν) := {µ ∈ U : µ = ν on [0, t] P− a.s.} .

Our main observation is that the optimal control problem (2.1) can be interpreted as a
stochastic target problem involving an additional controlled process chosen in a suitable family
of martingales. Moreover, existence in one problem is equivalent to existence in the other.

Lemma 2.1. [Stochastic target representation] Let M be a any family of martingales such
that

G := {Gν , ν ∈ U} ⊂ {MT , M ∈M} . (2.2)

Then, for each (t, ν) ∈ [0, T ]× U :

V ν
t = Y ν

t , (2.3)

where

Y ν
t := essinf

{
Y ∈ L1(Ω,Ft,P)

∣∣ ∃(M,µ) ∈M×U(t, ν) s.t. Y +MT −Mt ≥ Gµ
}
. (2.4)

Moreover, there exists µ̂ ∈ U(t, ν) such that

V ν
t = E

[
Gµ̂ | Ft

]
(2.5)

if and only if there exists (M̄, µ̄) ∈M×U(t, ν) such that

Y ν
t + M̄T − M̄t ≥ Gµ̄ . (2.6)

In this case, one can choose µ̄ = µ̂, and M̄ satisfies

Y ν
t + M̄T − M̄t = Gµ̄ . (2.7)
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Let us make some remarks before to provide the short proof.

Remark 2.2. It is clear that a family M satisfying (2.2) always exists. In particular, one
can take M = M̄ := {(E [Gν | Ft])t≥0, ν ∈ U}. When the filtration is generated by a d-
dimensional Brownian motion W , then the martingale representation theorem allows one to
rewrite any element M of M̄ in the form M = Pα0,M0

:= M0 +
∫ ·

0 α
>
s dWs where α belongs to

Aloc, the set of Rd-valued locally square integrable predictable processes such that Pα0,0 is a
martingale. This allows choosing M as {Pα0,p, (p, α) ∈ R × Aloc}. When G ⊂ L2(Ω,FT ,P),
then we can replace Aloc by the set A of Rd-valued square integrable predictable processes. A
similar reduction can be obtained when the filtration is generated by Lévy processes. We shall
see below in Section 3 that such classes of familiesM allow us to convert a Markovian optimal
control problem in standard form into a Markovian stochastic target problem for which a PDE
characterization can be derived. A similar idea was already used in [5] to convert stochastic
target problems under controlled loss, i.e. with a constraint in expectation, into regular
stochastic target problems, i.e. associated to a P− a.s.-constraint, see their Section 3.

Remark 2.3. A similar representation result was obtained in [2] where it is shown that a
certain class of optimal switching problems can be translated into stochastic target problems
for jump diffusion processes. In this paper, the author also introduces an additional con-
trolled martingale part but the identification of the two control problems is made through
their associated PDEs (and a suitable comparison theorem) and not by pure probabilistic
arguments. Moreover, an additional randomization of the switching policy is introduced in
order to remove this initial control process.

Remark 2.4. It is well-known that, under mild assumptions (see [11]), the map t ∈ [0, T ] 7→
V ν
t can be aggregated by a càdlàd process V̄ ν which is a submartingale for each ν ∈ U , and

that a control µ̂ is optimal for (2.1) if and only if V̄ µ̂ is a martingale on [t, T ]. This is indeed
a consequence of the dynamic programming principle which can be (at least formally) stated
as V ν

t = essinf{E
[
V µ
θ | Ft

]
, µ ∈ U(t, ν)} for all stopping time θ with values in [t, T ]. It is

clear from the proof below that the additional controlled process (Y ν
t + M̄s − M̄t)s≥t whose

T -value appears in (2.7) then coincides with this martingale.

Proof of Lemma 2.1 a. We first prove (2.3). To see that Y ν
t ≥ V ν

t , fix Y ∈ L1(Ω,Ft,P)
and (M,µ) ∈ M× U(t, ν) such that Y + MT −Mt ≥ Gµ. Then, by taking the conditional
expectation on both sides, we obtain Y ≥ E [Gµ | Ft] ≥ essinf{E

[
Gµ
′ | Ft

]
, µ′ ∈ U(t, ν)}

= V ν
t , which implies that Y ν

t ≥ V ν
t .

On the other hand, (2.2) implies that, for each µ ∈ U(t, ν), there exists Mµ ∈ M such that
Gµ = E [Gµ | Ft] +Mµ

T −M
µ
t . In particular, E [Gµ | Ft] +Mµ

T −M
µ
t ≥ Gµ. This shows that

E [Gµ | Ft] ≥ Y ν
t for all µ ∈ U(t, ν), and therefore V ν

t ≥ Y ν
t .

b. We now assume that µ̂ ∈ U(t, ν) is such that (2.5) holds. Since V ν
t = Y ν

t , this leads to
Y ν
t = E

[
Gµ̂ | Ft

]
. Moreover, (2.2) implies that there exists M̄ ∈M such that E

[
Gµ̂ | Ft

]
+

M̄T − M̄t = Gµ̂. Hence, (2.6) and (2.7) hold with µ̄ = µ̂. Conversely, if (M̄, µ̄) ∈M×U(t, ν)
is such that (2.6) holds, then the identity (2.3) implies that V ν

t = Y ν
t ≥ E [Gµ̄ | Ft] ≥ V ν

t .
Hence, (2.5) holds with µ̂ = µ̄. 2

3 Example

In this section, we show how the Hamilton-Jacobi-Bellman equations associated to an optimal
control problem in standard form can be deduced from its stochastic target formulation. We
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restrict to a classical case where the filtration is generated by a d-dimensional Brownian motion
W and a E-marked integer-valued right-continuous point process N(de, dt) with predictable
(P,F)-intensity kernel m(de)dt such that m(E) < ∞ and supp(m) = E, where supp denotes
the support and E is a Borel subset of Rd with Borel tribe E . We denote by Ñ(de, dt) =
N(de, dt) − m(de)dt the associated compensated random measure, see e.g. [10] for details on
random jump measures.
The set of controls U is now defined as the collection of square integrable predictable K-valued
processes, for some K ⊂ Rd. Given ν ∈ U and (t, x) ∈ [0, T ]×Rd, we define Xν

t,x as the unique
strong solution on [t, T ] of

Xν = x+
∫ ·
t
µ(Xν(r), νr)dr +

∫ ·
t
σ(Xν(r), νr)dWr +

∫ ·
t

∫
E
β(Xν(r−), νr, e)N(de, dr) ,(3.1)

where (µ, σ, β) : (x, u, e) ∈ Rd ×K × E 7−→ Rd ×Md × Rd are measurable and are assumed
to be such that there exists L > 0 for which

|µ(x, u)− µ(x′, u)|+ |σ(x, u)− σ(x′, u)|+
(∫
E |β(x, u, e)− β(x′, u, e)|2m(de)

) 1
2 ≤ L|x− x′|

|µ(x, u)|+ |σ(x, u)|+ esssup
e′∈E
|β(x, u, e′)| ≤ L(1 + |x|+ |u|), (3.2)

for all x, x′ ∈ Rd and u ∈ K.
Given a continuous map g with linear growth (for sake of simplicity), we then define the
optimal control problem in standard form:

v(t, x) := inf
ν∈U

E
[
g
(
Xν
t,x(T )

)]
.

Remark 3.1. Contrary to the above section, we do not fix here the path of the control ν on
[0, t]. This is due to the fact that Xν

t,x depends on ν only on (t, T ], since the probability of
having a jump a time t is equal to 0. Moreover, we can always reduce in the above definition
to controls ν in U that are independent of Ft, see Remark 5.2 in [7].

Then, it follows from standard arguments, see [12] or [19] and the recent paper [7], that the
lower-semicontinuous envelope v∗ and the upper-semicontinuous envelope v∗ of v defined as

v∗(t, x) := lim inf
(t′,x′)→(t,x),t′<T

v(t′, x′) and v∗(t, x) := lim sup
(t′,x′)→(t,x),t′<T

v(t′, x′) , (t, x) ∈ [0, T ]× Rd

satisfy:

Theorem 3.2. Assume that v is locally bounded. Then, v∗ is a viscosity supersolution of

−∂tϕ+H∗(·, Dϕ,D2ϕ,ϕ) = 0 on [0, T )× Rd

(ϕ− g)1H∗(·,Dϕ,D2ϕ,ϕ)<∞(T, ·) = 0 on Rd , (3.3)

where H∗ is the upper-semicontinuous envelope of the lower-semicontinuous map

H : [0, T ]× Rd × Rd ×Md × C0([0, T ]× Rd)→ R

(t, x, q, A, f) 7→ sup
u∈K

(
−I[f ](t, x, u)− µ(x, u)>q − 1

2
Tr[σσ>(x, u)A]

)
,

with
I[f ](t, x, u) :=

∫
E

(f(t, x+ β(x, u, e))− f(t, x))m(de) .
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Moreover, v∗ is a viscosity subsolution of

−∂tϕ+H(·, Dϕ,D2ϕ,ϕ) = 0 on [0, T )× Rd

(ϕ− g)(T, ·) = 0 on Rd . (3.4)

On the other hand, it follows from (3.2) and the linear growth condition on g that g
(
Xν
t,x(T )

)
∈

L2(Ω,FT ,P) for all ν ∈ U . The martingale representation theorem then implies that (2.2)
holds for the family of martingales M defined as

M := R +
{∫ ·

0
α>s dWs +

∫ ·
0

∫
E
γs(e)Ñ(de, ds), (α, γ) ∈ A× Γ

}
where A denotes the set of square integrable Rd-valued predictable processes, and Γ is the
set of P ⊗ E measurable maps γ : Ω× [0, T ]× E → R such that

E
[∫ T

0

∫
E
|γs(e)|2m(de)ds

]
< ∞ ,

with P defined as the σ-algebra of F-predictable subsets of Ω× [0, T ].
Hence, we deduce from Lemma 2.1 that

v(t, x) = inf
{
p ∈ R : ∃(ν, α, γ) ∈ U ×A× Γ s.t. Pα,γt,p (T ) ≥ g

(
Xν
t,x(T )

)}
,

where
Pα,γt,p := p+

∫ ·
t
α>s dWs +

∫ ·
t

∫
E
γs(e)Ñ(de, ds) .

We therefore retrieve a stochastic target problem in the form studied in [14].

If v is locally bounded, we can then apply the main result of [14] (see [5] for the case of
Brownian diffusion models) to deduce that v∗ is a viscosity supersolution of

−∂tϕ+ F ∗0,0(·, Dϕ,D2ϕ,ϕ) = 0 on [0, T )× Rd

(ϕ− g)1F ∗0,0(·,Dϕ,D2ϕ,ϕ)<∞(T, ·) = 0 on Rd , (3.5)

where F ∗ is the upper-semicontinuous envelope of the map F defined for (ε, η, t, x, q, A, f) ∈
[0, 1]× [−1, 1]× [0, T ]× Rd × Rd ×Md × C0([0, T ]× Rd) by

Fε,η(t, x, q, A, f) := sup
(u,a,b)∈Nε,η(t,x,q,f)

(
−
∫
E
b(e)m(de)− µ(x, u)>q − 1

2
Tr[σσ>(x, u)A]

)
,

with Nε,η(t, x, q, f) defined as the set of elements (u, a, b) ∈ K × Rd × L2(E, E ,m) such that

|a− σ(x, u)>q| ≤ ε and b(e)− f(t, x+ β(x, u, e)) + f(t, x) ≥ η for m-a.e e ∈ E .

Similarly, Theorem 2.1 in [14] states that v∗ is a viscosity subsolution of

−∂tϕ+ F0,0∗(·, Dϕ,D2ϕ,ϕ) = 0 on [0, T )× Rd

(ϕ− g)(T, ·) = 0 on Rd , (3.6)

where F∗ is the lower-semicontinuous envelope of F .

To retrieve the result of Theorem 3.2, it suffices to show the following.
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Proposition 3.3. F ∗0,0 ≤ H∗ and F0,0∗ ≥ H.

Proof. First note that u ∈ K implies that (u, σ(x, u)>q, f(t, x + β(x, u, ·)) − f(t, x) + η) ∈
N0,η(t, x, q, f). This implies that F0,η ≥ H. Since ε ≥ 0 → Fε,· is non-decreasing, it follows
that F0,0∗ ≥ H. On the other hand, fix (t, x) ∈ [0, T )×Rd and (q,A, f) ∈ Rd×Md×C0([0, T ]×
Rd), and consider a sequence (εn, ηn, tn, xn, qn, An, fn)n that converges to (0, 0, t, x, q, A, f)
such that

lim
n→∞

Fεn,ηn(tn, xn, qn, An, fn) = F ∗0,0(t, x, q, A, f) .

Then, by definition of Nεn,ηn(tn, xn, qn, fn), we have

F ∗0,0(t, x, q, A, f)
= lim

n→∞
Fεn,ηn(tn, xn, qn, An, fn)

≤ lim
n→∞

(
|ηn|m(E) + sup

u∈K

(
−I[fn](tn, xn, u)− µ(xn, u)>qn −

1
2

Tr[σσ>(xn, u)An]
))

≤ H∗(t, x, q, A, f) .

2

Remark 3.4. It is clear that the same ideas apply to various classes of optimal control prob-
lems: singular control, optimal stopping, impulse control, problem involving state constraints,
etc. We refer to [3] and [8] for the study of stochastic target problems with controls including
bounded variation processes or stopping times. The case of state constraints is discussed in
[8], see also [4].
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