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Abstract

We consider the stochastic target problem of finding the collection

of initial laws of a mean-field stochastic differential equation such that

we can control its evolution to ensure that it reaches a prescribed set of

terminal probability distributions, at a fixed time horizon. Here, laws

are considered conditionally to the path of the Brownian motion that

drives the system. We establish a version of the geometric dynamic

programming principle for the associated reachability sets and prove

that the corresponding value function is a viscosity solution of a geo-

metric partial differential equation. This provides a characterization

of the initial masses that can be almost-surely transported towards a

given target, along the paths of a stochastic differential equation. Our

results extend [16] to our setting.
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1 Introduction

Stochastic target problems are optimization problems in which the controller

looks for the values x of a state process X t,x,ν at time t, so that it can reach

some given set K at a given terminal time T , by choosing an appropriate

control ν. Namely, the objective is to characterize the reachability sets

V (t) =
{
x ∈ Rd : X t,x,ν

T ∈ K for some admissible control ν
}

(1.1)

for t ∈ [0, T ]. Such optimization problems were first studied in [17] and [16] in

which the function v(t, x) = 1−1V (t)(x) is shown to solve a Hamilton-Jacobi-

Bellman equation, in the viscosity solution sense. The main motivation of

[16, 17] is the so-called super-replication problem, in financial mathematics:

the controller looks for possible initial endowments such that there exists an

investment strategy allowing the terminal wealth to satisfy a super-hedging

constraint, almost-surely (see e.g. [8]). But, the range of applications is

obviously much wider.

Another important type of stochastic target problems concerns the case

where the terminal constraint is imposed on the mean value of a function of

the controlled process. In this case the reachability sets take the following

form:

V`(t) =
{
x ∈ Rd : E[`(X t,x,ν

T )] ≥ 0 for some admissible control ν
}
, (1.2)

for t ∈ [0, T ]. This type of constraints is also common in financial applica-

tions. Indeed, the super-replication price is usually too high to be accepted

by buyers. This is a motivation for relaxing the a.s. super-hedging criteria

by only asking that X t,x,ν ∈ K holds, for instance, with a (high) probability

p < 1. In this case, the function ` takes the form `(x) = 1K(x) − p. For

p = 1, one retrieves (1.1). This approach was introduced in [9] and further
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developped in [3] where the authors take advantage of the martingale rep-

resentation theorem to transform the constraint given in terms of the mean

value into an almost-sure constraint.

One of the motivations of this paper is to study the stochastic target

problem (1.2) in the case of a mean-field (or McKean-Vlasov) controlled

diffusion:

X t,χ,ν
s = χ+

∫ s

t

bu(X
t,χ,ν
u ,PXt,χ,ν

u
, νu)du+

∫ s

t

σu(X
t,χ,ν
u ,PXt,χ,ν

u
, νu)dBu,

where PXt,χ,ν
u

is the marginal law of X t,χ,ν
u under P, B is a standard Brownian

motion and χ is an independent random variable whose distribution can be

interpreted as the initial repartition of a population. This type of stochastic

target problems can be embedded into a more general class of problems

involving the conditional laws given the Brownian path. Indeed, using the

martingale representation theorem as in [3], the constraint in (1.2) can be

rewritten as

EB[`(X t,χ,ν
T )]−

∫ T
t
αsdBs ≥ 0 for some control ν and α ,

where EB denotes the conditional expectation given B. In particular, if

we define the control ν̄ = (ν, α) and the controlled process X̄ t,(χ,0),ν̄ =

(X t,χ,ν ,
∫ .
t
αdB), this reads

L
(
PB
X̄
t,(χ,0),ν̄
T

)
≥ 0 for some control ν̄,

in which PBζ denotes the conditional law of a random variable ζ given B, and

L(µ) =

∫
Rd×R

(`(x)− y)µ(dx, dy).

These considerations suggest to study a general constraint:

PB
Xt,χ,ν
T
∈ G for some admissible control ν,

in which X t,χ,ν is now defined by

X t,χ,ν
s = χ+

∫ s

t

bu(X
t,χ,ν
u ,PB

Xt,χ,ν
u

, νu)du+

∫ s

t

σu(X
t,χ,ν
u ,PB

Xt,χ,ν
u

, νu)dBu, (1.3)
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G is a Borel subset of probability measures and χ is the (random) initial

position.

This general formulation is of importance on its own right as it is re-

lated to the probabilistic analysis of large scale particle systems, e.g. poly-

mers in random media, in which one is interested in the behavior of par-

ticles conditionally on the environment. This is also known as ‘quenched’

behaviors/properties (quenched law of large numbers, quenched large devi-

ations etc.), which is in general different from the so-called ‘annealed’ be-

haviors obtained by averaging over the underlying random environment (see

e.g. [2, 10, 14] and the references therein). For diffusion processes, quenching

boils down to making the drift and diffusion coefficients dependent on the

conditional marginal law given the environment, while annealing corresponds

to the case where the coefficients depend on the unconditional marginal law

(see e.g. [14]). We therefore coin the term quenched diffusion instead of

conditional diffusion to refer to SDEs of the form (1.3). For our stochastic

target problem, the constraint PBXT ∈ G imposed on the conditional law of

the diffusion process is a quenched property for the underlying process.

One can also further identify the inital condition χ as a law µ. Then, our

problem can be interpreted as a transport problem. What are the collection

of initial distributions µ of a population of particles, that all have the same

dynamics, such that the terminal repartition PB
Xt,χ,ν
T

, given the environnement

modelled by the Brownian path B, satisfies a certain constraint ? This

amounts to asking what kind of masses can be transported along the SDE

so as to reach a certain set, almost-surely, at T :

V(t) =
{
µ : ∃(χ, ν) s.t. PBχ = µ and PB

Xt,χ,ν
T
∈ G

}
. (1.4)

The rest of the paper is organized as follows. In Section 2, we describe

in details the quenched controlled diffusion. We provide some (expected)

existence and stability results, together with a conditioning property. Section

3 is devoted to the detailed presentation of the quenched stochastic target

problem (1.4). We prove that it admits a geometric dynamic programming

principle. This is the main result of the paper. Then, one can combine the

technologies developped in [4, 6] and [16] to derive in Section 4 the associated

Hamilton-Jacobi-Bellman equation, which extends the main result of [16] to

4



our context. In Section 5, we comment on the choice of the class of controls,

and provide an interpretation in terms of control of the law of a population

of particles.

2 Quenched mean-field SDE

We first describe our probabilistic setting. The d-dimensional Brownian mo-

tion is constructed on the canonical space in a usual way. More precisely,

given a fixed time horizon T > 0, we let Ω◦ denote the space of continuous

Rd-valued functions on [0, T ], starting at 0, and let F◦ = (F◦t )t≤T denote the

filtration generated by the canonical process B(ω◦) := ω◦, ω◦ ∈ Ω◦. We set

F◦ = F◦T and we endow (Ω◦,F◦) with the Wiener measure P◦. Later on,

F̄◦ = (F̄◦t )t≤T will denote the P◦-completion of F◦.
In order to model the initial repartition of the population, we let Ω1 :=

[0, 1]d be endowed with its Borel σ-algebra F 1 := B([0, 1]d) and the Lebegues

measure P1. It supports the [0, 1]d-uniformly distributed random variable

ξ(ω1) = ω1, ω1 ∈ Ω1. We then define the product filtered space (Ω,F ,F,P)

by setting Ω := Ω◦ × Ω1, P = P◦ ⊗ P1, F = FT where F = (Ft)t≤T is the

completion of (F◦t ⊗ F 1)t≤T . From now on, any identity involving random

variables has to be taken in P-a.s. sens. We canonically extend the random

variable ξ and the process B on Ω by setting ξ(ω) = ξ(ω1) and B(ω) = B(ω◦)

for any ω = (ω◦, ω1) ∈ Ω. We still denote by F◦ the filtration generated by

the extended process B on Ω. Note that it follows from [12, Theorem 6.15

and Proposition 7.7] applied to the process (t, ω) ∈ [0, T ]×Ω 7→ ξ(ω)+Bt(ω)

that F is right continuous.

Given a random variable Y ∈ L0(Ω,F ,P;Rd) (resp. Y ∈ L1(Ω,F ,P;Rd)),

we let PBY (resp. EB[Y ]) denote a regular conditional law (resp. expectation)

under P of the random variable Y given (Bt)t≤T on Rd. In particular we have

the following identifications

PBY (A, ω) = P1

Y (ω◦,.)(A) (2.5)

EB
[
Y
]
(ω) = E1

[
Y (ω◦, .)

]
(2.6)

for any ω = (ω◦, ω1) ∈ Ω and any A ∈ B(Rd). Here, E1 denotes the expecta-

tion under P1 and P1

Y (ω◦,.) denotes the law under P1 of the random variable
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defined on Ω1 by Y (ω◦, .)(ω1) = Y (ω◦, ω1). We let P(S) denote the space of

probability measures on a Borel space (S,B(S)), and define

P2 :=

{
µ ∈ P(Rd,B(Rd)) s.t.

∫
Rd
|x|2µ(dx) < +∞

}
.

In the above, |x| is the Euclidean norm of x. This space is endowed with

the 2-Wasserstein distance defined by

W2(µ, µ′) := inf
{∫

Rd×Rd
|x− y|2π(dy, dy) : π ∈ P(Rd × Rd,B(Rd × Rd))

s.t. π(· × Rd) = µ and π(Rd × ·) = µ′
} 1

2
,

for µ, µ′ ∈ P2. For later use, we also define the collection P F̄◦
2 of F̄◦-adapted

continuous P2-valued processes.

Let now U be a closed subset of Rq for some q ≥ 1 and denote by U the

collection of U-valued F-progressive processes. This will be the set of controls.

Let T̄ ◦ denote the set of [0, T ]-valued F̄◦-stopping times. Given θ ∈ T̄ ◦ and

χ ∈ X2
θ := L2(Ω,Fθ,P;Rd), ν ∈ U , and (b, a) : [0, T ] × Rd × P2 × U 7→

Rd × Rd×d, we let Xθ,χ,ν denote the solution of

X = E[χ|Fθ∧·] +

∫ θ∨·

θ

bs
(
Xs,PBXs , νs

)
ds+

∫ θ∨·

θ

as
(
Xs,PBXs , νs

)
dBs, (2.7)

in which (b, a) is assumed to be continuous, bounded and satisfy:

(H1) There exists a constant L such that

|bt(x, µ, ·)− bt(x′, µ′, ·)|+ |at(x, µ, ·)− at(x′, µ′, ·)| ≤ L
(
|x− x′|+W2(µ, µ′)

)
for all t ∈ [0, T ], x, x′ ∈ Rd and µ, µ′ ∈ P2.

The term E[χ|Fθ∧·] in (2.7) allows to define X as a continuous adapted

process on [0, T ], which is done for convinience of notations. One could

obviously only consider the process on [[θ, T ]].

Remark 2.1. Note that the controls can depend on the initial value of χ. One

could also restrict to F̄◦-progressive processes, see Section 5 for a discussion.
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The above condition ensures as usual that a unique strong solution to

(2.7) can indeed be defined.

Proposition 2.1. For all θ ∈ T̄ ◦, ν ∈ U and χ ∈ X2
θ, (2.7) admits a unique

strong solution Xθ,χ,ν, and it satisfies

E
[

sup
[0,T ]

|Xθ,χ,ν |2
]
< +∞ . (2.8)

Moreover, for all (t, χ, ν) ∈ [0, T ] ×X2
t × U , if tn → t, χn → χ in L2 with

χn ∈ X2
tn for all n, and (νn)n ⊂ U converges to ν dt× dP-a.e., then

lim
n→∞

E[W2(PB
Xtn,χn,νn

T

,PB
Xt,χ,ν
T

)2] = 0. (2.9)

Proof. 1. The estimate (2.8) is a consequence of the boundedness of (b, a).

2. Existence follows from a similar fixed point argument as in [11] (see

also [18]). Since we work in a slightly different context, we provide the proof

for completeness.

2.a. Let C denote the space of continuous Rd-valued maps on [0, T ] endowed

with the sup-norm topology. For Q̂, P̂ ∈ P2(C,B(C)) and t ≤ T , we set

Dt(P̂ , Q̂) := inf
{∫

C×C
sup

0≤s≤t
|Y P̂
s − Y Q̂

s |2 R̂(dY P̂
s , dY

Q̂
s ) :

R̂ ∈ P2(C× C,B(C× C))

s.t. R̂(· × C) = P̂ and R̂(C× ·) = Q̂
} 1

2 .

We write P̂ ∈ P2(C,B(C)) if

‖P̂‖P2(C,B(C)) := DT (P̂ , δ̂0) <∞,

where δ̂0 is the measure putting mass equal to 1 to the constant path 0. If

Q̂ ∈ P2(C,B(C)) has time marginals (Q̂s)s≤T then

W2(Q̂t, Q̂s)
2 ≤

∫
C
|Yt − Ys|2Q̂(dY )

so thatW2(Q̂t, Q̂s)→ 0 as s→ t, by dominated convergence. Hence, (Q̂s)s≤T
is continuous.
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2.b. Let S2 denote the set of continuous adapted Rd-valued processes Z

such that ‖Z‖S2 := E[sup[0,T ] |Z|2]
1
2 < ∞. Let L2(Ω◦;P2(C,B(C))) be the

collection of random variables defined on Ω◦ and with values in P2(C,B(C)),

with finite norm E[‖·‖2
P2(C,B(C))]

1
2 . Let Φ be the map that to Q̄ ∈ L2(Ω◦;P2(C,

B(C))) associates PB
XQ̄ ∈ L2(Ω◦;P2(C,B(C))) in which PB

XQ̄(ω◦) is a regular

conditional law of XQ̄ given ω◦ ∈ Ω◦ with XQ̄ defined as the solution of

XQ̄ =E[χ|F̄◦θ∧·] +

∫ θ∨·

θ

bs
(
XQ̄
s , Q̄s, νs

)
ds+

∫ θ∨·

θ

as
(
XQ̄
s , Q̄s, νs

)
dBs,

and where Q̄s(ω
◦) is the s-marginal of Q̄(ω◦) for ω◦ ∈ Ω◦. It follows from

2.a. that PB
XQ̄(ω◦) has continuous path, for P◦-a.e. ω◦ ∈ Ω◦. By repeating

the arguments in [11, Proof of Proposition 2], see also 3. below, we obtain

that Φ is contracting. Since L2(Ω◦;P2(C,B(C))) is complete, it follows that

Φ admits a fix point Q̄.

3. It remains to prove our last estimate. The Lipschitz continuity and bound-

edness of (b, a) combined with Burkholder-Davis-Gundy inequality implies

that one can find C > 0, that only depends on (b, a), such that

E[sup
[0,s]

|X t,χ,ν −X tn,χn,νn|2]

≤C(|t− tn|+ E[|χ− χn|2])

+ CE

[∫ s

0

sup
[0,r]

|X t,χ,ν −X tn,χn,νn|2 +W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)dr

]

+ CE
[∫ s

0

|br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ s

0

|ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

Since

E[W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)] ≤ E[D2
r(PBXt,χ,ν ,PBXtn,xn,νn )]

≤ E[sup
[0,r]

|X t,χ,ν −X tn,xn,νn|2],
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by Gronwall’s Lemma we obtain (for a different constant C > 0)

E[W2
2 (PB

Xt,χ,ν
T

,PB
Xtn,xn,νn

T

)]

≤ E[sup
[0,T ]

|X t,χ,ν −X tn,xn,νn|2]

≤ C(|t− tn|+ E[|χ− χn|2])

+ CE
[∫ T

0

|br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ T

0

|ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

The function (b, a) being continuous and bounded, the required result follows.

2

In the sequel, we denote by tω◦ the element (ω◦s∧t)s∈[0,T ] for ω◦ ∈ Ω◦ and

t ∈ [0, T ]. We note that the solution can also be defined ω1 by ω1. More

precisely, we have the following.

Proposition 2.2. Fix θ ∈ F̄◦, χ ∈ X2
θ and ν ∈ U . Let XQ be the solution of

(2.7) with Q = (Qs)s≤T ∈ P F̄◦
2 in place of (PBXs)s≤T . Then, there exists Borel

measurable maps x : Ω◦ × Ω1 → Rd and u : [0, T ] × Ω◦ × Ω1 → U such that

x = χ P-a.s. and ν· = u·(
·B, ξ) dt × P-a.e. on [0, T ] × Ω, such that, for all

stopping time τ , XQ,ω1

τ∨θ = XQ
τ∨θ(·, ω1) P◦-a.s. for P1-a.e. ω1 ∈ Ω1, in which

XQ,ω1
solves

XQ,ω1

=E[x(B,ω1)|F·∧θ] +

∫ θ∨·

θ

bs
(
XQ,ω1

s , Qs, us(
sB,ω1)

)
ds

+

∫ θ∨·

θ

as
(
XQ,ω1

s , Qs, us(
sB,ω1)

)
dBs.

Moreover, the map ω1 ∈ Ω1 7→ XQ,ω1

τ∨θ ∈ L2(Ω1,F 1,P1; L2(Ω◦,F◦T ,P◦;Rd)) is

measurable.

Proof. The existence of the Borel maps x and u is standard, and it is not

difficult to prove that ω1 ∈ Ω1 7→ XQ,ω1

τ ∈ L2(Ω◦,F◦T ,P◦;Rd) is measurable

because a and b are continuous and bounded. Standard estimates then show

that E[|XQ,ξ
τ∨θ −X

Q
τ∨θ|2|ξ] = 0. 2
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For later use, we now show that the law of (X t,χ,ν , B) actually only de-

pends on the joint law of (χ, ν,tB).

Proposition 2.3. Let x : Ω◦×Ω1 → Rd and u : [0, T ]×Ω◦×Ω1 → U be Borel

maps such that χ := x(tB, ξ) ∈ X2
t and ν := u·(B, ξ) ∈ U . Let ξ̄ and ξ̄′ be

[0, 1]d-valued Ft-measurable and set χ̄ := x(tB, ξ̃) and ν̄ := u·(B, ξ̄
′). Assume

that (χ, ν·∨t,
tB) and (χ̄, ν̄·∨t,

tB) have the same law. Then, (X t,χ,ν , B) and

(X t,χ̄,ν̄ , B) have the same law.

Proof. When the coefficients (b, a) of the stochastic differential equation do

not depend on the marginal conditional law but are F-progessive, the result

follows from the same arguments as in the proof of [7, Theorem 3.3]. In their

case, the conditioning is made with respect to tB, in our case it has to be

done with respect to (tB, ξ), where ξ is independent of B, so that the equa-

tion can actually be solved conditionally to ξ, see Proposition 2.2. Given the

fixed point procedure used in Step 2. of the proof of Proposition 2.1 above,

one can then find a sequence (P̂ n)n≥1 ⊂ L2(Ω◦,P2(C,B(C))) such that both

P̂ n → PBXt,χ,ν and P̂ n → PBXt,χ̄,ν̄ as n→∞. 2

3 The stochastic target problem: alternative

formulations and geometric dynamic pro-

gramming principle

Our aim is to provide a characterization of the set of initial measures for the

conditional law of the initial condition χ given B such that the conditional

law of X t,χ,ν
T given B belongs to a fixed closed subset G of P2:

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
T
∈ G

}
.

Before to go on, let us first show that χ in the definition of V(t) can be

replaced by any random variable χ′ ∈ X2
t such that PBχ′ = µ. Apart from

showing that only the distribution µ matters (which is a desirable property

if we think in terms of mass transportation), this will be of important use

later on to provide a geometric dynamic programming principle for V .
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Proposition 3.4. A measure µ ∈ P2 belongs to V(t) if and only if for all

χ ∈ X2
t such that PBχ = µ there exists ν ∈ U for which PB

Xt,χ,ν
T

∈ G.

Proof. Let Ṽ(t) denote the collection of measures µ ∈ P2 such that for all

χ ∈ X2
t satisfying PBχ = µ there exists ν ∈ U for which PB

Xt,χ,ν
T

∈ G. Clearly,

Ṽ(t) ⊂ V(t). We now prove the reverse inclusion. Let µ ∈ V(t) and consider

(χ, ν) ∈ X2
t × U such that PBχ = µ and PB

Xt,χ,ν
T

∈ G. Since ν is F-progressive,

it is, up to modification, of the form

νs(ω
◦, ω1) = u(s, sB(ω◦), ξ(ω1)) , s ∈ [t, T ] ,

with u a Borel map. Recall that ξ = (ξ1, . . . ξd) is the random variable on

Ω defined by ξ(ω◦, ω1) = ω1 for ω = (ω◦, ω1) ∈ Ω. Let F1(·;x,tω◦) denote a

(regular) conditional cumulated distribution of ξ1 given (χ,tB) = (x,tω◦), and

define Fi(·; y1, . . . , yi−1, x,
tω◦) as the (regular) conditional cumulated distri-

bution of ξi given (ξ1, . . . , ξi−1, χ,
tB) = (y1, . . . , yi−1, x,

tω◦) for i ≥ 2. Given

χ̄ ∈ X2
t such that PBχ̄ = µ, we then set ξ̄1 := F−1

1 (F1(ξ1; χ,tB); χ̄,tB) and

ξ̄i := F−1
i (Fi(ξi; ξ1, . . . , ξi−1, χ,

tB); ξ̄1, . . . , ξ̄i−1, χ̄,
tB) for i ≥ 2. Set now

ν̄ := u1[0,t) + 1[t,T ]u(·, ·B, ξ̄) ∈ U , for some u ∈ U. Then, (χ̄, ν̄t∨·, B) and

(χ, νt∨·, B) have the same law, and Proposition 2.3 implies that PB
Xt,χ,ν
T

=

PB
Xt,χ̄,ν̄
T

so that the latter belongs to G, thus proving that V(t) ⊂ Ṽ(t), by

arbitrariness of χ̄. 2

Before to state the dynamic programming principle, let us provide the

following measurable selection lemma. We define the subset G of [0, T ] ×
L2(Ω1,F 1,P1;Rd) by

G :=
{

(t, χ) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd) : ∃ν ∈ U s.t. PB
Xt,χ,ν
T
∈ G

}
.

From now on, we consider U as a subset of L2([0, T ]×Ω, dt×dP; U) endowed

with its strong topology.

Lemma 3.1. For any probability measure P on [0, T ] × L2(Ω1,F 1,P1;Rd),

there exists a measurable map ϑ : G → U such that

PB
X
t,χ,ϑ(t,χ)
T

∈ G

11



for P-a.e. (t, χ) ∈ G. Moreover, for each (t, χ) ∈ G, ϑ(t, χ) can be chosen to

be progressive w.r.t. F[t,T ] := (σ((Br∨t −Bt)t≤r≤s, ξ))s∈[t,T ].

Proof. It follows from (2.9) of Proposition 2.1 that the set

J := {(t, χ, ν) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd)× U : PB
Xt,χ,ν
T
∈ G}

is closed. Then, the Jankov-von Neumann Theorem (see [1, Proposition

7.49]), ensures that there exists an analytically measurable function ϑ̃ :

[0, T ]× L2(Ω1,F 1,P1;Rd)→ U such that

(t, χ, ϑ̃(t, χ)) ∈ J for all (t, χ) ∈ G .

Since any analytically measurable map is also universally measurable, the

existence of ϑ follows from [1, Lemma 7.27]. It remains to prove our last

claim. Let u be a progessive measurable map such that us(ω
◦, ω1) = ϑ(t, χ)s

for s ∈ [t, T ]. For s ∈ [0, T ], w,w′ ∈ Ω◦, set w ⊗s w′ := w·∧s + (w′·∨s − w′s).

Define νω
◦

s (ω̃◦, ω1) := us(ω
◦⊗t ω̃◦, ω1). Then, one can find ω◦ ∈ Ω◦ such that

PB
Xt,χ,νω

◦
T

(ω̃◦) ∈ G for P◦-a.e. ω̃◦ ∈ Ω◦, see [7, Theorem 5.4] and Proposition

2.2. The control νω
◦

is progressive w.r.t. F[t,T ]. 2

We can now state the dynamic programming principle.

Theorem 3.1. Fix t ∈ [0, T ] and θ ∈ T̄ ◦ with values in [t, T ]. Then,

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
θ
∈ V(θ)

}
.

Proof. Denote by V̂(t) the right hand side of the equality.

1. We first prove the inclusion V(t) ⊂ V̂(t). Fix µ ∈ V(t). Then, there exists

(χ, ν) ∈ X2
t × U and Ω̃◦ ∈ F◦ such that P◦(Ω̃◦) = 1, PBχ = µ and PB

Xt,χ,ν
T

∈ G
on Ω̃◦. For ω̃◦ ∈ Ω̃◦, we define (χω̃

◦
, νω̃

◦
) by

χω̃
◦
(ω) = X t,χ,ν

θ(ω̃◦)(ω̃
◦, ω1) , νω̃

◦

s (ω) = νs(ω̃
◦ ⊕θ(ω̃◦) ω◦, ω1) , s ∈ [0, T ]

for all ω = (ω◦, ω1) ∈ Ω. Note that χω̃
◦ ∈ X2

θ(ω̃◦), PB
χω̃◦

= PB
Xt,χ,ν
θ

(ω̃◦) and

νω̃
◦ ∈ U for all ω̃◦ ∈ Ω̃◦. Moreover, it follows from [7, Theorem 5.4] and

12



Proposition 2.2 that X
θ(ω̃◦),χω̃

◦
,νω̃
◦

T has the same law as X t,χ,ν
T given W·∧θ =

ω̃◦·∧θ(ω̃◦), for P◦-a.e. ω̃◦ ∈ Ω◦. Since PB
Xt,χ,ν
T

(ω◦) ∈ G for ω◦ ∈ Ω̃◦, it follows

that PB
Xt,χ,ν
θ

(ω̃◦) = PB
χω̃◦
∈ V(θ(ω̃◦)) for all ω̃◦ ∈ Ω̃◦. Therefore µ ∈ V̂(t).

2. We now prove the inclusion V̂(t) ⊂ V(t). Fix µ ∈ V̂(t) and (χ, ν) ∈ X2
t×U

such that PBχ = µ and PB
Xt,χ,ν
θ

∈ V(θ). It follows from Proposition 3.4 that(
θ(ω◦), X t,χ,ν

θ(ω◦)(ω
◦, .)
)
∈ G, for P◦-a.e. ω◦ ∈ Ω◦. Let P be the probability

measure induced by ω◦ 7→
(
θ(ω◦), X t,χ,ν

θ(ω◦)(ω
◦, .)
)

on [0, T ]×L2(Ω1,F1,P1;Rd).

By Lemma 3.1, there exists a measurable map ϑ such that PB
X
t′,χ′,ϑ(t′,χ′)
T

∈ G
P◦-a.s. for P-a.e. (t′, χ′) ∈ G. Since ϑ(t′, χ′) can be chosen in the filtration

F[t′,T ] to which t′B is independent, PB
X
t′,χ′,ϑ(t′,χ′)
T

is measurable with respect to

σ(B·∨t′ −Bt′). Hence, there exists null sets N and Ñ such that

PB
X
α(ω◦,·)
T

(ω̃◦) ∈ G for ω◦ /∈ N and ω̃◦ /∈ Ñ ,

where

α(ω◦, ·) := (θ(ω◦), X t,χ,ν
θ (ω◦, ·), ϑ(θ(ω◦), X t,χ,ν

θ (ω◦, ·)).

It remains to define the process ν̄ ∈ U by

ν̄(ω) = ν(ω)1[0,θ(ω◦)) + ϑ(θ(ω◦), X t,χ,ν
θ (ω◦, ·))(ω)1[θ(ω◦),T ] , (3.10)

and observe that Xα
T = X t,χ,ν̄

T , to conclude that µ ∈ V(t).

4 The dynamic programming partial differ-

ential equation

Let v : [0, T ]× P2 → R be the indicator function of the complement of the

reachability set V :

v(t, µ) = 1− 1V(t)(µ) , (t, µ) ∈ [0, T ]× P2. (4.11)

The aim of this section is to provide a characterization of v as a (discontin-

uous) viscosity solution of a fully non-linear second order parabolic partial

differential equation, in the spirit of [16]. Given Theorem 3.1, this follows

from combining the technologies developped in [4, 6] and [16].
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4.1 Derivatives on the space of probability measures

and Itô’s lemma

We first recall here the notions of derivative with respect to a probability

measure that has been introduced by Lions, see the lecture notes [4], and

further developed in [6], to our context.

For a function w : P2 → R, we define its lifting as the function W from

L2(Ω1,F 1,P1;Rd) to R such that

W (X) = w(PX) , for all X ∈ L2(Ω1,F 1,P1;Rd) .

We then say that w is Fréchet differentiable (resp. C1) on P2 if its lift

W is (resp. continuously) Fréchet differentiable on L2(Ω1,F 1,P1;Rd). If it

exists, the Fréchet derivative DW (X) of W at X ∈ L2(Ω1,F 1,P1;Rd) can be

identified by Riez Theorem to an element of L2(Ω1,F 1,P1;Rd) and admits a

representation of the form

DW (X) = ∂µw(PX)(X)

for some measurable map ∂µw(PX) : Rd → Rd, that we call the derivative

of w at PX . We have ∂µw(µ) ∈ L2(Rd,B(Rd), µ;Rd) for µ ∈ P2. In the case

where x ∈ Rd 7→ ∂µw(µ)(x) is differentiable at x, given µ ∈ P2, we denote

by ∂x∂µw(µ)(x) the corresponding gradient.

Following [6, Section 3.3], we say that w is partially C2 if it is differentiable

on P2 and if, for each µ ∈ P2, there exists a continuous version of the map

x ∈ Rd 7→ ∂µw(µ)(x) such that

• the map (µ, x) 7→ ∂µw(µ)(x) is continuous at any (µ, x) ∈ P2×Rd such

that x ∈ supp(µ),

• for any µ ∈ P2, the map x 7→ ∂µw(µ)(x) is continuously differentiable

and the map (µ, x) 7→ ∂x∂µw(µ)(x) is continuous at any (µ, x) ∈ P2×Rd

such that x ∈ supp(µ).

Under the additional assumption that W is twice continuously Fréchet

differentiable, D2W can be identified by Riez Theorem as a self-adjoint op-

erator on L2(Ω1, F 1,P1;Rd). We identify it as above to a map (x, x′) ∈
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Rd×Rd 7→ ∂2
µw(µ)(x, x′). For later use, note that we also have the following

identification by [5, Remark 6.4]

E
[
D2W (X)(Y Z)Y Z>

]
= E

[
Tr
(
∂x∂µw(µ)(X)Y Y >

)]
(4.12)

for any random variables Y ∈ L2(Ω1,F 1,P1;Rd×d), Z ∼ N(0, Id) and Z

independent of (X, Y ) (to be defined on an enlarged probability space).

From now on, we define C1,2
b ([0, T ]×P2) as the set of continuous functions

w : [0, T ] × P2 → R such that w(t, ·) is partially C2 for all t ∈ [0, T ], ∂tw

exists and is continuous on [0, T ]×P2, ∂µw and ∂x∂µw are continuous at any

(t, µ, x) such that x ∈ supp(µ) and

sup
t∈[0,T ], µ∈K

∫
Rd

[∣∣∂tw(t, µ)
∣∣+
∣∣∂µw(t, µ)(x)

∣∣2 + |∂x∂µw(t, µ)(x)|2
]
µ(dx) <∞

(4.13)

for any compact subset K of P2.

Proposition 4.5. Let w ∈ C1,2
b ([0, T ]×P2). Given (t, χ, ν) ∈ [0, T ]×Xt×U ,

set X = X t,χ,ν. Then,

w(s,PBXs) = w(t,PBχ )

+

∫ s

t

EB
[
∂tw(r,PBXr) + ∂µw(r,PBXr)(Xr)br(Xr,PBXr , νr)

]
dr

+
1

2

∫ s

t

EB
[
Tr
(
∂x∂µw(r,PBXr)(Xr)ara

>
r (Xr,PBXr , νr)

)]
dr

+

∫ s

t

EB
[
∂µw(r,PBXr)(Xr)ar(Xr,PBXr , νr))

]
dBr

for all s ∈ [t, T ].

Proof. The proof follows from similar arguments as in [6] and we only mention

the main ideas. Since χ ∈ Xt and ν ∈ U , we can find Borel maps x and u

such that χ = x(B, ξ) P-a.s. and ν = u(·,·B, ξ), up to modification. We first

enlarge the space Ω by considering the space Ω̃ = Ω◦× Ω̃1 where Ω̃1 = (Ω1)N.

We endow this space with the completion F̃ of the σ-algebra F◦ ⊗ (F1)⊗N

and the probability measure P̃ = P◦ ⊗ (P1)⊗N. We define on this space the
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sequence of random variables (ξ`)`≥1 and we extend (ξ, B) in a canonical way

by setting

ξ = ξ1 , ξ`(ω) = ω̃1

` for ` ∈ N , B(ω) = ω◦,

for all ω = (ω◦, (ω̃1
`)`∈N) ∈ Ω̃. Note that (ξ`)`∈N is an i.i.d. sequence, indepen-

dent of B. We then set (χ`, ν`) := (x(B), u(·,·B, ξ`)), for ` ≥ 1, and define

X` as the solution on [t, T ] of

X` =χ` +

∫ ·
t

b`sds+

∫ ·
t

a`sdBs,

in which (b`, a`) = (b, a)(X`,PBX1 , ν`). It follows from Proposition 2.2 that

(X`
r)`≥1 is a sequence of i.i.d. random variables given (Br′)r′≤T , for each

r ∈ [t, s]. Set µ̄Nr := 1
N

∑N
`=1 δX`

r
for t ≤ r ≤ s.

1. We first assume that w is fully C2 in the sense of [6, p17], that is (µ, v) 7→
(∂µw(µ)(v), ∂v∂µw(µ)(v), ∂2

µw(µ)(v)) is continuous, and that w, ∂µw, ∂x∂µw

and ∂2
µw are bounded and uniformly continuous. Then, it follows from [6,

Proposition 3.1] combined with Itô’s Lemma that

w(s, µ̄Ns ) = w(t, µ̄Nt ) +

∫ s

t

∂tw(r, µ̄Nr )dr +
1

N

N∑
`=1

∫ s

t

∂µw(r, µ̄Nr )(X`
r)b

`
rdr

+
1

N

N∑
`=1

∫ s

t

∂µw(r, µ̄Nr )(X`
r)a

`
rdBr

+
1

2N

N∑
`=1

∫ s

t

Tr
[
∂x∂µw(r, µ̄Nr )(X`

r)a
`
r(a

`
r)
>] dr

+
1

2N2

N∑
`=1

∫ s

t

Tr
[
∂2
µw(r, µ̄Nr )(X`

r , X
`
r)a

`
r(a

`
r)
>] dr.

We now take the expectation given (Br′)r′≤T on both sides and use [15,

Corollaries 2 and 3 of Theorem 5.13] and [13, Lemma 14.2] together with

the fact that the quadruplets (µ̄Nr , X
`
r , b

`
r, a

`
r)`≤N have all the same law given
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(Br′)r′≤T , for t ≤ r ≤ s, to obtain

EB[w(s, µ̄Ns )] = EB[w(t, µ̄Nt )] +

∫ s

t

EB
[
∂tw(r, µ̄Nr ) + ∂µw(r, µ̄Nr )(X1

r )b1
r

]
dr

+

∫ s

t

EB
[
∂µw(r, µ̄Nr )(X1

r )a1
r)
]
dBr

+
1

2

∫ s

t

EB
[
Tr
(
∂x∂µw(r, µ̄Nr )(X1

r )a1
r(a

1
r)
>)] dr

+
1

2N

∫ s

t

EB
[
Tr
(
∂2
µw(r, µ̄Nr )(X1

r , X
1
r )a1

r(a
1
r)
>)] dr.

We then use the fact that W2(µ̄Nr ,PBX1
r
)→ 0 a.s. as N →∞ for all r ∈ [t, s].

This is a consequence of [11, Lemma 4] and the fact that (X`
r)`≥1 is a sequence

of i.i.d. random variables given (Br′)r′≤T . Since all the involved maps are

assumed to be bounded and continuous, one can take the limit as N → ∞
in the above to obtain

w(s,PBX1
s
) = w(t,PBχ1) +

∫ s

t

EB
[
∂tw(r,PBX1

r
) + ∂µw(r,PBX1

r
)(X1

r )b1
r

]
dr

+

∫ s

t

EB
[
∂µw(r,PBX1

r
)(X1

r )a1
r)
]
dBr (4.14)

+
1

2

∫ s

t

EB
[
Tr
(
∂x∂µw(r,PBX1

r
)(X1

r )a1
r(a

1
r)
>
)]
dr.

2. The validity of (4.14) can be extended to the case where w is just as-

sumed to be fully C2 by following the molifying argument of [6, Proposition

3.4] whenever the condition (4.13) holds, recall that (b, a) is bounded. The

extension to a partially C2 function then follows from the same considerations

as in the proof of [6, Theorem 3.5]. 2

Later on, we shall need to use this Itô’s formula at the level of the lift W of

a function w. From now on, we say that W : [0, T ]× L2(Ω1,F 1,P1;Rd)→ R
is C1,2

b if it is the lifting function of a map w ∈ C1,2
b ([0, T ] × P2). Given

a random variable X ∈ L2(Ω,F ,P;Rd), we define W (t,X) as the random

variable ω◦ ∈ Ω◦ 7→ W (t,X(ω◦, ·)) where X(ω◦, ·) is now a random variable

on L2(Ω1,F 1,Pi;Rd). We use the same convention for DW (t,X(ω◦, ·)) and

D2W (t,X(ω◦, ·)). As an immediate corollary of Proposition 4.5 and (4.12),
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we have the following. From now on Z denotes a d-dimensional Gaussian

vector N(0, Id) independent of (B, ξ), whose existence is ensured, up to in-

creasing the probability space.

Corollary 4.1. Let W : [0, T ] × L2(Ω1,F 1,P1;Rd) → R be C1,2
b . Given

(t, χ, ν) ∈ [0, T ]×Xt × U , set X = X t,χ,ν. Then,

W (s,Xs) = W (t, χ)

+

∫ s

t

EB
[
∂tW (r,Xr) +DW (r,Xr)br(Xr,PBXr , νr)

]
dr

+
1

2

∫ s

t

EB
[
D2W (r,Xr)(Xr)(arZ)(arZ)>(Xr,PBXr , νr)

]
dr

+

∫ s

t

EB
[
DW (r,Xr)ar(Xr,PBXr , νr))

]
dBr

for all s ∈ [0, T ].

4.2 Viscosity solution characterization

We aim at proving that v solves a Hamilton-Jacobi-Bellman equation of the

form

−∂tw(t, µ) +H
(
t, µ, ∂µw(t, µ), ∂µ∂xw(t, µ)

)
= 0 ,

in the sense that the lifting function V : [0, T ]× L2(Ω1,F 1,P1;Rd)→ R of v

is solution on [0, T )× L2(Ω1,F 1,P1;Rd) of

−∂tW (t, χ) +H
(
t, χ,DW (t, χ), D2W (t, χ)

)
= 0 . (4.15)

Before to define the operatorH, let us recall thatW : [0, T ]×L2(Ω1,F 1,P1;Rd)

is extended to [0, T ]×L2(Ω,F ,P;Rd) by defining W (t,X) as the random vari-

able ω◦ ∈ Ω◦ 7→ W (t,X(ω◦, ·)), and let us introduce the set S(L2(Ω,F ,P;Rd))

of self-adjoint operators on L2(Ω, F , P;Rd).

Then, H is defined as H0 where, for ε ≥ 0,

Lut (χ, P,Q) := EB
[
b>t (χ,Pχ, u)P +

1

2
Q
(
at(χ,Pχ, u)Z

)
at(χ,Pχ, u)Z

]
Hε(t, χ, P,Q) := sup

u∈Nε(t,χ,P )

{
− Lut (χ, P,Q)

}
Nε(t, χ, P ) :=

{
u ∈ L0(Ω,F ,P; U) : |EB[at(χ,Pχ, u)P ]| ≤ ε

}
,
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for t ∈ [0, T ], u ∈ L0(Ω,F ,P; U), χ, P ∈ L2(Ω,F ,P;Rd) and Q ∈ S(L2(Ω,

F ,P;Rd)).

Since neither V nor H· are a-priori continuous, we define V∗ and V ∗ as

the lower-semicontinous and upper-semicontinuous enveloppes of V , and let

H∗ and H∗ be defined as the relaxed upper- and lower-semilimits as ε→ 0.

We say that V∗ is a viscosity supersolution (resp. V ∗ is a subsolution) of

(4.15) if for any (t, χ) ∈ [0, T ] × L2(Ω1,F 1,P1;Rd) and any C1,2
b function Φ

on [0, T ]× L2(Ω1,F 1,P1;Rd) such that

(V∗ − Φ)(t, χ) = min
[0,T ]×L2(Ω1,F1,P1;Rd)

(V∗ − Φ)

( resp. (V ∗ − Φ)(t, χ) = max
[0,T ]×L2(Ω1,F1,P1;Rd)

(V ∗ − Φ) )

we have

−∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≥ 0

(resp. − ∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≤ 0 ) .

If V∗ is a supersolution and V ∗ is a subsolution, we say that V is a discon-

tinuous solution.

We are now ready to state the viscosity property of the function V . This

requires the following continuity assumption on the set N .

(H2): Let O be an open subset of [0, T ]× L2(Ω,F ,P;Rd)× L2(Ω,F ,P;Rd)

such that N0 6= ∅ on O. Then, for every ε > 0, (t0, χ0, P0) ∈ O and u0 ∈
N0(t0, χ0, P0), there exists an open neighborhood O′ of (t0, χ0, P0) and a

measurable map û : [0, T ]× Rd × Rd × Ω1 → U such that:

(i) EB[|ût0(χ0, P0, ξ)− u0|] ≤ ε.

(ii) There exists C > 0 for which

E[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CE[|χ− χ′|2 +W2
2 (PP ,PP ′)]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.

We also strengthen (H1) by the following additional condition.
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(H1’) There exist a constant C and a function m : R+ → R such that

m(t)→ 0 as t→ 0 and

|bt(x, µ, u)− bt′(x, µ, u′)|+ |at(x, µ, u)− at′(x, µ, u′)| ≤ m(t− t′) + C|u− u′|.

for all t, t′ ∈ [0, T ], x ∈ Rd, µ ∈ P2 and u, u′ ∈ U.

Theorem 4.2. Under (H1) and (H1’) the function V∗ is a viscosity super-

solution of (4.15). If in addition (H2) holds, then V ∗ is a viscosity subsolu-

tion of (4.15).

Proof. Part I. Supersolution property. Fix (t0, χ0) ∈ [0, T )×L2(Ω1,F 1,P1;Rd)

and a C1,2
b test function Φ on [0, T )× L2(Ω1,F 1,P1;Rd) such that

(V∗ − Φ)(t0, χ0) = min
[0,T ]×L2(Ω1,F1,P1;Rd)

(V∗ − Φ) = 0 .

We must prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 . (4.16)

1. Suppose that the function V is constant in a neighborhood of (t0, χ0).

Then Φ(t0, χ0) is a local maximum of Φ and therefore

∂tΦ(t0, χ0) ≤ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0)≤0 . (4.17)

Hence, N0(t0, χ0, DΦ(t0, χ0)) = L0(Ω,F ,P; U) and

−∂tΦ(t0, χ0) +H0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 ,

so that (4.16) is satisfied.

2. We now consider the complementary case: V∗(t0, χ0) = 0. Let (tn, χn)n≥1

be a sequence of [0, T ) × L2(Ω1,F 1,P1;Rd) converging to (t0, χ0) and such

that

V (tn, χn) = 0 , for all n ≥ 1. (4.18)

We argue by contradiction and suppose that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2ϕ(t0, χ0)

)
=: −2η .
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for some η > 0. Define

Φ̃(t, χ) = Φ(t, χ)− |t− t0|2 − E
[∣∣χ− χ0

∣∣2]2
for (t, χ) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd). Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (Φ, DΦ, D2Φ)(t0, χ0),

and we can find ε > 0 and an open ball Bε(t0, χ0) such that

−η ≥− ∂tΦ̃(t, χ)− Lut (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) (4.19)

for any (t, χ) ∈ Bε(t0, χ0) and any u ∈ Nε(t, χ,DΦ(t, χ)). Let ∂pBε(t0, χ0) :=

{t0 + ε} × cl(Bε(χ0)) ∪ [t0, t0 + ε)× ∂Bε(χ0) denote the parabolic boundary

of Bε(t0, χ0) and observe that

ζ := min
∂pBε(t0,χ0)

(V∗ − Φ̃) > 0 . (4.20)

In view of (4.18), we can find a control νn ∈ U such that

PBXn
t
∈ G ,

where Xn = X tn,χn,νn . We then define the stoping times

θn(ω◦) = inf
{
s ≥ tn :

(
s,Xn

s (ω◦, .)
)
/∈ Bε(t0, χ0)

}
, ω◦ ∈ Ω◦ .

By Theorem 3.1, V (·, Xn
· ) = 0 on [tn, T ], so that −Φ̃(·, Xn) ≥ 0 on [tn, T ]

and −Φ̃(θn, X
n
θn

) ≥ ζ by (4.20). Let us set βn := −Φ̃(tn, χn) and define

αnt :=EB[∂tΦ̃(t,Xn
t ) + Lν

n
t
t (Xn

t , DΦ̃(t,Xn
t ), D2Φ̃(t,Xn

t ))],

ρn :=− αn1An , ψn := −EB
[
a(Xn,PBXn , νn)DΦ̃(·, Xn)

]
with

An :=
{
t ∈ [tn, θn] : −αnt > −η

}
.

Applying Corollary 4.1 and Remark 4.2 to Φ̃(., Xn), we then get that Mn
θn
≥ 0

where

Mn := βn − ζ +

∫ ·
tn

ρnt dt+

∫ ·
tn

ψnt dBt ≥ βn − ζ ≥ −
1

2
ζ, (4.21)
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for n large. By (4.19),∣∣EB[at(Xn
t ,PBXn

t
, νnt )DΦ̃(t,Xn

t )
]∣∣ > ε , for t ∈ An,

and we can define the positive F̄◦-local martingale Ln by

Lnt = 1−
∫ t

tn

Lnsρ
n
s |ψns |−2ψns dBs , t ≥ tn .

The coefficients a and b being bounded, Ln is a true martingale. In view of

(4.21), LnMn is a non-negative local martingale that is bounded from below

by a martingale. Therefore, it is a super-martingale and

0 ≤ E[LnθnM
n
θn ] ≤ LntnM

n
tn = Mn

tn = βn − ζ .

Sending n to ∞, we get a contradiction since βn → 0.

Part II. Subsolution property. Fix (t0, χ0) ∈ [0, T )× L2(Ω1,F 1,P1;Rd) and

a C1,2
b function Φ : [0, T ]× L2(Ω1,F 1,P1;Rd))→ R such that

(V ∗ − Φ)(t0, χ0) = max
[0,T ]×L2(Ω1,F1,P1;Rd)

(V ∗ − Φ). (4.22)

We have to prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≤ 0 .

We distinguish two cases.

1. Suppose that V ∗(t0, χ0) = 0. Then, we deduce from (4.22) that

∂tΦ(t0, χ0) ≥ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0) ≥ 0 . (4.23)

Let (εn, tn, χn, Pn, Qn)n≥1 ⊂ [0, 1]× [0, T ]×L2(Ω1,F 1,P1;Rd)×L2(Ω1,F 1,P1;

Rd)×S(L2(Ω1,F 1,P1;Rd)) be a sequence converging to (0, t0, χ0, DΦ(t0, χ0),

D2Φ(t0, χ0)) such that

Hεn(tn, χn, Pn, Qn) → H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) . (4.24)

It follows from (4.23) that

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ lim
n→+∞

−1

2
inf

u∈L0(Ω1,F1,P1;U)
E
[
Qn(atn(χn,Pχn , u)Z)atn(χn,Pχn , u)Z

]
.
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Since a is continuous and bounded, it follows from the convergence of Qn to

DΦ(t0, χ0) that

lim
n→+∞

inf
u∈L0(Ω1,F1,P1;U)

E
[
Qn(atn(χn,Pχn , u)Z)atn(χn,Pχn , u)Z

]
=

inf
u∈L0(Ω1,F1,P1;U)

E
[
D2Φ(t0, χ0)(at0(χ0,Pχ0 , u)Z)at0(χ0,Pχ0 , u)Z

]
.

Combining the above leads to

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ −1

2
inf

u∈L0(Ω1,F1,P1;U)
E
[
D2Φ(t0, χ0)(at0(χ0,Pχ0 , u)Z)at0(χ0,Pχ0 , u)Z

]
,

so that (4.23) and (4.24) lead to

−∂tΦ(t0, χ0) +H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) ≤ 0 .

2. Suppose now that V ∗(t0, χ0) = 1. We argue by contradiction and suppose

that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
=: 4η > 0 .

Since the left hand-side is finite and N0 ⊂ Nε for ε ≥ 0, there exists an open

neighborhood O of (t0, χ0, DΦ(t0, χ0)) such that N0 6= ∅ on O and there

exists u0 ∈ N0(t0, χ0, DΦ(t0, χ0)) such that

−∂tΦ(t0, χ0)− Lu0
t0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 2η .

Then, (H2) implies that for any ε > 0 there exists an open neighborhood

O′ of (t0, χ0, DΦ(t0, χ0)) and a measurable map û : [0, T ]×Rd ×Rd ×Ω1 →
U such that:

(i) EB[|ût0(χ0, P0, ξ)− u0|] ≤ ε

(ii) There exists C > 0 for which

E[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CE[|χ− χ′|2 +W2
2 (PP ,PP ′)]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.
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Define

Φ̃(t, χ) = Φ(t, χ) + |t− t0|2 + EB
[
|χ− χ0|2

]2
,

for (t, χ) ∈ [0, T ]× L2(Ω,F ,P;Rd). Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (∂tΦ, DΦ, D2Φ)(t0, χ0).

The above combined with (H1)-(H1’) shows that we can find some ε > 0

such that

−∂tΦ̃(t, χ)− Lût(χ,DΦ̃(t,χ),ξ)
t (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) ≥ η (4.25)

for all (t, χ) ∈ Bε(t0, χ0).

Let now (tn, χn)n≥1 be a sequence of [0, T ]× L2(Ω1,F 1,P1;Rd) such that(
tn, χn, V (tn, χn)

)
→

(
t0, χ0, V

∗(t0, χ0)
)
, (4.26)

and consider the solution Xn of (2.7) starting from χn at tn and associated

to the feedback control ν̂n := û·(X
n, DΦ̃(., Xn), ξ). The fact that Xn is

well-defined is guaranteed by (ii) above, this is obtained by a straightforward

extension of Proposition 2.1. We then define the stopping times θn by

θn(ω◦) = inf
{
s ≥ tn : (s,Xn

s (ω◦, .) /∈ Bε(tn, χn)
}
, ω◦ ∈ Ω◦ .

Letting

−ζ := max
∂pBε(t0,χ0)

(V ∗ − Φ̃) < 0 ,

we have (V − Φ)(θn, X
n
θn

) ≤ −ζ.

We then apply Corollary 4.1 and Remark 4.2, to deduce from (iii) and

(4.25) that Φ̃(θn, X
n
θn

) ≤ Φ̃(tn, χn) which implies V (θn, X
n
θn

) ≤ Φ̃(tn, χn)− ζ.

Since Φ̃(tn, χn) → 1, we have V (θn, X
n
θn

) < 1 for n large enough, which

contradicts Theorem 3.1. 2

Remark 4.2. In the above proof, we needed to apply the chain rule formula

to the map W 2 where W : χ ∈ L2(Ω1,F 1,P1;Rd) 7→ E[|χ − χ0|2] for some

χ0 ∈ L2(Ω1,F 1,P1;Rd). Note that it is not lift-invertible. On the other hand,
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the fact that the chain rule formula of Proposition 4.5 hold can be verified

by simple computations and the use of [15, Corollaries 2 and 3 of Theorem

5.13] and [13, Lemma 14.2]. Namely, given (t, χ, ν) ∈ [0, T ] × Xt × U , set

X = X t,χ,ν. Then,

W (Xs) =W (χ) +

∫ s

t

EB
[
2(Xr − χ0)>br(Xr,PBXr , νr)

]
dr

+
1

2

∫ s

t

EB
[
2Id(arZ)(arZ)>(Xr,PBXr , νr)

]
dr

+

∫ s

t

EB
[
2(Xr − χ0)>ar(Xr,PBXr , νr))

]
dBr

=W (χ) +

∫ s

t

EB
[
DW (r,Xr)br(Xr,PBXr , νr)

]
dr

+
1

2

∫ s

t

EB
[
D2W (r,Xr)(Xr)(arZ)(arZ)>(Xr,PBXr , νr)

]
dr

+

∫ s

t

EB
[
DW (r,Xr)ar(Xr,PBXr , νr))

]
dBr.

The same obviously holds for W 2 by application of the usual Itô’s formula.

We end this section with the derivation of the boundary condition at the

terminal time T . To this end, let us define the function g = 1− 1Ḡ where

Ḡ =
{
χ ∈ L2(Ω1,F 1,P1;Rd) : Pχ ∈ G

}
.

Notice that Ḡ is a closed subset of L2(Ω1,F 1,P1;Rd) since G is closed for

W2. Hence,

g∗ = 1− 1int(Ḡ) , g∗ = 1− 1Ḡ,

where g∗ and g∗ stand for the upper and lower semi-continuous envelopes of

g respectively.

Theorem 4.3. Under (H1), the function V satisfies

V ∗(T, .) = g∗ and V∗(T, .) = g∗

on L2(Ω1,F 1,P1;Rd).
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Proof. (i) We first prove that V ∗(T, .) = g∗. Since V (T, .) = g, we have

V ∗(T, .) ≥ g∗. For the reverse inequality, we argue by contradiction and

suppose that 1 = V ∗(T, χ) > g∗(χ) = 0 for some χ ∈ L2(Ω1,F 1,P1;Rd).

Since g∗(χ) = 0, we know that χ ∈ int(Ḡ). Let (tn, χn)n be a sequence

such that (tn, χn, V (tn, χn)) → (T, χ, 1). Fix some u0 ∈ U and denote by

X tn,χn,u0 the solution to (2.7) starting from χn at tn and controlled by the

constant processes ν = u0. Then, X tn,χn,u0

T ∈ Ḡc, after possibly considering

a subsequence. Sending n to ∞, we obtain that χ belongs to the closure of

Ḡc, which is a contradiction.

(ii) We now prove that V∗(T, .) = g∗. Since V (T, .) = g we have V∗(T, .) ≤ g∗.

Again the reserve inequality is proved by contradiction. Suppose that 0 =

V∗(T, χ) < g∗(χ) = 1 for some χ ∈ L2(Ω1,F 1,P1;Rd). Since g∗ = g, we know

that χ ∈ Ḡc. Let (tn, χn)n be a sequence such that (tn, χn, V (tn, χn)) →
(T, χ, 0). Then, up to taking a subsequence, there exists νn ∈ U such that

X tn,χn,νn
T ∈ Ḡ. Since a and b are continuous bounded and Ḡ is closed in

L2(Ω1,F 1,P1;Rd), we deduce that χ ∈ Ḡ by sending n to ∞, which is a

contradiction.

5 Additional remark on the choice of controls

In the above sections, the collection U of controls permits to take into ac-

count the exact value of the initial random variable χ, it is F-progressively

measurable. If we think in terms of controlling a population of particles

which initial distribution is the law of χ, this means that we allow to have a

different control for each of the particles. One could also consider the case

where the control belongs to the subclass U◦ of controls in U that are only F̄◦-
progressively measurable. This would mean that the control of each particle

does not depend on the position of each particle but only of the conditional

repartition of the whole population of particles given B.

This can be treated in a similar way as the case we considered above. In

particular, the result of Proposition 3.4 becomes trivial, see Proposition 2.3.

In (3.10), the control ν will be F̄◦-progressively measurable and the map ϑ

will take values in U◦, so that ν̄ will actually be F̄◦-progressively measurable

since the argument X t,χ,ν
θ (ω◦, ·) only enters as a random variable (not as the
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value of the random variable). As for the first part of the proof of Theorem

3.1, the construction will just be simpler. Then, Theorem 3.1 actually holds

for the class U◦ as well. As for the PDE characterization of Theorem 4.2, we

only have to replace Nε(t, χ, P ) by {u ∈ U : |EB[at(χ,Pχ, u)P ]| ≤ ε}, which

changes the definition of H∗ and H∗ accordingly. Up to this modification,

the proof is the same.
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