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A short introduction to the stochastic target approach
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O Target : G a Borel subset of R+,

O Problem : Compute

V(t) ={zeR¥": JveclUst Z5" G}
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Geometric Dynamic Principle

O Recall
V(t) ={zeR¥": JvecUst Z" c G}

O Theorem : (Soner and Touzi) Let {#¥, v € U} be a family of
stopping times. Then,

V(t)={ze R : Jvelst. Z;7" e V(0¥) }.

O In the Markovian diffusion case, Soner and Touzi discovered that it
leads to a PDE characterization of the map (t,z) — 1,¢v/(y).
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Focus on the “monotone” case

O Monotonicity assumption :
(i) ZtHhzv — (Xt,x,ll7 yt,z,u) c RY % R, z = (X,y),
(i) (x,y) € G implies (x,y’) € G fory’ > y.
= Consequence : (x,y) € V(t) implies (x,y’) € V(t) for y’ > y.

O Value function : v(t,x):=inf{y eR : (x,y) € V(t)}.

O Theorem : Let {#”, v € U} be a family of s.t. Then,
(GDP1) If y > v(t,x), then there exists v € U such that

Y= = v (07, X )
(GDP2) If y < v(t,x), then for all v € U

P Y5 > v(0”, X;°")] < 1.
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PDE in the Markovian setting
O “Waving hands” : y = v(t, x) implies dY} > dv(t, X})
O PDE :

sup (wy (t,x, v(t,x),u) — Lxv(t,x)) =0
uENV(t,x,v(t,x))

where
Lxv = 0v + ux - Dv + %T\F[UxU;D2V]
NY(t,x,y) ={ue U:oy(t,x,y,u) = Dv(t,x)ox(t,x, u)}
when

dX = ux(t,X,v)dt + ox(t, X,v)dB
dY = py(t, X, Y, v)dt + oy (t,X,Y,v)dB
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Constraint in expectations
B., Elie and Touzi

O Problem :
V(t,p):={zeR¥": Jvelst E[(Z:*")] > p}.
O Reformulation :
V(t,p):={z e R I (r,a) €U x Ast. ((Z75) > MEP* Y,

where _
MEP = p+/ asdBs.
t



Expectation maximization
under constraint in expectations
B., Elie and Imbert

O Problem :

max {E [L(Z3*")], v eU st. E[0(Z77")] = p} -



Expectation maximization
under constraint in expectations
B., Elie and Imbert

O Problem :
max {E [L(Z4*")], v € U st. B [((Z5*")] > p}.
O Reformulation :
max {E [L(Z7*")], (v,a) €U x Ast. (-, 255, M"P*) € D}

where
D:={(t,z,p):z€ V(t,p)}.
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Motivation
O Given an initial distribution, can we transport it along a controlled
SDE to a given target?

O Example :
e Let x ~ u be the distribution of agronomic characteristics in a field
at t = 0. "x(w) are the characteristics at the point w of the field".

o Using a control v (fertilization, etc.) leads to a cost
= [, c(vs)ds.
e We want the terminal distribution of the characteristics ]P)B}; to
belong to G.
e They evolve according to

XV = x+/ bs(X;’,IP’)’%:,us)der/ as (XY, PR, vs) dBs.
0 0
e Initial required funds :
v(p) =inf{y e R:Jvst YY" >0and }P’E_,’,_ € G}

with YY"V =y — C”.
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Quenched SDEs

O We consider the dynamics :

X.t’X’V =x+ / b (X:Xa”,[P)Bc,X,,/,Z/S)dS + / as (X;7X’V7P§st,x,u, Vs) dBs
t 0

with the usual Lipschitz continuity properties (w.r.t. the 2-Wasserstein

distance).

0 (B, €) is the canonical variable on C([0, T],R9) x [0, 1]¢ endowed with
Wiener @ Uniform. PB denotes the law given B.

O v is U-valued, adapted to the completed filtration (F;); generated by
(B, &) (could restrict to the filtration generated by B, but results are
slightly different). y € L2(F).

O Existence and uniqueness are standard, and the solution can be
approximated by a particles system.
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Problem formulation

O Let G be a closed element of the set P, of square integrable laws on
RY.

O The reachability set at t is defined as :

V(t) = {u €Pr: Ix,v) eXZxUst. PP =y and PE... € G},
: T

where X2 = [2(F,) and U is the set of U-valued adapted processes.

O Indepence w.r.t. the representent : € V(t) & V x € X7 s.t. P¥ =y,
Jvecl st IP‘;,,X,V €G.
T



Dynamic programming

O GDP : Fix t € [0, T] and 6 a st. time with values in [t, T]. Then,
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Dynamic programming

O GDP : Fix t € [0, T] and 6 a st. time with values in [t, T]. Then,
V(t) = {u €Py: Ix.v)EXIxUst PY=yp and IP)B(Q,,X,V € V(a)}.

O In our exemple :
(GDP1) If y > v(t, 1), then there exists (x,v) € X2 x U such that

Y ' > v (0, IP’X. )
(GDP2) If y < v(t, u), then for all (x,v) € X2 x U

P VI > (o, PX.XV)} <1
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O In general : set v(t, 1) = 1 — Ty (1)
(GDP1) If v(t, ) = 0, then there exists (,v) € X2 x U such that

(9 thxu)zo

(GDP2) If v(t, 1) = 0, then for all (x,v) € X2 xU

[ (o, PX.W)ZO} <1
O If v was smooth, this would mean

sup (—drift of v at t given vy = u) =0
uvol of v at t (given ve = u) =0

= Appeal to the notion of viscosity solutions.
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Derivatives on the lift space

O Use the classical approach initiated by Lions : lift to L2.

O For a function w : Py — R, we define its lift as the function W from
L? to R such that

W(X) = w(Px), forall Xel?.
O We say that w is C! if W admits a continuous Fréchet derivative. In
this case, there exists a measurable map 9, w(Px) : RY — R such that
DW(X) = 0,w(Px)(X).

O One can then define @2 w(p)(x, x") and 0x8, w()(x). If they are
continuous and “bounded”, we say that w € Cg.



Ité's formula

O Set w(xq, ..., xn) = w(px) with ux == N71 vazl Jdx;- Then,

w(x + h) = W(X + H) = W(X) + (DW(X), H) + o(|H|)
= w(x) + (O w(px)(X), H) + o(|H|)

N
= W)+ 77 D uw(x) ) + o( ).
Hence,

D () = 0, w(1x) ().



O Consider iid copies (with respect to &)

szxu/ bﬁds+/ aldB;,
t t

and let iV be the empirical measure. Then,

N s
w(s, i) =w(t, iM) / ew(r, aN)dr + NZ/ Ouw(r, i )(XE)bLdr
=
1 -N N L
- NZ | dumte. i xt)atce,
1 X
"o | 00 )

2/\/2 Z/t Tr [Dow(r, i) (X[, X)ar(ar) '] dr.

£,n=1



O Take Eg and let N — oo :

w(s, IP’)B<‘)

(t ]P’)’f)

Eg [O:w(r, IP’X )+ altw(r,]P’i)(X,)b,} dr

+

+

_\l\)\l—‘ N\'—‘\ s

/ Eg [Tr (00, w(r,P% )(X.)ara, )] dr
+ / Eg EB Tr 8 W(r,Pi)(Xr,)N(,)arérT)Hdr
IEB [0,w(r,PR)(X)ar (X, PR, 1r))] dB;

where “tilde" stands for independent copy (given B).



HJB formulation

O The value function v : g +— 1 — 1y, is a viscosity solution (in the
discontinuous viscosity solution sens) of

—0pv(t, ) + H(t, 1, 0uv(t, 1), 0,0xv(t, 1), 8,3\/(1”, 1) =0,
in which

H(t, 1, 0uv(t, 1), 0,0xv(t, 1), Opv(t, ) = sup (—L{VI(w))

uEN(t, 1,0, v(t 1))
with
(e, 0,v(t,10)) = {0 € L9ER%0) ¢ [ 9,w(em)C)aneo uout) = 0

and

L)(p) =
/] {btxu, N D)) + 3 Tr [DhDyv(t. 1) () aea) ), . u()]
3T [0 10k a1 ()] (5t )] i),



Back to the example
O The function

v(0,p) :=inf{y € R: Fvst. Y7” > 0and PR, € G},
with YV =y — fo vs)ds, is a viscosity solution of

—0pv(t, ) + H(t, 1, 0,v(t, 1), 9,0xv(t, u),@iv(t,u)) =0,

in which
H(tv Ky a/JV(t? /1‘)7 aﬂaxv(tv :u)v alztv(t7 M))
= sup(—e(w) - L)
ueN(t, 1,0, v(t,1))
with

(e 0,v(e00) = { € LRSV): [ Bv(e e () =0



The case of a global control

O If v is required to be adapted to the filtration of the Brownian motion,
we have the same formulation but with

N(t, e, Ouv(t, p)) = {u eU: /auv(t, w)(x)ae(x, g, v)p(dx) = 0} .
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