
Quenched mass transport of particles towards a
target

B. Bouchard

Ceremade - Univ. Paris-Dauphine, PSL University

Joint work with Boualem Djehiche and Idris Kharroubi



A short introduction to the stochastic target approach



General problem formulation
Soner and Touzi

2 Controlled process : A map : (t, z , ν) ∈ [0,T ]× Rd+1 × U 7→ Z t,z,ν a
cadlag F-adapted process satisfying Z t,z,ν

t = z .

2 Target : G a Borel subset of Rd+1.

2 Problem : Compute

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Z t,z,ν
T ∈ G }.
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Geometric Dynamic Principle

2 Recall

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Z t,z,ν
T ∈ G }.

2 Theorem : (Soner and Touzi) Let {θν , ν ∈ U} be a family of
stopping times. Then,

V (t) = {z ∈ Rd+1 : ∃ ν ∈ U s.t. Z t,z,ν
θν ∈ V (θν) }.

2 In the Markovian diffusion case, Soner and Touzi discovered that it
leads to a PDE characterization of the map (t, z) 7→ 1z /∈V (t).
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Focus on the “monotone” case

2 Monotonicity assumption :
(i) Z t,z,ν = (X t,x,ν ,Y t,z,ν) ∈ Rd × R, z = (x , y),
(ii) (x , y) ∈ G implies (x , y ′) ∈ G for y ′ ≥ y .

⇒ Consequence : (x , y) ∈ V (t) implies (x , y ′) ∈ V (t) for y ′ ≥ y .

2 Value function : v(t, x) := inf{y ∈ R : (x , y) ∈ V (t)}.

2 Theorem : Let {θν , ν ∈ U} be a family of s.t. Then,
(GDP1) If y > v(t, x), then there exists ν ∈ U such that

Y t,z,ν
θν ≥ v(θν ,X t,x,ν

θν )

(GDP2) If y < v(t, x), then for all ν ∈ U

P
[
Y t,z,ν
θν > v(θν ,X t,x,ν

θν )
]
< 1.
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PDE in the Markovian setting

2 “Waving hands” : y = v(t, x) implies dY ν
t ≥ dv(t,X ν

t )

2 PDE :

sup
u∈N v (t,x,v(t,x))

(µY (t, x , v(t, x), u)− Lu
X v(t, x)) = 0

where

Lu
X v := ∂tv + µX · Dv +

1
2
Tr[σXσ

>
X D2v ]

N v (t, x , y) := {u ∈ U : σY (t, x , y , u) = Dv(t, x)σX (t, x , u)}

when

dX = µX (t,X , ν)dt + σX (t,X , ν)dB
dY = µY (t,X ,Y , ν)dt + σY (t,X ,Y , ν)dB
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Extensions



Constraint in expectations
B., Elie and Touzi

2 Problem :

V (t, p) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. E
[
`(Z t,z,ν

T )
]
≥ p}.

2 Reformulation :

V (t, p) := {z ∈ Rd+1 : ∃ (ν, α) ∈ U ×A s.t. `(Z t,z,ν
T ) ≥ Mt,p,α

T },

where

Mt,p,α := p +

∫ ·
t
αsdBs .
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Expectation maximization
under constraint in expectations

B., Elie and Imbert

2 Problem :

max
{
E
[
L(Z t,z,ν

T )
]
, ν ∈ U s.t. E

[
`(Z t,z,ν

T )
]
≥ p

}
.

2 Reformulation :

max
{
E
[
L(Z t,z,ν

T )
]
, (ν, α) ∈ U ×A s.t. (·,Z t,z,ν ,Mt,p,α) ∈ D

}
where

D := {(t, z , p) : z ∈ V (t, p)}.
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Quenched mass transport



Motivation
2 Given an initial distribution, can we transport it along a controlled
SDE to a given target ?

2 Example :
• Let χ ∼ µ be the distribution of agronomic characteristics in a field
at t = 0. “χ(ω) are the characteristics at the point ω of the field”.

• Using a control ν (fertilization, etc.) leads to a cost
Cν =

∫ ·
0 c(νs)ds.

• We want the terminal distribution of the characteristics PB
XνT

to
belong to G .

• They evolve according to

X ν
· = χ+

∫ ·
0

bs
(
X ν

s ,PB
Xνs
, νs
)
ds +

∫ ·
0

as
(
X ν

s ,PB
Xνs
, νs
)
dBs .

• Initial required funds :

v(µ) := inf{y ∈ R : ∃ ν s.t. Y y ,ν
T ≥ 0 and PB

XνT
∈ G}

with Y y ,ν = y − Cν .
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Quenched SDEs

2 We consider the dynamics :

X t,χ,ν
· = χ+

∫ ·
t

bs
(
X t,χ,ν

s ,PB
X t,χ,ν

s
, νs
)
ds +

∫ ·
0

as
(
X t,χ,ν

s ,PB
X t,χ,ν

s
, νs
)
dBs

with the usual Lipschitz continuity properties (w.r.t. the 2-Wasserstein
distance).

2 (B, ξ) is the canonical variable on C ([0,T ],Rd)× [0, 1]d endowed with
Wiener ⊗ Uniform. PB denotes the law given B.

2 ν is U-valued, adapted to the completed filtration (Ft)t generated by
(B, ξ) (could restrict to the filtration generated by B, but results are
slightly different). χ ∈ L2(Ft).

2 Existence and uniqueness are standard, and the solution can be
approximated by a particles system.
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Problem formulation

2 Let G be a closed element of the set P2 of square integrable laws on
Rd .

2 The reachability set at t is defined as :

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PB
χ = µ and PB

X t,χ,ν
T

∈ G
}
,

where X2
t = L2(Ft) and U is the set of U-valued adapted processes.

2 Indepence w.r.t. the representent : µ ∈ V(t) ⇔ ∀ χ ∈ X2
t s.t. PB

χ = µ,
∃ ν ∈ U s.t. PB

X t,χ,ν
T

∈ G .
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Dynamic programming

2 GDP : Fix t ∈ [0,T ] and θ a st. time with values in [t,T ]. Then,

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PB
χ = µ and PB

X t,χ,ν
θ

∈ V(θ)
}
.

2 In our exemple :
(GDP1) If y > v(t, µ), then there exists (χ, ν) ∈ X2

t × U such that

Y t,y ,ν
θ ≥ v(θ,PB

X t,χ,ν
θ

)

(GDP2) If y < v(t, µ), then for all (χ, ν) ∈ X2
t × U

P
[
Y t,y ,ν
θ > v(θ,PB

X t,χ,ν
θ

)
]
< 1.
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2 In general : set v(t, µ) = 1− 1V(t)(µ)

(GDP1) If v(t, µ) = 0, then there exists (χ, ν) ∈ X2
t × U such that

v(θ,PB
X t,χ,ν
θ

) = 0

(GDP2) If v(t, µ) = 0, then for all (χ, ν) ∈ X2
t × U

P
[
v(θ,PB

X t,χ,ν
θ

) = 0
]
< 1.

2 If v was smooth, this would mean

sup
u:vol of v at t (given νt = u) = 0

(−drift of v at t given νt = u) = 0

⇒ Appeal to the notion of viscosity solutions.
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Derivatives on the lift space

2 Use the classical approach initiated by Lions : lift to L2.

2 For a function w : P2 → R, we define its lift as the function W from
L2 to R such that

W (X ) = w(PX ) , for all X ∈ L2 .

2 We say that w is C 1 if W admits a continuous Fréchet derivative. In
this case, there exists a measurable map ∂µw(PX ) : Rd 7→ Rd such that

DW (X ) = ∂µw(PX )(X ).

2 One can then define ∂2
µw(µ)(x , x ′) and ∂x∂µw(µ)(x). If they are

continuous and “bounded”, we say that w ∈ C 2
b .
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Itô’s formula

2 Set w̄(x1, . . . , xN) = w(µX ) with µX := N−1∑N
i=1 δxi . Then,

w̄(x + h) = W (X + H) = W (X ) + 〈DW (X ),H〉+ o(|H|)
= w̄(x) + 〈∂µw(µX )(X ),H〉+ o(|H|)

= w̄(x) +
1
N

N∑
i=1

∂µw(µX )(xi )hi + o(|h|).

Hence,

∂xi w̄(x) =
1
N
∂µw(µX )(xi ).



2 Consider iid copies (with respect to ξ)

X ` = χ` +

∫ ·
t

b`sds +

∫ ·
t

a`sdBs ,

and let µ̄N be the empirical measure. Then,

w(s, µ̄N
s ) =w(t, µ̄N

t ) +

∫ s

t
∂tw(r , µ̄N

r )dr +
1
N

N∑
`=1

∫ s

t
∂µw(r , µ̄N

r )(X `
r )b`r dr

+
1
N

N∑
`=1

∫ s

t
∂µw(r , µ̄N

r )(X `
r )a`rdBr

+
1
2N

N∑
`=1

∫ s

t
Tr
[
∂x∂µw(r , µ̄N

r )(X `
r )a`r (a`r )>

]
dr

+
1

2N2

N∑
`,n=1

∫ s

t
Tr
[
∂2
µw(r , µ̄N

r )(X `
r ,X

n
r )a`r (an

r )>
]
dr .



2 Take EB and let N →∞ :

w(s,PB
Xs

) = w(t,PB
χ )

+

∫ s

t
EB
[
∂tw(r ,PB

Xr
) + ∂µw(r ,PB

Xr
)(Xr )br

]
dr

+
1
2

∫ s

t
EB
[
Tr
(
∂x∂µw(r ,PB

Xr
)(Xr )ara>r

)]
dr

+
1
2

∫ s

t
EB

[
ẼB

[
Tr
(
∂2
µw(r ,PB

Xr
)(Xr , X̃r )ar ã

>
r

)]]
dr

+

∫ s

t
EB
[
∂µw(r ,PB

Xr
)(Xr )ar (Xr ,PB

Xr
, νr ))

]
dBr

where “tilde” stands for independent copy (given B).



HJB formulation
2 The value function v : µ 7→ 1− 1V is a viscosity solution (in the
discontinuous viscosity solution sens) of

−∂tv(t, µ) + H
(
t, µ, ∂µv(t, µ), ∂µ∂xv(t, µ), ∂2

µv(t, µ)
)

= 0 ,

in which

H
(
t, µ, ∂µv(t, µ), ∂µ∂xv(t, µ), ∂2

µv(t, µ)
)

:= sup
u∈N(t,µ,∂µv(t,µ))

(−Lu
t [v](µ))

with

N(t, µ, ∂µv(t, µ)) :=

{
u ∈ L0(Rd ; U) :

∫
∂µv(t, µ)(x)at(x , µ, u(x))µ(dx) = 0

}
and

Lu
t [v](µ) :=∫ ∫ {

bt(x , µ, u(x))>∂µv(t, µ)(x) +
1
2
Tr
[
∂x∂µv(t, µ)(x)(ata>t )(x , µ, u(x))

]
+
1
2
Tr
[
∂2
µv(t, µ)(x , x̃)at(x , µ, u(x))a>t (x̃ , µ, u(x̃))

]}
µ(dx)µ(dx̃).



Back to the example
2 The function

v(0, µ) := inf{y ∈ R : ∃ ν s.t. Y y ,ν
T ≥ 0 and PB

XνT
∈ G},

with Y y ,ν = y −
∫ ·
0 c(νs)ds, is a viscosity solution of

−∂tv(t, µ) + H
(
t, µ, ∂µv(t, µ), ∂µ∂xv(t, µ), ∂2

µv(t, µ)
)

= 0 ,

in which

H
(
t, µ, ∂µv(t, µ), ∂µ∂xv(t, µ), ∂2

µv(t, µ)
)

:= sup
u∈N(t,µ,∂µv(t,µ))

(
−c(u)− LX ,u

t [v](µ)
)

with

N(t, µ, ∂µv(t, µ)) :=

{
u ∈ L0(Rd ; U) :

∫
∂µv(t, µ)(x)at(x , µ, u(x))µ(dx) = 0

}
.



The case of a global control

2 If ν is required to be adapted to the filtration of the Brownian motion,
we have the same formulation but with

N(t, µ, ∂µv(t, µ)) :=

{
u ∈ U :

∫
∂µv(t, µ)(x)at(x , µ, u)µ(dx) = 0

}
.



Thank you !
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