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Problem Formulation

Dynamics :

2= 0V

L txy) € R? x R solution of

XY(s) =x+ /ts px (XY (r), vy )dr + /ts ox(XY(r),v.)dW,

Y”(s):y—l—/ts,uy(Z”(r),l/,)dr-l-/tsay(Z”(r),V,)dWr.



Stochastic target problems

Problem Formulation

Dynamics :

2= 0V

txy = tx,y) € R? x R solution of

XY(s) =x+ /ts px (XY (r), vy )dr + /ts ox(XY(r),v.)dW,

Y”(s):y+/ts,uy(Z”(r),l/,)dr+/:ay(Z”(r),ur)dWr.

Controls

v € U, square integrable, prog. meas., valued in U C RY (may be
unbounded).
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Problem Formulation

Target

G:={(x,y) eRIxR : g(x,y) >0}, withg "y.
Viability set

D:={(t,z) : IvelUst. g(Z{,,(T)) >0P—as.}.

Value function

w(t,x) :=inf{y e R : (t,x,y) € D}.
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Example : super-hedging in finance

Interpretation

Stocks/Factors : X¥. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : v

Super-hedging price

YU(T) =2 p(X¥(T) & g(2¥(T)) = 0 with g(x, y) := y — ¥(x).
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Example : super-hedging in finance

Interpretation

Stocks/Factors : X¥. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : 9

Super-hedging price

YY(T) 2 9(X*(T) & g(27(T)) = 0 with g(x,y) := y — ¥(x).
w(t,x) :=infly eR :Jvelst. g(Zf,,(T)) >0P—as}.
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Geometric dynamic programming principle

Recall
D:={(t,z) : JvelUst g(Z{,(T))=0P—as.}.
w(t,x):=inf{y e R : (t,x,y) € D}

Theorem (Soner and Touzi)

For any stopping time 6 € [t, T|P — a.s.

D={(t,z) : 3veldst.(0,Z/,,00) e DP—as}.
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Geometric dynamic programming principle

Recall
D:={(t,z) : JvelUst g(Z{,(T))=0P—as.}.
w(t,x):=inf{y e R : (t,x,y) € D}

Theorem (Soner and Touzi)

For any stopping time 6 € [t, T|P — a.s.

D={(t,z) : 3veldst. (0,2

t’XLy

(0)) e DP —as.}.

Corollary

For any stopping time 6 € [t, T|P — a.s.

y>w(t,x) = Fvst Y, (0) > w0, X (0) P—as.
y <w(t,x) = Avst Y, (0) > w0 X, (0)P—as.
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PDE Derivation

For "y = w(t,x)", v el st. Y, (t+) > w(t+, X{(t+)) .
Thus,

dYi, (t) = py(xy,ve)dt+oy (x,y,ve) dW;
dw(t, X¢ (1))
L w(t,x)dt + Dw(t, x)ox (x, ve) dW;

v
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PDE Derivation

For "y = w(t,x)", v el st. Y, (t+) > w(t+, X{(t+)) .
Thus,

dytljx,y(t) = NY(X;% Vt)dt+(7Y (X,y,vt) dW;
> dw(t, X, (1))
= LYw(t,x)dt + Dw(t,x)ox (x,ve) dW;

This leads to

sup  py (x,w(t,x),u) — Lsxw(t,x) >0
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PDE Derivation
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PDE Derivation
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PDE Derivation

sup  py (x,w(t,x),u) — Lsxw(t,x) >0
ueN (t,x,w)

where N(t,x,w):={ue U : oy (x,w(t,x),u) = Dw(t,x)ox (x,u)},

then “we can find" ¥ s.t. 0(t',x") € N(t',x", w) for (¢, x").

For v :=D(:, X{x(-)) and y := w(t, x) — €, we have
dYtljx,y > dW(,X;:X())

and therefore Y7
This leads to

.y (0) > w(8, X{(0)) for 6 well chosen.

sup  py (x,w(t,x),u) — Lxw(t,x) <0.
ueN (t,x,w)
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PDE Derivation

Theorem (Soner and Touzi; B., Elie and Imbert)

w is a viscosity solution (in the discontinuous sense) of

sup gy (x, w(t,x),u) — L%&w(t,x) =0 (t,x)€[0,T) xR
ueN (t,x,w)

where

N(t,x,w) :={ue U : oy (x,w(t,x),u) =Dw(t,x)ox (x,u)}.
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Stochastic target problems

A powerful tool

Robust approach

e Dynamic programming principle is robust.

e New proofs under minimal conditions (B., R. Elie and N.
Touzi).

e Can be extended to jumps (B.) or American type constraints
(B. and V. T. Nam)

Dual formulation ?

e Works only for financial models.
e Event not always (large investors, gamma contraints,...)

e What about insurance, power plant management,...
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Problem Formulation

Viability set
D(p):={(t,z) : IveUst.E[g(Z{(T))] >p}. peR.

Value function

w(t,x; p) :=inf{y e R : (t,x,y) € D(p)}.
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Example

Interpretation

Stocks/Factors : X¥. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : ¢ ; Define : g(x,y) := 1{,>yx)

Super-hedging price for p =1

inf{y : Jv el st. E[g(X,(T), Y, (T))] > 1}
= inf{ly:Jvelst Y, (T)>P(X(T))P—as}
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Example

Interpretation

Stocks/Factors : X¥. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : ¢ ; Define : g(x,y) := 1{,>yx)

Quantile-hedging costs for 0 < p < 1

inf{y : Jv el st. E[g(X/(T), Ytljx’y(T))] > p}
= inf{ly:Jveldst P[Y. (T)> (X (T))] > p}
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Example

Interpretation

Stocks/Factors : X”. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : ¢; Define : g(x,y) =y —¢¥(x)]7), ¢ /

Loss function price
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Example

Interpretation

Stocks/Factors : X”. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : ¢; Define : g(x,y) =y —¢¥(x)]7), ¢ /

Loss function price

inf{ly :Jv el st. —E[g(X{(T), Y, (T))] > p}
= inf{y:Jveld st EL([Y (T)—XL(T)]7)] < —p}
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Example

Interpretation

Stocks/Factors : X”. Wealth : Y”. Portfolio strategy : v € U.
Option payoff : ¢; Define : g(x,y) := U(y — ¥(x)), U concave

Indifference price

inf{ly :3velst. —E [g(X{(T), Yyosy(T))] = p}
= inf{ly:Fveld st E[U (Y, (T)— (X (T)))] > p}
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Dynamic Programming

Recall

D(p) = {(t.2) :

JveUst.E[g(Zy(T))] >pP—as.}.
w(t,x; p) :=inf{y eR :

(t.x,y) € D(p)}
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D(p):={(t,z) : IveUUst.E[g(Z{(T))] >pP—as.}.
w(t,x;p):=inf{y € R : (t,x,y) € D(p)}

Geometric Dynamic Programming ?

For a stopping time 6 € [t, T|P — a.s.

D(p)#{(t,z) : IvelUst. (0,Z/,(0)) € D(p) P—as.}.
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Dynamic Programming

Recall
D(p) :={(t,z) : IveUUst.E[g(Z{,(T))] >pP—as}.
w(t,x;p):=inf{y € R : (t,x,y) € D(p)}

Geometric Dynamic Programming
For a stopping time 6 € [t, T|P — a.s.

D(p) ={(t,z) : IvelUst. (0,2;,(0)) € D(P)P—as.}.

with "P:=E [g(Z{(T)) | F4]"
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Dynamic Programming

Recall
D(p) :={(t,z) : IveUUst.E[g(Z{,(T))] >pP—as}.
w(t,x;p):=inf{y € R : (t,x,y) € D(p)}

Geometric Dynamic Programming

For a stopping time 6 € [t, T|P — a.s.
D(p) ={(t,z) : IvelUst. (0,2;,(0)) € D(P)P—as.}.

with “P := E [g(ZL,(T)) | Fo]" =P2,(8) := p + [, csdWs
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Dynamic Programming

Recall
D(p):={(t,z) : IveUUst.E[g(Z{(T))] >pP—as.}.
w(t,x;p):=inf{y e R : (t,x,y) € D(p)}

Theorem (B., Elie and Touzi)

(t,z) € D(p) iff there exists (v, a) s.t., for any stopping time
0elt, TIP—as,

(0, Z¢,(0)) € D(P{,(0)) P — a.s.
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Dynamic Programming

Recall

D(p) :={(t,z) : JveUUst.E[g(Z{,(T))] >pP—as}.
w(t,x;p) = inf{y €R : (t,%,y) € D(p)}

Theorem (B., Elie and Touzi)

(t,z) € D(p) iff there exists (v, a) s.t., for any stopping time

0elt, TIP—as,

(0,2¢,(0)) € D(P,(0)) P — as.

Back to a.s. stochastic target problems

Apply the previous approach to the new controlled process
(Z¢

¢ 2> Pf,) and controls (v, a).



Stochastic target with controlled loss

PDE Derivation

Theorem (B., Elie and Imbert)

w is a viscosity solution (in the discontinuous sense) of

sup wy (X7 W(t,X,p),U)— )u(’%W(t?X,P) =0
(u,0)EN(t,x,p,w)

where

N(-, w)

u,a) € UxR?: oy (-,w,u) = Dywox (-, u) + aDow} .
P
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Dynamics
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Example : Quantile hedging in B.-S.

Dynamics

dX = Xudt + XodW , dY¥ = vdX /X

Quantile hedging problem
w(t,x,p) =inf{y: Jvel, P [Y;fX’y(T) > p(Xex(T))] = p}

PDE

0=

1 2.2 1.2
supuas:axwx+awp (UMX — UXWx — 50" X" Wy — QOXWxp — 5Q pr)
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Example : Quantile hedging in B.-S.

Dynamics

dX = Xpdt + XodW |, dYY = vdX /X

Quantile hedging problem
w(t,x,p)=inf{y:Jvel, P [Yt’jXJ(T) > ¢(Xt7x(T))] > p}

PDE and convexity (w,, > 0)

2
Evwp—oxw,
0=—w; — %0252WXX F %—(" PW )
(7
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Example : Quantile hedging in B.-S.

Legendre transform

w(t,x,q) = suppepo1) {Pq — w(t, x, p)} .

Boundary condition for t = T

w(T—,x,1) =¢(x), w(T—,x,0)=0
and w concave in p = w(T—,x, p) = pt(x)
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Example : Quantile hedging in B.-S.

Legendre transform

w(t,x,q) = suppepo1) {Pq — w(t, x, p)} .

Boundary condition for t = T

w(T—,x,1) =(x), w(T—,x,0)=0
and w concave in p = w(T—,x, p) = pt(x)
= W(T—,x,q) =[q—¥(x)]".
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Example : Quantile hedging in B.-S.

Legendre transform

w(t,x,q) = suppepo1) {Pq — w(t, x, p)} .

Boundary condition for t = T

w(T—,x,1) = 9¥(x), w(T—,x,0)=0

and w concave in p = w(T—,x, p) = pt(x)
= W(T—,x,q) =[q—¥(x)]".

PDE

— e — 502 — (1/0)qoxitg — 5(1/0)?q%igg = 0
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Example : Quantile hedging in B.-S.

Legendre transform

w(t,x,q) = suppepo1) {Pq — w(t, x, p)} .

Boundary condition for t = T

w(T—,x,1) =(x), w(T—,x,0)=0
and w concave in p = w(T—,x, p) = pt(x)
= W(T—,x,q) =[q—¥(x)]".

PDE
— e — 502 — (1/0)qoxitg — 5(1/0)?q%igg = 0

Explicit solution by Feynman-Kac.



Stochastic target with controlled loss

General results

Already done

e Viscosity characterization for stochastic target problems with

unbounded controls (with minimal assumptions).

e Derivation of the boundary conditions for stochastic target

problems with controlled probability of loss at p = 0,1 and
t=1T.



Stochastic target with controlled loss

General results

Already done

e Viscosity characterization for stochastic target problems with

unbounded controls (with minimal assumptions).

e Derivation of the boundary conditions for stochastic target

problems with controlled probability of loss at p = 0,1 and
t=1T.

Remains to do

e Comparison results ?

e American version ?
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Problem formulation

Stochastic target constraints problem (P — a.s. sense)

V(t,z) = sup E[f(Z{,(T))]
I/Gut,z
with U, = {velU st g(Z{(T))>0P—as.}

Target constraints in expectation/probability

V(t,z,p) = sup E[f(Zgz(T))}

V€Ut z,p

with U, = {vel st E[g(Z/,(T))] >pP—as}
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Problem formulation

Stochastic target constraints problem (P — a.s. sense)

V(t,z) = sup E [f(Z;Z(T))]
vEU: 2
with U, = {velU st g(Z{(T))>0P—as.},

Example : Quantile-hedging constraint/Index tracking

Urxyp ={velu st. P [Yt’jx’y(T) > w(ng(T))] >p},
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Problem formulation

Stochastic target constraints problem (P — a.s. sense)

V(t,z) = sup E [f(ZZZ(T))]
vEUL 2
with U, = {velU st g(Z{(T))>0P—as.},

Example : Loss constraint

Usryp = {y cU st E [e ([vngy(r) - ¢(xgx(r))]‘)} < —p} ,
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Problem re-formulation

Stochastic target constraints problem (P — a.s. sense)

V(t,z) == sup,ey, , E [f(Z¢.(T))]
with U, = {v el st g( (T)>0P—as.} .

State constraint problem formulation

Uty ={vel st. Z{ (s) e DP—as. Vs € [t, T]} , where
D= {(tx) : Upz £ 0}



Optimal control under target constraints

Problem re-formulation

Stochastic target constraints problem (P — a.s. sense)
V(t,2) = sup,ey, , E [f(Z¢,(T))]

with Uy, = {v €U st. g( (T)>0P—as.} .

State constraint problem formulation

Uty ={vel st. Z{ (s) e DP—as. Vs € [t, T]} , where
D={(t;x) : Ues #0}.

Important point

D is given by “the” viscosity solution of a PDE. Not a-priori. More
complex but implies reflexion on the boundary automatically.
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Optimal control under target constraints

PDE formulation

Assumption
The value function w of the target problem is continuous in the

domain, with a continuous extension at T

Decomposition of the domain

int,D = {(t,x,y)€[0,T) xRy > w(tx)}
9pD = {(t,x,y) €[0, T) x Ry = w(t,x)}
orD = {(t,x,y) € [0, T] x R :y > w(t,x), t=T}
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PDE formulation

On int,D := {(t,x,y) € [0, T) x R : y > w(t, x)}

e Vv, 30>tP—as st Y, (0) > w(0, X, (0)) P—as.
e The state constraint does not play any role.

e Usual HJB equation

inf —L% yV(t,x,y)=0.
u b

On 07D :={(t,x,y) € [0, T] x R*: y > w(t,x), t =T}

Standard boundary condition V(T —,x,y) = f(x,y).
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PDE formulation

On 9,0 := {(t,x,y) € [0, T) x R : y = w(t,x)}

e Must choose v s.t. dYy, ,(t) > dw(t, XY, (t))
e This implies

e oy (x,y,u) = Dw(t,x)ox (x, u)
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PDE formulation

On 9,0 := {(t,x,y) € [0, T) x R : y = w(t,x)}
e Must choose v s.t. dYy, ,(t) > dw(t, XY, (t))
e This implies
e oy (x,y,u) = Dw(t,x)ox (x, u)
o py (x,y,u) — Lsw(t,x) >0
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PDE formulation

On 9,0 := {(t,x,y) € [0, T) x R : y = w(t,x)}

e Must choose v s.t. dYy, ,(t) > dw(t, XY, (t))

e This implies
e oy (x,y,u) = Dw(t,x)ox (x, u)
o fy (x,y,u) — L4W(t,x) > 0
o Defines a set U(t,x,y,w).
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PDE formulation

On 9,0 := {(t,x,y) € [0, T) x R : y = w(t,x)}

e Must choose v s.t. dYy, ,(t) > dw(t, XY, (t))
e This implies

e oy (x,y,u) = Dw(t,x)ox (x, u)

o py (x,y,u) — Lsw(t,x) >0

o Defines a set U(t,x,y,w).

e Constrained HJB equation

inf —L5 vV(t,x,y)=0.
uEU(Itr,]x,y,W) Y ( Xy)
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PDE formulation

Precise formulation on
0,0 :={(t,x,y) € [0, T) x R : y = w(t,x)}

e V, is a super-solution of

inf inf LY Vu(tx.y) > 0.
PeT*(tx) ueU(ty ) 77 (t,x,y) >

T*(t,x) :=={p € C12 st. 0 = max(w — ) = (w — p)(t,x)}.



Optimal control under target constraints

PDE formulation

Precise formulation on
0,0 :={(t,x,y) € [0, T) x R : y = w(t,x)}

e V, is a super-solution of

inf inf LY Vi(tx.y) > 0.
PeT*(tx) ueU(ty ) 77 (t,x,y) >

T*(t,x) :=={p € C12 st. 0 = max(w — ) = (w — p)(t,x)}.

e V/* is a sub-solution of

sup inf  —L%yV*(t,x,y) <0.
SOE?’*(t,X) UGU(t»Xv%SD) ’

To(t,x) == {p € CH? s.t. 0 = min(w — ) = (w — ¢)(t, x)}.
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Optimal control under target constraints

Results

Already done

e PDE characterization (discontinuous viscosity solutions and

relaxation of the operators).

e Constrained subsolution property on the boundary 9,D under

realistic assumptions.

o Change of variables on the boundary 8,0 when w € C12.
Allows to rewrite the boundary condition as a Dirichlet
condition V/(t,x,y) = V(t, x) at y = w(t, x) where
V = V(-,w(-)) solves a suitable PDE.
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Results

To be done

e Boundary conditions when the constraint is in
expectation/probability.
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Results

To be done

e Boundary conditions when the constraint is in
expectation/probability.

o Comparison/Numerical schemes.
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Possible extensions

Could be extended to

e Jump diffusion processes (in progress by L. Moreau).

e American type constraints (Dynamic programming by B. and
V. T. Nam)

e Multiple constraints (no real problem).
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