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Problem formulation

O Given W and m, find the minimal solution (Y, Z) to

T T
Y: > Yr +/ g(s,Ys, Zs)ds — / ZsdWs, tel0,T]
t Jt

satisfying
E[V(YT)] > m.

O “Weak terminal condition” : no fixed terminal condition, but a
constraint in expectation.

O Can look at it forward : stochastic target problem under
controlled loss (B., Elie and Touzi 2009)
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Aims

O Use this formulation/structure to say more (and in a
non-Markovian setting) :

e Existence and representation = counterpart of the PDEs for
target problems.

e Continuity on the boundaries m — 0 Im(V).
e Convexity inside parabolic domain and on the time boundary.
e Existence of dual problems and duality.

= Generalize previous results of B., Elie and Touzi (09) and
Follmer and Leukert (99,00).
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Generalization and Standard assumptions

0 Given p € LO(F,,[0,1]), let T(7, 1) denote the set of
super-solutions Y of

T T

g(s, Ys, Zs)ds — / ZsdWs, te]0,T]

tvVT

Yivr > YT+/

tvVT

satisfying
E [W(YT)] > p.

O Assumptionson W : ForP—ae. weQ, y e R— V(w,y)is
non-decreasing and valued in [0, 1] U {—o0}, its right-inverse
®: Q x [0,1] = [0, 1] is measurable.

O Assumptions on g : Predictable for fixed (y, z) and uniformly
Lipschitz in (y, z).
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Problem reduction
O Let A, , be the set elements o € Hy such that

TV
M(T)e . — 1 +/ asdWs takes values in [0, 1]

and let (YT Z(Tm).2) be the solution of

T T

g(s,Ys,Zs)ds—/ Z.dW,, telo,T]

tvVT

Yivr = ¢(M§T’“)’“)+/

tvVT

O Proposition :
Yel(ru) & Y=Y for some acA,,
and

essinf [(7, 1) = Yy () := essinf{ Y"1 o e A}
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Representation for the minimal supersolution

O Given m, € [0, 1] fixed, we can look at the minimal condition
under each path M® := MO@:me) Ag.m, =1 Ao :

Y& = Y.(M?)

O Theorem : For a € Ag, Y* is indistinguishable from a ladlag
g-submartingale, and

(i) ya = essaier}_& E& Vi) foreach n <m eT.
1



Representation for the minimal supersolution

Under the additional assumption that
m € [0,1] — ®(w, m) is continuous for P-a.e. w € Q,

then



Representation for the minimal supersolution

Under the additional assumption that
m € [0,1] — ®(w, m) is continuous for P-a.e. w € Q,

then

(i) Y is indistinguishable from a cadlag g-submartingale, for
each a € Ag.



Representation for the minimal supersolution

Under the additional assumption that

m € [0,1] — ®(w, m) is continuous for P-a.e. w € Q,

then

(i) Y is indistinguishable from a cadlag g-submartingale, for
each a € Ag.

(iii) There exists a (unique non-anticipating) family
(2% K% aen, C Ha X Ka s.t.

T T
v = o)+ [ gl yrzds - [ zaw skt - k5

Ky = ess_iErR‘ E[KS|Fn] , VI<meT.
aeAZ



Representation for the minimal supersolution

O Rem : Similar representation as for 2BSDEs (cf. Soner, Touzi
and Zhang 2011).



Representation for the minimal supersolution

O Rem : Similar representation as for 2BSDEs (cf. Soner, Touzi
and Zhang 2011).

O Rem : Up to an un-formal change of variables, it is!



Representation for the minimal supersolution

O Rem : Similar representation as for 2BSDEs (cf. Soner, Touzi
and Zhang 2011).

O Rem : Up to an un-formal change of variables, it is!

O Rem : It g and ® are convex a.s., then the essinf over « is
achieved by some & and Y% = essinf ['(-, M%).
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Continuity in the p-parameter

A modulus of continuity :
Erri(n) := esssup {Rt(/\/l, M) : M, M’ € Lo([0,1]), Ec[|M — M'|2] < 77} ,

in which
Re(M, M') := |EZ[®(M)] — EZ[@(M)]|.

O Proposition : Fix t < T, p1, p2 € Lo([0, 1], F¢). Then,

(Ve(p1) = Ve(p2)| < Erre(A(pa, p2)) + Erre(A(p2, pa)),
where

i [ — W -
A(piy py) = (1= )y + %1{,“»,-}7 hi=12
Ky —H
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Moreover, on {u; = 0} :

(Ve(p1) — Ve(p2)] < Re(p2,0)



Continuity in the p-parameter

Moreover, on {u; = 0} :
[Ve(p1) = Ve(p2)| < Re(pi2,0)
and, on {p; =1} :

[Vi(p1) = Ve(p2)
<esssup {R¢(1, M) : M€ Lo([0,1]), Ec[ll—M]P]<1—po}.



Convexity and convexification in the p-parameter

Definition [F;-convexity]

(i) D C Loo(R, Fy) is Fi-convex if Aus + (1 — Nux € D, V
w1, 2 € D and X\ € Lo([0, 1], F¢).

(ii) Let D be a Fi-convex subset of Loo(R, F). A map
J : D Ly(R, F}) is said to be Fi-convex if

Epi(J) == {(1, Y) € D x Lo(R, Fe) : Y > T (1)}

is Fi-convex.
(iii) Let Epi(Y;) = Fe-conv(Epi();)) and Epi (%) its closure in
L2. Then,

VE(1) = essinf{Y € Lo(R, F¢) : (11, Y) € Epi (1)}

is the Fs-convex envelope of V.
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Convexity and convexification in the p-parameter
O Proposition : Assume that ) = )... Then, the map

p € Lo([0, 1], Ft) = Ves(pn)
is Fi-convex, for all t < T, where

Veo(pr) = lim essinf (Ve(u') - 1~ pl < &, 1 € Lo([0,1], )},

O Rem : Note that
e V=Y when ® is a.s. continuous.
e V=Y., when, eg., ¢ is Lipschitz.

O Proposition : Assume & deterministic and its convex envelope
® continuous on [0, 1]. Then,

V- = (/\/Ia) and Vo =ess inf E8 [a)(M‘%_l)} |

a’ €AY

foralla € Agand 7 € T such that 7 < T.
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Duality and optimal control in standard form

O Assumption : & and g are a.s. convex + technical
assumptions...

O Fenchel transforms :

®(w, /) == sup (ml —d(w, m))
me|0,1]

and

g(watvuv V) = sup <yU+ZTV*g(wa t,y,Z))-
(y,z)ERxR4

O A = predictable A s.t. A\¢(w) € dom(g(w, t,-)) Leb x P-a.e.



Duality and optimal control in standard form

O Dual optimal control problem :
Set for A = (v, 9)
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Duality and optimal control in standard form

O Dual optimal control problem :
Set for A = (v, 9)

t t
L¢:1+/ Lgusds+/ L2 d W
0 0

and

Xo(1) = Aingng

where .
Xt = E [/ [2&(s, \s)ds + L%rcb(//m,)] .
0



Duality and optimal control in standard form

O Theorem : Under “good” assumptions (in particular existence in
one of the two problems) :

Yo(m) = sup(ml — Xy(/))
>0

and
Xo(l) = sup(ml — Yo(m))

m>0

+ standard explicit relations between the optimizers.



Duality and optimal control in standard form
O Rem : In the quantile hedging problem for the BS model :

®(w, m) = mg(S7(w)) , g(w,y,z) = zp/o.
In particular,

dw, 1) = [l — g(ST(W)]T, &(w,u,v) = +001 () £(0.4/0)}

and

A= A{p/a}.



Duality and optimal control in standard form
O Rem : In the quantile hedging problem for the BS model :
®(w, m) = mg(S7(w)) , g(w,y,z) = zp/o.
In particular,
dl)(w> /) = [/ - g(ST(w))]+ ) g(wa u, V) = +OO]‘{(U,V)§£(O,M/O’)}
and
A= {u/o}.
It follows that
Xo(l) = E [LTU/LT — g(ST(w))]]
with .
L?=1 —1—/ L2(p/o)dWs.
0



[
B

References

B. Bouchard, R. Elie and A. Réveillac.
BSDEs with weak terminal condition. Preprint.

B. Bouchard, R. Elie and N. Touzi.
Stochastic target problems with controlled loss. SIAM SICON,
48 (5), 3123-3150, 20009.

H. Follmer and P. Leukert.
Quantile hedging. Finance and Stochastics, 3, 251-273, 1999.

H. Follmer and P. Leukert.
Efficient hedging : cost versus shortfall risk. Finance and
Stochastics, 4, 117-146, 2000.

H.M. Soner, N. Touzi, and J. Zhang.
Wellposedness of second order backward SDEs. PTRF,
153(1-2), 149-190, 2011.



