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O Question : LP control of # — 6 and of Xj — )_((;.
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Example of applications

O Mathematical finance : barrier option pricing

< Approximate : g(6, Xp) by g(f, X;) for g Lipschitz :

(0, Xp) — &(8, X5)| < C (16— 8]+ [Xg — X31)

O BSDEs and semilinear elliptic/parabolic PDEs :

— Approximate :

0 0
Yt = g(97X0) + / f(S,XS, Y57 Zs)ds - / stWs
NG

tAO
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Known results (in a nutshell)

O Framework : X is a Brownian SDE with Lipschitz coefficients
and X its Euler scheme on 7.

O Gobet and Menozzi (10) :
E[GAT—0AT]=Cl72 + o(|7]7)
for smooth domain and coefficients + uniform ellipticity condition.

O Bouchard and Menozzi (09) :

NI=

E[0AT —0AT| = O(7|27°)

for piecewise C? domain, non-characteristic boundary condition.

O Questions : Can the ¢ be removed ? What about E [|§ — 6] ?
(i.e. unbounded case)
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General Framework

O Underlying process : (Z¢)r>0 : a continuous and adapted process
with values in a metric space (Z, dz).



General Framework

O Underlying process : (Z¢)r>0 : a continuous and adapted process
with values in a metric space (Z, dz).
O Domain : O an open set of Z.



General Framework

O Underlying process : (Z¢)r>0 : a continuous and adapted process
with values in a metric space (Z, dz).

O Domain : O an open set of Z.

O Monitoring times : m C R with two cases

T :R+
or
0< inf (¢F —¢) <sup(¢pT —¢) =: x| <1V T > Ty,
[0, T\ R+

where

¢ =max{s€m : s<tland ¢f :=min{scnm : s>t}



Assumptions

> Assumption (Z) (Regularity of Z). 3 loc. bounded « :
Ry x (0,00) — Ry s.t.

PT sup dZ (Zt7Z¢t\/T) Z P S K’( T’p)|7r|
T<t<rt+T

V7eT, T>0, and p > 0.
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Assumptions

> Assumption (P) (Distance process §(Z)). 3 L-Lipschitz
0:Z—Rst.0>00n 0O, §=00n00 and § <0 on O°.
P = §(Z) admits the 1t6 process decomposition

t t
P, = Po+/ bsds+/ al dW,
0 0

where
i) (P, b,a) is a predictable process with values in [—L, L]9*2,
ii) |aTa] > L2 dt x dP-a.e. on {|P|V dz(Z,Z;) < r} for a
given r € (0,L73/4).
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Assumptions

O Definition : For 7 € T and p € N* :

O(t) :=inf{t>7 : P, <0}, 67(r):=inf{t >7 : tem, P <0}
OP(r) = E, [(8(r) — 7)P]7 , ®P7(7) == E, [(07(7) — 7)P]7 .

> Assumption (L) (uniform bound on expectation of exit
time). L7 (7) + dY(1) < L forall T € T.
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Main results

O Thm 1 (continuous monitoring) : Fix 0 < ¥ < r. Then, 3
c=c(r,r—FL,d)>0st.

®L(7) < c(|P;| + 7]2)

VreTst Z, e ONN;. If 7 €T7, it holds if Z € ON N,, and
¢ does not depend on r — F.

O Thm 2 (discrete monitoring) : Take 7 # R, and |7 < ¢
(given explicitly), fix 0 <7 < r. Then, 3 c=c(r,r —%,L,d) >0
s.t.

OL7(r) < c (1P| + |3

VreTst Z, € ONN; If 7 €T™, it holds if Z- € ON N,, and
¢ does not depend on r — F.
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Scheme of proof

> Freidlin type inequalities on exit times moments :
(OP(7))P < & (1) ALP)  and  (OP7(1))P < c,®1 (1) A LP)
where ¢, 1= p!LP~1 =: pL(P—1),

Indeed

(¢p+1,7r(7_))p+1

P / E, [(67(7) — )P 1gr(ryoe] dt

= / Er [Eevr[(07(tV T) = t V 1)P|lgn(r)se) dt

< / LOE, [1ye(ryse] dt < LESL(r),
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Scheme of proof

> An a-priori control in terms of the probability of strictly
sub-harmonic paths : 3 ¢ > 0 s.t.

dY(r) < P, [AT], forall 7€ T.
where
(A7) :={2Pb+a'a>L"?/2on [r,0()]}.
Indeed, on (A7)¢,

o(t)—r1
212

IN

0(r)
/ (2Psbs + a, as)ds

o(r)
1Py I — 1P —/ 2P.al dW

T

0(7)
— / 2P.a) dW.

IN
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Scheme of proof

> Conclude with a control on P [A"] : V¢ >0 3 n(:) >0s.t.
P, [AT] < 0()(Pr + |7]) + 0 &}(7)

for all 7 € T™ such that P, € [0, r]. (use the non-characteristic
boundary condition to exit with high probability before leaving the
neighborhood of the boundary)

Recall that :
d)l(T) < P, [AT]

. 1
And use : passing to 7 € T to 7 € T™ costs |r|z.



Scheme of proof

> Extension to ®17(7) : Picture on the board...
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Exit time approximation

O Problem : X with 6 on R approximated by X with 6 on 7
(discrete grid). Set P := dz(X) and P := dz(X).

O Thm: If3p>0s.t.
E[|Py — Py|?] <pli| YOeT st <o

Then, 3 c=c¢(r,L,d,p) >0and e =¢(r,L) > 0s.t.

NIR

E[j0 -0l <E|Ey [|0 - 8]°|" < c |73, if 7] <.

where ¥ := qﬁg A 6.



Exit time approximation

O Lemma : Fix 9 € 7. Assume 3 p>0and 0 < ¢ < 1 s.t.

1
P[> T]<pe " and sup E [dz (Xt,)_q)4] ’ < pT|7'r|e%C2T.
te[0,T]

Then, 3 ¢ =c¢(p,d,c1,c2) > 0 s.t.
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