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Abstract
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1 Introduction

This paper is motivated by applications in optimal hedging of electricity derivatives for

electricity producers. Electricity producers sell derivative contracts that allow them to buy

electricity at different periods and at a price fixed in advance. In practice, the producer can

deliver the required quantities of electricity either by producing it or by buying it on the

spot market. He can also try to cover himself through future contracts, but the granularity

of the available maturities on the market is in general insufficient.

It is a typical situation where a financial agent can manage a portfolio by either trading on

a financial market or by producing a good himself. Such models have already been studied

in the literature, in particular by Bouchard and Pham [1] who discussed the questions of

no-arbitrage, super-hedging and expected utility maximization in a discrete time model with

proportional transaction costs, see also Kabanov and Kijima [7] and the references therein.

In [1], the assets are divided in two classes. The first class corresponds to purely financial

assets, e.g. bonds, stocks, options, etc... The second class corresponds to industrial assets,

e.g. plants or buildings. Industrial assets cannot be short-sold, contrary to financial assets.

Moreover, they produce a (random) return at each period. These are expressed in terms of

financial assets, and depend on the current inventory in industrial assets.

This model is well-adapted to industrial investment problems but not to production issues,

since the production regime does not appear as a control.

In this paper, we consider another approach. As in [1], we work in a discrete time model

with proportional transaction costs. Although it does not need to be explicit in the model,

we have in mind that the assets are divided in two classes: the financial assets and industrial

ones. Both can be traded in the market but some of them can be consumed in order to

produce other assets. For instance, coal can be traded on the market, but can also be used

to produce electricity in order to produce cash, once sold. The quantity used for production

on the time period [t, t+1] is chosen at time t. It leaves the portfolio and enters a production

process. Depending on the quantity used, a (random) return enters the portfolio at time

t+ 1. Therefore, the main difference with [1] is that we explicitly decide on the production

level at each time step, rather than letting it implicitely be determined by inventories.

Obviously, both approaches can be combined. We refrain from doing this in this paper in

order to isolate the effect of our production model and to avoid unnecessary complexity.

As in [1], we first discuss the absence of arbitrage opportunity and its dual characterization.

In [1], the authors adapt the notion of robust no-arbitrage introduced by Schachermayer

[17]. It essentially means that there is still no-arbitrage even if transaction costs are slightly

reduced and production returns are slightly increased. It should be noted that the arguments
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used in [1] could be easily adapted to our context. However, we prefer to adopt the (more

natural) notion of no-arbitrage of the second kind, which was recently introduced in the

context of financial markets with transactions costs by Rásonyi [16] under the name of no-

sure gain in liquidation value, see also [4] for a continuous time version. The latter notion

implies that we cannot turn an insolvent position at time t into a position which is a.s.

solvent at a later time T , by trading on the market. In models without transaction costs,

this corresponds to the usual notion of no-arbitrage.

Another difference with Bouchard and Pham [1] is that we allow for reasonable arbitrages

due to the production possibilities. Here, reasonable means that it may be possible to have

a.s. positive net returns for low production regimes. However, they should be limited in the

sense that marginal arbitrages for high production regimes are not possible.

The way we model this consists in assuming that the production function β → R(β) admits

an affine upper bound β → c + Lβ, which is somehow sharp for large values of β, and

that the linear model in which R is replaced by L admits no arbitrage of the second kind.

In the case where each component of R is concave, the following may hold for L and R:

limα→∞R(αβ)/α = Lβ (whenever it makes sense), i.e., no-arbitrage holds in a marginal way

for large regimes β. From the economic point of view, this means that gains can be made

from production in reasonable situations, but that producing more becomes (marginally)

risky when the regime of production is pushed too high.

From a mathematical point of view, it allows us to reduce redthe model to a linear one, at

first, for which a nice dual formulation of the no-arbitrage condition is available. Indeed the

set of dual variables can be fully described in terms of martingales evolving in appropriate

sets. This is not the case for non-linear models (see [1]). The dual formulation is obtain

by following the arguments of Rásonyi [16] which do not require to prove that the set of

attainable claims is closed. One can then show that the set of attainable claims is indeed

closed in probability both in the linear and the original models. As usual, this leads to a

dual formulation of these sets. It can also be used to prove existence for expected utility

maximization problems, which, in particular, allow the study of indifference prices.

Importantly, it should be noted that our approach is different from the notions of no marginal

and no scalable arbitrage studied in [13] in the context of market models with convex trading

cost functions, see also [14] and the references therein. We will discuss this in more detail

in Remark 2.4 below.

We refer to [11] for a wide overview of models with proportional transaction costs. See also

[14] and [15] for some more recent results in discrete time, and [5] or [6] for the continuous

time setting.

The paper is organized as follows. We first describe our model, state the dual characteriza-
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tion of our no-arbitrage condition and important closedness properties in Section 2. Section

3 discusses applications to super-hedging and utility maximization problems. The proofs

are collected in Section 4.

Notations: Unless otherwise specified, any element x ∈ Rd will be viewed as a column

vector with entries xi, i ≤ d, and transposition is denoted by x′ so that x′y stands for the

scalar product. We write Md to denote the set of square matrices M of dimension d with

entries M ij, i, j ≤ d. The identity matrix is denoted by Id. As usual, Rd
+ and Rd

− stand for

[0,∞)d and (−∞, 0]d. The closure of a set Θ ⊂ Rn is denoted by Θ̄, n ≥ 1. We write cone(Θ)

(resp. conv(Θ)) to denote the cone (resp. convex cone) generated by Θ. Given a filtration

F on a probability space (Ω,F ,P) and a set-valued F -measurable family A = (At)t≤T , we

denote by L0(A,F) the set of adapted processes X = (Xt)t≤T such that Xt ∈ At P − a.s.

for all t ≤ T . For a σ-algebra G and a G-measurable random set A, we write L0(A,G) for

the collection of G-measurable random variables that take values in A P− a.s. We similarly

define the notations Lp(A,G) for p ∈ N ∪ ∞, and simply write Lp if A and G are clearly

given by the context. Unless otherwise specified, inequalities between random variables or

inclusion between random sets have to be understood in the a.s. sense.

2 Definitions and main results

2.1 Model description

From now on we denote by T ∈ N\ {0} a fixed time horizon and set T := {0, 1, . . . , T}.
The complete filtration of the investor, F = (Ft)t∈T, is supported by a probability space

(Ω,F ,P). We assume that FT = F and that F0 is trivial.

As in [17], we model exchange prices by an adapted process π = (πt)t∈T taking values in the

set Md of square d-dimensional matrices, for some d ≥ 1, satisfying the following conditions

for all t ≤ T and i, j, k ≤ d:

(i) πijt > 0, (ii) πiit = 1, (iii) πijt π
jk
t ≥ πikt . (2.1)

Here, πijt should be interpreted as the number of units of asset i required to obtain one unit

of asset j at time t. The conditions (i) and (ii) need no comment. The third condition is

also natural. It means that it is always cheaper to buy directly units of asset k from units of

asset i rather then going through the asset j. Note that, combined with (ii), it implies that

πijt π
ji
t ≥ 1, which means that the ask price is always greater than the bid price. The case

where πijt π
ji
t = 1 corresponds to the situation where the ask and bid prices are the same,

i.e. there is no friction.

All over this paper, we shall consider the so-called efficient friction case:
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Standing Assumption (EF) : πijt π
ji
t > 1 for all i 6= j ≤ d and t ∈ T.

It means that ask prices are always strictly greater than bid prices.

As in [8] and [9], we model portfolios as d-dimensional processes, each component i cor-

responding to the number of units of asset i detained. The composition Vt of a portfolio

holding at time t can be changed by acting on the financial market. If ξt denotes the net

number of additional units of each asset in the portfolio after trading at time t, it should

satisfy the standard self-financing condition. In our context, this means that ξt ∈ −Kt, since

we allow to discard any non-negative number of holdings, where, for each ω ∈ Ω,

Kt(ω) := conv
(
πijt (ω)ei − ej, ei ; i, j ≤ d

)
, (2.2)

where ei stands for the i-th unit vector of Rd defined by eki = 1i=k.

Note that Vt ∈ Kt means that there exists ξt ∈ −Kt such that Vt+ξt = 0. This explains why

Kt is usually referred to as the solvency cone, i.e. the set of positions that can be turned

into positions with non-negative entries by immediately trading on the market.

As in Bouchard and Pham [1], we also allow for production. In [1], the production regime

depends only on the inventories in some production assets. Here, we consider a different

approach based on a full control of the production regimes. Namely, we consider a family of

random maps (Rt)t∈T from Rd
+ into Rd that corresponds to production functions. It turns βt

units of assets taken from the portfolio at time t into Rt+1(βt) additional units of assets in

the portfolio at time t+ 1. For the moment, we only assume that Rt+1 is Ft+1 measurable,

in the sense that Rt+1(β) ∈ L0(Rd,Ft+1) for all β ∈ L0(Rd
+,Ft). The control βt can be

associated to a regime of production. Componentwise, the greater βt gets, the more the

producer is putting into the production system.

All together, a strategy is a pair of adapted processes

(ξ, β) ∈ A0 := L0((−K)× Rd
+,F),

i.e., such that (ξt, βt) ∈ L0((−Kt)× Rd
+,Ft) for all 0 ≤ t ≤ T . The corresponding portfolio

process, starting from 0, can be written as V ξ,β = (V ξ,β
t )t∈T where

V ξ,β
t :=

t∑
s=0

(ξs − βs +Rs(βs−1)1s≥1) . (2.3)

Example 2.1 Let us consider a market model where the agent produces electricity that can

then be sold on the spot market. For ease of presentation, we only consider the case where

the production takes place in a single monetary zone, say Euro, but the model can be extended

to several currencies. The market consists of three assets: the first one is cash, the second

one is coal and the last one is fuel. Allowed self-financed strategies ξ are described by the
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bid-ask process (πij)1≤i,j≤3. The agent can use coal or fuel for production purpose, but can

also buy a one period ahead delivery contract to small local electricity producers. Given a

regime βt, the producer obtains a return r1
t+1(βt) labeled in cash at time t+ 1, depending on

the electricity spot price. Since he does not produce coal or fuel, there is no return in these

two assets. As a consequence, the production function Rt+1 has the form (r1
t+1, 0, 0), and is

a random Ft+1-measurable function.

Remark 2.1 Observe that we do not impose constraints on portfolio processes. In par-

ticular, one can consume some assets for production purposes although one does not have

them. This means that one can borrow some assets to use them in the production system.

As usual, additional convex constraints could be introduced without much difficulty.

In the following, we shall denote by

ARt (T ) :=

{
T∑
s=t

ξs − βs +Rs(βs−1)1s≥t+1 , (ξ, β) ∈ A0

}
, t ≤ T , (2.4)

the set of portfolio holdings that are attainable at time T by trading from time t with a zero

initial holding.

Remark 2.2 The sequence of random cones K = (Kt)t∈T is defined here through the bid-

ask process π. However, it should be clear that all our analysis remains true in a more

abstract framework. Namely, one could only consider that K is a sequence of closed convex

cones such that Kt is Ft-measurable, Rd
+ ⊂ Kt and Kt ∩ (−Kt) = {0} for all t ≤ T .

2.2 The no-arbitrage condition

In a model without production, i.e., R ≡ 0, Rásonyi [16] recently proposed to consider the

following no-arbitrage of the second kind condition, also called no-sure gain in liquidation

value, NGV in short:

NA20: (ζ+A0
t (T ))∩L0(KT ,F) 6= {0} ⇒ ζ ∈ L0(Kt,F), for all ζ ∈ L0(Rd,Ft) and t ≤ T.

This means that we cannot end-up at time T with a solvable position without taking any

risk if the initial position is not already solvable.

In this paper, we shall impose a similar condition on the pure financial part of the model,

i.e., there is no-arbitrage of the second kind for strategies of the form (ξ, 0) ∈ A0. Contrary

to [1], we do not exclude arbitrages coming from production whenever the production regime

is small. We only exclude marginal arbitrages for high regimes of production in the following

sense:
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Definition 2.1 1. Given L ∈ L0(Md,F), we say that there is no arbitrage of the second

kind for the linear production map L, in short NA2L holds, if

(i) ζ − β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ ζ ∈ Kt,

(ii) −β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ β = 0,

for all (ζ, β) ∈ L0(Rd × Rd
+,Ft) and t < T .

2. We say that there is no marginal arbitrage of the second kind for high production regimes,

in short NMA2 holds, if there exists (c, L) ∈ L0(Rd,F)× L0(Md,F) such that NA2L holds

and

ct+1 + Lt+1β −Rt+1(β) ∈ L0(Kt+1,Ft+1) for all β ∈ L0(Rd
+,Ft) and t < T . (2.5)

The condition (2.5) means that the production function Rt admits an affine upper bound. In

most production models, each component Ri
t, i ≤ d, is concave, so that Rt typically admits

such a bound. In (i) and (ii), we focus on the production model where R is replaced with

the linear map associated to L. The fact that we consider the production map β 7→ Lt+1β

instead of β 7→ ct+1 + Lt+1β coincides with the idea that we only want to avoid arbitrages

for high production regimes: for large values of |Lt+1β|, |ct+1| becomes negligible.

For L ≡ 0, the condition (i) is equivalent to the NGV condition of [16], this follows from

a simple induction under the standing assumption (EF) above. Our version is a simple

extension to the production-investment model. Condition (i) means that, even if we produce,

we cannot almost surely have a solvent position at time t+ 1 if the position was not already

solvent at time t. Condition (ii) means that producing may lead to net losses.

In the following, unless otherwise specified, we shall consider (c, L) as given once for all, and

such that (2.5) is satisfied (whenever NMA2 holds). We shall refer to the linear model as

the one where R is replaced by β 7→ Lβ.

Remark 2.3 If esssup{|Rt+1(β)|, β ∈ L0(Rd
+,F)} ∈ L∞ for all t < T , then one can choose

L ≡ 0. In this case, NMA2 coincides with the NGV condition of [16] on the pure financial

part, i.e., the no-arbitrage condition is set only on strategies of the form (ξ, 0).

Let us now illustrate the no-arbitrage condition NMA2 in the context of the model de-

scribed in Example 2.1.

Example 2.2 Consider the electricity production model of Example 2.1. If r1
t is P − a.s.

concave and non-decreasing, then r1
t (αβ)/α admits P− a.s. a limit L1

t (β) as α→∞, where

the map β 7→ L1
t (β) is P − a.s. linear. It follows that Rt(αβ)/α admits a limit as α → ∞

with can be associated to a random matrix Lt of dimension 3. Moreover, we clearly can find

ct ∈ L0(Rd,Ft) such that (2.5) holds.
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We consider now a specific model of such a situation. Recall that β2
t (resp. β3

t ) denotes

the number of units of coal (resp. fuel) sent to power plants using coal (resp. fuel) at time

t. Hereafter coal and fuel are called technologies 2 and 3. The agent has ni ≥ 1 power

plants that use the technology i = 2, 3. The k-th power plant that uses the technology i

has a maximal capacity Ξik
t+1 ∈ L0(R+ ∪ {∞},Ft+1) for the time period [t, t + 1], i = 2, 3

and k = 1, . . . , ni. The case Ξik
t+1 = ∞ means that there is no limit on the number of

quantities that can be treated. Each of them convert one unit of raw material sent to the

plant at time t into likt+1 ∈ L0(R+,Ft+1) MWh of energy that are sold on the spot market at

a price st+1 ∈ L0(R,Ft+1). The factor likt+1 is called the heat rate of the k-th power plant,

which uses the technology i. The randomness of Ξik
t+1 and likt+1 allows one to model possible

random outages or temperature effects in the production process, for instance. For ease of

presentation, we assume that the producer has an idea which power plant is more efficient

and uses that one in priority. Without loss of generality, we can assume that power plants

are ordered by efficiency, namely

likt+1 ≥ l
i(k+1)
t+1 P− a.s. for all k ∈ [1, ni − 1], i = 2, 3 and t < T . (2.6)

The production function r1i associated to the technology i = 2, 3 is thus given by

r1i
t+1(βi) = st+1

ni∑
k=1

(
likt+1 min{βi − Ξ̄ik

t+1; Ξik
t+1}+

)
−

ni∑
k=1

γikt+11{βi≥Ξ̄ik
t+1}

where Ξ̄ik
t+1 :=

∑
1=`≤(k−1) Ξi`

t+1 denotes the maximal capacity of the best k − 1 plants, y+

denotes the positive part of a real number y, and γikt+1 ∈ L0(R+,Ft+1) stands for a (possibly

random) fixed cost associated to the k-th power plant (e.g., a starting cost).

We denote by β1
t the amount of cash used at time t to buy one period ahead delivery

contracts from small local electricity producers. The price of these contracts at time t is

ft ∈ L0((0,∞),Ft) per MWh. Thus, consuming β1
t units of cash at time t produces

r11
t+1(β1

t ) :=
st+1

ft
β1
t

units of cash at time t+ 1, once all MWh have been sold on the spot market at the spot price

st+1.

All together, the production map is given by

Rt+1(βt) =

(
r1
t+1(βt) :=

3∑
i=1

r1i
t+1(βit), 0, 0

)
. (2.7)

Note that r1
t+1 is not concave, except if γik = 0 for all i, k, and st+1 ≥ 0, which may not be

the case on the electricity spot market. However, Rt+1 satisfies (2.5) with L defined by

L11
t+1 := st+1/ft , L

1i
t+1 := 1{ki

t<∞}st+1l
iki

t
t+1 for i = 2, 3, and Ljit+1 := 0 for j 6= 1 ,
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where

kit := min{k ≤ ni : Ξik
t+1 =∞} ,

with the usual convention min ∅ = ∞. The above choice of L is the smallest possible

one (component-by-component) under (2.6). As for the minimal possible c (component-

by-component) such that (2.5) holds, it takes the form ct+1 = (c1
t+1, 0, 0) with

c1
t+1 = max

β∈R3
+

(
r1
t+1(β)−

3∑
i=1

L1i
t+1β

i

)
,

which is P− a.s. finite.

We conclude this section with a remark that highlights the differences between the notion

of no marginal arbitrage for high production regimes introduced here and the (seemingly

close) notions of no marginal arbitrage and no scalable arbitrage discussed in [13].

Remark 2.4 1. In [13] and the references therein, the author discusses the notion of no

marginal arbitrage in the context of discrete time models with stock prices depending in

a convex way on the quantity to buy/sell. In the terminology of this paper, a marginal

arbitrage has to be understood as an arbitrage obtained when trading the marginal price

process associated to infinitesimal trades. In our context, where the non-linearity only comes

from the production map R, this would (essentially) correspond to an arbitrage obtained for

infinitesimal values of β, i.e. marginally around β = 0. Here, we also consider arbitrages that

can happen marginally, but, as explained above, as a “surplus” around large regimes/values

of β and not around 0. This explains why we use the terminology of marginal arbitrage for

high production regimes. Clearly, the two notions are very different.

2. In [13], the author also discusses the notion of no scalable arbitrage. It expresses the fact

that an arbitrage cannot be arbitrarily scaled by a positive scalar. In our setting, the no

scalable arbitrage condition would read:⋂
α>0

αAR0 (T ) ∩ L0(Rd
+,F) = {0}.

For real valued concave maps R satisfying R(0) = 0, the no scalable arbitrage condition

(essentially) means that the usual no-arbitrage condition holds when considering the pro-

duction map β 7→ ∇R(∞)β, whenever we can give a sense to the gradient ∇R and it admits

a limit at infinity. In this case, with L := ∇R(∞) in NMA2 , we see that (at least formally)

our no marginal arbitrage of second kind condition for high production regimes, could be

viewed as a no scalable arbitrage of second kind condition.

This is not the case in general. Apart from technicalities (for instance, we do not assume

necessarily concavity, except for the super-hedging theorems of Section 3.1), the main reason
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is that we are not interested in arbitrages that are scalable but arbitrages that can appear

marginally as a “surplus” given that the production regime is already high. To illustrate this,

let us consider a very simple (degenerate) two dimensional model with two periods t = 0, 1.

We take π12
t = 2 and π21

t = 1 for t = 0, 1, R1
1(β) = −c̄ + L̄1β

1 and R2 = 0 where c̄ > 0 is a

constant and P
[
L̄1 = 1

]
= 0. This model satisfies (2.5) with c1 = (−c̄, 0), L11

1 = L̄1, Lij1 = 0

for (i, j) 6= (1, 1). In this model, direct computations show that a claim of the form g =

(λg(L̄1− 1), 0), with λg > 0, is scalable, i.e., belongs to ∩α>0αA
R
0 (T ), if and only if, for each

α > 0, one can find β1α
0 ∈ R+ and γα ∈ L0(R+,F1) such that β1α

0 = λg/α+(c̄+γα)/(L̄1−1).

Because c̄ > 0 and γα has to take non-negative values, this is not possible, except in the

case where L̄1 is not random (otherwise β1,α
0 would be a random variable as opposed to a

real number). This shows that such claims are not scalable (in general) in the sense that

they do not belong to ∩α>0αA
R
0 (T ). Hence, in general, the no scalable arbitrage condition

does not say anything on such claims, while our NMA2 condition says exactly that they

cannot belong to L0(R2
+,F1) \ {0}.

2.3 Dual characterization of the no-arbitrage condition and closed-

ness properties

Before we state our main results, let us introduce some additional notations and definitions.

We first define the positive dual cone process K∗ = (K∗t )t∈T associated to K by

K∗t (ω) :=
{
z ∈ Rd : x′z ≥ 0 for all x ∈ Kt(ω)

}
, ω ∈ Ω .

For t ≤ τ ≤ T , we denote byMτ
t (intK∗) the set of martingales Z with positive components

satisfying Zs ∈ L0(intK∗s ,Fs) for all t ≤ s ≤ τ .

Elements of MT
t (intK∗) are called strictly consistent price systems, on [t, T ], in [17]. In

a fictitious market without transaction costs admitting a martingale measure, Z could be

interpreted in a way such that the relative prices evolve in the interior of the corresponding

bid-ask intervals of the original model induced by π, i.e. are more favorable for the financial

agent. Indeed, one easily checks that

K∗t (ω) :=
{
z ∈ Rd

+ : zj ≤ ziπijt (ω) for all i 6= j ≤ d
}
. (2.8)

Taking the first asset as a numéraire, i.e., for Z̄ defined as Z̄i
s := Zi

s/Z
1
s for t ≤ s ≤ T and for

any Z ∈MT
t (intK∗), it follows that Z̄ is a martingale on [t, T ] under the measure Q induced

by the conditional density process (Z1
s/Z

1
t )t≤s≤T and satisfies Z̄j

s/Z̄
i
s < πijs for t ≤ s ≤ T .

Remark 2.5 Note that the condition (EF) above is actually equivalent to intK∗t 6= ∅ for

all t ≤ T . This follows from (2.8).
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All together, elements of MT
0 (intK∗) play a similar role as equivalent martingale measures

in frictionless markets, see [17] and the references therein. In particular, it was shown in

[16] that, for L ≡ 0, the no-arbitrage condition NA20 is equivalent to:

PCE0: for each 0 ≤ t ≤ T and X ∈ L1(intK∗t ,Ft), there exists a process Z ∈ MT
t (intK∗)

satisfying Zt = X.

This not only means that the no-arbitrage condition NA20 implies the existence of a strictly

consistent price system, but that strictly consistent price systems defined on any subinterval

[t, τ ] can also be extended consistently on [t, T ]. Indeed for Z ∈Mτ
t (intK∗), one can find a

strictly consistent price system Z̃ ∈MT
t (intK∗) such that Z̃ = Z on [t, τ ].

Such a property is obvious in frictionless markets but in general not true in our multivariate

setting where the geometry of the cones (K∗t )t∈T is non-trivial.

In our production-investment setting, such price systems should also take the production

function into account. When it is linear and given by the random matrix process L, the cost

in units at time t of a return (in units) Lt+1β at time t + 1 is β ∈ L0(Rd
+,Ft). Otherwise

stated, one can build the position (Lt+1 − Id)β at time t + 1 from a zero holding at time

t. For the price system Z̄ and the associated pricing measure Q, see the discussion above,

the value at time t of this return is EQ[Z̄ ′t+1(Lt+1 − Id)β | Ft]. If the fictitious price system

is strictly more favorable than the original one, one should actually be able to choose it in

such a way that EQ[Z̄ ′t+1(Lt+1 − Id)β | Ft] < 0 for all β ∈ L0(Rd
+,Ft) \ {0}.

The above discussion leads to the introduction of the set Lτt (intRd
−) of martingales Z

on [t, τ ] with positive components satisfying E
[
|Z ′s+1(Ls+1 − Id)| | Fs

]
< ∞ as well as

E
[
Z ′s+1(Ls+1 − Id) | Fs

]
∈ intRd

− for all t ≤ s < τ , t<τ ≤ T P− a.s.

Our first main result extends the property NA20 ⇔ PCE0 to NA2L ⇔ PCEL where

PCEL: for each 0 ≤ t ≤ T and X ∈ L1(intK∗t ,Ft), there exists a process Z ∈MT
t (intK∗)∩

LTt (intRd
−) satisfying Zt = X.

Theorem 2.1 NA2L ⇔ PCEL.

Remark 2.6 Note that the property PCEL allows one to construct (in theory) all the

elements ofMT
0 (intK∗)∩LT0 (intRd

−) by a simple forward induction. First, one can start with

any Z0 ∈ intK∗0 . Assuming that a given Z ∈Mt
0(intK∗)∩Lt0(intRd

−) has been constructed,

one can then choose any random variable Zt+1 ∈ L0(intK∗t+1,Ft+1) such that E [Zt+1 | Ft] =

Zt and E
[
Z ′t+1(Lt+1 − Id) | Ft

]
∈ intRd

−. These correspond to simple linear inequalities.

When Ω is finite, the set of such random variables can be described explicitly.

By similar arguments as developed in Lemma 3.2 in [2], the existence of Z ∈MT
0 (intK∗) ∩

LT0 (intRd
−) then allows one to provide a L1 upper bound on strategies (ξ, β) ∈ A0 satisfying

11



V ξ,β
T + κ ∈ KT for some κ ∈ Rd. However, because no integrability condition is imposed

a-priori on c, we require the additional assumption:

∃ Ž ∈MT
0 (intK∗) ∩ LT0 (intRd

−) s.t. E
[
|Ž ′T ct|

]
<∞ ∀ 0 < t ≤ T . (2.9)

Lemma 2.1 Assume that (2.9) holds. Then, there exists Q ∼ P and a constant α ≥ 0, such

that, for all κ ∈ Rd and (ξ, β) ∈ A0 satisfying V ξ,β
T + κ ∈ KT , one has:

EQ

[ ∑
0≤t≤T

(|ξt|+ |βt|)

]
≤ α

(
E
[
ŽTC

T
0

]
+ Ž ′0κ

)
where

CT
t :=

T∑
s=t+1

cs , t < T . (2.10)

Remark 2.7 Given (ξ, β) ∈ A0, let us define

Vξ,βt :=
t∑

s=0

(ξs − βs + Lsβs−11s≥1) . (2.11)

In view of Theorem 2.1, applying Lemma 2.1 to the case R(β) = 0 +Lβ, i.e. c = 0, leads to

the following corollary: Assume that NA2L holds. Then, there exists Q ∼ P, Z0 ∈ intK∗0
and a constant α ≥ 0 such that, for all κ ∈ Rd and (ξ, β) ∈ A0 satisfying Vξ,βT + κ ∈ KT ,

one has:

EQ

[ ∑
0≤t≤T

(|ξt|+ |βt|)

]
≤ αZ ′0κ .

The last remark combined with Komlos Lemma readily implies that the sets

ALt (T ) :=

{
T∑
s=t

(ξs − βs + Ls(βs−1)1s≥t+1) , (ξ, β) ∈ A0

}
,

are Fatou-closed, in the sense that the limit in probability of sequences of elements (gn)n≥1 ⊂
ALt (T ) satisfying gn + κ ∈ KT for all n ≥ 1 belongs to ALt (T ) as well. Under (2.9), a similar

result could be easily proved by appealing to Lemma 2.1 for the sets ARt (T ), recall (2.4),

under the following upper-semicontinuity assumption:

(USC) : lim sup
β∈Rd

+,β→β0

Rt(β)−Rt(β
0) ∈ −Kt for all β0 ∈ Rd

+ , t ≤ T

where the limsup is taken component-by-component. Such Fatou-closedness properties are

sufficient for applications, but they require (2.9). In order to deal with the general case, i.e.,

when (2.9) may not hold, we need to use more elaborate arguments, which actually allows

one to obtain the following stronger closedness property.

12



Theorem 2.2 AL0 (T ) is closed in probability under NA2L. The same holds for AR0 (T )

under NMA2 and (USC).

Example 2.3 We continue the study of Example 2.2. Hereafter, we assume that conditions

(2.1) and (EF) are satisfied. Note that the condition (ii) of NA2L is satisfied if and only

if, for all t ≤ T − 1 and βt ∈ L0(R3
+,Ft),

3∑
i=1

(
L1i
t+1 − π1i

t+1

)
βit ≥ 0 ⇒ βt = 0

which is equivalent to

P [st+1 < ft|Ft] > 0 and P
[
1{ki

t<∞}st+1l
iki

t
t+1 < π1i

t+1|Ft
]
> 0 for i = 2, 3.

Assuming that the above condition is satisfied, then (i) of NA2L is equivalent to the exis-

tence of an element Z ∈ MT
0 (intK∗) ∩ LT0 (intRd

−). Let Q ∼ P be defined by dQ/dP = Z1
T

and Z̄ := Z/Z1. As in [8], [17] and [16], the fact that Z ∈ MT
0 (intK∗) is equivalent to

Z̄i/Z̄j < πji for all i 6= j, and each Z̄i is a Q-martingale, i = 2, 3. The new condition

Z ∈ LT0 (intRd
−) is equivalent to EQ[st+1 | Ft] < ft and EQ[1{ki

t<∞}st+1l
iki

t
t+1 − Z̄i

t+1 | Ft] =

EQ[1{ki
t<∞}st+1l

iki
t

t+1 | Ft]− Z̄i
t < 0 for i = 2, 3.

Note that (USC) trivially holds in this example, so that Theorem 2.2 implies that AR0 (T ) is

closed in probability whenever the above conditions are satisfied.

3 Applications

3.1 Super-hedging theorems

As usual, the closedness property allows one to derive dual formulations for the set of attain-

able claims. We first formulate it in the linear model. In this section, we denote byMT
0 (K∗)

the set of martingales Z satisfying Zs ∈ L0(K∗s ,Fs) for all s ≤ T , and by LT0 (Rd
−) the set of

martingales Z with non-negative components satisfying E
[
|Z ′s+1(Ls+1 − Id)| | Fs

]
<∞ and

E
[
Z ′s+1(Ls+1 − Id) | Fs

]
∈ Rd

− for all s < T .

Proposition 3.1 Assume that NA2L holds and let V ∈ L0(Rd,F) be such that V + κ ∈
L0(KT ,F) for some κ ∈ Rd. Then the following assertions are equivalent:

(i) V ∈ AL0 (T ),

(ii) E [Z ′TV ] ≤ 0 for all Z ∈MT
0 (K∗) ∩ LT0 (Rd

−),

(iii) E [Z ′TV ] ≤ 0 for all Z ∈MT
0 (intK∗) ∩ LT0 (intRd

−).
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In the original non-linear model, an abstract dual formulation is also available. However,

due to the non-linearity of the set of attainable terminal claims, it requires the introduction

of the following support function:

αR(Z) := sup
{
E [Z ′TV ] , V ∈ AR0b(T )

}
, Z ∈MT

0 (K∗) ,

where

AR0b(T ) :=
{
V ∈ AR0 (T ) s.t. V + κ ∈ KT for some κ ∈ Rd

}
.

Remark 3.1 1. It will be clear from the proof in Section 4.2, see (4.6) with ε = 0, that

αR(Z) ≤ E
[
Z ′TC

T
0

]
for all Z ∈ MT

0 (K∗) ∩ LT0 (Rd
−), whenever the last term is well de-

fined, which is in particular the case if ct is essentially bounded from below, component-by-

component, for each t ≤ T .

2. Let αL be defined as αR in the case R(β) = 0 + Lβ. Since 0 ∈ AL0 (T ), we have αL ≥ 0.

On the other hand, 1. applied to R(β) = 0 + Lβ, i.e. c = 0, implies that αL(Z) ≤ 0 for all

Z ∈MT
0 (K∗) ∩ LT0 (Rd

−). Hence, αL(Z) = 0 for all Z ∈MT
0 (K∗) ∩ LT0 (Rd

−).

Moreover, as usual, we shall need the set AR0 (T ) to be convex, which is easily checked under

the additional assumption (R)(a) below. We will also require that bounded strategies

lead to L1-bounded from below terminal wealth values. We therefore impose the following

conditions:

(R) : (a) αRt(β1) + (1− α)Rt(β2)−Rt(αβ1 + (1− α)β2) ∈ −Kt

for all α ∈ L0([0, 1],F), β1, β2 ∈ L0(Rd
+,F) , t ≤ T.

(b) R−t (β) ∈ L1(Rd,F) for all t ≤ T and β ∈ L∞(Rd
+,F) ,

where we have used the notation R− := (max{−Ri, 0})i≤d.

Remark 3.2 The technical condition (R)(b) is by no means restrictive. One can for in-

stance obtain it, whenever there exists a deterministic map ψ : Rd
+ 7→ [1,∞) such that

esssup{|R−t (β)|/ψ(β), t ≤ T, β ∈ Rd
+} =: η ∈ L0(R+,F). Indeed, in this case, it suffices to

replace the original probability measure P by P̃ ∼ P defined by dP̃/dP = e−η/E [e−η]. Since

P̃ ∼ P , this does not affect the conditions NA2L, (USC) and (R)(a).

Proposition 3.2 Assume that NMA2 , (USC) and (R) hold. Fix V ∈ L0(Rd,F) such

that V + κ ∈ L0(KT ,F), for some κ ∈ Rd, and consider the following assertions:

(i) V ∈ AR0 (T ),

(ii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (K∗),

(iii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (intK∗).

Then, (i)⇔ (ii)⇒ (iii). If moreover there exists some Z ∈MT
0 (intK∗) such that αR(Z) <∞,

then (iii)⇒(ii).
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In the case where the linear map L coincides with the asymptotic behavior of R, i.e.,

(RL) : lim
η→∞

Rt(ηβ)/η = Ltβ for all β ∈ Rd
+ , t ≤ T ,

one can restrict to elements in LT0 (Rd
−) (resp. LT0 (intRd

−)) in the above dual formulations.

Proposition 3.3 Let the conditions of Proposition 3.2 hold. Assume further that (RL) is

satisfied. Fix V ∈ L0(Rd,F) such that V + κ ∈ L0(KT ,F), for some κ ∈ Rd, and consider

the following assertions:

(i) V ∈ AR0 (T ),

(ii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (K∗) ∩ LT0 (Rd

−),

(iii) E [Z ′TV ] ≤ αR(Z) for all Z ∈MT
0 (intK∗) ∩ LT0 (intRd

−).

Then, (i)⇔ (ii)⇒ (iii). If moreover there exists some Z ∈ MT
0 (intK∗) ∩ LT0 (intRd

−) such

that αR(Z) <∞, then (iii)⇒(ii).

Remark 3.3 It follows from Remark 3.1 that (i)⇔ (ii)⇔ (iii) in Propositions 3.2 and 3.3

whenever assumption (2.9) holds. It is the case under NMA2 whenever c is essentially

bounded.

3.2 Utility maximization

In order to avoid technical difficulties, we shall only discuss here the case of a (possibly)

random utility function defined on Rd that is essentially bounded from above. More general

cases could be discussed by following the line of arguments of [1].

We therefore let U be a P − a.s.-upper semi-continuous concave random map from Rd to

[−∞, 1] such that U(V ) = −∞ on {V /∈ KT} for V ∈ L0(Rd,F). Given an initial holding

x0 ∈ Rd, we assume that

U(x0) :=
{
V ∈ AR0 (T ) : E [|U(x0 + V )|] <∞

}
6= ∅.

Then, existence holds for the associated expected utility maximization problem whenever

(USC), (R) and NMA2 hold, and there exists Z ∈ MT
0 (intK∗) such that αR(Z) < ∞.

The latter being a consequence of NMA2 when c is essentially bounded (recall Remark 3.1

and Theorem 2.1).

Proposition 3.4 Assume that (USC), (R) and NMA2 hold, and that αR(Z) < ∞ for

some Z ∈ MT
0 (intK∗). Assume further that U(x0) 6= ∅. Then, there exists V (x0) ∈ AR0 (T )

such that

E [U(x0 + V (x0))] = sup
V ∈U(x0)

E [U(x0 + V )] .
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4 Proofs

4.1 No-arbitrage of the second kind in the linear model and (K,L)-

strictly consistent price systems

In this section, we first prove that the no-arbitrage of the second kind assumption NA2L

implies the existence of an element Z ∈MT
0 (intK∗)∩LT0 (intRd

−) that we call (K,L)-strictly

consistent price system.

The arguments used in the proof of Proposition 4.1 below are inspired by [16], up to non-

trivial modifications. This proposition readily implies that NA2L⇒ PCEL up to an obvious

induction argument. Before we state it, we recall the following technical result that will be

used in our proof, see Lemma 4.3 in [15]. In the following, B1 denotes the unit ball of Rd.

Lemma 4.1 Let G ⊂ H ⊂ F be σ-algebras. Let C ⊂ B1 be a H-measurable random convex

compact set. Then, there exists a G-measurable random convex compact set E [C|G] ⊂ B1

satisfying

L0(E [C|G] ,G) = {E [ϑ|G] : ϑ ∈ L0(C,H)}.

Proposition 4.1 Assume that NA2L holds. Then, for all t < T and X ∈ L1(intK∗t ,Ft),

there exists Z ∈ L1(intK∗t+1,Ft+1) such that X = E [Z | Ft], E [|Z ′(Lt+1 − Id)| | Ft] < ∞
and E [Z ′(Lt+1 − Id) | Ft] ∈ intRd

−.

Proof We fix t < T . For ease of notation, we set Mt+1 := Lt+1 − Id. We next define

γt+1 := e−
P

i,j≤d |M
ij
t+1| and M̄t+1 := γt+1Mt+1. Clearly, M̄t+1 is essentially bounded.

1. We first show that intRd
− ⊂ cone(intE [Θ|Ft]) =: H, where

Θ :=
{
M̄ ′

t+1y + r, (y, r) ∈ (K∗t+1 ∩B1)× [0, 1]d
}
,

recall that B1 is the unit ball of Rd. For later use, observe that, since M̄t+1 is essentially

bounded, Lemma 4.1 applies to Θ up to an obvious scaling argument.

If intRd
− 6⊂ H, then Rd

− 6⊂ H̄ on a set A ∈ Ft with P [A] > 0. For each ω ∈ A, H̄(ω) being a

closed convex cone, we can then find p(ω) ∈ Rd
− and β(ω) ∈ Rd such that

p(ω)′β(ω) < 0 ≤ q′β(ω) for all q ∈ H̄(ω) for ω ∈ A . (4.1)

By a standard measurable selection argument, see e.g. [3, III-45], one can assume that p

and β are Ft-measurable. The right-hand side of (4.1), Lemma 4.1 and the fact that K∗t+1

is a cone then imply that

(Y ′M̄t+1 + ρ′)β1A ≥ 0 for all (Y, ρ) ∈ L∞(K∗t+1 × Rd
+,Ft+1),
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which leads to β1A ∈ Rd
+ and M̄t+1β1A ∈ Kt+1. Since Kt+1 is a cone, the latter implies

Mt+1β1A ∈ Kt+1. In view of NA2L, this implies that β1A = 0, which contradicts the

left-hand side of (4.1).

2. We next show that there exists Ỹ ∈ L∞(intK∗t+1,Ft+1) such that E
[
M̄ ′

t+1Ỹ | Ft
]
∈ intRd

−.

To see this, fix η ∈ L∞(intRd
−,Ft) and Z ∈ L∞(intK∗t+1,Ft+1). Set Z̄ := E

[
M̄ ′

t+1Z | Ft
]
.

We can then find ε ∈ L∞((0, 1],Ft) such that η − εZ̄ ∈ L∞(intRd
−,Ft). In view of step 1

and Lemma 4.1, there exists (Y, ρ) ∈ L∞(K∗t+1×Rd
+,Ft+1) and α ∈ L0(intR+,Ft) such that

η − εZ̄ = αE
[
M̄ ′

t+1Y + ρ | Ft
]

or, equivalently, η − αE [ρ | Ft] = E
[
M̄ ′

t+1(αY + εZ) | Ft
]
.

Clearly, η − αE [ρ | Ft] ∈ intRd
− and αY + εZ ∈ L0(intK∗t+1,Ft+1). The required result is

thus obtained for Ỹ := (αY + εZ)/(1 + α).

3. We now show that int(K∗t × Rd
+) ⊂ cone(intE [Γ|Ft]) =: E where

Γ :=
{

(γt+1y, M̄
′
t+1y + r), (y, r) ∈ (K∗t+1 ∩B1)× [0, 1]d

}
.

If the above does not hold , then K∗t × Rd
+ 6⊂ Ē on a set A ∈ Ft, with P [A] > 0, and

the same arguments as in step 1 imply that we can find (p, q) ∈ L0(K∗t × Rd
+,Ft) and

(ζ, β) ∈ L0(Rd × Rd,Ft) such that

p′ζ+q′β < 0 on A and 0 ≤ Y ′(γt+1ζ+M̄t+1β)+ρ′β for all (Y, ρ) ∈ L∞(K∗t+1×Rd
+,Ft+1) .

The right-hand side implies that β ∈ Rd
+ and γt+1ζ+M̄t+1β = γt+1 (ζ +Mt+1β) ∈ Kt+1, and

therefore ζ+Mt+1β ∈ Kt+1. In view of NA2L, this implies that ζ ∈ Kt. On the other hand,

the fact that (q, β) ∈ Rd
+ × Rd

+ combined with the left-hand side inequality above implies

that p′ζ < 0. This leads to a contradiction since p ∈ K∗t and ζ ∈ Kt.

4. We can now conclude the proof. Fix X ∈ L1(intK∗t ,Ft), let Ỹ be as in step 2 and fix

ε ∈ L1((0, 1],Ft) such that X̃ := X − εE
[
γt+1Ỹ | Ft

]
∈ L1(intK∗t ,Ft). It then follows from

step 3 and Lemma 4.1 that, for any η ∈ L0(intRd
+,Ft), we can find Y ∈ L∞(K∗t+1,Ft+1)

and α ∈ L0(R+,Ft) such that X̃ = E [γt+1αY | Ft] and η − E
[
γt+1αM

′
t+1Y | Ft

]
∈ Rd

+. In

view of step 2., we can choose η such that η + εE
[
M̄ ′

t+1Ỹ | Ft
]
∈ intRd

−. This implies that

X = E [Z | Ft] and E
[
M ′

t+1Z | Ft
]
∈ intRd

− where Z := γt+1(αY + εỸ ) ∈ intK∗t+1. Since

X ∈ L1 and K∗ ⊂ Rd
+, we must have Z ∈ L1. Moreover, Ỹ , Y and γt+1Mt+1 = M̄t+1 are

essentially bounded, while α and ε are Ft-measurable, so that E
[
|M ′

t+1Z| | Ft
]
<∞ P−a.s.

This shows the required result. 2

It remains to prove the opposite implication of Theorem 2.1.

Proposition 4.2 PCEL ⇒ NA2L.

Proof We fix t < T .
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1. We first assume that we can find (ζ, β) ∈ L0(Rd × Rd
+,Ft) satisfying

ζ − β + Lt+1β ∈ Kt+1, (4.2)

and such that ζ /∈ Kt on a set A ∈ Ft of positive measure. Without loss of generality, we

can assume that (ζ, β) ∈ L∞(Rd × Rd
+,Ft), since the same statements hold for (1 + |ζ| +

|β|)−1(ζ, β). This implies that we can find Zt ∈ L1(intK∗t ,Ft) such that

Z ′tζ < 0 on A . (4.3)

In view of PCEL, we can then find Zt+1 ∈ L1(intK∗t+1,Ft+1) such that E [Zt+1|Ft] = Zt,

E
[
|Z ′t+1(Lt+1 − Id)| | Ft

]
< ∞ and E

[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd

−. By (4.2), we have

Z ′t+1ζ + Z ′t+1(Lt+1 − Id)β ≥ 0 which, by taking conditional expectations, leads to Z ′tζ +

E
[
Z ′t+1(Lt+1 − Id)|Ft

]
β ≥ 0. Since E

[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd

− and β ∈ Rd
+, this leads

to a contradiction to (4.3).

2. We now assume that β ∈ L0(Rd
+,Ft) is such that (Lt+1−Id)β ∈ Kt+1. For Zt+1 defined as

above, we obtain Z ′t+1(Lt+1 − Id)β ≥ 0 while E
[
Z ′t+1(Lt+1 − Id)|Ft

]
∈ intRd

−. This implies

that β = 0. 2

4.2 The closedness properties

In this section, we prove that the set AL0 (T ) is closed in probability whenever there exists

a (K,L)-strictly consistent price system, i.e., MT
0 (intK∗) ∩ LT0 (intRd

−) 6= ∅, and that the

same holds for AR0 (T ) under the additional assumption (USC). In view of Theorem 2.1,

Theorem 2.2 is a direct consequence of Corollary 4.1 below. We start with the proof of the

key Lemma 2.1 which will be later applied to the linear case R(β) = 0 + Lβ.

Proof of Lemma 2.1. Fix Ž such that (2.9) holds. In this proof, we set Mt+1 := Lt+1− Id
and Z̄t := E

[
Ž ′t+1Mt+1|Ft

]
, for t < T , in order to clear notations. We first observe that

(Žt, Z̄t) ∈ intK∗t × intRd
− implies:

Ž ′tξ ≤ −ε|ξ| and Z̄ ′tβ ≤ −ε|β| for all (ξ, β) ∈ L0((−Kt)× Rd
+,Ft) , t ≤ T , (4.4)

for some ε ∈ L0((0, 1),F), compare this also with Lemma 3.1 in [2].

We next deduce from (2.3)-(2.5) that

V ξ,β
T = XT where Xt :=

∑
s≤t

ξs + ζs + (cs +Msβs−1)1s≥1 for some ζ ∈ L0(−K,F). (4.5)

Since XT + κ = V ξ,β
T + κ ∈ KT , we have Ž ′TXT ≥ −Ž ′Tκ so E

[
Ž ′TXT |FT−1

]
is well defined,

since ŽT ∈ L1. It then follows from the martingale property of Ž, (4.4), (2.9) and (4.5) that

−Ž ′T−1κ ≤ E
[
Ž ′TXT |FT−1

]
≤ Ž ′T−1XT−1 + E

[
Ž ′TC

T
T−1 − ε (|ξT |+ |ζT |+ |βT−1|) |FT−1

]
,
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where CT
T−1 is defined in (2.10). Iterating this procedure leads to

−Ž ′0κ ≤ E
[
Ž ′TXT

]
≤ E

[
ŽTC

T
0 − ε

∑
0≤t≤T

(|ξt|+ |ζt|+ |βt−1|1t≥1)

]
, (4.6)

which implies the required result for Q ∼ P defined by dQ/dP := εα with α := 1/E [ε]. 2

We can now prove the closedness properties.

Corollary 4.1 Assume that there exists Z ∈ MT
0 (intK∗) ∩ LT0 (intRd

−). Then, AL0 (T ) is

closed in probability. If moreover (USC) is satisfied, then the same holds for AR0 (T ).

Proof We use an induction argument which combines the techniques first introduced in

[10] and Lemma 2.1 applied to the linear case R(β) = 0 + Lβ.

1. We first check that ART (T ) is closed in probability, recall (2.4). Indeed, let (gn)n≥1 ⊂
ART (T ) be such that gn → g ∈ L0(Rd,F) P− a.s. as n→∞. Let (ξnT , β

n
T )n≥1 ∈ L0((−KT )×

Rd
+,FT ) be such that ξnT − βnT = gn for all n ≥ 1 and set E := {lim infn→∞ |βnT | < ∞}.

We claim that E = Ω. Indeed, letting (ξ̄nT , β̄
n
T ) := (ξnT , β

n
T )/(1 + |βnT |)1Ec , we obtain ξ̄nT =

1Ecgn/(1 + |βnT |) + β̄nT . In view of Lemma 4.2 below, we can assume, after possibly passing

to an FT -measurable subsequence, that 1Ecgn/(1 + |βnT |) + β̄nT → β̄T ∈ L0(Rd
+,FT ) P− a.s.

as n → ∞, with |β̄T | = 1 on Ec. On the other hand ξ̄nT1Ec ∈ −KT1Ec P − a.s. Since

−KT ∩Rd
+ = {0}, this leads to a contradiction. It follows that lim infn→∞ |βnT | <∞ P− a.s.

The closedness property of ART (T ) then follows from Lemma 4.2 again. The fact that ALT (T )

is closed in probability follows from the same arguments.

2. We now fix t < T , assume that ARt+1(T ) and ALt+1(T ) are closed in probability and deduce

that the same holds for ARt (T ). The corresponding result for ALt (T ) is obviously obtained

by considering the special case where R(β) = 0 + Lβ.

Let (gn)n≥1 ⊂ ARt (T ) and (ξn, βn)n≥1 ⊂ A0 be such that

V ξn,βn

T = gn for all n ≥ 1 . (4.7)

We assume that

gn → g ∈ L0(Rd,F) P− a.s. as n→∞ .

In view of (2.5), we can find (V n)n≥1 ⊂ ALt+1(T ) such that

ξnt + (Lt+1 − Id)βnt + CT
t + V n = gn ,

where CT
t has been defined in (2.10). Set αn := 1 + |ξnt | + |βnt |. We claim that E :=

{lim infn→∞ αn <∞} has probability one. Indeed, the previous equality implies that

ξ̄nt + (Lt+1 − Id)β̄nt + V̄ n = 1Ec

(
gn − CT

t

)
/αn
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where (ξ̄nt , β̄
n
t ) := 1Ec(ξnt , β

n
t )/αn ∈ L0((−Kt) × Rd

+,Ft) and V̄ n := 1EcV n/αn ∈ ALt+1(T ).

Moreover, Lemma 4.2 below implies that, after possibly passing to an Ft-measurable subse-

quence, (ξ̄nt , β̄
n
t ) → (ξ̄t, β̄t) P − a.s. as n → ∞ for some (ξ̄t, β̄t) ∈ L0((−Kt) × Rd

+,Ft) such

that (ξ̄t, β̄t) 6= 0 on Ec. Since ALt+1(T ) is closed in probability, it follows that

V̄ n = 1Ec

(
gn − CT

t

)
/αn − ξ̄nt − (Lt+1 − Id)β̄nt → −ξ̄t − (Lt+1 − Id)β̄t ∈ ALt+1(T ) as n→∞ .

We can then find (ξ, β) ∈ A0 such that

ξ̄t + (Lt+1 − Id)β̄t +
∑

t+1≤s≤T

ξs + (Ls+11s+1≤T − Id)βs = 0 .

We can now appeal to Lemma 2.1 applied to the case R(β) = 0 + Lβ to deduce that

EQ [|ξ̄t|+ |β̄t|] ≤ 0 , for some Q ∼ P. Since (ξ̄t, β̄t) 6= 0 on Ec, this implies that P [Ec] = 0,

and therefore lim infn→∞ αn < ∞ P − a.s. Using Lemma 4.2 below, one can then assume,

after possibly passing to an Ft-measurable random subsequence, that (ξnt , β
n
t )n≥1 converges

P − a.s. to some (ξt, βt) ∈ L0((−Kt) × Rd
+,Ft), for all t ≤ T . Using the semi-continuity

assumption (USC) and d iterative applications of Lemma 4.2, we can then find an Ft+1-

measurable subsequence (σ(n))n≥1 such that Rt+1(β
σ(n)
t )→ Rt+1(βt)+ζt+1 P−a.s. as n→∞

with ζt+1 ∈ L0(−Kt+1,Ft+1). It then follows from (4.7) that∑
t+1≤s≤T

(
ξσ(n)
s +Rs+1(βσ(n)

s )1s+1≤T − βσ(n)
s

)
→ g − ζt+1 − (ξt +Rt+1(βt)− βt) P− a.s.

We conclude by using the fact that the left-hand side term belongs to ARt+1(T ) which is

closed in probability by assumption. 2

We conclude this section with the statement we used in the above proof, see [12].

Lemma 4.2 Fix t ≤ T and (ηn)n≥1 ⊂ L0(Rd,Ft) be such that lim infn→∞ |ηn| <∞. Then,

there exists a P − a.s.-increasing sequence (σ(n))n≥1 ⊂ L0(N,Ft) converging P − a.s. to ∞
such that (ησ(n))n≥1 converges P− a.s.

4.3 Super-hedging theorems

We now turn to the proof of the super-hedging theorems, i.e., Propositions 3.1, 3.2 and 3.3.

The result of Proposition 3.1 is a consequence of Proposition 3.3 and Remark 3.1. The fact

that (i) ⇒ (ii) ⇒ (iii) in Propositions 3.2 and 3.3 is obvious. In the following, we prove

that (iii)⇒ (i) in Propositions 3.2 and 3.3 under the corresponding additional assumptions.

The fact that (ii) ⇒ (i) is obtained by similar, actually shorter, arguments which are fully

contained in what follows.

Proof of (iii) ⇒ (i) in Proposition 3.2: For ease of notations, we write M for L− Id.
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Fix V ∈ L0(Rd,F) such that V +κ ∈ KT for some κ ∈ Rd, and assume that E [Z ′TV ] ≤ αR(Z)

for all Z ∈ MT
0 (intK∗), but that V /∈ AR0b(T ). Then, AR0b(T ) being closed in probability by

Theorem 2.2, it follows that, for k large enough (after possibly passing to a subsequence),

V k := V 1|V |≤k − κ1|V |>k does not belong to AR0b(T ) either but satisfies

E
[
Z ′TV

k
]
≤ E [Z ′TV ] ≤ αR(Z) for all Z ∈MT

0 (intK∗). (4.8)

Since AR0 (T ) is closed in probability, AR0 (T ) ∩ L1(Rd,F) is closed in L1(Rd,F). The latter

being convex under (R)(a), we deduce from the Hahn-Banach theorem that we can find

Y ∈ L∞(Rd,F) and r ∈ R such that

E [Y ′X] ≤ r < E
[
Y ′V k

]
for all X ∈ AR0 (T ) ∩ L1(Rd,F) .

Set ZY
t := E [Y |Ft]. Recalling that R(0)− ∈ L1 under (R)(b), we deduce that any element

of the form

X = ξ +
∑

0<t≤T

(Ri
t(0) ∧ 1)i≤d , ξ ∈ L1(−Ks,Fs) for some s ≤ T,

belongs to AR0 (T )∩L1(Rd,F). This easily leads to ZY
s ∈ K∗s for s ≤ T . Fix Z̃ ∈MT

0 (intK∗),

such that αR(Z̃) < ∞, which is possible by assumption, and ε ∈ (0, 1), so that Ž :=

εZ̃ + (1− ε)ZY ∈MT
0 (intK∗) and

E
[
Ž ′TX

]
≤ (1− ε)r + εαR(Z̃) < E

[
Ž ′TV

k
]
∀ X ∈ AR0 (T ) ∩ L∞(Rd,F). (4.9)

In order to conclude the proof, it suffices to show that

αR(Z) = sup
{
E [Z ′TX] , X ∈ AR0 (T ) ∩ L∞(Rd,F)

}
, Z ∈MT

0 (K∗) , (4.10)

which, combined with (4.9), would imply that αR(Ž) < E
[
Ž ′TV

k
]
. Thus leading to a

contradiction with (4.8), since Ž ∈MT
0 (intK∗).

To see that the above claim holds, first observe that, for X ∈ AR0 (T ) such that X+ρ ∈ KT for

some ρ ∈ Rd, one can always construct an essentially bounded sequence, Xn := X1|X|≤n −
ρ1|X|>n for n ≥ 1, which converges P − a.s. to X. Using Fatou’s Lemma, one then ob-

tains lim infn→∞ E [Z ′TX
n] ≥ E [Z ′TX] for all Z ∈ MT

0 (K∗). Moreover, X + ρ ∈ KT implies

X −Xn ∈ KT so that Xn ∈ AR0 (T ) for all n ≥ 1. This proves (4.10). 2

Proof of (iii) ⇒ (i) in Proposition 3.3: It suffices to repeat the argument of the above

proof with Z̃ ∈ LT0 (intRd
−), which is possible by assumption, and to show that one can

choose ZY such that E
[
ZY
t
′
(Lt+1 − Id)|Ft

]
∈ Rd

− for all t ≤ T . To see this, recall from the

above arguments that ZY is a martingale and that it satisfies

E
[
ZY
T

′
X
]
≤ r for all X ∈ AR0 (T ) ∩ L1(Rd,F) ,
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for some r ∈ R. It then follows from (R)(b) that

E

[
ZY
T

′∑
t<T

(Ri
t+1(βt) ∧ n− βit)i≤d

]
≤ r for all β ∈ L∞(Rd

+,F) and n ≥ 1 .

Since ZY
T has non-negative components, as an element of K∗T ⊂ Rd

+ P− a.s., the monotone

convergence theorem implies that

E

[
ZY
T

′∑
t<T

(Rt+1(βt)− βt)

]
≤ r for all β ∈ L∞(Rd

+,F) .

In particular, (R)(b) and the above imply that ZY
T
′∑

1≤t≤T Rt(0) ∈ L1 and that for any

s ≤ T − 1

E
[
ZY
s+1

′
(R0

s+1(βs)− βs)
]

+ ` ≤ r for all βs ∈ L∞(Rd
+,Fs) , (4.11)

where

R0 := R−R(0) and ` := E

[
ZY
T

′ ∑
1≤t≤T

Rt(0)

]
.

Using the first assertion in (R), we then deduce that, for η ≥ 1 and βs ∈ L∞(Rd
+,Fs),

Rs+1(βs)− η−1Rs+1(ηβ)− (1− η−1)Rs+1(0)

= Rs+1(η−1ηβs + (1− η−1)0)− η−1Rs+1(ηβ)− (1− η−1)Rs+1(0) ∈ Ks+1 .

This shows that, for all βs ∈ L∞(Rd
+,Fs), the sequence (ZY

s+1
′
R0
s+1(nβs)/n)n≥1 is non-

increasing and that, by (4.11),

E
[
ZY
s+1

′
(R0

s+1(nβs)/n− βs)
]
≤ (r − `)/n .

Sending n→∞, using the monotone convergence theorem and recalling (RL) leads to

E
[
ZY
s+1

′
(Ls+1βs − βs)

]
≤ 0 .

Since βs ∈ L∞(Rd
+,Fs) is arbitrary this readily implies that E

[
ZY
s+1
′
(Ls+1 − Id)|Fs

]
∈ Rd

−.

2

4.4 Utility maximization

Proof of Proposition 3.4. Let (V n)n≥1 be a maximizing sequence. Since U(V ) = −∞ on

{V /∈ KT}, it must satisfy V n + x0 ∈ KT for all n ≥ 1. It then follows from the definition

of αR and our assumptions that there exists Z ∈ MT
0 (intK∗) such that E [Z ′T (V n + x0)] ≤

αR(Z) + Z ′0x0 <∞ for all n ≥ 1.
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Since ZT ∈ intK∗T and V n + x0 ∈ KT , for all n ≥ 1, we can find ε ∈ L0((0, 1],FT ) such that

E [ε|V n + x0|] ≤ αR(Z) + Z ′0x0 <∞ for all n ≥ 1 .

This is similar to Lemma 3.1 in [2]. By Komlos Lemma, one can then find a sequence (Ṽ n)n≥1

such that Ṽ n ∈ conv(V k, k ≥ n) for all n ≥ 1, and (Ṽ n)n≥1 converges P − a.s. to some

V (x0) ∈ L0(Rd,F). Since AR0 (T ) is convex under (R)(a), (Ṽ n)n≥1 ⊂ AR0 (T ). Since AR0 (T ) is

closed in probability, see Theorem 2.2, we have V (x0) ∈ AR0 (T ). Moreover, the random map

U being P−a.s. concave, (Ṽ n)n≥1 is also a maximizing sequence. Since U(x0 + Ṽ n)+ ≤ 1 for

each n ≥ 1, we finally deduce from Fatou’s Lemma and the P − a.s. upper semi-continuity

of U that

sup
V ∈U(x0)

E [U(x0 + V )] = lim sup
n→∞

E
[
U(x0 + Ṽ n)

]
≤ E [U(x0 + V (x0))] .

2
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