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Motivation

• Introduce production capacities in portfolio management

• Study closure properties of the set of hedgeable claims
• Deduce a dual formulation for hedgeable claims
• Deduce existence result in optimal portfolio management
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Previous works and novelty

• Kabanov and Kijima (2006) : continuous time model but
retrictions (complete Brownian market) .

• Bouchard and Pham (2005) : discrete time, general with
possible frictions.

In these models the production level depends only on the inventory
in production capacities.

Novelties :

• Allow the production level to be “fully” controlled at each time
period.

• Allow for arbitrage du to production (but not marginally for
high production regimes).
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Model description - The financial market
• Probability space : (Ω,F ,P), F := {Ft}t=0,...,T .

• Bid-ask matrix : (πij
t , i , j ≤ d)t=0,...,T

• πij
t ∈ L0(Ft) = number of units of asset i needed to obtain

one unit of asset j .
• πij

t π
jk
t ≥ πik

t > 0, πii
t = 1

• Financial position : V ∈ L0(Rd ) with V i = number of units of
asset i in the portfolio.

• Solvency cone process : K := (Kt)t≤T with

Kt(ω) := {x ∈ Rd : ∃ aij ≥ 0 s.t. x i+
∑
j 6=i

aji−aijπij
t (ω) ≥ 0 ∀ i}

aji = number of units of i obtained against units of j .
• Set of self-financed exchanges at time t

−Kt(ω) := {x ∈ Rd : ∃ aij ≥ 0 s.t. x i ≤
∑
j 6=i

aji−aijπij
t (ω) ∀ i}
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Model description - The production

• Family of random maps (Rt)t≤T

• Rt+1 : β ∈ L0(Rd
+,Ft) 7→ Rt+1(β) ∈ L0(Rd ,Ft+1)

• βi = number of units of asset i consumed and send into the
production system at time t

• R j
t+1(β) = number of units of asset j obtained at time t + 1

from the production.

Example :

• Asset 1=cash, asset 2 =future on electricity (for a given
maturity), asset 3= coal.

• Rt+1(β) depends only on β3

• R i
t+1(β) = 0 for i 6= 1
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Model description - Wealth process

• Strategies

(ξ, β) ∈ A0 := L0((−K )× Rd
+,F),

i.e. s.t. (ξt , βt) ∈ L0((−Kt)× Rd
+,Ft) for all 0 ≤ t ≤ T

• Set of portfolio holdings that are attainable at time T by
trading from time t with a zero initial holding

AR
t (T ) :=

{
T∑

s=t

ξs − βs + Rs(βs−1)1s≥t+1 , (ξ, β) ∈ A0

}
.
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No-arbitrage of second kind conditions - Without
production

There exists various notions in models with fictions. We focus on
one :
NA2 : (ζ + A0

t (T )) ∩ L0(KT ,F) 6= {0} ⇒ ζ ∈ L0(Kt ,F),
∀ ζ ∈ L0(Rd ,Ft) and t ≤ T .

We assume that the efficient friction assumption holds :

EF : πij
t π

ji
t > 1 ∀ i 6= j , t ≤ T .

Equivalently under EF :
NA2 : ζ ∈ L0(Kt+1,F)⇒ ζ ∈ L0(Kt ,F), ∀ ζ ∈ L0(Rd ,Ft), t < T .

See Kabanov, Stricker, Rasonyi, Schachermayer for other NA
conditions.
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No-arbitrage conditions - Strictly consistent price
systems

• MT
t : set of martingales Z on [t,T ] s.t. Zs ∈ intK ∗s for

t ≤ s ≤ T

• K ∗s (ω) =
{

z ∈ Rd : 0 ≤ z j ≤ z iπij
s (ω), i , j ≤ d

}
.

• Zs ∈ intK ∗s : Z j
s/Z i

s < πij
s (strictly consistent price system -

fictitious price).
• If there exists fictitious prices that are martingales, then the
no-arbitrage condition holds.

• Theorem : Under EF : NA2 ⇔ PCE 0 : ∃ Z ∈MT
t s.t. Zt = X ,

∀ t ≤ T and X ∈ L1(intK ∗t ,Ft).

• Plays the same role as martingale measures :

G ∈ ζ + A0
t (T ) “iff” E [ZT (G − ζ)|Ft ] ≤ 0 ∀Z ∈MT

t .
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No-arbitrage conditions - In the model with
production

We work under a version of the NA2 condition.

NA of the second kind for L ( NA2L) : ∀ (ζ, β) ∈ L0(Rd ×Rd
+,Ft)

(i) ζ

−β + Lt+1β

∈ L0(Kt+1,Ft+1)⇒ ζ ∈ Kt ,
(ii) −β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ β = 0.

NMA2 : ∃ (c , L) ∈ L∞(Rd ×Md ,F) s.t. NA2L and

ct+1 + Lt+1β − Rt+1(β) ∈ L0(Kt+1,Ft+1) ∀ β ∈ L0(Rd
+,Ft), t < T .

Think at L such that

lim
η→∞

Rt(ηβ)/η = Ltβ.
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+,Ft), t < T .

Think at L such that

lim
η→∞

Rt(ηβ)/η = Ltβ.



Main results - No-arbitrage characterization

• Price of a position Ls+1β − β ?

• Consume β at s to produce
• Receive Ls+1β at s + 1

Price at s is zero (need 0 to build it)

• Price of a position : Ls+1β − β in the price system Z ?
E
[
Z ′s+1(Ls+1βs − βs)|Fs

]

< 0
if Z is striclty more favorable than π.
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Main results - No-arbitrage characterization
Definitions :
• LT

t : set of martingales Z s.t. for t ≤ s < T

E
[
Z ′s+1(Ls+1βs − βs)|Fs

]
< 0 ∀ βs ∈ L0(Rd

+ \ {0},Fs).

• PCEL : ∃ Z ∈MT
t ∩ LT

t s.t. Zt = X , ∀ t ≤ T ,
X ∈ L1(intK ∗t ,Ft).

Theorem : NA2L ⇔ PCEL.

Remark : Argument splitted on the different time intervals [t, t + 1]
and not globally on [0,T ] like for the other no-arbitrage conditions.
No need to prove a closure property first : construct the Z ω by ω.
Allows for dynamic programming type arguments also general
pasting is not possible (as for density processes of martingale
measures).
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Main results - Closure property

Definition : A ⊂ L0(Rd ,F) is Fatou-closed if for any sequence
(gn)n≥1 ⊂ A which converges P− a.s. to some g ∈ L0(Rd ,F) and
such that, for some κ ∈ Rd , gn + κ ∈ KT for all n ≥ 1, then g ∈ A.

Theorem : AL
0(T ) is Fatou-closed under NA2L. The same holds for

AR
0 (T ) under NMA2 and USC .

where

USC : lim sup
β∈Rd

+,β→β0
Rt(β)− Rt(β0) ∈ −Kt for all β0 ∈ Rd

+ ,

where the limsup is taken component by component.
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Applications - Super-hedging

Proposition : Assume that NMA2 holds and that AR
0 (T ). Let

V ∈ L0(Rd ,F) be such that V + κ ∈ L0(KT ,F) for some κ ∈ Rd .
Then, the following are equivalent :
(i) V ∈ AR

0 (T ),
(ii) E [Z ′TV ] ≤ αR(Z ) for all Z ∈MT

0 .

If moreover

lim
η→∞

Rt(ηβ)/η = Ltβ for all β ∈ Rd
+, t ≤ T ,

then the following are equivalent :
(i) V ∈ AR

0 (T ),
(ii) E [Z ′TV ] ≤ αR(Z ) for all Z ∈MT

0 ∩LT
0 .

If R = L then αR = 0.
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Applications - Optimal management

Setting
• U : P− a.s.-upper semi-continuous and concave random map
from Rd to [−∞, 1]

• U(V ) = −∞ on {V /∈ KT}
• U(x0) :=

{
V ∈ AR

0 (T ) : E [|U(x0 + V )|] <∞
}
6= ∅.

Corollary : If NMA2, USC hold and AR
0 (T ) is convex, then ∃

V (x0) ∈ AR
0 (T ) such that

E [U(x0 + V (x0))] = sup
V∈U(x0)

E [U(x0 + V )] .
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