No marginal arbitrage of the second kind for high production regimes

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae

SPA 2010

Joint work with Adrien Nguyen Huu, CEREMADE and FiME-EDF

• Introduce production capacities in portfolio management

- Introduce production capacities in portfolio management
- Study closure properties of the set of hedgeable claims

- Introduce production capacities in portfolio management
- Study closure properties of the set of hedgeable claims
- Deduce a dual formulation for hedgeable claims

- Introduce production capacities in portfolio management
- Study closure properties of the set of hedgeable claims
- Deduce a dual formulation for hedgeable claims
- Deduce existence result in optimal portfolio management

• Kabanov and Kijima (2006) : continuous time model but retrictions (complete Brownian market) .

- Kabanov and Kijima (2006) : continuous time model but retrictions (complete Brownian market) .
- Bouchard and Pham (2005): discrete time, general with possible frictions.

- Kabanov and Kijima (2006) : continuous time model but retrictions (complete Brownian market) .
- Bouchard and Pham (2005): discrete time, general with possible frictions.

In these models the production level depends only on the inventory in production capacities.

- Kabanov and Kijima (2006) : continuous time model but retrictions (complete Brownian market) .
- Bouchard and Pham (2005): discrete time, general with possible frictions.

In these models the production level depends only on the inventory in production capacities.

Novelties:

 Allow the production level to be "fully" controlled at each time period.

- Kabanov and Kijima (2006): continuous time model but retrictions (complete Brownian market).
- Bouchard and Pham (2005): discrete time, general with possible frictions.

In these models the production level depends only on the inventory in production capacities.

Novelties:

- Allow the production level to be "fully" controlled at each time period.
- Allow for arbitrage du to production (but not marginally for high production regimes).

• Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,\mathcal{T}}$.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,T}$.
- Bid-ask matrix : $(\pi_t^{ij},\ i,j\leq d)_{t=0,...,T}$

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,\mathcal{T}}$.
- Bid-ask matrix : $(\pi_t^{ij}, i, j \leq d)_{t=0,...,T}$
 - $\pi_t^{ij} \in L^0(\mathcal{F}_t)$ = number of units of asset i needed to obtain one unit of asset j.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,...,\mathcal{T}}$.
- Bid-ask matrix : $(\pi_t^{ij}, i, j \leq d)_{t=0,\dots,T}$
 - $\pi_t^{ij} \in L^0(\mathcal{F}_t)$ = number of units of asset i needed to obtain one unit of asset j.
 - $\pi_t^{ij}\pi_t^{jk} \ge \pi_t^{ik} > 0, \ \pi_t^{ii} = 1$

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,T}$.
- Bid-ask matrix : $(\pi_t^{ij}, i, j \leq d)_{t=0,...,T}$
 - $\pi_t^{ij} \in L^0(\mathcal{F}_t)$ = number of units of asset i needed to obtain one unit of asset j.
 - $\pi_t^{ij}\pi_t^{jk} \geq \pi_t^{ik} > 0, \ \pi_t^{ii} = 1$
- Financial position : $V \in L^0(\mathbb{R}^d)$ with $V^i =$ number of units of asset i in the portfolio.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,T}$.
- Bid-ask matrix : $(\pi_t^{ij}, i, j \leq d)_{t=0,...,T}$
 - $\pi_t^{ij} \in L^0(\mathcal{F}_t)$ = number of units of asset i needed to obtain one unit of asset j.
 - $\pi_t^{ij}\pi_t^{jk} \ge \pi_t^{ik} > 0, \ \pi_t^{ii} = 1$
- Financial position : $V \in L^0(\mathbb{R}^d)$ with $V^i =$ number of units of asset i in the portfolio.
- Solvency cone process : $K := (K_t)_{t \le T}$ with

$$K_t(\omega) := \{x \in \mathbb{R}^d : \exists \ a^{ij} \ge 0 \text{ s.t. } x^i + \sum_{i \ne i} a^{ji} - a^{ij} \pi_t^{ij}(\omega) \ge 0 \ \forall \ i\}$$

 a^{ji} = number of units of *i* obtained against units of *j*.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t\}_{t=0,\dots,T}$.
- Bid-ask matrix : $(\pi_t^{ij}, i, j \leq d)_{t=0,...,T}$
 - $\pi_t^{ij} \in L^0(\mathcal{F}_t)$ = number of units of asset i needed to obtain one unit of asset j.
 - $\pi_t^{ij}\pi_t^{jk} \ge \pi_t^{ik} > 0, \ \pi_t^{ii} = 1$
- Financial position : $V \in L^0(\mathbb{R}^d)$ with $V^i =$ number of units of asset i in the portfolio.
- Solvency cone process : $K := (K_t)_{t \le T}$ with

$$K_t(\omega) := \{ x \in \mathbb{R}^d : \exists \ a^{ij} \ge 0 \text{ s.t. } x^i + \sum_{j \ne i} a^{ji} - a^{ij} \pi_t^{ij}(\omega) \ge 0 \ \forall \ i \}$$

 a^{ji} = number of units of *i* obtained against units of *j*.

Set of self-financed exchanges at time t

$$-\mathcal{K}_t(\omega) := \{ x \in \mathbb{R}^d : \exists \ a^{ij} \ge 0 \text{ s.t. } x^i \le \sum_{j \ne i} a^{jj} - a^{ij} \pi_t^{ij}(\omega) \ \forall \ i \}$$

• Family of random maps $(R_t)_{t \le T}$

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$

- Family of random maps $(R_t)_{t \le T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - $\beta^i =$ number of units of asset i consumed and send into the production system at time t

- Family of random maps $(R_t)_{t \le T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - β^i = number of units of asset i consumed and send into the production system at time t
 - $R_{t+1}^{j}(\beta) = \text{number of units of asset } j \text{ obtained at time } t+1$ from the production.

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - $\beta^i =$ number of units of asset i consumed and send into the production system at time t
 - $R_{t+1}^{j}(\beta) =$ number of units of asset j obtained at time t+1 from the production.

Example:

 Asset 1=cash, asset 2 = future on electricity (for a given maturity), asset 3= coal.

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - $\beta^i =$ number of units of asset i consumed and send into the production system at time t
 - $R_{t+1}^{j}(\beta) = \text{number of units of asset } j \text{ obtained at time } t+1$ from the production.

Example:

- Asset 1=cash, asset 2 = future on electricity (for a given maturity), asset 3= coal.
- $R_{t+1}(\beta)$ depends only on β^3

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - $\beta^i =$ number of units of asset i consumed and send into the production system at time t
 - $R_{t+1}^{j}(\beta) = \text{number of units of asset } j \text{ obtained at time } t+1$ from the production.

Example:

- Asset 1=cash, asset 2 = future on electricity (for a given maturity), asset 3= coal.
- $R_{t+1}(\beta)$ depends only on β^3
- $R_{t+1}^{i}(\beta) = 0$ for $i \neq 1$

Model description - Wealth process

Strategies

$$(\xi,\beta)\in\mathcal{A}_0:=L^0((-K)\times\mathbb{R}^d_+,\mathbb{F}),$$
 i.e. s.t. $(\xi_t,\beta_t)\in L^0((-K_t)\times\mathbb{R}^d_+,\mathcal{F}_t)$ for all $0\leq t\leq T$

Model description - Wealth process

Strategies

$$(\xi,\beta)\in\mathcal{A}_0:=L^0((-K)\times\mathbb{R}^d_+,\mathbb{F}),$$

i.e. s.t.
$$(\xi_t, \beta_t) \in L^0((-K_t) \times \mathbb{R}^d_+, \mathcal{F}_t)$$
 for all $0 \le t \le T$

 Set of portfolio holdings that are attainable at time T by trading from time t with a zero initial holding

$$A_t^R(T) := \left\{ \sum_{s=t}^T \xi_s - \beta_s + R_s(\beta_{s-1}) 1_{s \ge t+1}, \ (\xi, \beta) \in \mathcal{A}_0 \right\} .$$

No-arbitrage of second kind conditions - Without production

There exists various notions in models with fictions. We focus on one :

NA2:
$$(\zeta + A_t^0(T)) \cap L^0(K_T, \mathcal{F}) \neq \{0\} \Rightarrow \zeta \in L^0(K_t, \mathcal{F}), \forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t) \text{ and } t \leq T.$$

No-arbitrage of second kind conditions - Without production

There exists various notions in models with fictions. We focus on one :

NA2:
$$(\zeta + A_t^0(T)) \cap L^0(K_T, \mathcal{F}) \neq \{0\} \Rightarrow \zeta \in L^0(K_t, \mathcal{F}), \forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t) \text{ and } t \leq T.$$

We assume that the efficient friction assumption holds :

$$\textit{EF} \ : \ \pi_t^{ij}\pi_t^{ji} > 1 \ \forall \ i \neq j, \ t \leq T.$$

No-arbitrage of second kind conditions - Without production

There exists various notions in models with fictions. We focus on one :

NA2:
$$(\zeta + A_t^0(T)) \cap L^0(K_T, \mathcal{F}) \neq \{0\} \Rightarrow \zeta \in L^0(K_t, \mathcal{F}), \forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t) \text{ and } t \leq T.$$

We assume that the efficient friction assumption holds :

$$\textit{EF} \ : \ \pi_t^{ij}\pi_t^{ji} > 1 \ \forall \ i \neq j, \ t \leq T.$$

Equivalently under *EF* :

$$\mathit{NA2}: \zeta \in \mathit{L}^0(\mathit{K}_{t+1}, \mathcal{F}) \Rightarrow \zeta \in \mathit{L}^0(\mathit{K}_t, \mathcal{F}), \ \forall \ \zeta \in \mathit{L}^0(\mathbb{R}^d, \mathcal{F}_t), \ t < T.$$

See Kabanov, Stricker, Rasonyi, Schachermayer for other NA conditions.

- \mathcal{M}_t^T : set of martingales Z on [t, T] s.t. $Z_s \in \operatorname{int} \mathcal{K}_s^*$ for $t \leq s \leq T$
 - $K_s^*(\omega) = \left\{ z \in \mathbb{R}^d : 0 \le z^j \le z^i \pi_s^{ij}(\omega), i, j \le d \right\}.$

- \mathcal{M}_t^T : set of martingales Z on [t,T] s.t. $Z_s \in \mathrm{int} \mathcal{K}_s^*$ for $t \leq s \leq T$
 - $K_s^*(\omega) = \left\{ z \in \mathbb{R}^d : 0 \le z^j \le z^i \pi_s^{ij}(\omega), i, j \le d \right\}.$
 - $Z_s \in \text{int} K_s^* : Z_s^j/Z_s^i < \pi_s^{ij}$ (strictly consistent price system fictitious price).

- \mathcal{M}_t^T : set of martingales Z on [t, T] s.t. $Z_s \in \operatorname{int} \mathcal{K}_s^*$ for $t \leq s \leq T$
 - $K_s^*(\omega) = \left\{ z \in \mathbb{R}^d : 0 \le z^j \le z^i \pi_s^{ij}(\omega), i, j \le d \right\}.$
 - $Z_s \in \text{int} K_s^* : Z_s^j/Z_s^i < \pi_s^{ij}$ (strictly consistent price system fictitious price).
 - If there exists fictitious prices that are martingales, then the no-arbitrage condition holds.

- \mathcal{M}_t^T : set of martingales Z on [t,T] s.t. $Z_s \in \mathrm{int} \mathcal{K}_s^*$ for $t \leq s \leq T$
 - $K_s^*(\omega) = \left\{ z \in \mathbb{R}^d : 0 \le z^j \le z^i \pi_s^{ij}(\omega), i, j \le d \right\}.$
 - $Z_s \in \operatorname{int} K_s^* : Z_s^j/Z_s^i < \pi_s^{ij}$ (strictly consistent price system fictitious price).
 - If there exists fictitious prices that are martingales, then the no-arbitrage condition holds.
- Theorem : Under $EF : NA2 \Leftrightarrow PCE^0 : \exists Z \in \mathcal{M}_t^T \text{ s.t. } Z_t = X, \forall t \leq T \text{ and } X \in L^1(\operatorname{int} \mathcal{K}_t^*, \mathcal{F}_t).$

- \mathcal{M}_t^T : set of martingales Z on [t, T] s.t. $Z_s \in \operatorname{int} \mathcal{K}_s^*$ for $t \leq s \leq T$
 - $K_s^*(\omega) = \left\{ z \in \mathbb{R}^d : 0 \le z^j \le z^i \pi_s^{ij}(\omega), i, j \le d \right\}.$
 - $Z_s \in \operatorname{int} K_s^* : Z_s^j/Z_s^i < \pi_s^{ij}$ (strictly consistent price system fictitious price).
 - If there exists fictitious prices that are martingales, then the no-arbitrage condition holds.
- Theorem : Under $EF : NA2 \Leftrightarrow PCE^0 : \exists Z \in \mathcal{M}_t^T \text{ s.t. } Z_t = X, \forall t \leq T \text{ and } X \in L^1(\operatorname{int} \mathcal{K}_t^*, \mathcal{F}_t).$
- Plays the same role as martingale measures :

$$G \in \zeta + A_t^0(T)$$
 "iff" $\mathbb{E}\left[Z_T(G-\zeta)|\mathcal{F}_t\right] \leq 0 \ \forall Z \in \mathcal{M}_t^T$.

No-arbitrage conditions - In the model with production

We work under a version of the NA2 condition.

No-arbitrage conditions - In the model with production

We work under a version of the NA2 condition.

NA of the second kind for
$$L$$
 ($NA2^L$) : \forall (ζ, β) \in $L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$
(i) $\zeta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$,

We work under a version of the NA2 condition.

NA of the second kind for L ($NA2^L$) : \forall (ζ, β) $\in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ (i) $\zeta - \beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$.

We work under a version of the NA2 condition.

NA of the second kind for L ($NA2^L$) : \forall $(\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$

(i)
$$\zeta -\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$$
,

(ii)
$$-\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$$

We work under a version of the NA2 condition.

NA of the second kind for L ($NA2^L$) : \forall $(\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$

(i)
$$\zeta -\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$$
,

(ii)
$$-\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$$

 $\mathit{NMA2}: \exists \ (c,L) \in \mathit{L}^{\infty}(\mathbb{R}^d \times \mathbb{M}^d, \mathbb{F}) \ \mathsf{s.t.} \ \mathit{NA2}^L \ \mathsf{and}$

$$c_{t+1} + L_{t+1}\beta - R_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \ \forall \ \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t), \ t < T.$$

We work under a version of the NA2 condition.

NA of the second kind for L ($NA2^L$) : \forall $(\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$

(i)
$$\zeta -\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$$
,

(ii)
$$-\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$$

*NMA*2 : \exists $(c, L) \in L^{\infty}(\mathbb{R}^d \times \mathbb{M}^d, \mathbb{F})$ s.t. $NA2^L$ and

$$c_{t+1} + L_{t+1}\beta - R_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \ \forall \ \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t), \ t < T.$$

Think at L such that

$$\lim_{\eta\to\infty} R_t(\eta\beta)/\eta = L_t\beta.$$

• Price of a position $L_{s+1}\beta - \beta$?

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce
 - Receive $L_{s+1}\beta$ at s+1

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce
 - Receive $L_{s+1}\beta$ at s+1

Price at s is zero (need 0 to build it)

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce
 - Receive $L_{s+1}\beta$ at s+1

Price at s is zero (need 0 to build it)

• Price of a position : $L_{s+1}\beta - \beta$ in the price system Z?

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce
 - Receive $L_{s+1}\beta$ at s+1

Price at s is zero (need 0 to build it)

• Price of a position : $L_{s+1}\beta - \beta$ in the price system Z? $\mathbb{E}\left[Z'_{s+1}(L_{s+1}\beta_s - \beta_s)|\mathcal{F}_s\right]$

- Price of a position $L_{s+1}\beta \beta$?
 - Consume β at s to produce
 - Receive $L_{s+1}\beta$ at s+1

Price at s is zero (need 0 to build it)

• Price of a position : $L_{s+1}\beta - \beta$ in the price system Z? $\mathbb{E}\left[Z'_{s+1}(L_{s+1}\beta_s - \beta_s)|\mathcal{F}_s\right] < 0$ if Z is striclty more favorable than π .

Definitions:

• $\mathcal{L}_t^{\mathcal{T}}$: set of martingales Z s.t. for $t \leq s < \mathcal{T}$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

Definitions:

• \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

• PCE^{L} : $\exists Z \in \mathcal{M}_{t}^{T} \cap \mathcal{L}_{t}^{T}$ s.t. $Z_{t} = X, \forall t \leq T$, $X \in L^{1}(\operatorname{int}K_{t}^{*}, \mathcal{F}_{t})$.

Definitions:

• \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

• PCE^{L} : $\exists Z \in \mathcal{M}_{t}^{T} \cap \mathcal{L}_{t}^{T} \text{ s.t. } Z_{t} = X, \forall t \leq T, X \in L^{1}(\text{int}K_{t}^{*}, \mathcal{F}_{t}).$

Theorem: $NA2^L \Leftrightarrow PCE^L$.

Definitions:

• \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

• PCE^{L} : $\exists Z \in \mathcal{M}_{t}^{T} \cap \mathcal{L}_{t}^{T} \text{ s.t. } Z_{t} = X, \forall t \leq T, X \in L^{1}(\text{int}K_{t}^{*}, \mathcal{F}_{t}).$

Theorem: $NA2^L \Leftrightarrow PCE^L$.

Remark : Argument splitted on the different time intervals [t, t+1] and not globally on [0, T] like for the other no-arbitrage conditions.

Definitions:

• \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

• PCE^{L} : $\exists Z \in \mathcal{M}_{t}^{T} \cap \mathcal{L}_{t}^{T} \text{ s.t. } Z_{t} = X, \forall t \leq T, X \in L^{1}(\text{int}K_{t}^{*}, \mathcal{F}_{t}).$

Theorem : $NA2^L \Leftrightarrow PCE^L$.

Remark : Argument splitted on the different time intervals [t,t+1] and not globally on [0,T] like for the other no-arbitrage conditions. No need to prove a closure property first : construct the Z ω by ω .

Definitions:

• \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}\beta_s-\beta_s)|\mathcal{F}_s\right]<0\;\forall\;\beta_s\in L^0(\mathbb{R}_+^d\setminus\{0\},\mathcal{F}_s).$$

• PCE^{L} : $\exists Z \in \mathcal{M}_{t}^{T} \cap \mathcal{L}_{t}^{T} \text{ s.t. } Z_{t} = X, \forall t \leq T, X \in L^{1}(\text{int}K_{t}^{*}, \mathcal{F}_{t}).$

Theorem: $NA2^L \Leftrightarrow PCE^L$.

Remark : Argument splitted on the different time intervals [t,t+1] and not globally on [0,T] like for the other no-arbitrage conditions. No need to prove a closure property first : construct the Z ω by ω . Allows for dynamic programming type arguments also general pasting is not possible (as for density processes of martingale measures).

Main results - Closure property

Definition: $A \subset L^0(\mathbb{R}^d, \mathcal{F})$ is Fatou-closed if for any sequence $(g^n)_{n\geq 1} \subset A$ which converges \mathbb{P} – a.s. to some $g \in L^0(\mathbb{R}^d, \mathcal{F})$ and such that, for some $\kappa \in \mathbb{R}^d$, $g^n + \kappa \in K_T$ for all $n \geq 1$, then $g \in A$.

Main results - Closure property

Definition: $A \subset L^0(\mathbb{R}^d, \mathcal{F})$ is Fatou-closed if for any sequence $(g^n)_{n\geq 1} \subset A$ which converges \mathbb{P} – a.s. to some $g \in L^0(\mathbb{R}^d, \mathcal{F})$ and such that, for some $\kappa \in \mathbb{R}^d$, $g^n + \kappa \in K_T$ for all $n \geq 1$, then $g \in A$.

Theorem : $A_0^L(T)$ is Fatou-closed under $NA2^L$.

Main results - Closure property

Definition: $A \subset L^0(\mathbb{R}^d, \mathcal{F})$ is Fatou-closed if for any sequence $(g^n)_{n\geq 1} \subset A$ which converges \mathbb{P} – a.s. to some $g \in L^0(\mathbb{R}^d, \mathcal{F})$ and such that, for some $\kappa \in \mathbb{R}^d$, $g^n + \kappa \in K_T$ for all $n \geq 1$, then $g \in A$.

Theorem : $A_0^L(T)$ is Fatou-closed under $NA2^L$. The same holds for $A_0^R(T)$ under NMA2 and USC. where

$$USC: \limsup_{\beta \in \mathbb{R}^d_+, \beta \to \beta^0} R_t(\beta) - R_t(\beta^0) \in -K_t \text{ for all } \beta^0 \in \mathbb{R}^d_+ ,$$

where the limsup is taken component by component.

Applications - Super-hedging

Proposition: Assume that *NMA*2 holds and that $A_0^R(T)$. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(K_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then, the following are equivalent:

- (i) $V \in A_0^R(T)$,
- (ii) $\mathbb{E}[Z_T'V] \leq \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T$.

Applications - Super-hedging

Proposition: Assume that *NMA*2 holds and that $A_0^R(T)$. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(K_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then, the following are equivalent:

(i)
$$V \in A_0^R(T)$$
,

(ii)
$$\mathbb{E}[Z_T'V] \leq \alpha^R(Z)$$
 for all $Z \in \mathcal{M}_0^T$.

If moreover

$$\lim_{\eta \to \infty} R_t(\eta \beta)/\eta = L_t \beta \quad \text{for all } \beta \in \mathbb{R}_+^d, \ t \le T \ ,$$

then the following are equivalent:

- (i) $V \in A_0^R(T)$,
- (ii) $\mathbb{E}[Z_T'V] \leq \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T \cap \mathcal{L}_0^T$.

Applications - Super-hedging

Proposition: Assume that *NMA*2 holds and that $A_0^R(T)$. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(K_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then, the following are equivalent:

(i)
$$V \in A_0^R(T)$$
,

(ii)
$$\mathbb{E}[Z_T'V] \leq \alpha^R(Z)$$
 for all $Z \in \mathcal{M}_0^T$.

If moreover

$$\lim_{\eta \to \infty} R_t(\eta \beta)/\eta = L_t \beta \quad \text{for all } \beta \in \mathbb{R}_+^d, \ t \le T \ ,$$

then the following are equivalent:

(i)
$$V \in A_0^R(T)$$
,

(ii)
$$\mathbb{E}[Z_T'V] \leq \alpha^R(Z)$$
 for all $Z \in \mathcal{M}_0^T \cap \mathcal{L}_0^T$.

If
$$R = L$$
 then $\alpha^R = 0$.

Setting

• $U: \mathbb{P}-$ a.s.-upper semi-continuous and concave random map from \mathbb{R}^d to $[-\infty,1]$

Setting

- $U: \mathbb{P}-$ a.s.-upper semi-continuous and concave random map from \mathbb{R}^d to $[-\infty,1]$
- $U(V) = -\infty$ on $\{V \notin K_T\}$

Setting

- $U: \mathbb{P}-$ a.s.-upper semi-continuous and concave random map from \mathbb{R}^d to $[-\infty,1]$
- $U(V) = -\infty$ on $\{V \notin K_T\}$
- $U(x_0) := \{ V \in A_0^R(T) : \mathbb{E}[|U(x_0 + V)|] < \infty \} \neq \emptyset.$

Setting

- $U: \mathbb{P}-$ a.s.-upper semi-continuous and concave random map from \mathbb{R}^d to $[-\infty,1]$
- $U(V) = -\infty$ on $\{V \notin K_T\}$
- $U(x_0) := \{ V \in A_0^R(T) : \mathbb{E}[|U(x_0 + V)|] < \infty \} \neq \emptyset.$

Corollary : If NMA2, USC hold and $A_0^R(T)$ is convex, then \exists $V(x_0) \in A_0^R(T)$ such that

$$\mathbb{E}\left[U(x_0+V(x_0))\right] = \sup_{V\in\mathcal{U}(x_0)}\mathbb{E}\left[U(x_0+V)\right].$$

