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Previous works and novelty

e Kabanov and Kijima (2006) : continuous time model but
retrictions (complete Brownian market) .

e Bouchard and Pham (2005) : discrete time, general with
possible frictions.

In these models the production level depends only on the inventory
in production capacities.

Novelties :

e Allow the production level to be “fully” controlled at each time
period.

e Allow for arbitrage du to production (but not marginally for
high production regimes).
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e Bid-ask matrix : (7{, i,j < d)t=0...T
o ) € L9(F,) = number of units of asset i needed to obtain
one unit of asset j.
° 7T'£j7'(‘{.k > ﬂk >0, mi =
e Financial position : V € L°(R?) with V/ = number of units of
asset / in the portfolio.

e Solvency cone process : K := (K¢)i<T with
Ki(w) :={xeR?:Fal > 05t xi+2 aji—aﬁwg(w) >0Vi}
J#i
2" = number of units of i obtained against units of j.
e Set of self-financed exchanges at time t

—Ki(w) ={xeR?:3aV >0st. x' < Zaji—aUﬂg(w) Vit
JF#i
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Model description - The production

e Family of random maps (R:)i<T

* Reyi: B e LO(Riaft) — Rep1(B) € LO(RY, Feqr)

e 3 = number of units of asset i consumed and send into the
production system at time t

e R! () = number of units of asset j obtained at time t + 1
from the production.

Example :

o Asset 1=cash, asset 2 =future on electricity (for a given
maturity), asset 3= coal.
e R:.1(3) depends only on 33

o R, (B)=0fori#1
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e Strategies
(57/8) € AO = LO((_K) X Riv]F):

ie st (&, 0t) € LO((—Ky) x RY, Fy) forall 0< ¢t < T

e Set of portfolio holdings that are attainable at time T by
trading from time t with a zero initial holding

-
Af(T) = {Zfs — Bs + Rs(ﬂsfl)]-szﬂrlv (faﬂ) € .Ao} .
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No-arbitrage of second kind conditions - Without
production

There exists various notions in models with fictions. We focus on

one :
NA2 : (¢ + AY(T)) N LY(KT, F) # {0} = ¢ € L%K:, F),
V(e lORY, F)and t < T.

We assume that the efficient friction assumption holds :
EF : nlnf > 1 Vi) t<T.

Equivalently under EF :
NA2 : ¢ € L%Kiy1, F) = (€ LO(K, F), V¢ € LR, F,), t < T.

See Kabanov, Stricker, Rasonyi, Schachermayer for other NA
conditions.
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systems
e M/ : set of martingales Z on [t, T] s.t. Zs € intK for
t<s<T
o Ki(w)= {z eRY:0< 2 < Zixd(w), i,j < d}.
o ZocintKr : Z)Zi < n¥ (strictly consistent price system -
fictitious price).
o |f there exists fictitious prices that are martingales, then the
no-arbitrage condition holds.

e Theorem : Under EF : NA2 & PCE® : 3 Z € M] st. Z; = X,
Vt<Tand X € LY(intKy, Fy).

e Plays the same role as martingale measures :

G e ¢+ ANT) “iff" E[Z1(G — ¢)|F] <0vVZ e M].
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production

We work under a version of the NA2 condition.

NA of the second kind for L ( NA2Y) : V (¢, 8) € LO(RY x RY, F)
(i) ¢ =B+ Lep1B € LO(Kevr, Fren) = C € K,
(11) —ﬂ + Lt+1ﬁ S LO(KH_l,fH_l) = ,6 =0.

NMA2 : 3 (c,L) € L®(RY x M9, F) s.t. NA2L and

1+ Ley1B — Rer1(B) € LO(Keqr, Fer) VB € LORE, ), t < T.

Think at L such that

nimw Re(nB)/n = LeB.
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Main results - No-arbitrage characterization

e Price of a position Lgy16 — 37
e Consume (3 at s to produce
e Receive Lgy13 ats+1
Price at s is zero (need 0 to build it)

e Price of a position : Ls1 13 — (3 in the price system Z7

E |:Zs/+]_(LS+1/BS - 55)‘Fs] <0
if Z is striclty more favorable than .
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Definitions :
o L] :set of martingales Zst. fort <s< T

E[Z1(Lsy18s — Bs)|Fs] <OV fBs € LO(Ri \ {0}, F5).

e PCEL:3ZeM]INnL]l st. Zz=X,Vt<T,
X € LY (intK;, Fy).

Theorem : NA2L < PCEL.

Remark : Argument splitted on the different time intervals [t, t + 1]
and not globally on [0, T] like for the other no-arbitrage conditions.
No need to prove a closure property first : construct the Z w by w.
Allows for dynamic programming type arguments also general
pasting is not possible (as for density processes of martingale
measures).
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Main results - Closure property

Definition : A C LO(RY, F) is Fatou-closed if for any sequence
(g")n>1 C A which converges P — a.s. to some g € LO(RY, F) and
such that, for some k € RY, g"+k € Ky forall n>1, then g € A.

Theorem : A5(T) is Fatou-closed under NA2L. The same holds for
AR(T) under NMA2 and USC.
where

USC: limsup Ri(3) — Re(3°) € —K; forall 3% € RY |
BeRY,3—30

where the limsup is taken component by component.
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Proposition : Assume that NMA2 holds and that Af(T). Let

V € LO(RY, F) be such that V + x € LO(KT, F) for some k € R€.
Then, the following are equivalent :

(i) Ve ARK(T),

(i) E[Z5V] < aR(Z) for all Z € M{ .

If moreover

lim Re(nB)/n=Lf forall eRI, t< T,
7—00

then the following are equivalent :
(i) Ve AR(T),
(il) E[Z5-V] < aR(Z) for all Z e MINL].

If R = L then o = 0.
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Applications - Optimal management

Setting
e U : P — a.s.-upper semi-continuous and concave random map
from RY to [—oo0,1]
e U(V)=—-0on{V ¢ Kr}
o Ux) :={V e AJ(T) : E[|U(x0+ V)[] < oo} # 0.

Corollary : If NMA2, USC hold and AR(T) is convex, then 3
V(x0) € AR(T) such that

E[U(x0 + V(x0))] = Sup )E[U(Xo + V).



