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Aim of this work

(b,0) : R? — RY x M continuous, b and [Joo T ||z with linear growth.

X :x+/ b(Xs)ds+/ o(Xs)dW
0 0
(weak solution)

Necessary and sufficient conditions for the existence of a solution X € D,
given x € D a closed set, i.e. D is stochastically invariant.



Litterature

O General answer for “smooth coefficients” : Friedman [6], Doss [3],
Bardi and Goatin [4] and Bardi and Jensen [5] (2nd order normal cone).
Da Prato and Frankowska [1] and Buckdahn et al. [7] (first order normal
cone), Tappe [10] (jump diffusions).

O Affine or polynomial models using specific treatments : Filipovi¢
and Mayerhofer [5], Filipovi¢ and Larsson [4] (polynomial diffusions),
Cuchiero et al. [10] (affine processes on the cone of symmetric
semi-definite matrices), Spreij and Veerman [9] (affine diffusions).
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O Affine or polynomial models using specific treatments : Filipovi¢
and Mayerhofer [5], Filipovi¢ and Larsson [4] (polynomial diffusions),
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= We want a general answer using the first order normal cone covering
smooth and non-smooth coefficients (e.g. o(x) = v/x)

Replace o € Cp* by 00T € C1!

loc
and use the first order normal cone.



The regular case : ¢ € C!

loc

Da Prato and Frankowska [1]
and Buckdahn, Quincampoix, Rainer & Teichmann [7]



Characterization in the regular case

Thm : Assume that o € C,})’Cl. D is stochastically invariant if and only if
o(x)"u=0and ( —*ZDUJ Yo/ (x)) <0, Vx €D and u e Np(x),

where N} (x) == {u € RY: (u,y — x) < o(|ly — x||),V y € D} is the
first order normal cone at x.

{z = —=°}




Necessary condition in the regular case

Suffices to check that ¢(X) < 0 for ¢ : y = (u,y — x) — 5ly — x||?, for

some k > 0.




Necessary condition in the regular case

Suffices to check that ¢(X) < 0 for ¢ : y = (u,y — x) — 5ly — x||?, for

some k > 0.

a. Apply Ité's Lemma and Girsanov theorem to get

0> [12606) + nl D65 + [ DoXIa (X)W
0 0

Take expectation under P", divide by t and t — 0 :

D(x)o(x) =0 < o(x) u=0.



Necessary condition in the regular case

b. Apply Ité's Lemma twice :

o>/ Lo(X ds+/ Dé(X.)or(Xs)dW,

/E(;S ds+/ [D(ﬁ /cD¢o—) )du] W,

//D(Dc/)a X, )dW,, dW,



Necessary condition.

Use Cheridito, Soner & Touzi [8], Bruder [6], Buckdahn et al. [7] (d =
here). Since X is Holder continuous and the functions are continuous :

0 >Lo(x)t + /O t[w( — Lo(x)]ds + / / (Do) (X)) dudW,

o) o(:27)
Wz —
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Necessary condition.

Use Cheridito, Soner & Touzi [8], Bruder [6], Buckdahn et al. [7] (d =
here). Since X is Holder continuous and the functions are continuous :

0 >Lo(x)t + /O t[z:¢>( — Lo(x)]ds + / / (Do) (X)) dudW,

o) o(:27)
Wz —
2

+/0 /0 [D(D¢pa)(Xu)o(Xy) — D(Dpo)(x)o(x)]dW,dW .

O(tttm)

+ D(Dg¢o)(x)o(x)

Divide by t and use that liminf,_,o W2/t =0 (d =1 here) :

0 >Lp(x) — %D(Dd)a)(x)a(x) = (u, b(x) — %DO’(X)O’(X».



Exemple of irregular case : o(x) = \/|x]
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The case o(x) = /|x| and X >0

We consider

X:O+/ a(b—Xs)ds—i—/ V| Xs|dW.
0 0



The case o(x) = /|x| and X >0

We consider
X:O+/ a(b—Xs)ds+/ V| Xs|dW.
0 0

Can not apply Ité's Lemma to +/|X]...



The case o(x) = /|x| and X >0

We consider

X:O+/ a(b—Xs)ds+/ V[ Xs| dW.
0 0

Can not apply Ité's Lemma to +/|X]...
but can just take expectation to get

t—0 t

0 <lim E[/ (b— Xs)ds] = ab,

that turns out to be necessary and sufficient....



Regular vs Irregular case

O Regular case : want to keep the contribution of the diffusion part =
“pathwise analysis".



Regular vs Irregular case

O Regular case : want to keep the contribution of the diffusion part =
“pathwise analysis".

O Irregular case : want to kill the contribution of the diffusion part =
“analysis in expectation”.



Regular vs Irregular case

O Regular case : want to keep the contribution of the diffusion part =
“pathwise analysis".

O Irregular case : want to kill the contribution of the diffusion part =
“analysis in expectation”.

Need to find a way to
kill the “irregular” directions and keep the “regular” ones.



The general case
. 1.1 .
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We consider

X:O+/0- b(Xs)ds—s—/O- ( Ul(OXS) \/% )dWs.

U(XS)

with D = D! x R,

Take x> = 0. We want to kill the irregular part :
t t
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A toy example
We consider

X:0+/0- b(Xs)ds—s—/O- ( UI(OXS) \/% )dWs.

U(XS)

with D = D! x R,
Take x> = 0. We want to kill the irregular part :
t t
0 >E s { / LAH(X,)ds + / D(Xs)o(Xs)dWs
0 0
t t
_ /0 E pn [£6(X,)]ds + /0 E i [D16(Xe)o (X:)]dW
and obtain (by the same arguments as before)

0 >L£0(x) — 5 Da(Dro0)(x)o™(x) = (u, b(x) ~ 30*(x)D10™(x).
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Then, G : y = Q(y)A(y)* is C11(N(x)), in which Q :=[q1---g, 0---0]
and A = diag[Ay, ..., A, 0, ..., 0].

Moreover,
0> / LO(X,)ds + / DH(X:)(QA2 QT)(X,)dW,
0 0

:/Ot£¢(Xs)ds+/OthS(Xs)(Q/\;)(XS)dV_VS



The case of a regular spectral decomposition

Assume that oo T can be extended into a CIOC

C = Qdiag[)\1,...,A0,...,0] Q"
with A1(x) > Aa(x) > -+ > A\(x) > 0and Q(x)Q(x)" = Iy, r < d.

function :

Then, G : y = Q(y)A(y)* is C11(N(x)), in which Q :=[q1---g, 0---0]
and A = diag[Ay, ..., A, 0, ..., 0].

Moreover,
0>/ L(X. ds+/ Dé(Xs)(QAZ QT)(Xs)dW
:/O c¢(xs)ds+/0 Dé(X:)(QA)(X)d W,

and take expectation given o((W2,..., W/),s < T) to get as above

1 d
)52 DY)



The general case
Take A. = Q(x)diag[l — ¢, (1 —€)?,...,(1 - ) Q(x)T so that
C-(x) = Q(x)diag[(1 — &)A1(x), (1 — &) Xa(x), ..., (1 =€) Aa()]Q(x) "
has distinct non-zero eigenvalues and one can apply the above to

X. = AEX:AEx—i—/ bE(X_f)der/ C.(XE)ZdW,
0 0

with respect to D, := A.D. Then, ¢ — 0.



The general case
Take A. = Q(x)diag[l — ¢, (1 —€)?,...,(1 - ) Q(x)T so that
C.(x) = Q(x)diag[(1 — e)A1(x), (1 — €)*Aa(x), ..., (1 — &) Ag(x)]Q(x) "
has distinct non-zero eigenvalues and one can apply the above to
X. = AX = Ax + /0 b.(XZ)ds + /O C.(XO)EaW,
with respect to D, := A.D. Then, ¢ — 0.

Thm : Assume that 06" = C on D for some C € G-t Then, D is
stochastically invariant if and only if

{ C(x)u=0
(u,b(x) = 3 S0y DCI(x)(CCTY(x)) < 0

for every x € D and for all u € N} (x).



Extension to jump diffusions by E. Abi Jaber [1]

For the diffusion with jumps

= x+/ b(X. ds+/ s)dW, +/ / Xs—, z) (u(ds, dz) — F(dz)ds),

the conditions become

x + p(x,z) € D, for F-almost all z,
f|<u’ p(X, Z)>|F(dz) < 00,

o(x)'u=0,

(u, b(x) = [ p(x.2)F(dz) = 3 35_, DCI(x)(CCHY(x)) < 0
for all x € D and u € Np(x)



An example
Polynomial diffusions on parabolic concave state space



Polynomial diffusions

Definition : X is a polynomial diffusion on D if :

(i) There exist b b eR, 0<i<?2 and Al €S2 1<i<5,such that
b: x> b(x) := (b(x), b(x)) € R? and C : x — C(x) € S? have the
following form :

b(x) =b°+ b'x + b%%,
{ b(x) = b°+ blx + b%%,
C(x) = A+ Alx + A%X + A3R2 + A*RX + AR,
for all x = (x,%) € D.

(i) C(x) €S9, for all x € D.

When A' =0 for all 3<i <5, we say that X is an affine diffusion.



Parabolic concave state space

We consider :
D = {(x,X) € R?,x > —x?}.

Our conditions are equivalent to
1 —2x
{ )=t ( g 43 ).
<U, b(X)> 12{(('141;72_’_#10)} [2X8 (C11 — ng)( ) (l — 4)?2)8UC12(X)} Z 0,

forall x € R, x = (X, —%?) and u = (2%,1)T € —N3(x).



Necessary and sufficient conditions

O No affine solution unless it has no diffusion part or leaves on the
boundary !



Necessary and sufficient conditions

O No affine solution unless it has no diffusion part or leaves on the
boundary !

O For polynomial diffusions, D is invariant if and only if there exist
a, 8 > 0 such that either one the following conditions holds :

(a)

« —2ax

C(x) = < “20% (4o + B)R2 + B% >, for all x = (x,%) € D,

or

{ b2 <2b' and (B! +2B°)2 < 4(—b? + 2bY)(B° + @)
b = 251, bl =_—20° and K° > —q.
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