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Motivation
2 BS and local (stochastic) vol models :

• Are useful because they provide a clear hedging rule
• Disregard frictions because do not work at high frequency
• Taking costs into account would lead to useless degenerate
prices/strategies (in theory) and is helpless. We are not working at
the level of the order book.

2 However :
• Do not take price impact and illiquidity into account
• Problematic when large positions (possibly shared) or illiquid
underlying (may run after the delta)

2 Question : Can we built a model which
• Takes price impact and illiquidity into account
• Leads to a clear hedging and pricing rule
• Does not have embedded hidden transaction costs (otherwise the
super-hedging price would be degenerate)
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Some references

2 Many works on hedging with illiquidity or impact : Sircar and
Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98, Cetin, Jarrow
and Protter 04, Bank and Baum 04, Liu and Yong 05, Cetin, Soner and
Touzi 09, Millot and Abergel 11, Frey and Polte 11, Almgren and Li 13,
Guéant and Pu 13,...

2 Illiquidity + impact + perfect hedging : Loeper 14/16 (verification
arguments).

2 Past and ongoing related works by D. Becherer and T. Bilarev.



Impact rule and continuous time trading dynamics



Impact rule
2 Basic rule (only permanent for the moment) : an order of δ units
moves the price by

Xt− −→ Xt = Xt− + δf (Xt−), [permanent impact]

and costs

δXt− +
1
2
δ2f (Xt−) = δ

Xt− + Xt

2
[liquidity cost].

2 We just model the curve around δ = 0. This should be understood for
a “small” order δ. Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

and costs ∫ δ

0
(Xt− + F (Xt−, ι))dι

if ∂δF (x , 0) = f (x), ∂2
δxF (x , 0) = f ′(x) and F (x , 0) = ∂2

δδF (x , 0) = 0.



Impact rule
2 Basic rule (only permanent for the moment) : an order of δ units
moves the price by

Xt− −→ Xt = Xt− + δf (Xt−), [permanent impact]

and costs

δXt− +
1
2
δ2f (Xt−) = δ

Xt− + Xt

2
[liquidity cost].

2 We just model the curve around δ = 0. This should be understood for
a “small” order δ.

Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

and costs ∫ δ

0
(Xt− + F (Xt−, ι))dι

if ∂δF (x , 0) = f (x), ∂2
δxF (x , 0) = f ′(x) and F (x , 0) = ∂2

δδF (x , 0) = 0.



Impact rule
2 Basic rule (only permanent for the moment) : an order of δ units
moves the price by

Xt− −→ Xt = Xt− + δf (Xt−), [permanent impact]

and costs

δXt− +
1
2
δ2f (Xt−) = δ

Xt− + Xt

2
[liquidity cost].

2 We just model the curve around δ = 0. This should be understood for
a “small” order δ. Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

and costs ∫ δ

0
(Xt− + F (Xt−, ι))dι

if ∂δF (x , 0) = f (x), ∂2
δxF (x , 0) = f ′(x) and F (x , 0) = ∂2

δδF (x , 0) = 0.



Trading signal and discrete trading dynamics
2 A trading signal is an Itô process controlled by (a, b) :

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs .

2 Need to define the dynamics of the wealth and of the asset. As usual,
consider discrete trading and pass to the limit : continuous time is an
approximation, it should be consistent with discrete (hedging) limits.

2 Trade at times tn
i = iT/n (for simplicity) the quantities

δntni
= Ytni − Ytni−1

.

2 We assume that the stock price evolves according to

X = Xtni +

∫ ·
tni

σ(Xs)dWs

between two trades (can add a drift - or resilience effect, see Becherer
and Bilarev 18).
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2 The corresponding dynamics are

Y n
t :=

n−1∑
i=0

Ytni 1{tni ≤t<tni+1} + YT1{t=T} , δ
n
tni

= Y n
tni
− Y n

tni−1

X n = X0 +

∫ ·
0
σ(X n

s )dWs +
n∑

i=1

1[tni ,T ]δ
n
tni

f (X n
tni −

),

V n = V0 +

∫ ·
0

Y n
s−dX n

s +
n∑

i=1

1[tni ,T ]
1
2

(δntni
)2f (X n

tni −
),

where
V n := cash part + Y nX n = “portfolio value” .



2 Passing to the limit n→∞, it converges in S2 to

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

as(σf ′)(Xs)ds︸ ︷︷ ︸
(Y n

tni
−Y n

tni−1
)f (Xn

tni −)

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds︸ ︷︷ ︸

(Y n
tni
−Y n

tni−1
)2f (Xn

tni −)

,

at a speed
√

n.



Hedging problem(s)

1. Uncovered options.

2. Covered options.

3. Covered options in a generalized model.



The case of uncovered options
B., G. Loeper, and Y. Zou. Almost-sure hedging with permanent price impact.

Finance and Stochastics, 20(3), 741-771, 2016.

2 Premium paid in cash and one delivers exactly the amount of cash and
stocks prescribed by the payoff.

2 Has an initial impact when build the initial position in stocks and a
final impact when liquidate it at the end.

2 Super-hedging price :

v = inf{initial cash : ∃(a, b) s.t. VT − YTXT ≥ g0(XT ) and YT = g1(XT )}.

(Recall that V = cash +YX )

2 Issue : needs to jump to a certain initial or final delta !
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Adding jumps and splitting of large orders

2 We now consider a trading signal of the form

Y = Y0− +

∫ ·
0

bsds +

∫ ·
0

asdWs+

∫ ·
0
δν(dδ, ds)

2 Jumps δi at time τi is passed on [τi , τi + ε] at a rate δi/ε.
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2 The limit dynamics when ε→ 0 is

X = X0− +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dY c
s +

∫ ·
0

asσf ′(Xs)ds

+

∫ ·
0

∫
∆x(Xs−, δ)ν(dδ, ds)

V = V0− +

∫ ·
0

YsdX c
s +

1
2

∫ ·
0

a2
s f (Xs)ds

+

∫ ·
0

∫
(Ys−∆x(Xs−, δ) + I(Xs−, δ)) ν(dδ, ds).

in which

∆x(x , δ) + x = x(x , δ) := x +

∫ δ

0
f (x(x , s))ds

and I(x , δ) :=

∫ δ

0
sf (x(x , s))ds.



Dynamic programming

2 Intuition (starting from Y0 = 0) :

v ≥ v(0, x , 0)

“if and only if”
Vθ ≥ v(θ,Xθ,Yθ) for some (a, b, ν)

2 Can not use it directly : because the control b appears (only) linearly
in the dynamics, this leads to a singular equation (actually leaving on a
submanifold).

2 Use the fact that : v(t, x) := v(t, x , 0) = v(t, x(x , y), y)− I(x , y).
Because round trips are possible at zero cost !
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2 Modified geometric dynamic programming :

v ≥ v(0, x)

“if and only if”
Vθ ≥ v(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ) for some (a, b, ν)

2 Can then apply standard stochastic target technics.
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Pricing equation
2 A quasi-linear pde

0 = −∂tv − µ̂(·, ŷ)∂x [v + I]− 1
2 σ̂(·, ŷ)2∂2

xx [v + I]

where

µ̂(·, y) :=
1
2

[∂2
xxxσ

2](x(·, y),−y) and σ̂(·, y) := (σ∂xx)(x(·, y),−y),

and
ŷ(t, x) := x−1(x , x + f (x)∂xv(t, x)).

2 Terminal condition

G (x) := inf {yx(x , y) + g0(x(x , y))− I(x , y) : y = g1(x(x , y))} .

2 Perfect hedging : Smooth solution under additional conditions, leading
to perfect hedging by following Y = ŷ(·,X ).

2 For f ≡ 0 : recovers the usual delta hedging Y = ∂xv(·,X ).
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xx [v + I]

where

µ̂(·, y) :=
1
2

[∂2
xxxσ

2](x(·, y),−y) and σ̂(·, y) := (σ∂xx)(x(·, y),−y),

and
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The case of covered options
B., G. Loeper, and Y. Zou. Hedging of covered options with linear market impact and gamma constraint. SIAM

Journal on Control and Optimization, 55(5), 3319-3348, 2017.

2 The trader receives at inception a chosen (by the trader) quantity of
cash and stocks, and delivers at maturity a quantity of cash and stocks
(chosen by the trader). The initial number of stocks equates the required
delta to start the hedging, the quantity of stocks delivered at maturity
equates the delta at maturity.

2 Super-hedging price :

v(t, x) := inf{v = c + yx : c , y , (a, b) s.t. VT ≥ g(XT )}.

(Recall that V = cash +YX )
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Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

V = v(·,X ) , Y = ∂xv(·,X ).

Then, equating the dt terms implies

1
2
a2f (X ) = ∂tv(·,X ) +

1
2

(σa)2∂2
xxv(·,X ),

and applying Itô’s Lemma to Y − ∂xv(·,X ) leads to

γa :=
a

σ + fa
= ∂2

xxv(·,X ) ∈ R \ {1/f }

By definition of γa and a little bit of algebra :[
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv
]

(·,X ) = 0.
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The pricing pde should be

−∂tv −
1
2

σ2

(1− f ∂2
xxv)

∂2
xxv = 0 on [0,T )× R,

v(T−, ·) = g on R.

Singular pde :
- Can find smooth solutions s.t. 1 > f ∂2

xxv, cf. below.
- In general, needs to take care of 1 6= f ∂2

xxv
- One possibility : add a gamma constraint ∂2

xxv ≤ γ̄ with f γ̄ < 1.
- A constraint of the form f ∂2

xxv > 1 does not make sense.
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Hedging with a gamma contraint

2 By a change of variable, we write the dynamics in the form :

dY = γa(X )dX + µa,b
Y (X )dt and dX = σa(X )dW + µa,b

X (X )dt.

2 We now define v with respect to the gamma constraint

γa(X ) ≤ γ̄(X )

with
f γ̄ < 1− ε, ε > 0.



Pricing pde :

min
{
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv , γ̄ − ∂2

xxv
}

= 0 on [0,T )× R.

Propagation of the gamma contraint at the boundary :

v(T−, ·) = ĝ on R

with ĝ the smallest (viscosity) super-solution of

min
{
ϕ− g , γ̄ − ∂2

xxϕ
}

= 0.

See Soner and Touzi 00, and Cheridito, Soner and Touzi 05.



Super-solution property

Use a weak formulation approach and results on small time behavior of
double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner
and Touzi 05.

It is based on the Geometric DPP (Soner and Touzi) :
if

V0 > v(0,X0)

then we can find (a, b,Y0) such that

Vθ ≥ v(θ,Xθ)

for any stopping time θ with values in [0,T ].



Sub-solution property

2 Main difficulty : can not establish the reverse Geometric DPP, i.e.

If (a, b,Y0) are such that

Vθ > v(θ,Xθ)

at a stopping time θ with values in [0,T ], then

V0 ≥ v(0,X0).

2 Problem :
- at θ we have a position Yθ that may not match with the position Ŷθ
associated to v(θ,Xθ). Can not jump from Yθ to Ŷθ...
- can neither go smoothly to it as it will move X because of the impact,
and therefore Ŷ (sort of fixed point problem), compare with Cheridito,
Soner, and Touzi 05.
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- at θ we have a position Yθ that may not match with the position Ŷθ
associated to v(θ,Xθ). Can not jump from Yθ to Ŷθ...

- can neither go smoothly to it as it will move X because of the impact,
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The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and
Nutz 13 (inspired from Jensen’s and Krylov’s ideas).

1. Using the concavity of the PDE, create a sequence wιδ of smooth
super-solutions that converges to a viscosity solution w.

2. By verification wιδ ≥ v.

3. By PDE comparison v ≥ w ←−︸︷︷︸
δ,ι→0

wιδ ≥ v.

Conclusion : v is the (unique) viscosity solution.
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Adding a resilience effect

2 Given a speed of resilience ρ > 0,

X n = X0 +

∫ ·
0
σ(X n

s )dWs + Rn,

Rn = R0 +
n∑

i=1

1[tni ,T ]δ
n
tni

f (X n
tni −

)−
∫ ·

0
ρRn

s ds.

2 The continuous time dynamics becomes

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

(as(σf ′)(Xs)− ρRs)ds

R= R0 +

∫ ·
0

f (Xs)dYs +

∫ ·
0

(as(σf ′)(Xs)− ρRs)ds

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds.
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Extension : abstract impact model

B., G. Loeper, M. Soner and C. Zhou. Second order stochastic target problems with generalized market impact.

Arxiv :1806.08533, 2018.



2 A general impact function :

X = x +

∫ ·
t
µ(s,Xs , γs , bs)ds +

∫ ·
t
σ(s,Xs , γs)dWs

Y = y +

∫ ·
t

bsds +

∫ ·
t
γsdXs

V = v +

∫ ·
t

F (s,Xs , γs)ds +

∫ ·
t

YsdXs

This allows to model : permanent impact, immediate partial relaxation of
the impact, modified liquidity cost, and can easily add resilience.

2 Relaxation of the gamma constraint. Can be as close as one wants to
the singularity :

min{−∂tv − F̄ (·, ∂2
xxv) , γ̄ − ∂2

xxv} = 0 on [0,T )× R,

where
F̄ (t, x , z) :=

1
2
σ(t, x , z)2z − F (t, x , z)

and
{F̄ <∞} = {F <∞} = {(t, x , z) : z < γ̄(t, x)}.
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Scheme of proof
2 Super-solution is obtained as before.

2 Sub-solution : Lack of concavity ⇒ the smoothing procedure does not
apply. In place, use of parabolic regularity for fully non-linear equations to
provide smooth (approximate) solutions - in place of smoothing. It
requires more smoothness of the coefficients than in the previous
situation...

2 For this, we need a-priori estimates : If u with ∂2
xxu < γ̄ solves the

PDE, then w := F̄ (·, ∂2
xxu) solves

∂tw + ∂z F̄ (·, ∂2
xxu)∂2

xxw =
∂t F̄ (·, ∂2

xxu)

F̄ (·, ∂2
xxu)

w .

Then,

w(t, x) = E[w(T , X̄ t,x
T )e−

∫ T
t (∂t F̄ (·,∂2xxu)/F̄ (·,∂2xxu))(s,X̄ t,x

s )ds ]

where X̄ = x +
∫ ·
t (2∂z F̄ (·, ∂2

xxu)(s, X̄s))
1
2 dWs .

Provides a uniform bound if ∂2
xxu(T , ·) ≤ γ̄ − ι with ι > 0.
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Expansion around 0 impact

2 Scaling :

X = x +

∫ ·
t
µ(s,Xs , εγs , bs)ds +

∫ ·
t
σ(s,Xs , εγs)dWs

V = v +

∫ ·
t
ε−1F (s,Xs , εγs)ds +

∫ ·
t

YsdXs

2 In the initial model, it amongs to considering εf in place of f .

2 Expansion performed around the solution v0 of (∂z F̄ (·, 0) =: ∂z F̄0)

∂tv0 + ∂z F̄0∂
2
xxv

0 = 0 on [0,T )× R and v0(T , ·) = ĝ on R.
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2 Proposition :

vε(0, x) =v0(0, x) +
ε

2
E

[∫ T

0
[∂2

zz F̄0|∂2
xxv

0|2](s, X̃ 0
s )ds

]
+ o(ε)

=v0(0, x) +
ε

2
E
[
∂x ĝ(T , X̃ 0

T )ỸT

]
+ o(ε)

where

X̃ z = x +

∫ ·
t

(2∂z F̄ (·, z∂2
xxv

0))
1
2 (s, X̃ z

s )dWs ,

Ỹ =
1√
2

∫ ·
t

∂x∂z F̄0(s, X̃ 0
s )Ỹs + ∂2

zz F̄0∂
2
xxv0(s, X̃ 0

s )√
∂z F̄0(s, X̃ 0

s )
dWs .

2 The leading order term allows for super-hedging with L∞-error
controlled by ε2.
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Dual formulation

2 In the concave case :

v(t, x) = sup
s

E

[
ĝ(X t,x,s

T )−
∫ T

t
F̄ ∗(s,X t,x,s

s , s2s )ds

]

= sup
s

E

[
g(X t,x,s

T )−
∫ T

t
F̄ ∗(s,X t,x,s

s , s2s )ds

]

in which

X t,x,s = x +

∫ ·
t
ssdWs .

2 In the previous model :

F̄ ∗(t, x , s2) =
1
2

(s − σ(t, x))2

f (x)
, for s ≥ 0.
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Open problems

No constraint at all on the gamma ?

Dual formulation in a non-Markovian framework ?

Generic completeness ?

Existence/stability of FBSDE with impact ?

Thank you !
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Details on the smoothing approach



2 Assume f , σ, γ̄ are constant, and ĝ bounded and uniformly continuous,
for simplicity.

Step 1. Using Perron’s method + comparison, construct a (bounded)
viscosity solution wι of

min
{
−∂tϕ−

1
2

σ2

(1− f ∂2
xxϕ)

∂2
xxϕ , γ̄ − ∂2

xxϕ

}
= 0 on [0,T )× R,

with terminal condition

wι(T , ·) = ĝ + ι on R

with ι > 0.



2 Assume f , σ, γ̄ are constant, and ĝ bounded and uniformly continuous,
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Step 2. Up to replacing wι by an approximating sequence of
quasi-concave functions (by quadratic inf-convolution), we can assume
that wι is quasi-concave

and then

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
≥ 0 a.e.

with ∂2
xxwι the density of the absolute continuous part of the second

order derivative measure

, and

wι(T , ·) ≥ ĝ + ι/2.

See Jensen 88.
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Step 3. Consider a (non-negative) smooth kernel ψ with support
[−1, 0]× [−1, 1], take a window size δ > 0, and set

ψδ = δ−1ψ(δ−1·)

and wιδ = wι ?ψδ :=

∫
wι(t ′, x ′)ψδ(t ′−·, x ′−·)dt ′dx ′.

The pde operator is concave decreasing, and ∂2
xxwιδ ≤ ∂2

xxwι ? ψδ (by
quasi-concavity),

0 ≤ min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
?ψδ

≤ min
{
−∂twι?ψδ −

1
2

σ2

(1− f ∂2
xxwι?ψδ)

∂2
xxw

ι?ψδ, γ̄ − ∂2
xxw

ι?ψδ

}
≤ min

{
−∂twιδ −

1
2

σ2

(1− f ∂2
xxwιδ)

∂2
xxw

ι
δ , γ̄ − ∂2

xxw
ι
δ

}

while, for δ small with respect to ι,

wιδ(T , ·) ≥ ĝ .
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Step 4. We have produced a smooth function satisfying

min
{
−∂twιδ −

1
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(1− f ∂2
xxwιδ)
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xxw

ι
δ , γ̄ − ∂2

xxw
ι
δ

}
≥ 0

and
wιδ(T , ·) ≥ ĝ .

Taking
V = wιδ(·,X ) and Y = ∂xwιδ(·,X ),

we obtain
VT ≥ ĝ(XT ) ≥ g(XT ).

This implies that v ≤ wιδ → wι, as δ → 0.
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Step 5. Since wι is solution of

min
{
−∂twι −

1
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σ2

(1− f ∂2
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ι

}
= 0

with
wι(T , ·) = ĝ + ι,

wι → w where w is solution of
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{
−∂tw −

1
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(1− f ∂2
xxw)

∂2
xxw , γ̄ − ∂2

xxw
}

= 0

with
w(T , ·) = ĝ .

It satisfies w← wι ≥ v.

Step 6. But v is a super-solution of the same equation : w ≤ v by
comparison, and therefore w = v by the above.
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To sum up :

v︸︷︷︸
super-solution

≥ w︸︷︷︸
solution

←−︸︷︷︸
δ,ι→0

wιδ︸︷︷︸
super-hedging

≥ v


