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Abstract

We extend the study of [7, 19] to stochastic target problems with
general market impacts. Namely, we consider a general abstract model
which can be associated to a fully nonlinear parabolic equation. Unlike
[7, 19], the equation is not concave and the regularization/verification
approach of [7] can not be applied. We also relax the gamma constraint
of [7]. In place, we need to generalize the a priori estimates of [19] and
exhibit smooth solutions from the classical parabolic equations theory.
Up to an additional approximating argument, this allows us to show that
the super-hedging price solves the parabolic equation and that a perfect
hedging strategy can be constructed when the coefficients are smooth
enough. This representation leads to a general dual formulation. We
finally provide an asymptotic expansion around a model without impact.

1 Introduction
Inspired by [1, 19], the authors in [6, 7] considered a financial market with
permanent price impact (and possibly a resilience effect), in which the impact
function behaves as a linear function (around the origin) in the number of pur-
chased stocks. This class of models is dedicated to the pricing and hedging of
derivatives in situations where the notional of the product hedged is such that
the delta-hedging is non-negligible compared to the average daily volume traded
on the underlying asset. As opposed to [6], the options considered in [7, 19] are
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covered, meaning that the buyer of the option delivers, at the inception, the re-
quired initial delta position, and accepts a mix of stocks (at their current market
price) and cash as payment for the final claim. This is a common practice which
eliminates the cost incurred by the initial and final hedge. In [19], the author
considers a Black-Scholes type model, while the model of [7] is a local volatility
one.
Motivated by these works, we consider in this paper a general abstract model of
market impact in which the dynamics of the stocks X, the wealth1 V and the
number of stocks Y held in the portfolio follow dynamics of the form

X = x+

∫ ·
t

µ(s,Xs, γs, bs)ds+

∫ ·
t

σ(s,Xs, γs)dWs (1)

Y = y +

∫ ·
t

bsds+

∫ ·
t

γsdXs (2)

V = v +

∫ ·
t

F (s,Xs, γs)ds+

∫ ·
t

YsdXs (3)

where (y, b, γ) are the controls, and we consider the general super-hedging prob-
lem:

v(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

in which

G(t, x, v, y) =
{

(b, γ) : V t,x,v,φT ≥ g(Xt,x,φ
T ) for φ := (y, b, γ)

}
,

and g is the payoff function associated to a European claim. Note that, in the
above, the number of stocks in the portfolio is taken in the form of an Itô process
controlled by (b, γ). The process γ is the gamma of the portfolio describing the
change in the number of stocks held in the portfolio following a change of the
stock’s price. It will be later on identified to the gamma of the option to be
hedged. This is a key quantity in all our analysis. The fact that the bounded
variation part of Y is absolutely continuous is for technical reasons. The function
F entering in the dynamics of the wealth models the liquidity costs. We refer
to Example 2.1 below for a typical example.
Given the above dynamics, one can easily be convinced, by using formal com-
putations based on the geometric dynamic programming principle of [22], see
also the discussion just after Remark 3.1, that v should be a super-solution of
the fully nonlinear parabolic equation

0 ≤ −∂tv − F̄ (·, ·, ∂2
xv) and (|F |+ |σ|)(·, ·, ∂2

xv) <∞.

in which
F̄ (t, x, z) :=

1

2
σ2(t, x, z)z − F (t, x, z).

1More precisely: the value of the cash plus the number of stocks in the portofolio times
the current value of the stocks.
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The right-hand side constraint in the previous inequalities is of importance.
Indeed (F, σ)(t, x, ·) can typically be singular and only finite on an interval of
the form (−∞, γ̄(t, x)), as it is the case in [7]. Under this last assumption, one
can actually expect that v is a viscosity solution of

min{−∂tv − F̄ (·, ·, ∂2
xv) , γ̄ − ∂2

xv} = 0 on [0, T )× R, (4)

with T -terminal condition given by the smallest function ĝ ≥ g such that ∂2
xĝ ≤

γ̄(T, ·).
In [7], the authors impose a strong (uniform) constraint on the controls of the
form γ ≤ γ̃(·, Xt,x,φ) with γ̃ such that F (·, ·, γ̃) ≤ C for some C > 0, and obtain
that v is actually the unique viscosity solution of (4) with γ̃ in place of γ̄, and
terminal condition ĝ (defined with γ̃ as well). Their proof of the super-solution
property mimicks arguments of [11], and we can follow this approach. As for the
sub-solution property, they could not prove the appropriate dynamic program-
ming principle, and the standard direct arguments could not be used. Instead,
they employed a regularization argument for viscosity solutions, inspired by [16],
together with a verification procedure. In [7], the authors critically use the fact
that F̄ is convex.
Our setting here is different. First, as in [19], we do not impose a uniform
constraint on our strategies. Our controls can take values arbitrarily close to
the singularity γ̄(·, Xt,x,φ) and the equation (4) is possibly degenerate. Even
for F̄ defined as in [7] our setting is more general in a sense. Second, F̄ is not
assumed to be convex.
For these reasons, we can not reproduce the smoothing/verification argument
of [7] to deduce that v is actually a subsolution.

In this paper, we therefore proceed differently and generalise arguments used in
[19] in the context of a Black-Scholes type model. Namely, we directly use the
theory of parabolic equations to prove the existence of smooth solutions to (4)
whenever ĝ is smooth and satisfies a constraint of the form ∂2

xĝ ≤ γ̄(T, ·) − ε,
for some ε > 0. Our analysis heavily relies on new a priori estimates, see
Proposition 3.10 below, thanks to which one can appeal to the continuity method
in a rather classical way, see the proof of Theorem 3.11. We then let ε go to 0
to conclude that v indeed solves (4) in the viscosity solution sense, see Theorem
3.5 below.

We also discuss two important issues that were not considered in [7] but already
studied in [19] in a Black-Scholes type model:
- The first one concerns the asymptotic expansion of the price around a model
without market impact. As in [19], we show that a first order expansion can
be established, see Proposition 4.3 below. But, we also prove that one can
deduce from it a strategy that matches the terminal face-lifted payoff ĝ at any
prescribed level of precision in L∞-norm, see Proposition 4.6.
- The second one concerns the existence of a dual formulation. It can be estab-
lished when F̄ is convex in its last argument, see Theorem 5.2. Applied to the
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model discussed in [7], see Example 2.1 below, it takes the form

v(t, x) = sup
s

E

[
ĝ(Xt,x,s

T )−
∫ T

t

1

2

(ss − σ◦(t,Xt,x,s
s ))2

f(Xt,x,s
s )

ds

]

= sup
s

E

[
g(Xt,x,s

T )−
∫ T

t

1

2

(ss − σ◦(t,Xt,x,s
s ))2

f(Xt,x,s
s )

ds

]

in which Xt,x,s = x +
∫ ·
t
ssdWs, σ◦ is the volatility surface in a the market

without impact and f > 0 is the impact function, the limit case f ≡ 0 corre-
sponding to the absence of impact. It can be interpreted as the formulation of
the super-hedging price with volatility uncertainty. The difference being that
the formula is penalized by the squared distance of the realized volatility term s
to the original local volatility σ◦(·, Xt,x,s) associated to the model, weighted by
the inverse of the impact function f(Xt,x,s). It can also be seen as a martingale
optimal transport problem, see [19, Section 4.1] for details.

To conclude, let us refer to [4, 5, 3, 10, 11, 13, 18, 20, 21, 22], and the references
therein. Also for related works, see [7] for a discussion.

The rest of this paper is organized as follows. The general abstract market
model is described in Section 2 and the characterization of v as a solution of a
parabolic equation is proved in Section 3. The asymptotic expansion and the
dual formulation are provided and discussed in Sections 4 and 5.

General notations. Throughout this paper, Ω is the canonical space of contin-
uous functions on R+ starting at 0, P is the Wiener measure, W is the canonical
process, and F = (Ft)t≥0 is the augmentation of its raw filtration F◦ = (F◦t )t≥0.
All random variables are defined on (Ω,F∞,P). We denote by |x| the Euclidean
norm of x ∈ Rn, the integer n ≥ 1 is given by the context. Unless otherwise
specified, inequalities involving random variables are taken in the P−a.s. sense.
We use the convention x/0 = sign(x) × ∞ with sign(0) = +. We denote by
∂nxϕ the nth-order derivative of a function ϕ with respect to its x-component,
whenever it is well-defined. For E,F,G, three subsets of R, We denote by
Ch,kb (E × F ) the set of continuous functions on E × F which have bounded
partial derivatives of order from 1 to h with respect to the first variable and
from 1 to k to the second variable. We denote by Ch,k,l(E × F ×G) the set of
continuous functions on E×F ×G which have partial derivatives of order from
1 to h with respect to the first variable, from 1 to k to the second variable and
from 1 to l to the third variable. We denote by Chb (E×F ) the set of continuous
functions on E × F which have bounded partial derivatives of order 1 to h. If
in addition its h-th order derivatives are uniformly α-Hölder, with α ∈ (0, 1),
we say that it belongs to Ch+α

b (E × F ). We omit the spaces E,F,G if they are
clearly given by the context.
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2 Abstract market impact model
We first describe our abstract market with impact. It generalizes the model
studied in [6, 7, 19]. We use the representation of the hedging strategies de-
scribed in [7], which is necessary to obtain the supersolution characterization
of the super-hedging price of Proposition 3.8 below. How to get to the market
evolution (1)-(2)-(3) is explained briefly in Example 2.1.

Let us start with the definition of the class of admissible controls (b, γ) that
enter into the Itô decomposition of Y in (2). Given k ≥ 1, we denote by A◦k the
collection of continuous and F-adapted processes (b, γ) such that

γ = γ0 +

∫ ·
0

βsds+

∫ ·
0

αsdWs

where (α, β) is continuous, F-adapted, and ζ := (b, γ, α, β) is essentially bounded
by k and such that

E [sup {|ζs′ − ζs|, t ≤ s ≤ s′ ≤ s+ δ ≤ T} |F◦t ] ≤ kδ

for all 0 ≤ δ ≤ 1 and t ∈ [0, T − δ]. We then define

A◦ := ∪kA◦k.

Let F : [0, T ]× R2 7→ R ∪ {∞} be a continuous map and let

D := {F <∞}

be its domain. We assume that there exists a map (t, x)→ γ̄(t, x) ∈ R∪ {+∞}
such that

D = {(t, x, z) ∈ [0, T ]× R× R : z ∈ (−∞, γ̄(t, x))}, (5)

and that

γ̄ is either uniformly continuous, or identically equal to +∞. (6)

We now let µ : D × R → R and σ : D → R be two continuous maps such that,
for all ε > 0,

µ is Lipschitz, with linear growth in its second variable, on Dε,ε−1 × R, (7)
σ is Lipschitz, with linear growth in its second variable, on Dε,ε−1 ,

where

Dε := {(t, x, z) ∈ [0, T ]× R2 : F (t, x, z) ≤ ε−1}, (8)
Dε,k := Dε ∩ ([0, T ]× R× [−k, k]) for k∈ (0,∞).
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Then, given (t, x, v) ∈ [0, T ] × R × R and φ = (y, b, γ) ∈ R × A◦, we define
(Xt,x,φ, Y t,x,φ, V t,x,v,φ) as the solution on [t, T ] of

X = x+

∫ ·
t

µ(s,Xs, γs, bs)ds+

∫ ·
t

σ(s,Xs, γs)dWs (9)

Y = y +

∫ ·
t

bsds+

∫ ·
t

γsdXs (10)

V = v +

∫ ·
t

F (s,Xs, γs)ds+

∫ ·
t

YsdXs (11)

satisfying (Xt, Yt, Vt) = (x, y, v), whenever (·, X, γ) takes values in Dε,k on [t, T ],
for some ε, k > 0. If this is the case, we say that φ belongs to Aεk. For ease of
notations, we set A := ∪ε,k>0Aεk.
For a payoff function g : R→ R the super-hedging price of the covered European
claim associated to g is then defined as

v(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅}, (12)

in which

G(t, x, v, y) =
{
φ = (y, b, γ) ∈ A : V t,x,v,φT ≥ g(Xt,x,φ

T )
}

whenever this set is non-empty. Note that

v(t, x) = inf
ε>0

vε(t, x) where vε(t, x) := inf
k>0

vεk(t, x) (13)

in which

vεk(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. Gεk(t, x, v, y) 6= ∅}, (14)

with

Gεk(t, x, v, y) =
{
φ = (y, b, γ) ∈ Aεk : V t,x,v,φT ≥ g(Xt,x,φ

T )
}
.

In the following, we assume as in [7] that

g is lower-semicontinuous, bounded from below, and g+ has linear growth.
(15)

Example 2.1 (Example of derivation of the evolution equations). We close this
section with an example of formal derivation of the above abstract dynamics.
In the spirit of [1, 19], let us consider a linear market impact model in which
an (infinitesimal) order to buy dYt stocks at t leads to a immediate price move
of f(t,Xt−, γt)dYt and is followed by an immediate relaxation (or resilience) so
that permanent price move is f̄(t,Xt−, γt)dYt for some f̄ ≤ f . The average ex-
ecution price will be Xt−+ 1

2f(t,Xt−, γt)dYt. Then, following the computations
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done in [1, 19], see also the rigorous proof in [6] for details2, the portfolio value
V corresponding to the holding in cash plus the number of stocks in the portfolio
evaluated at their current price X is given by3

V = v +

∫ ·
t

YsdXs −
∫ ·
t

(
1

2
f − f̄)(s,Xs, γs)d〈Y 〉s.

The contribution ( 1
2f − f̄)(s,Xs, γs)d〈Y 〉s is due to the spread between the exe-

cution price of the trade and the final price after market impact. It can be either
positive or negative. The fact that f and f̄ can depend on γ is discussed in [19].
Let us now assume that X evolves according to dXt = σ◦(t,Xt)dWt+µ◦(t,Xt)dt
in the absence of trade. Then, arguing again as in [6], we obtain the modified
dynamics

dXt = σ◦(t,Xt)dWt + µ◦(t,Xt)dt+ f̄(t,Xt, γt)dYt + ∂xf̄(t,Xt, γt)γtσ
2
◦(t,Xt)dt.

Combining this with (10), and formally solving in dX, we obtain that

σ(t,Xt, γt) =
σ◦(t,Xt)

1− f̄(t,Xt, γt)γt
,

so that the dynamics of V can be written as

V = v +

∫ ·
t

YsdXs−
∫ ·
t

(
1

2
f − f̄)(s,Xs, γs)

(
σ◦(s,Xs)γs

1− f̄(s,Xs, γs)γs

)2

ds.

Note that, as observed in [6], the drift µ◦ is also affected by the market impact,
but that this does not affect the pricing equation. It is therefore not taken into
account in our abstract model. The model studied in [6, 7] corresponds to f =
f(x) (no dependency in t, γ) and f̄ = f (no immediate resilience). In this
particular case, the functions σ and F are given by

σ(t, x, z) = σ◦(t,x)

1−f̄(x)z
, γ̄ = 1/f̄

F (t, x, z) = 1
2

(
σ◦(t,x)z

1−f̄(x)z

)2

f̄(x)I{f̄(x)z<1}+∞I{f̄(x)z≥1}.

Remark 2.2. As in [7, Section 4], a (non-immediate) resilience effect could be
added in our model. This would take the form of a drift term in the dynamic
of X, that depends on past orders. As explained in [7, Section 4], it would not
play any role in this setting of covered options. Note also that the above setting
allows to consider market impact functions that are not globally linear, but only
“linear around 0”, see [7, Remark 2.3] for a precise discussion.

2 The continuous time version is obtained by considering the limit dynamics of a discrete
time trading model, as the speed of trading goes to infinity.

3Obviously, this is only a theoretical value, the liquidation value of the portfolio being
different.
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3 PDE characterization
The parabolic equation associated to v can be formally derived as follows. As-
sume that v is smooth and that a perfect hedging strategy φ = (y, b, γ) can be
found when starting at t from v = v(t, x) if the stock price is x at t. Then,
we expect to have V t,x,v,φ = v(·, Xt,x,φ) which, by Itô’s lemma combined with
(9)-(11), implies that

F (s,Xt,x,φ
s , γs)ds+ Y t,x,φs dXt,x,φ

s

= (∂tv +
1

2
σ2(·, ·, γs)∂2

xv)(s,Xt,x,φ
s )ds+ ∂xv(s,Xt,x,φ

s )dXt,x,φ
s

for s ∈ [t, T ]. By identifying the different terms, we obtain

F (s,Xt,x,φ
s , γs) = (∂tv +

1

2
σ2(·, ·, γs)∂2

xv)(s,Xt,x,φ
s ) and Y t,x,φs = ∂xv(s,Xt,x,φ

s ).

Another application of Itô’s lemma to the second equation then leads to

γs = ∂2
xv(s,Xt,x,φ

s ),

recall (10). The combination of the above reads

0 = −(∂tv + F̄ (·, ·, ∂2
xv))(s,Xt,x,φ

s ) and (|F |+ |σ|)(·, ·, ∂2
xv)(s,Xt,x,φ

s ) <∞,

in which

F̄ (t, x, z) :=
1

2
σ2(t, x, z)z − F (t, x, z), for (t, x, z) ∈ D. (16)

Remark 3.1. The model discussed in [7] corresponds to

F̄ (t, x, z) =
1

2

σ2
◦(t, x)z

1− f(x)z
I{f(x)z<1}+∞I{f(x)z≥1}.

As usual, perfect equality can not be ensured because of the gamma constraint
induced by the above. We therefore only expect to have

0 ≤ −(∂tv + F̄ (·, ·, ∂2
xv))(s,Xt,x,φ

s ) and (|F |+ |σ|)(·, ·, ∂2
xv)(s,Xt,x,φ

s ) <∞.

Recalling (5), this leads to the fact that v should be a super-solution of the
parabolic equation

min{−∂tϕ− F̄ (·, ·, ∂2
xϕ) , γ̄ − ∂2

xϕ} = 0 on [0, T )× R. (17)

By minimality, it should indeed be a solution. Moreover, as usual, the gamma
constraint ∂2

xϕ ≤ γ̄ needs to propagate up to the boundary, so that we can only
expect that v satisfies the terminal condition

lim
(t′,x′)→(T,x)

ϕ(t′, x′) = ĝ(x) for x ∈ R, (18)

8



where ĝ is the face-lift of g, i.e.4

ĝ = inf{h ∈ C2(R) : h ≥ g and ∂2
xh ≤ γ̄(T, ·)}.

See Remark 3.7 below for ease of comparison with [7].

Remark 3.2. When γ̄ ≡ +∞, the above reads

−∂tϕ− F̄ (·, ·, ∂2
xϕ) = 0 on [0, T )× R and lim

(t′,x′)→(T,x)
ϕ(t′, x′) = g(x) on R.

In order to prove that v is actually a continuous viscosity solution of the above,
we need some additional assumptions. First, we assume that F̄ is smooth
enough,

F̄ ∈ C1(D) and F̄ ∈ C1,3,3
b (Dε,ε−1), ε ∈ (0, ε◦], (19)

F̄ is uniformly continuous on Dε, ε ∈ (0, ε◦], (20)

where ε◦ > 0, and that

F (·, ·, 0) = 0, . (21)

For later use, note that the above implies

F̄ (·, ·, 0) = 0. (22)

We also assume that there exists L◦,M > 0 such that, on D and for all ε ∈
(0, ε◦],

|∂tF̄ /F̄ | ≤ L◦, and |∂2
xF̄ (·, ·, z)| ≤M |z| for all z ∈ (−∞, 0], (23)

that

∂zF̄ > 0 on Dε and sup
{(t,x,z)∈Dε,ε−1}

(|∂zF̄ |+ |1/∂zF̄ |) <∞, (24)

inf
Dε,ε−1

σ > 0. (25)

F is uniformly continuous on Dε, (26)
sup
Dε
|F | <∞, (27)

and that, for all ε ∈ (0, ε◦], there exists a uniformly continuous map γ̄ε such
that

Dε = {(t, x, z) ∈ [0, T ]× R2 : z ≤ γ̄ε(t, x)}. (28)

Moreover,

inf(γ̄ε′ − γ̄ε) > 0, for all 0 < ε′ < ε < ε◦. (29)

4Here and in the definition of ĝε below, the inf is taken with respect to the point-wise
ordering on the set of real valued maps. We shall see in Remark 3.7 below that it is actually
continuous .
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Remark 3.3. All these conditions are satisfied in the model of [7].

Finally, we assume that

ĝε := inf{h ≥ g : h ∈ C2(R), F (T, ·, ∂2
xh) ≤ ε−1} (30)

satisfies

the maps (ĝε)ε>0 are uniformly continuous, uniformly in ε > 0,
bounded from below, have uniform linear growth,
and converge uniformly towards ĝ. (31)

and that there exists k◦ ≥ 1 such that, recall (14),

[vεk]+ has linear growth, uniformly in k ≥ k◦, (32)

for all 0 < ε ≤ ε◦, in which we use the convention 1/0 =∞ and identify ĝ with
ĝ0.

Remark 3.4. Note that (31) implies

ĝ is uniformly continuous, bounded from below, and has linear growth. (33)

In the case where γ̄ = +∞, ĝ = g, and therefore, in this case, we assume indeed
that g is uniformly continuous.

Under the above conditions, we can state the main result of this section.

Theorem 3.5. The function v is a continuous viscosity solution of (17) such
that limt′↑T,x′→x v(t′, x′) = ĝ(x) for all x ∈ R. If moreover there exists α ∈ (0, 1)
such that ĝ ∈ C4+α

b , |∂2
xĝ| ≤ ε−1 and (T, ·, ∂2

xĝ) ∈ Dε for some ε > 0, then, for
each (t, x) ∈ [0, T ) × R, we can find φ ∈ A such that V t,x,v,φT = ĝ(Xt,x,φ

T ) with
v = v(t, x).

In [7], the authors also provide a viscosity solution characterization of v, but in
their case

(i) admissible strategies should satisfy γ ≤ γ̃(·, Xt,x,φ) for some given function
γ̃ < γ̄ (uniformly on [0, T ]× R),

(ii) F̄ (·, ·, γ̃) <∞,

(iii) F̄ (t, x, ·) is convex on (−∞, γ̃(t, x)] for all (t, x) ∈ [0, T ]× R.

None of these assumptions are imposed here, and we also consider the case
γ̄ ≡ +∞.

Still, the supersolution property can essentially be proved by mimicking the ar-
guments of [11, Section 5], up to considering a weak formulation of our stochastic
target problem. To be more precise, this will provide a supersolution vε of (17)
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that will serve as a lower bound for vε, see Proposition 3.8 for a precise state-
ment. In [7], the subsolution property could not be proved directly as in [11].
The reason is that the feedback effect of the controled state dynamics (X,Y, V )
prevented them to establish the required geometric dynamic programming prin-
ciple. Instead, they used a smoothing argument in the spirit of [16]. This
however requires F̄ to be convex, which, again, is not the case in our gener-
alized setting. We will instead rely on the theory of parabolic equations. We
shall show that (17) admits smooth solutions for terminal conditions Φ satisfy-
ing a uniform gamma constraint (T, ·, ∂2

xΦ) ∈ Dε for some ε > 0, see Corollary
3.12 below. In this case, a simple verification argument shows that the solution
û is greater than the super-hedging price of the payoff Φ taken as a terminal
condition. On the other hand, a comparison principle implies that it is smaller
than any supersolution of the same equation, see Proposition 3.9 for a precise
statement. In particular, if the terminal condition Φ is ĝ, then vε ≥ vε ≥ û ≥ v
and therefore v = û, by sending ε to 0. If the terminal condition ĝ does not
satisfy the required constraints on its second order derivative, then one can ap-
proximate it by functions Φε and Φε satisfying the above mentioned constraints
and such that Φε ≥ ĝ ≥ Φε, for ε > 0. The corresponding solutions uε and
uε to (17) will satisfy uε ≥ v while v ≥ uε, because uε and uε are both the
super-hedging and perfect-hedging prices of Φε and Φε. Again, a comparison
argument will show that uε − uε goes to 0 as ε → 0. By stability, their com-
mon limit is a viscosity solution of (17) with terminal condition ĝ, for suitable
choices of Φε,Φε → ĝ, see Section 3.3. And therefore so is v. We detail this is
the subsequent subsections.
From a general methodological perspective, note that the smoothing approach
of [7], as initiated by [8], and the version we use here provide an alternative to
the dynamic programming approach when part of it can not be proved. The
approach of [7, 8] is relatively easy to implement when the PDE operator is
concave, while the one we use here does not require concavity but much more
technical work on the PDE itself. It can certainly be used in various contexts.

Remark 3.6. Note that there is in general no hope to prove the existence of
a classical solution solution to (17). In particular, because the second order
derivative of the boundary condition can be on the boundary of the domain of
F̄ . Also note that we do not provide uniqueness in Theorem 3.5. We only provide
a partial comparison result for this type of equations in Proposition 3.9. It is
enough for our main result and we leave the study of a more general comparison
result to future research. Note however that our scheme of proof induces that v
is actually the biggest subsolution of (17) in the class of functions with linear
growth, see Remark 3.14 below in which we also suggest a numerical procedure
for approximating v.

We conclude this section with a remark on our definition of the face-lift of g.

Remark 3.7. In [7], the face-lift is defined as the smallest function above g
that is a viscosity supersolution of the equation γ̄ − ∂2

xϕ = 0. It is obtained by
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considering any twice continuously differentiable function Γ̄ such that ∂2
xΓ̄ = γ̄,

and then setting
ḡ := (g − Γ̄)conc + Γ̄,

in which the superscript conc means concave envelope, cf. [23, Lemma 3.1]. This
actually corresponds to our definition. The fact that ĝ ≥ ḡ is trivialy deduced
from the supersolution property in the definition of ḡ. Let us prove the converse
inequality. Fix ε ∈ (0, ε◦], and define ḡε as ḡ but with γ̄ − ε in place of γ̄. Fix
ψ ∈ C∞b with compact support, such that

∫
ψ(y)dy = 1 and ψ ≥ 0, and define

ḡεn(x) :=
∫
ḡε(y)nψ(n(y − x))dy for n ≥ 1. Since ḡε is the sum of a concave

function and a C2 function, one can consider the measure mε associated to
its second derivative and it satisfies mε(dy) ≤ (γ̄(y) − ε)dy. Then, ∂2

xḡ
ε
n(x) =∫

ḡε(y)n2∂2
xψ(n(y − x))dy =

∫
nψ(n(y − x))dmε(y) ≤

∫
nψ(n(y − x))(γ̄(y) −

ε)dy. Now, note that ḡ is continuous and therefore uniformly continuous on
compact sets. Then, up to using the approximation from above argument of [7,
Lemma 3.2], we can assume that it is uniformly continuous. Since γ̄ is also
uniformly continuous, see (6), one can find κ, ε > 0 such that ḡε,κn : x ∈ R 7→
ḡεn(x)+κ is C2, ∂2

xḡ
ε,κ
n ≤ γ̄ and ḡε,κn ≥ g. By definition, it follows that ḡε,κn ≥ ĝ.

Clearly, (ḡε,κn )ε,κ>0,n≥1 converges pointwise to ḡ as n→∞ and (ε, κ)→ 0 in a
suitable way. This shows that ḡ ≥ ĝ.

3.1 Supersolution property of a lower bound and partial
comparison

In this section, we produce a supersolution of a version of (17) that is associated
to vε, recall (13), and that is a lower bound for vε. We also prove a partial
comparison result on this version that will be of important use later on. Recall
the definition of ĝε in (30).

Proposition 3.8. For each ε ∈ (0, ε◦] small enough, there exists a continuous
function vε ≤ vε that has linear growth, is bounded from below, is a viscosity
super-solution of

min{−∂tϕ− F̄ (·, ·, ∂2
xϕ) , ε−1 − F (·, ·, ∂2

xϕ)} = 0 on [0, T )× R (Eqε)

and satisfies lim inft′↑T,x′→x vε(t′, x′) ≥ ĝε(x) for all x ∈ R.

Proof. This follows from exactly the same arguments as in [7, Section 3.1]. We
only explain the differences. As in [7, Section 3.2], we first introduce a sequence
of weak formulations. On (C(R+))5, let us denote by (ζ̃ := (γ̃, b̃, α̃, β̃), W̃ ) the
coordinate process and let F̃◦ = (F̃◦s )s≤T be its raw filtration. We say that a
probability measure P̃ belongs to Ãk if W̃ is a P̃-Brownian motion and if for all
0 ≤ δ ≤ 1 and r ≥ 0 it holds P̃-a.s. that

γ̃ = γ̃0 +

∫ ·
0

β̃sds+

∫ ·
0

α̃sdW̃s for some γ̃0 ∈ R, (34)
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sup
R+

|ζ̃| ≤ k , (35)

and

EP̃
[
sup

{
|ζ̃s′ − ζ̃s|, r ≤ s ≤ s′ ≤ s+ δ

}
|F̃◦r
]
≤ kδ. (36)

For φ̃ := (y, γ̃, b̃), y ∈ R, we define (X̃x,φ̃, Ỹ φ̃, Ṽ x,v,φ̃) as in (9)-(10)-(11) associ-
ated to the control (γ̃, b̃) with time-t initial condition (x, y, v), and with W̃ in
place of W . For t ≤ T and k ≥ 1, we say that P̃ ∈ G̃k,ε(t, x, v, y) if[

Ṽ x,v,φ̃T ≥ ĝε(X̃x,φ̃
T ), F (·, X̃x,φ̃, γ̃) ≤ ε−1 and γ̃ ∈ [−k, k] on R+

]
P̃− a.s.

(37)
We finally define

ṽεk(t, x) := inf{v = c+ yx : (c, y) ∈ R× [−k, k] s.t. Ãk ∩ G̃k,ε(t, x, v, y) 6= ∅}.

Step 1. We first provide bounds for ṽεk. Note that ṽεk ≤ vεk, so that (32) implies
that [ṽεk]+ has linear growth, uniformly in k ≥ k◦. Moreover, note that the
fact that σ is Lipschitz with linear growth in its second variable, uniformly on
Dε,k × R (see (7)), implies that X̃t,x,φ̃ is a square integrable martingale under
P̃ for any φ̃ := (y, γ̃, b̃), and that the same holds for

∫ ·
t
Ỹ t,φ̃s dX̃t,x,φ̃

s . Then, the
inequality

v +

∫ T

t

F (s, X̃t,x,φ̃
s , γ̃s)ds+

∫ T

t

Ỹ t,φ̃s dX̃t,x,φ̃
s ≥ ĝε(X̃t,x,φ̃

T )

combined with (27) and (15) implies that v ≥ − sup |g−| − T supDε F > −∞.
This shows that ṽεk is bounded from below, uniformly in k ≥ k0.
Step 2. We claim that

vε(t, x) := lim inf
(k, t′, x′) → (∞, t, x)

(t′, x′) ∈ [0, T ) × R

ṽεk(t′, x′), (t, x) ∈ [0, T ]× R,

is a viscosity supersolution of (Eqε). To prove this, it suffices to show that it
holds for each ṽεk, with k ≥ k◦, and then to apply standard stability results, see
e.g. [2]. By the same arguments as in [7, Proposition 3.15], each ṽεk is lower-
semicontinuous5. Given a C∞b test function ϕ and (t0, x0) ∈ [0, T )×R such that
(t0, x0) achieves a strict minimum of ṽεk − ϕ,

(strict) min
[0,T )×R

(ṽεk − ϕ) = (ṽεk − ϕ)(t0, x0) = 0,

5The use of the weak formulation is exactly motivated by the fact that it ensures this
lower-semicontinuity property, which is required in the arguments we will appeal to for the
derivation of super-solution property. Unfortunately, no alternative argument seems available
so far without lower-semicontinuity for stochastic target problems involving a second order
constraint.
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we first use (25) and the arguments of [7, Step 1-2, proof of Theorem 3.16] to
obtain that there exists γ̃0 such that

∂2
xϕ(t0, x0) ≤ γ̃0 and F (t0, x0, γ̃0) ≤ ε−1.

Then, the same arguments as in [7, Proof of Theorem 3.16] combined with (16)
and (24) lead to

0 ≤F (t0, x0, γ̃0)− ∂tϕ(t0, x0)− 1

2
σ2(t0, x0, γ̃0)∂2

xϕ(t0, x0)

− 1

2

(
γ̃0 − ∂2

xϕ(t0, x0)
)
σ2(t0, x0, γ̃0)

=− ∂tϕ(t0, x0)− F̄ (t0, x0, γ̃0)

≤− ∂tϕ(t0, x0)− F̄ (t0, x0, ∂
2
xϕ(t0, x0)).

Finally, the T -boundary condition is obtained as in [7, Proof of Theorem 3.16],
recall our assumption (15), as well as Remark 3.7. �

We now provide a partial comparison result that will be used later on. Note
that a full comparison result could be proved as in [7, Theorem 3.11] when F̄
is convex, by mimicking their arguments. It is however not the case in general.
Given the strategy of our proof, it is not required in this paper. In the following,
we interpret (Eqε) by using the convention 0−1 =∞ in the case ε = 0.

Proposition 3.9. Let U be an upper semicontinuous viscosity subsolution of
(Eqε) for ε ∈ [0, ε◦]. Let V be a lower semicontinuous viscosity supersolution of
(Eqε′) for some ε′ ∈ (ε, ε◦]. Assume that U and V have linear growth and that
U ≤ V on {T} × R, then U ≤ V on [0, T ]× R.

Proof. Set Û(t, x) := eρtU(t, x), V̂ (t, x) := eρtV (t, x) for some ρ > 0. Then, Û
is a subsolution of

min
{
ρϕ− ∂tϕ− eρ·F̄ (·, ·, e−ρ·∂2

xϕ), ε−1 − F (·, ·, e−ρ·∂2
xϕ)
}

= 0 (38)

and V̂ is a supersolution of

min
{
ρϕ− ∂tϕ− eρ·F̄ (·, ·, e−ρ·∂2

xϕ), (ε′)−1 − F (·, ·, e−ρ·∂2
xϕ)
}

= 0 (39)

on [0, T )× R.
Assume that sup[0,T ]×R(Û − V̂ ) > 0. Then, there exists η > 0 such that, for all
n > 0 and all λ > 0 small enough,

sup
(t,x,y)∈[0,T ]×R2

[
Û(t, x)− V̂ (t, y)− λ

2
|x|2 − n

2
|x− y|2

]
≥ η > 0. (40)

Denote by (tn, xn, yn) the point at which this supremum is achieved. Since
V̂ (T, ·) ≥ Û(T, ·), we have tn < T . Moreover, standard arguments, see e.g., [12,
Proposition 3.7], lead to

lim
n→∞

n|xn − yn|2 = 0. (41)
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We now apply Ishii’s lemma, see e.g. [12, Theorem 8.3], to obtain the existence
of (an,Mn, Nn) ∈ R3 such that

(an, n(xn − yn)+λxn,Mn) ∈ P̄2,+Û(tn, xn)

(an,−n(xn − yn), Nn) ∈ P̄2,−V̂ (tn, yn),

in which P̄2,+ and P̄2,− denote as usual the closed parabolic super- and subjets,
see [12], and(

Mn 0
0 −Nn

)
≤ 3n

(
1 −1
−1 1

)
+

(
3λ+ λ2

n −λ
−λ 0

)
.

In particular, Mn ≤ Nn + 2λ + λ2/n. Since V̂ is a supersolution of (39) and
ε < ε′, (26) and (41) imply that F (tn, xn, e

−ρtnMn) < ε−1 for λ > 0 small
enough and n large enough. Hence,

ρÛ(tn, xn)− an − eρtn F̄ (tn, xn, e
−ρtnMn) ≤ 0.

On the other hand, the supersolution property of V̂ combined with (20) and
(24) implies that

0 ≤ρV̂ (tn, yn)− an − eρtn F̄ (tn, yn, e
−ρtnNn)

≤ρV̂ (tn, yn)− an − eρtn F̄ (tn, yn, e
−ρtnMn) + eρtnδ(e−ρtn(2λ+ λ2/n))

in which δ(z)→ 0 as z → 0. Hence,

ρ(Û(tn, xn)− V̂ (tn, yn)) ≤ eρtn
(
F̄ (tn, xn, e

−ρtnMn)− F̄ (tn, yn, e
−ρtnMn)

)
+ eρtnδ(e−ρtn(λ+ λ2/n)).

Recalling (41) and (20), we obtain a contradiction to (40) by sending n → ∞
and then λ→ 0. �

3.2 Regularity of solutions to (Eqε)
To complete the characterization of Proposition 3.8, we now study the regularity
of solutions to (Eqε). We shall indeed show that (Eqε) admits a smooth solution
uε such that (·, ·, ∂2

xu) ∈ Dε on [0, T ]×R, for ε > 0 small enough and for a certain
class of terminal conditions. A simple verification argument will then show that
uε dominates the super-hedging price v if the terminal data Φε associated to uε
dominates ĝ. A lower bound uε for v can also be constructed by considering a
terminal condition Φε ≤ ĝ and using our comparison result of Proposition 3.9
combined with Proposition 3.8. Then, letting Φε,Φ

ε → ĝ in a suitable way will
be enough to show that v is actually a solution of (Eq0), i.e. to conclude the
proof of Theorem 3.5.
The strategy we employ consists in establishing a priori estimates for the second
derivative of the solution to (Eqε). Once established, the equation becomes uni-
formly parabolic, and higher regularity follows by standard parabolic regularity
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(see [17]). Then, the continuity method (see [15]) allows us to actually construct
the solution to (Eqε).
Let us start with uniform estimates for solutions to (Eqε) such that (·, ·, ∂2

xu) ∈
Dε′ for some ε′ > 0, in the case where the terminal condition Φ is smooth and
satisfies a similar constraint.

Proposition 3.10. Let u and Φ be two continuous functions such that

(i) Φ ∈ C2(R) with |∂2
xΦ| ≤ KΦ for some KΦ > 0,

(ii) (T, ·, ∂2
xΦ) ∈ DεΦ for some εΦ > 0,

(iii) u ∈ C1,4([0, T )× R)∩C0,2([0, T ]× R) with |∂2
xu| ≤ K ′ for some K ′ > 0,

(iv) (·, ·, ∂2
xu) ∈ Dε′ for some ε′ > 0.

Assume that u solves

∂tu+ F̄ (·, ·, ∂2
xu) = 0 on [0, T )× R, (Eq0)

u(T, ·) = Φ on R. (42)

Then,

a. (·, ·, ∂2
xu) ∈ Dε on [0, T ]×R, for some ε > 0 that depends only on εΦ and

L◦,

b. |∂2
xu| ≤ K on [0, T ]× R where K depends only on KΦ.

c. If Φ is globally Lipschitz, then u is also globally Lipschitz with Lipschitz
constant controlled by the one of Φ.

d. u is the unique C1,2([0, T ) × R) ∩ C0([0, T ] × R) solution of (Eq0)-(42)
such that (·, ·, ∂2

xu) ∈ Dε′′ for some ε′′ > 0.

e. For some α ∈ (0, 1) depending on KΦ and the assumptions on F̄ , u ∈
C1+α

2 ,2+α([0, T )×R). Moreover, for any compact subset C ′ ⊂ [0, T )×R,
there is a constant C(C ′,KΦ,F̄ ) such that

‖u‖
C1+α

2
,2+α(C′)

≤ C(C ′,KΦ,F̄ ).

f. If moreover Φ ∈ C2+α, u ∈ C1+α
2 ,2+α([0, T ]× R).

Proof. a. Let V := F̄ (·, ·, ∂2
xu). Then, on [0, T )× R,

∂tV = ∂tF̄ (·, ·, ∂2
xu) + ∂zF̄ (·, ·, ∂2

xu)∂t∂
2
xu

in which, by (Eq0), ∂t∂2
xu+ ∂2

xV = 0. Hence,

∂tV + ∂zF̄ (·, ·, ∂2
xu)∂2

xV = ∂tF̄ (·, ·, ∂2
xu) =

∂tF̄ (·, ·, ∂2
xu)

F̄ (·, ·, ∂2
xu)

V, (43)
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recall (23). For (t, x) ∈ [0, T ]× R, let X̄t,x be the solution of

X̄ = x+

∫ ·
t

(2∂zF̄ (·, ·, ∂2
xu)(s, X̄s))

1
2 dWs.

By (iv), (19) and (24), it is well-defined. Combining Itô’s Lemma and a standard
localizing argument using (19) and (23), we obtain

V (t, x) = E[V (T, X̄t,x
T )e−

∫ T
t

(∂tF̄ (·,·,∂2
xu)/F̄ (·,·,∂2

xu))(s,X̄t,xs )ds]. (44)

By definition of V and the fact that ∂2
xu(T, ·) = ∂2

xΦ by (iii), this shows that
(·, ·, ∂2

xu) ∈ Dε on [0, T ]× R, for some ε > 0 that depends only on L◦ and εΦ.
b. To obtain the bound on ∂2

xu, we first differentiate twice (Eq0) with respect
to x, recall (19) and (iii). Letting Z(t, x) = ∂2

xu(t, x), this yields

∂tZ + 2∂x∂zF̄ ∂xZ + ∂zF̄ ∂
2
xZ + ∂2

z F̄ (∂xZ)2 = −∂2
xF̄ .

We now consider

(t, x) 7→ Z(t, x) := min{0, inf Z(T, ·)}eM(T−t),

in which M is given in (23). Then,

∂tZ + 2∂x∂zF̄ ∂xZ + ∂zF̄ ∂
2
xZ + ∂2

z F̄ (∂xZ)2 = −MZ ≥ −∂2
xF̄ (t, x, Z).

Under the current assumptions, Z is uniformly bounded on [0, T ]×R. Moreover,
from assumption (19), ∂2

xF̄ is uniformly continuous on Dε,ε−1 , for all ε > 0
small enough, hence, by (22) and [12, Proof of comparison, Theorem 5.1], the
comparison principle holds between Z and Z, and yields that Z ≤ Z globally
on [0, T ]× R. The upper bound is obtained in the exact same way.
c. The assertion about the Lipschitz regularity also follows from the linearised
equation satisfied by κ = ∂xu:

∂tκ+ ∂zF̄ (·, ·, ∂2
xu)∂2

xκ+ ∂xF̄ (·, ·, ∂xκ) = 0, κ(T, ·) = ∂xΦ.

Under the assumptions (24), (19), and (22), this implies that

κ(t, x) = E[∂xΦ(X̃t,x
T )]

where

X̃t,x = x+

∫ ·
t

(
2∂zF̄ (·, ·, ∂2

xu)
) 1

2 (s, X̃t,x
s )dWs +

∫ ·
t

∂xF̄ (·, ·, ∂2
xu)

∂2
xu

(s, X̃t,x
s )ds,

and the result follows. (Note that, since F̄ (·, ·, 0) = 0 and F̄ ∈ C1,3,3
b (Dε,ε−1), the

map z 7→ ∂xF̄ (·,·,z)
z is bounded and Lipschitz - after extending it to ∂z∂xF̄ (·, ·, 0)

at 0.)
d. Consider another solution u′. Then, b. implies that u and u′ have at most
a quadratic growth. Moreover, a. allows one to consider a uniformly parabolic
equation. Then, the fact that u = u′ follows from standard arguments.
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e. Differentiating the equation (Eq0) with respect to x we have that w = ∂xu
satisfies

∂tw + ∂x(F̄ (t, x, ∂xw)) = 0.

We then apply the result of [17, Theorem 12.1] to conclude that ∂xw ∈ Cα/2,αloc .
This estimate provides the local in space Hölder continuity. To obtain the esti-
mate in the time variable, we use the original equation (Eq0). Since F̄ (t, x, u(t, x))
is Hölder continuous and ∂tu(t, x) = −F̄ (t, x, ∂2

xu(t, x)), this implies the regu-
larity in time as well. The stated local estimate follows from [17, Theorem 12.1,
(12.4)].
f. If Φ ∈ C2+α, then by following the arguments of [17, Theorem 5.13], and
invoking the argument used to prove point e, we obtain that u ∈ C1+α

2 ,2+α

globally up to time T .

�

We are now in position to construct a smooth solution to (Eq0).

Theorem 3.11. Let Φ be a continuous map such that |∂2
xΦ| ≤ ε−1 and (T, ·,

∂2
xΦ) ∈ Dε for some ε > 0. Then, there exists a solution u of (Eq0)-(42) that

belongs to C([0, T ] × R) ∩ C1,4
loc ([0, T ) × R), such that |∂2

xu| ≤ (εΦ,L◦)
−1 and

(·, ·, ∂2
xu) ∈ DεΦ,L◦ on [0, T ]×R, for some εΦ,L◦ > 0 that only depends on Φ and

L◦. If Φ is globally Lipschitz, then u is also globally Lipschitz with Lipschitz
constant controlled by the one of Φ. If moreover there exists α ∈ (0, 1) such that
Φ ∈ C4+α

b then u ∈ C1,4
b .

Proof. This follows by using the continuity method (cf. [15, Chap. 17.2]). We
first mollify Φ into a function Φn so that ∂5

xΦn is bounded, and at the same time
F̄ into a function F̄n such that F̄n(·, ·, z) is C∞ on each {(t, x) ∈ [0, T ] × R :
(t, x, z) ∈ Dε′}, ε′ > 0, for all z ∈ R, with derivatives’ bounds on {(t, x) ∈
[0, T ] × R : (t, x, z) ∈ Dε′}, ε′ > 0, that are locally uniform with respect to z.
This is possible, since γ̄ and F̄ are uniformly continuous (recall (6) and (20)),
by taking a compactly supported smoothing kernel ψ ∈ C∞(R) and considering

Φn = n

∫
R

Φ(y)ψ(n(y − ·))dy,

F̄n(·, ·, z) = n2

∫
[0,T ]×R

F̄ (s, y, z)ψ(n(s− ·))ψ(n(y − ·))dsdy,

and taking n large enough with respect to ε′. For later use, note that F̄n(T, ·,
∂2
xΦn) ≤ 2ε−1, for n large enough. Set

Gn(ϕ, θ) := [∂tϕ+ F̄n(·, ∂2
xϕ)]I[0,T ) + I{T}(ϕ− θΦn) for ϕ ∈ C1,4

b ,

and let En ⊂ [0, 1] be the set of real number θ ∈ [0, 1] for which a C1,4
b solution unθ

toGn(unθ , θ) = 0 exists such that it satisfies the condition (iii)-(iv) of Proposition
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3.10. By (22), u0 ≡ 0 solves Gn(u0, 0) = 0 so that 0 ∈ En. Hence, En is non
empty. Moreover, for every θ ∈ En, the linearised operator associated to Gn is

(ũ, θ̃) ∈ C1,2×En 7→ Ln(ũ, θ̃) := [∂tũ+∂zF̄n(t, x, ∂2
xu)∂2

xũ]I[0,T )+I{T}(ũ−θ̃Φn).

It is uniformly parabolic (recall (24)) with coefficients in C∞. For θ̃ fixed,
the equation Ln(ũ, θ̃) = 0 is therefore a linear, uniformly parabolic equation,
with smooth coefficients. The terminal data is smooth, has linear growth and
bounded derivatives of order 1 up to 5. Standard parabolic regularity theory (see
[14]) yields that the linearised equation with respect to ũ is solvable in C1,4

b .
By the implicit function theorem, see e.g. [15, Theorem 17.6], En is open in
[0, 1]. By the a priori estimates of Proposition 3.10, En is also closed for n large
enough. In particular, we have a uniform (with respect to θ) a priori estimate in
C1+α

2 ,2+α. This, given our assumptions on Φn, F̄n and from standard parabolic
regularity, implies that the corresponding solution is uniformly (with respect to
θ) bounded in C1,4.
Therefore, En = [0, 1] and un1 is well defined, and uniformly bounded in C1+α

2 ,2+α.
Note that, by a. of Proposition 3.10, ε′ > 0 can be chosen such that (·, ·, ∂2

xu
n
1 ) ∈

Dε′,ε′−1 on [0, T ] × R, for all n large enough. Since (F̄n)n≥1 is uniformly
parabolic, uniformly in n, and given our initial smoothness assumptions on F̄ ,
see assumption (19), un1 is uniformly bounded in C1,4

loc ([0, T ) × R). If moreover
(Φn)n≥1 is bounded in C4+α

b uniformly in n, then (un1 )n≥1 is C1,4
b uniformly in

n (see again [17, Theorem 5.13] applied to ∂2
xu

n
1 ). It remains to send n→∞ to

deduce the required result. �

3.3 Full chacterization of the super-hedging price and per-
fect hedging in the smooth case

We are now about to conclude the proof of Theorem 3.5. Let û be the function
constructed in Theorem 3.11 for Φ = ĝ, assuming that ĝ satisfies the required
constraints. We first establish that û permits to apply a perfect hedging strategy
of the face-lifted payoff whenever it is smooth enough, and that it coincides with
the super-hedging price.

Corollary 3.12. Assume that there exists α ∈ (0, 1) such that ĝ ∈ C4+α
b ,

that |∂2
xĝ| ≤ ε−1 and (T, ·, ∂2

xĝ) ∈ Dε for some ε > 0. Let û be the function
constructed in Theorem 3.11 for Φ = ĝ. Then, v = û and, for each (t, x) ∈
[0, T ]× R, we can find φ ∈ A such that V t,x,v,φT = ĝ(Xt,x,φ

T ).

Proof. It follows from Theorem 3.11, Itô’s lemma and (16) that û induces an
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exact replication strategy:

ĝ(Xt,x,φ
T ) =û(t, x) +

∫ T

t

[
∂tû+

1

2
σ2(·, ·, ∂2

xû)∂2
xû

]
(s,Xt,x,φ

s )ds

+

∫ T

t

∂xû(s,Xt,x,φ
s )dXt,x,φ

s

=û(t, x) +

∫ T

t

F (s,Xt,x,φ
s , γs)ds+

∫ T

t

Y t,x,φs dXt,x,φ
s

in which φ = (y, b, γ) with

y = ∂xû(t, x), b = ([∂t +
1

2
σ2(·, ·, γ)∂2

x]∂xû)(·, Xt,x,φ
· ), γ = ∂2

xû(·, Xt,x,φ
· ).

Hence, û ≥ v. Moreover, û is a viscosity subsolution of (Eqε′) for all ε′ ≥ 0 small
enough. Since ĝ is globally Lipschitz, û is also globally Lipschitz (Theorem 3.11),
and therefore has linear growth. By Proposition 3.8, vε ≥ vε that is a super-
solution of (Eqε) and satisfies lim inft′↑T,x′→x vε(t′, x′) ≥ ĝε(x) ≥ ĝ(x) = û(T, x)
for all x ∈ R. Then, Proposition 3.9 implies that vε ≥ û. Taking the inf over
ε > 0 leads to v ≥ û. �

We can now conclude the proof of Theorem 3.5.
Proof of Theorem 3.5. We begin the proof with the following approximation
lemma, whose proof is deferred after the end of the Theorem’s proof.

Lemma 3.13. For all ε > 0, there exists Φε,Φ
ε ∈ C2 such that, for Ψ ∈

{Φε,Φε},

Ψ ∈ C5
b (R), |∂2

xΨ| ≤ ε−1, (T, ·, ∂2
xΨ) ∈ Dε,

and

Φε ≤ ĝ ≤ Φε, Φε − Φε ≤ δ(ε),

in which limε→0 δ(ε) = 0.

Let uε and uε be the (smooth) solutions to (Eq0) associated to Φε and Φε
respectively, as in Theorem 3.11. By applying Corollay 3.12 to Φε in place of ĝ,
we deduce that uε is the super-hedging price of Φε ≥ ĝ so that uε ≥ v. Similarly
uε ≤ v, and therefore uε ≤ v ≤ uε.
By the comparison principle, we also have

0 ≤ uε − uε ≤ sup{Φε − Φε} ≤ δ(ε).

It follows that v is the uniform limit of a sequence of continuous functions, and is
therefore continuous. Each of the functions uε solves (17), recall (5). Standard
stability results, see e.g. [2], imply that v is a viscosity solution to (17)-(18).
The other assertions in Theorem 3.5 are immediate consequences of Corollary
3.12.
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Remark 3.14. By Proposition 3.9, the function uε defined in the proof of
Theorem 3.5 is the unique solution of (Eq0) with terminal condition Φε, in the
class of functions with linear growth. This opens the door to the construction of a
numerical scheme for the computation of uε, and therefore of v by passing to the
limit ε→ 0. Moreover, if v is a upper-semicontinuous subsolution of (17), with
linear growth, such that v(T, ·) ≤ ĝ, then the comparison result of Proposition 3.9
implies that v ≤ uε. Since uε → v, this proves that v is the biggest subsolution
of (17), with linear growth, associated to the boundary condition ĝ.

Proof of Lemma 3.13. The proof uses standard approximation arguments,
and we only state the main ingredients. Consider ĝε as in (30), see also Re-
mark 3.7. Then, it follows from (28) that its second derivative measure satisfies
∂2
xĝ
ε(dx) ≤ γ̄ε(x)dx. Consider a smooth mollification ĝεn of ĝε as in Remark

3.7. By (31), it converges uniformly to ĝ as n → ∞ and ε → 0. By (29), for
n large enough with respect to ε, ∂2

xĝ
ε
n < γ̄ε/2 ≤ γ̄ε′ , and |∂2

xĝ
ε
n| ≤ 1/ε′, for

some 0 < ε′ ≤ ε/2, see Remark 3.7. Since the convergence is uniform, we can
add to (resp. substract from) ĝεn a constant kεn ≥ 0 to ensure that ĝεn + kεn ≥ ĝ
(resp. ĝεn − kεn ≤ ĝ) such that kεn goes to 0 as n→∞ and ε→ 0.

4 Asymptotic analysis
We now consider the case where the impact of the γ process in the dynamics
of (X,V ) is small. Our aim is to obtain an asymptotic expansion around an
impact free model. More precisely, we consider the dynamics

Xε,t,x,φ = x+

∫ ·
t

µ(s,Xε,t,x,φ
s , εγs, εbs)ds+

∫ ·
t

σ(s,Xε,t,x,φ
s , εγs)dWs

V ε,t,x,v,φ = v +

∫ ·
t

ε−1F (s,Xε,t,x,φ
s , εγs)ds+

∫ ·
t

Y ε,t,x,φs dXε,t,x,φ
s , ε > 0,

and denote by vε the corresponding super-hedging price.
We place ourself in the context of Corollary 3.12 for the coefficients µ(·, ·, ε·, ε·),
σ(·, ·, ε·) and ε−1F (·, ·, ε·). In particular, we assume that ĝ ∈ C2 is such that
ε−1F̄ (T, ·, ε∂2

xĝ) is bounded on R, for ε > 0 small enough.

In the following, we use the notation

(F̄0, ∂
n
z F̄0) := (F̄ (·, ·, 0), ∂nz F̄ (·, ·, 0)), for n = 1, 2.

Remark 4.1. Note that the model of [7] corresponds to

σ(t, x, εz) =
σ◦(t, x)

1− εf(x)z
, ε−1F (t, x, εz) =

1

2

(
σ◦(t, x)z

1− εf(x)z

)2

εf(x).

Our scaling therefore amounts to consider a small impact function x 7→ εf(x).
In order to interpret the result of Proposition 4.3 below, also observe that

(2∂zF̄0(t, x))
1
2 = σ◦(t, x) and ∂2

z F̄0(t, x) = σ2
◦(t, x)f(x).
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Our expansion is performed around the solution v0 of

∂tv
0 + ∂zF̄0∂

2
xv0 = 0 on [0, T )× R and v0(T, ·) = ĝ on R. (45)

Remark 4.2. Let the conditions of Corollary 3.12 hold and assume that F̄ ∈
C1,3,1
loc (D) with

|∂x∂zF̄0|+ |∂2
x∂zF̄0| uniformly bounded. (46)

Then, v0 is the unique solution in C1,2
b ([0, T ] × R) ∩ C1,3([0, T ) × R]) of (45).

This follows from (24) and standard estimates.

The following expansion requires some additional regularity on ĝ that will in
general not be satisfied in applications. However, one can reduce to it up to a
slight approximation argument (i.e. by smoothing ĝ if needed in practice).

Proposition 4.3. Assume that the conditions of Corollary 3.12 hold with F̄ ε :=
ε−1F̄ (·, ·, ε·) in place of F̄ , uniformly in ε ∈ (0, ε◦], for some ε◦ > 0. Assume
further that F̄ ∈ C1,2,3

loc (D), that (46) and

sup
Dε

(
|∂2
z F̄0|+ |∂3

z F̄0|+ |∂x∂2
z F̄0|+ |∂2

x∂
2
z F̄0|

)
<∞ (47)

hold. Then, there exists some o(ε), which does not depend on x, such that

vε(0, x) =v0(0, x) +
ε

2
E

[∫ T

0

[
∂2
z F̄0|∂2

xv0|2
]

(s, X̃0
s )ds

]
+ o(ε)

=v0(0, x) +
ε

2
E
[
∂xĝ(T, X̃0

T )ỸT

]
+ o(ε)

where, for z ∈ R, X̃z is the solution on [0, T ] of

X̃z = x+

∫ ·
t

(2∂zF̄ (·, z∂2
xv0(·))) 1

2 (s, X̃z
s )dWs, (48)

and Ỹ := ∂zX̃
z|z=0, solves

Ỹ =
1√
2

∫ ·
t

∂x∂zF̄0(s, X̃0
s )Ỹs + ∂2

z F̄0∂
2
xv0(s, X̃0

s )√
∂zF̄0(s, X̃0

s )
dWs.

Proof. By Corollary 3.12, each vε associated to ε ∈ (0, ε◦] solves

∂tv
ε + ε−1F̄ (·, ·, ε∂2

xvε) = 0.

Moreover, it follows from our assumptions and Corollary 3.12 that (·, ·, vε) ∈ Dε
for all ε ∈ (0, ε◦]. Then, the fact that F̄ (·, ·, 0) = 0 implies that

∂tv
ε + ∂zF̄0∂

2
xvε +

1

2
ε∂2
z F̄0|∂2

xvε|2 = O(ε2),
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in which the O(ε2) is uniform since |∂3
z F̄0| is uniformly bounded on Dε by

assumption. Let ∆vε := (vε − v0)/ε. By the above, (45) and Remark 4.2, it
solves

O(ε) =∂t∆v
ε + ∂zF̄0∂

2
x∆vε +

1

2
∂2
z F̄0|∂2

xv0|2

+
1

2
ε2∂2

z F̄0|∂2
x∆vε|2 + ε∂2

z F̄0∂
2
x∆vε∂2

xv0,

in which O(ε) is uniform on [0, T ) × R. By Theorem 3.11, Remark 4.2, and
the same arguments as in this remark, (∂2

x∆vε, ∂2
z F̄0, ∂

2
xv0)0<ε≤ε◦ is locally

bounded. Since ∆vε(T, ·) = 0, it follows that

∆vε(0, x) = E

[
1

2

∫ T

0

[∂2
z F̄0|∂2

xv0|2](s, X̃0
s )ds

]
+O(ε).

Hence, ∆v := limε→0 ∆vε is given by

∆v(0, x) = E

[
1

2

∫ T

0

[∂2
z F̄0|∂2

xv0|2](s, X̃0
s )ds

]
. (49)

Moreover, ∂xv0 satisfies

∂t(∂xv0) + ∂x∂zF̄0∂
2
xv0 + ∂zF̄0∂

2
x(∂xv0) = 0, (50)

recall Remark 4.2.
Applying Itô’s lemma to ∂xv0(t, X̃0

t )Ỹt, we obtain

d(∂xv0(t, X̃0
t )Ỹt) = ∂t∂xv0(t, X̃0

t )Ỹtdt+ ∂2
xv0(t, X̃0

t )ỸtdX̃
0
t + ∂xv0(t, X̃0

t )dỸt

+ ∂2
xv0(t, X̃0

t )d〈Ỹ , X̃0〉t +
1

2
∂2
x(∂xv0(t, X̃0

t ))Ỹtd〈X̃0〉t

=
(
∂t∂xv0(t, X̃0

t ) + ∂2
xv0(t, X̃0

t )∂x∂zF̄0(t, X̃0
t ) + ∂2

x(∂xv0(t, X̃0
t ))∂zF̄0(t, X̃0

t )
)
Ỹtdt

+ ∂2
z F̄0(t, X̃0

t )(∂2
xv0(t, X̃0

t ))2dt+ ∂2
xv0(t, X̃0

t )ỸtdX̃
0
t + ∂xv0(t, X̃0

t )dỸt

= ∂2
z F̄0(t, X̃0

t )(∂2
xv0(t, X̃0

t ))2dt+ ∂2
xv0(t, X̃0

t )ỸtdX̃
0
t + ∂xv0(t, X̃0

t )dỸt

where we use (50) to get the last equality.
Therefore, taking expectation on both sides, we have

E
[
∂xv0(T, X̃0

T )ỸT

]
= E

[∫ T

0

[∂2
z F̄0|∂2

xv0|2](s, X̃0
s )ds

]
,

which leads to

∆v(0, x) =
1

2
E
[
∂xv0(T, X̃0

T )ỸT

]
=

1

2
E
[
∂xĝ(T, X̃0

T )ỸT

]
.

�
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Remark 4.4. For later use, note that the above proof implies that ∆v defined
in (49) satisfies

∂t∆v + ∂zF̄0∂
2
x∆v +

1

2
∂2
z F̄0|∂2

xv0|2 = 0 on [0, T )× R.

Remark 4.5. A more tractable formulation can be obtained in the particular
case where (∂zF̄0, ∂

2
z F̄0) = (λ1, λ2) is constant and ∂x∂zF̄0 = 0. This is the

case in the model of [7], see Example 2.1, whenever σ◦ and f are constant, see
e.g. Remark 4.1. Then, ∂xv0(·, X̃0) = ∂xv0(0, x) +

∫ ·
0

√
2λ1∂

2
xv0(s, X̃0

s )dWs by
(50), so that

ε

2
E

[∫ T

0

[∂2
z F̄0|∂2

xv0|2](s, X̃0
s )ds

]
=
ελ2

4λ1
E

[∫ T

0

[√
2λ1∂

2
xv0(s, X̃0

s )
]2
ds

]

=
ελ2

4λ1
E
[(
∂xĝ(X̃0

T )− ∂xv0(0, x)
)2
]

=
ελ2

4λ1
E
[(
∂xĝ(X̃0

T )− E[∂xĝ(X̃0
T )]
)2
]

=
ελ2

4λ1
Var

[
∂xĝ(X̃0

T )
]

and the computation of the gamma ∂2
xv0 is not required. Such a formulation

does not seem available in general.

The expansion of Proposition 4.3 leads to a natural approximate hedging strat-
egy. The result is stated in terms of the function ∆v introduced in the proof of
Proposition 4.3, see (49).

Proposition 4.6. Assume that the conditions of Proposition 4.3 hold and that

(i) ∂2
z F̄0 ∈ C1,4

b ([0, T ]× R),

(ii) (t, x, z) ∈ [0, T ]×R×R 7→ 1
2εσ

2(t, x, εz) is bounded and uniformly Lipschitz
in its two last components, uniformly in ε ∈ (0, ε0].

Then, there exists a constant C > 0 such that, for each ε ∈ (0, ε0] and x ∈ R,

|V ε,0,x,v
ε,φε

T − ĝ(Xε,0,x,φε

T )| ≤ Cε2

in which
vε := v0(0, x) + ε∆v(0, x)

and φε = (yε, bε, γε) ∈ A with

yε = ∂x(v0 + ε∆v)(0, x),

bε =

[
∂t +

1

2ε
σ2(·, ·, ε∂2

x(v0 + ε∆v))∂2
x

]
∂x(v0 + ε∆v)(·, Xε,0,x,φε),

γε = ∂2
x(v0 + ε∆v)(·, Xε,0,x,φε).
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Proof. For ease of notations, we write σε for ε−
1
2σ(·, ε·). We let Y ε = ∂x(v0 +

ε∆v)(·, Xε,0,x,φε), and only write Xε for Xε,0,x,φε in the following. Note that
(48), (49), (i) and (24) imply that ∆v ∈ C1,4

b ([0, T ]× R).Then, the dynamics
are well-defined thanks to Remark 4.2, and φε ∈ A. Set Fε := F (·, ·, ε ·)/ε. By
applying Itô’s Lemma, using Remark 4.2, Remark 4.4 and the definition of F̄ε
together with (22), we obtain

ĝ(Xε
T )− vε −

∫ T

0

Y εt dX
ε
t −

∫ T

0

Fε(t,X
ε
t , γ

ε
t )dt

=v0(T,Xε
T ) + ε∆v(T,Xε

T )− v0(0, x)− ε∆v(0, x)−
∫ T

0

Y εt dX
ε
t

−
∫ T

0

Fε(·, ∂2
x(v0 + ε∆v))(t,Xε

t )dt

=

∫ T

0

[
F̄ε(·, ∂2

x(v0 + ε∆v))− ∂zF̄0∂
2
x(v0 + ε∆v)− ε

2
∂2
z F̄0|∂2

xv0|2
]

(t,Xε
t )dt.

Recalling that (19) is assumed to hold for F̄ε, uniformly in ε ∈ (0, ε◦], that ∂2
xv0

and ∂2
x∆v are bounded, as well as (22), a second order Taylor expansion implies

F̄ε(·, ∂2
x(v0 + ε∆v))− ∂zF̄0∂

2
x(v0 + ε∆v)− ε

2
∂2
z F̄0|∂2

xv0|2 = O(ε2),

in which O(ε2) is uniform on [0, T ]× R. �

5 Dual representation formula in the convex case
In this last section, we assume that

z ∈ R 7→ F̄ (t, x, z) is convex and bounded from below, (51)
lim

z→γ̄(t,x)
∂zF̄ (t, x, z) =∞ for all (t, x) ∈ [0, T ]× R. (52)

Note that the second assumption is automatically satisfied if γ̄ < ∞, since in
this case limz→γ̄(t,x) F̄ (t, x, z) = ∞. Both are satisfied is the model studied in
[7], see Remark 3.1.

Whenever γ̄ < ∞, let us now use the extension F̄ (·, ·, z) := ∞ for z ∈ [γ̄,∞)
and define the Fenchel-Moreau transform

F̄ ∗(·, ·, v) := sup
z∈R

(
1

2
vz − F̄ (·, ·, z)

)
, v ∈ R.

The conditions (51) and (52) ensure that F̄ ∗(t, x, ·) is finite on R+ and takes
the value +∞ on R− \ {0}. The function F̄ being lower-semicontinuous on R+,
convex and proper in its last argument, it follows that

F̄ (·, ·, z) = sup
s∈R+

(
1

2
s2z − F̄ ∗(·, ·, s2)

)
. (53)

F̄ ∗(·, ·, 2∂zF̄ (·, ·, z)) = ∂zF̄ (·, ·, z)z − F̄ (·, ·, z), for z < γ̄. (54)
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Remark 5.1. It follows from (53) that a function V is a viscosity supersolution
(resp. subsolution) on [0, T )× R of

min{−∂tϕ− F̄ (·, ·, ∂2
xϕ) , γ̄ − ∂2

xϕ} = 0

if and only if it is a viscosity supersolution (resp. subsolution) on [0, T )× R of

inf
s∈R+

(
F̄ ∗(·, ·, s2)− ∂tϕ−

1

2
s2∂2

xϕ

)
= 0. (55)

This suggests, in the spirit of [24], that v admits a dual formulation in terms of
an optimal control problem.

Theorem 5.2. Assume that (51) and (52) hold. Let S denote the collection of
non-negative bounded adapted processes. Then, for all (t, x) ∈ [0, T )× R,

v(t, x) = sup
s∈S

E

[
ĝ(Xt,x,s

T )−
∫ T

t

F̄ ∗(s,Xt,x,s
s , s2

s)ds

]
(56)

= sup
s∈S

E

[
g(Xt,x,s

T )−
∫ T

t

F̄ ∗(s,Xt,x,s
s , s2

s)ds

]
in which

Xt,x,s = x+

∫ ·
t

ssdWs, s ∈ S.

If moreover the conditions of Corollary 3.12 hold, then the optimum is achieved
by the Markovian control

ŝt,x :=
(

2∂zF̄ (·, ·, ∂2
xv)(·, Xt,x,ŝt,x)

) 1
2

.

Remark 5.3. The model studied in [7] corresponds to

F̄ ∗(t, x, s2) =
1

2

(s− σ◦(t, x))2

f(x)
, for s ≥ 0.

See Remark 3.1. The result of Theorem 5.2 above can then be formally inter-
preted as follows. The larger the impact function f , the more the optimal control
can deviate from the volatility associated to the model without market impact.
When f tends to 0, the optimal control needs to converge to the volatility of the
impact free model σ◦, and one recovers the usual pricing rule at the limit.

Proof of Theorem 5.2. 1. We first prove the first equality in (56) in the case
where the conditions of Corollary 3.12 hold. Let v denote the right-hand side
of (56). Recalling from Remark 5.1, Corollary 3.12 and Theorem 3.11 that v is
a smooth supersolution of (55), we deduce that v ≥ v by a simple verification
argument. Let now X̂ be the solution of

X̂ = x+

∫ ·
t

(2∂zF̄ (·, ·, ∂2
xv)(s, X̂s))

1
2 dWs.
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It is well defined, recall Corollary 3.12, Theorem 3.11, (24) and (19), and corre-
sponds to Xt,x,ŝ with

ŝ := (2∂zF̄ (·, ·, ∂2
xv)(·, X̂))

1
2 ,

which is bounded. Moreover, (54) implies that

v(t, x) = E
[
ĝ(X̂T )−

∫ T

t

F̄ ∗(s, X̂s, ŝ
2
s)ds

]
,

which shows that v ≤ v since ŝ is bounded.
2. We now extend the first equality in (56) to the general case. Let {Φε,Φε}
be as in the proof of Theorem 3.5 at the end of Section 3, and let uε and uε
be the (smooth) solutions to (Eq0) associated to Φε and Φε respectively, as in
Theorem 3.5. Then Φε ≤ ĝ ≤ Φε, uε ≤ v ≤ uε and (uε − uε,Φ

ε − Φε)ε>0

converges uniformly to 0 as ε → 0. Define vε and vε as v but with Φε and Φε

in place of ĝ. Then, vε ≤ v ≤ vε and (vε − vε)ε>0 converges uniformly to 0 as
ε→ 0. Since, by 1., (vε, v

ε) = (uε, u
ε), the required result follows.

3. It remains to prove the second equality in (56). Define

ṽ(t, x) := sup
s∈S

E

[
g(Xt,x,s

T )−
∫ T

t

F̄ ∗(s,Xt,x,s
s , s2

s)ds

]
, (t, x) ∈ [0, T )× R.

In view of 2., we know that ṽ is bounded from above by v. Since F̄ ∗(·, 0)+

and g− are bounded, see (51) and (15), it is also bounded from below, by a
constant. Then, it follows from [9] that the lower-semicontinuous enveloppe ṽ∗
of ṽ is a viscosity supersolution of (55) such that ṽ∗(T, ·) ≥ g, recall (15). It
is in particular a supersolution of γ̄ − ∂2

xϕ ≥ 0 on [0, T ) × R, by Remark 5.1.
Then, the same arguments as in [7, Step 3.b., proof of Theorem 3.16] imply that
ṽ∗(T, ·) ≥ ĝ. By [9] again, we also have that

ṽ(t, x) ≥ E

[
ṽ∗(T,X

t,x,s
T )−

∫ T

t

F̄ ∗(s,Xt,x,s
s , s2

s)ds

]
, for any s ∈ S.

Hence,

ṽ(t, x) ≥ sup
s∈S

E

[
ĝ(Xt,x,s

T )−
∫ T

t

F̄ ∗(s,Xt,x,s
s , s2

s)ds

]
.

�

We conclude this section with a result showing that any optimal control control
ŝ should be such that ĝ(Xt,x,ŝ

T ) = g(Xt,x,ŝ
T ).

Proposition 5.4. Let the condition of Theorem 5.2 hold and assume that
F̄ (·, ·, κ) is uniformly bounded on [0, T ]×R for some κ > 0. Fix (t, x) ∈ [0, T )×R
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and let (sn)n≥1 be such that

v(t, x) = lim
n↑∞

E

[
g(Xt,x,sn

T )−
∫ T

t

F̄ ∗(s,Xt,x,sn

s , (sns )2)ds

]
.

Then, (Xt,x,sn

T )n≥1 is tight, and any limiting law ν associated to a subsequence
satisfies ν(ĝ > g) = 0.

Proof. We only write Xn for Xt,x,sn and let

Jn := E

[
g(Xn

T )−
∫ T

t

F̄ ∗(s,X
n

s , (s
n
s )2)ds

]
,

n ≥ 1. Then, (15) and (51) imply that one can find C > 0 such that

−C ≤ E[C +
κ

4
|Xn

T |2 −
∫ T

t

κ

2
(sns )2ds+ T sup F̄ (·, ·, κ)]

≤ E[C −
∫ T

t

κ

4
(sns )2ds+ T sup F̄ (·, ·, κ)].

Hence, supn≥1 E[
∫ T
t

(sns )2ds] < ∞. Let νn be the law associated to Xn
T . The

above shows that (νn)n≥1 is tight. Let us consider a subsequence (νnk)k≥1 that
converges to some law ν. If ν(ĝ > g) > 0, then one can find δ > 0 such that
E[ĝ(Xnk

T )] ≥ E[g(Xnk
T )] + δ for all k ≥ 1 large enough, which would imply that

lim
k→∞

E

[
ĝ(Xnk

T )−
∫ T

t

F̄ ∗(s,Xnk
s , (snks )2)ds

]
≥ lim
k→∞

Jnk + δ,

a contradiction to Theorem 5.2. �
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