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O Derive a solution from a dual formulation of the form :
—_— T —_—
v(t,x) = supE[d)(Xt’x’a) —/ Gs(Xt’x’o‘,as)ds},
« t

by using It6's lemma. But can not expect v to be C1? |

O If v is Markovian : just need concave in space and decreasing in time
or C%1 (cf. e.g. Gozzi and Russo [12], or Bandini and Russo [1]).
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Definitions

O Notations
® X¢n = (Xtns)sefo, 7], (optional) stopped path.

® xPry =x+ylpand xBe y :=x1g ) + yl 7
O We say that v is non-increasing in time if
v(t + h,xen) — v(t,x) < 0 when h > 0.
We say that v is Dupire-concave if for x* = x2 on [0, t)
v(t, 05 + (1 — 0)x?) > Ov(t,x") + (1 — 0)v(t,x?), forall 6 €[0,1]
O If v is Dupire-concave, one can define its super-differential

ov(t,x) == {z:v(t,x®ey) <v(t,x)+z-y, Vy}.
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O Let P ={P € P(D([0, T])) : X is a cadlag semimartingale under P }.

Theorem [B. and Tan [4, 5]] Assume that v is Dupire-concave and
non-increasing in time. Under additional local boundedness and
equi-continuity assumptions [- - -], we have

t
v(t, X) = v(0, X) +/ H.dX; — CF, t € [0, T], P—as. VP € P,
0

in which {CF : P € P} is a collection of non-decreasing processes and
Hs € dv(s, X*7) for all s € [0, T], P-q.s, where

th_ = thte[o,s) + Xs—lte[s,T]-

= Solves our hedging problem with price impact.
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Application to robust super-hedging

M*(t,x) = {Qon D([0, T]) : Q[Xen. =x¢n.]=1, X > 0is Q-martingale}.

Given

t
M(x) :== sup x5, me(x):= inf x5, Ai(x) ::/ xsp(ds),
0

0<s<t 0<s<t

where 1 is a finite signed measure on [0, T] finitely many atoms. We fix a
uniformly continuous function ¢ : R* — R,

q)(X) = ¢(MT(X)amT(X)7AT(X)aXT)7

such that
;
o(x)| < K(1+XT+/ xt|u|(dt)), for all x € D([0, T]),
0
and, forall 0 < Mg < My, 0 < m; < wj Ae and ag, a1 € R,

‘¢(M17 my, ar, wy) — ¢(Mo, 0, 3070)‘ < K(lay — ao| + w1).
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O Theorem : Let A be the collection of all locally bounded F-predictable
processes H such that fo H.dX, is Q-a.s. bounded from below by a
Q-martingale, for all Q € M™(0, x). Then,

v(0,x) = sup EU [®(X)]
QeMH(0,x)

T
=inf{veR :3He Ast. v+/ HydX, > ®(X), MT(0,x) — q.s.}
0

Moreover the infimum is achieved by H € dv(-, X 7).

O Remark : Similar to Guo, Tan and Touzi [13] but under more
restrictive continuity assumptions + explicit representation of H.
Comparing with other works, we allow for jumps without any dominating
assumption (compare with Nutz [14]).
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Notations

O Horizontal derivative :

Orv(t,x) = lim v(t+ hxen) = v(t,x)

AN\O h

O Vertical derivative :

Viv(t,x) = IimO vt x & y)_v(t’x).
y— y



O Regularity
® v € C(©) if is continuous.
e veC(O)ifV(t,x)e©®ande>0,36>0s.t.

t'<t, [t—t]|+|xen —XpAll 6 = |v(t,x) —v(t,X)| <e.

* COL(©) : v € C(©) and Vv € C/(O).
® C12(0) : v e C»(0), d;v and V2v belong to C,(©).



Reminder : Dupire-Ité's formula

O Assume that v € C12(©) and that X = M + A is a continuous
semi-martingale, then
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O Assume that v € C12(©) and that X = M + A is a continuous
semi-martingale, then

t
V(6 X) = v(0,Xo) + / Vov(s, Xs)dMs + T,
0
in which

t t t
It ;:/ 8tv(s,Xs)ds+/ va(s,xs)dAer%/ V2v(s, Xs)d[X]s.
0 0 0

See Dupire [9] and Cont and Fournié [7] + versions for cadlag processes.

O Remark : See also Saporito [16] for a Meyer-Tanaka type formula
assuming Cl-regularity in time.
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Weak Dirichlet processes

O In the Markovian case : works by Russo and his co-authors, using the
concept of weak Dirichlet processes and the stochastic calculus by
regularization. See in particular Gozzi and Russo [12].

Definitions :

® |let X and Y be two real valued cadlag processes. The co-quadractic
variation [X, Y] is defined by

1t
DY i i [ (X = X (Yiesone = Vo)

whenever the limit exists in the sense of u.c.p.
® X has finite quadratic variation, if [X] := [X, X], exists and is finite
a.s.

® Ais orthogonal if [A, N] = 0 for any real valued continuous local
martingale N.

® X is a weak Dirichlet process if X = Xo + M + A, where M is a
local martingale and A is orthogonal such that My = Ag = 0.



Stability of Weak Dirichlet processes
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Theorem [B., Loeper and Tan [3]] : Let X = M + A be a continuous
weak Dirichlet process with finite quadratic variation, v € C%! such that
v and Vv are locally uniformly continuous and [---]. Then,
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where I is a continuous orthogonal process, if and only if

1
- /(V(S +e,X)—v(s+e, Xs/\ElH5+5X5+E)) (N5+E - Ns)ds T, ucp. (1)
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for all (bounded) continuous martingale N.

Remark : The condition (1) holds as soon as (for instance)

t
(£, %) — v(t,x)| < c/ s — x| s
0

for some p € BV. In particular if v is Fréchet differentiable.

O Similar result for cadlag processes (B. and Vallet [6]).
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Application to robust super-hedging : toy model

O Let us consider a payoff function of the form

5) = & [ Xoula). 5. € CHeom)

O Uncertainty modeled by Py : P such that P[Xy = x9] = 1 and
dXs = o0, dWY, o4 € [0,7], s €0, T], P-as.
O Dual formulation :

v(t,x) := sup E"[g(X)] = robust super-hedging price
PeP(t,x)

where P(t,x) := {IP’ : P[Xian = xta] = 1, and (2) holds on [t, T]}

O Ends up to showing that the PPDE

2
—8tV — sup iviv == O, V(T7 ) =8
oelo] 2

admits a C%!-solution with Vv locally uniformly continuous.



Approximate viscosity solutions of PPDEs

—at(p(LX) - F(t, X, (p(t,X), VX(p(LX), Vi(ﬂ(n X)) =0, 90( T, ) =8

B., Loeper and Tan [2].
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Definition of solutions by approximation

O Let m = (7")n, with 7" = (t")o<i<n, be an increasing sequence of time
grids. Set

ZXt"l[r" n T Xl

O We say that a continuous function v” is a 7"-viscosity solution of
— 0p(t,x) — F(t,x,0(t,%), Vip(t, x), Vip(t,x)) =0Vt < T
if it is of the form
Z e, )V (t, X/\tn x)
in which each v/'(-,X},,-) is a viscosity solution on RY x [t/", /) of

- al”Vi"(t7 5_4’/1\9."7X) - F(t7 )_(,/T\tl.’W Vin(ta )_(,/7\1:,.”7)()7 Dvi"(ta}_(,;\t/m X)a Dzvin(t7)_(,/7\t/.”a X)) =0

n n =n n n =n
4 (f/+1—’Xm,."7X) = Vi+1(ti+17X/\t,."Bat,-"+1X7X)



O We say that v is a m-approximate-viscosity solution on D([0, T]) of
— 9v(t,x) — F(t,x,v(t,x), Viv(t,x), Vav(t,x)) =0, t < T
with terminal condition
V( T, ) =&

if v7(t,x,x:) — v(t,x) for all (¢t,x) € [0, T] x D([0, T]) where (v"), is
the sequence defined as above with
v (ty,x,x) = g(X"Heyx)



O We say that v is a m-approximate-viscosity solution on D([0, T]) of
— 9v(t,x) — F(t,x,v(t,x), Viv(t,x), Vav(t,x)) =0, t < T
with terminal condition
V( T, ) =&

if v7(t,x,x:) — v(t,x) for all (¢t,x) € [0, T] x D([0, T]) where (v"), is
the sequence defined as above with

V(80,%, %) = g(X"Eigx)

O Typical examples : Semi-linear PPDEs or HJB equations.
= In both cases, amounts to replacing X by X" in the coefficients and
payoff.

But we also want to consider general non-linear parabolic PPDEs.
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Existence, comparison, stability

O We focus on the case where
1
F(t.x,r,p,q) = H(t,x,r, p,q) + p(t,x)r + b(t, x)p + 50°(t, x)q

where all the coefficients are continuous and Lipschitz/uniformly
continuous in space [-- -] 4+ standard assumptions to have comparison

and existence of a viscosity solution with linear growth in finite dimension
(fOF the F('7)_<r/1\tf’a ))

Theorem : Let g be uniformly continuous, then 3 a unique
m-approximate viscosity solution v on D([0, T]). Moreover,
e |t is locally uniformly continuous.

e |f 7/ is another increasing sequence of time grids and if v/ is the
m’-approximate viscosity solution, then v/ = v.

Proposition : Comparison and stability holds in the class of solutions.

Remark : We have precise estimates on the approximation error
[v"(t,x,x¢) — v(t,x)| (depending on the regul. of x).
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O For terminal conditions of the form (can be made more abstract)

59 = o [ a0,

where g, € C1*%(R) is bounded, and i is a finite positive measure with
at most finitely many atoms on [0, T].
O Two cases
(a) Either o € (0,1) and F(t,x,y,2z,7) = Fi(t)y + F2(t)z + F5(t,7),
(b) Ora=1and F(t,x,y,z,v) = Fi(t,y,7) + F2(t)z with
y € R+ Fi(t,y,v) € C! with bounded and Lipschitz first order
derivative, uniformly iny € Rand t < T.

O In any case v — F(+,7) is concave or d < 2.

Theorem : Vv is well-defined and locally uniformly continuous.



Regularity in the semi-linear case

O Consider the case where
1
F(t,x,r,p,q) = f(t,x,r,po(t,x)) + b(t,x)p + 502(t,x)q

with
® f, b and o are Fréchet differentiable with |us], |up| and |pe|
dominated by a bounded non-negative measure .
® fis C} in p, uniformly.
® g is Fréchet differentiable with |pz| dominated by p .

® (X7 r, p) = (/’Lg(';x)vlub('; t7X)7,uU('; t7X)a Mf('; t,x,r, p)) and well
as (0r,0p)f(t,-) are uniformly a-Hdlder, uniformly in t < T.
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F(t,x,r,p,q) = f(t,x,r,po(t,x)) + b(t,x)p + 502(t,x)q

with
® f, b and o are Fréchet differentiable with |us], |up| and |pe|
dominated by a bounded non-negative measure .
® fis C} in p, uniformly.
® g is Fréchet differentiable with |pz| dominated by p .

® (X7 r, p) = (/’Lg(';x)vlub('; t7X)7,uU('; t7X)a Mf('; t,x,r, p)) and well
as (0r,0p)f(t,-) are uniformly a-Hdlder, uniformly in t < T.

Theorem : Under the above conditions, Vv is well-defined. It is locally
uniformly a-Hélder in space (+ uniform continuity in time apparts from
atoms of ).



O In particular, the solution v satisfies
T
W(6.X) =00 + [ (5%, v(5.X). V(s X)a(s, X))ds
t
T
7/ Vxv(s, X)o(s, X)dW,
t

t t
Xe =Xo + / b(s, X)ds + / o (s, X)dW,.
0 0
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® Ekren, Touzi, Zhang [10] : test function in terms of optimal stopping
and non-linear expectations, instead of tangent time-space points.
Very weak notion. Essentially requires concavity or d < 2 + uniform
ellipticity and continuity.
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Related works on solutions of PPDE

Ekren, Touzi, Zhang [10] : test function in terms of optimal stopping
and non-linear expectations, instead of tangent time-space points.
Very weak notion. Essentially requires concavity or d < 2 + uniform
ellipticity and continuity.

Ren, Touzi and Zhang [15] : degenerate case but uniform continuity
with respect to x — fOT |xs|Pds.

Ekren and Zhang [11] : pseudo-Markovian solutions based on frozen
paths up to the exit time of a domain. In a similar spirit of our
approach. Degenerate case. But existence tricky to check.
Comparison in the class of pseudo-Markovian functions (similar
restriction as our).

Cosso and Russo [8] : test functions in the more classical spirit of
tangent points min{(v — ¢)(t,x), (t,x) € [0; T] x Q} (or max).

Introduce an approach based on Gauge functions for comparison,
that still needs to be worked out.



Thank you |
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