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Initial motivation

2 B. and Tan [4] : Solve a second order BSDE related to a (perfect)
hedging problem under price impact

Xt = x0 +

∫ t

0
σs(X , gs)dWs

Yt = Φ(X )−
∫ T

t

Fs(X , gs)ds −
∫ t

0
ZsdXs and Zt = Z0 +

∫ t

0
gsdXs −Bt .

2 Derive a solution from a dual formulation of the form :

v(t, x) := sup
α

E
[
Φ
(
X̄ t,x,α)− ∫ T

t

Gs

(
X̄ t,x,α, αs

)
ds
]
,

by using Itô’s lemma. But can not expect v to be C1,2 !

2 If v is Markovian : just need concave in space and decreasing in time
or C 0,1 (cf. e.g. Gozzi and Russo [12], or Bandini and Russo [1]).
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Dupire-Itô’s formula : concave case



Definitions

2 Notations
• xt∧ := (xt∧s)s∈[0,T ], (optional) stopped path.
• x⊕t y := x + y1[t,T ] and x �t y := x1[0,t) + y1[t,T ]

2 We say that v is non-increasing in time if

v(t + h, xt∧)− v(t, x) ≤ 0 when h ≥ 0.

We say that v is Dupire-concave if for x1 = x2 on [0, t)

v(t, θx1 + (1− θ)x2) ≥ θv(t, x1) + (1− θ)v(t, x2), for all θ ∈ [0, 1]

2 If v is Dupire-concave, one can define its super-differential

∂v(t, x) :=
{
z : v(t, x⊕t y) ≤ v(t, x) + z · y , ∀ y

}
.
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Robust optional decomposition

2 Let P = {P ∈ P(D([0,T ])) : X is a càdlàg semimartingale under P }.

Theorem [B. and Tan [4, 5]] Assume that v is Dupire-concave and
non-increasing in time. Under additional local boundedness and
equi-continuity assumptions [· · · ], we have

v(t,X ) = v(0,X ) +

∫ t

0
HsdXs − CP

t , t ∈ [0,T ], P−a.s. ∀ P ∈ P,

in which {CP : P ∈ P} is a collection of non-decreasing processes and
Hs ∈ ∂v(s,X s−) for all s ∈ [0,T ], P-q.s, where

X s−
t := Xt1t∈[0,s) + Xs−1t∈[s,T ].

⇒ Solves our hedging problem with price impact.
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Application to robust super-hedging

M+(t, x) :=
{
Q on D([0,T ]) : Q[Xt∧·=xt∧·]=1, X ≥ 0 isQ–martingale

}
.

Given

Mt(x) := sup
0≤s≤t

xs , mt(x) := inf
0≤s≤t

xs , At(x) :=

∫ t

0
xsµ(ds),

where µ is a finite signed measure on [0,T ] finitely many atoms. We fix a
uniformly continuous function φ : R4 → R,

Φ(x) := φ
(
MT (x),mT (x),AT (x), xT

)
,

such that∣∣Φ(x)
∣∣ ≤ K

(
1 + xT +

∫ T

0
xt |µ|(dt)

)
, for all x ∈ D([0,T ]),

and, for all 0 ≤ M0 ≤ M1, 0 ≤ m1 ≤ w1 ∧ ε and a0, a1 ∈ R,∣∣∣φ(M1,m1, a1,w1)− φ(M0, 0, a0, 0)
∣∣∣ ≤ K

(
|a1 − a0|+ w1

)
.
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2 Theorem : Let A be the collection of all locally bounded F-predictable
processes H such that

∫ ·
0 HrdXr is Q-a.s. bounded from below by a

Q-martingale, for all Q ∈M+(0, x).

Then,

v(0, x) := sup
Q∈M+(0,x)

EQ[Φ(X )
]

= inf
{
v ∈ R : ∃H ∈ A s.t. v +

∫ T

0
HrdXr ≥ Φ(X ), M+(0, x)− q.s.

}
Moreover the infimum is achieved by H ∈ ∂v(·,X ·−).

2 Remark : Similar to Guo, Tan and Touzi [13] but under more
restrictive continuity assumptions + explicit representation of H.
Comparing with other works, we allow for jumps without any dominating
assumption (compare with Nutz [14]).
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Dupire-Itô’s formula : the C0,1-case



Notations

2 Horizontal derivative :

∂tv(t, x) := lim
h↘0

v(t + h, xt∧)− v(t, x)

h

2 Vertical derivative :

∇xv(t, x) := lim
y→0

v(t, x⊕t y)− v(t, x)

y
.
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2 Regularity
• v ∈ C(Θ) if is continuous.
• v ∈ Cl(Θ) if ∀ (t, x) ∈ Θ and ε > 0, ∃ δ > 0 s.t.

t ′ ≤ t, |t − t ′|+ ‖xt∧ − x′t′∧‖ ≤ δ =⇒ |v(t, x)− v(t ′, x′)| ≤ ε.

• C0,1(Θ) : v ∈ C(Θ) and ∇xv ∈ Cl(Θ).
• C1,2(Θ) : v ∈ C0,1(Θ), ∂tv and ∇2

xv belong to Cl(Θ).



Reminder : Dupire-Itô’s formula

2 Assume that v ∈ C1,2(Θ) and that X = M + A is a continuous
semi-martingale, then

v(t,Xt) = v(0,X0) +

∫ t

0
∇xv(s,Xs)dMs + Γt ,

in which

Γt :=

∫ t

0
∂tv(s,Xs)ds +

∫ t

0
∇xv(s,Xs)dAs +

1
2

∫ t

0
∇2

xv(s,Xs)d [X ]s .

See Dupire [9] and Cont and Fournié [7] + versions for càdlàg processes.

2 Remark : See also Saporito [16] for a Meyer-Tanaka type formula
assuming C1-regularity in time.
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Weak Dirichlet processes
2 In the Markovian case : works by Russo and his co-authors, using the
concept of weak Dirichlet processes and the stochastic calculus by
regularization. See in particular Gozzi and Russo [12].

Definitions :
• Let X and Y be two real valued càdlàg processes. The co-quadractic

variation [X ,Y ] is defined by

[X ,Y ]t := lim
ε↘0

1
ε

∫ t

0
(X(s+ε)∧t − Xs)(Y(s+ε)∧t − Ys)ds,

whenever the limit exists in the sense of u.c.p.
• X has finite quadratic variation, if [X ] := [X ,X ], exists and is finite

a.s.
• A is orthogonal if [A,N] = 0 for any real valued continuous local

martingale N.
• X is a weak Dirichlet process if X = X0 + M + A, where M is a

local martingale and A is orthogonal such that M0 = A0 = 0.
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Stability of Weak Dirichlet processes
Theorem [B., Loeper and Tan [3]] : Let X = M + A be a continuous
weak Dirichlet process with finite quadratic variation, v ∈ C0,1 such that
v and ∇xv are locally uniformly continuous and [· · · ]. Then,

v(t,X ) = v(0,X ) +

∫ t

0
∇xv(s,X )dMs + Γt , t ∈ [0,T ],

where Γ is a continuous orthogonal process, if and only if
1
ε

∫ ·
0

(
v(s + ε,X )− v(s + ε,Xs∧�s+εXs+ε)

)(
Ns+ε − Ns

)
ds −−→

ε↓0
, u.c.p. (1)

for all (bounded) continuous martingale N.

Remark : The condition (1) holds as soon as (for instance)

|v(t, x)− v(t, x′)| ≤ C

∫ t

0
|xs − x′s |dµs

for some µ ∈ BV. In particular if v is Fréchet differentiable.

2 Similar result for càdlàg processes (B. and Vallet [6]).
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Application to robust super-hedging : toy model
2 Let us consider a payoff function of the form

g(X ) = g◦
(∫ T

0
Xtµ(dt)

)
, g◦ ∈ C 1+α(R).

2 Uncertainty modeled by P0 : P such that P[X0 = x0] = 1 and

dXs = σsdW
P
s , σs ∈ [σ, σ], s ∈ [0,T ], P-a.s. (2)

2 Dual formulation :

v(t, x) := sup
P∈P(t,x)

EP[g(X )
]

= robust super-hedging price

where P(t, x) :=
{
P : P[Xt∧ = xt∧] = 1, and (2) holds on [t,T ]

}
.

2 Ends up to showing that the PPDE

−∂tv − sup
σ∈[σ,σ]

σ2

2
∇2

xv = 0, v(T , ·) = g

admits a C0,1-solution with ∇xv locally uniformly continuous.
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Approximate viscosity solutions of PPDEs

−∂tϕ(t, x)− F (t, x, ϕ(t, x),∇xϕ(t, x),∇2
xϕ(t, x)) = 0, ϕ(T , ·) = g

B., Loeper and Tan [2].



Definition of solutions by approximation
2 Let π = (πn)n, with πn = (tni )0≤i≤n, be an increasing sequence of time
grids. Set

x̄n :=
n−1∑
i=0

xtni
1[tni ,tni+1) + xtnn1{T}

2 We say that a continuous function vn is a πn-viscosity solution of

− ∂tϕ(t, x)− F (t, x, ϕ(t, x),∇xϕ(t, x),∇2
xϕ(t, x)) = 0 ∀ t < T

if it is of the form
n−1∑
i=0

1[tni ,tni+1)v
n
i (t, x̄n

∧tni
, x)

in which each vn
i (·, x̄n

∧tni
, ·) is a viscosity solution on Rd × [tni , t

n
i+1) of

− ∂tv
n
i (t, x̄n

∧tni
, x) − F (t, x̄n

∧tni
, vn

i (t, x̄n
∧tni

, x),Dvn
i (t, x̄n

∧tni
, x),D2vn

i (t, x̄n
∧tni

, x)) = 0

vn
i (tni+1−, x̄n

∧tni
, x) = vn

i+1(tni+1, x̄
n
∧tni

�tni+1
x , x)
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2 We say that v is a π-approximate-viscosity solution on D([0,T ]) of

− ∂tv(t, x)− F (t, x, v(t, x),∇xv(t, x),∇2
xv(t, x)) = 0 , t < T

with terminal condition
v(T , ·) = g

if vn(t, x, xt)→ v(t, x) for all (t, x) ∈ [0,T ]× D([0,T ]) where (vn)n is
the sequence defined as above with

vn(tnn , x, x) = g(x̄n�tnn x)

2 Typical examples : Semi-linear PPDEs or HJB equations.
⇒ In both cases, amounts to replacing X by X̄ n in the coefficients and
payoff.

But we also want to consider general non-linear parabolic PPDEs.
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Existence, comparison, stability
2 We focus on the case where

F (t, x, r , p, q) = H(t, x, r , p, q) + ρ(t, x)r + b(t, x)p +
1
2
σ2(t, x)q

where all the coefficients are continuous and Lipschitz/uniformly
continuous in space [· · · ] + standard assumptions to have comparison
and existence of a viscosity solution with linear growth in finite dimension
(for the F (·, x̄n

∧tni
, ·)).

Theorem : Let g be uniformly continuous, then ∃ a unique
π-approximate viscosity solution v on D([0,T ]). Moreover,
• It is locally uniformly continuous.
• If π′ is another increasing sequence of time grids and if v′ is the
π′-approximate viscosity solution, then v′ = v.

Proposition : Comparison and stability holds in the class of solutions.

Remark : We have precise estimates on the approximation error
|vn(t, x, xt)− v(t, x)| (depending on the regul. of x).
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Regularity in the fully non-linear case

2 For terminal conditions of the form (can be made more abstract)

g(x) = g◦
(∫ T

0
xtµ(dt)

)
,

where g◦ ∈ C 1+α(R) is bounded, and µ is a finite positive measure with
at most finitely many atoms on [0,T ].

2 Two cases
(a) Either α ∈ (0, 1) and F (t, x, y , z , γ) = F1(t)y + F2(t)z + F3(t, γ),

(b) Or α = 1 and F (t, x, y , z , γ) = F1(t, y , γ) + F2(t)z with
y ∈ R 7→ F1(t, y , γ) ∈ C 1 with bounded and Lipschitz first order
derivative, uniformly in γ ∈ R and t ≤ T .

2 In any case γ 7→ F (·, γ) is concave or d ≤ 2.

Theorem : ∇xv is well-defined and locally uniformly continuous.
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Regularity in the semi-linear case

2 Consider the case where

F (t, x, r , p, q) = f (t, x, r , pσ(t, x)) + b(t, x)p +
1
2
σ2(t, x)q

with
• f , b and σ are Fréchet differentiable with |µf |, |µb| and |µσ|

dominated by a bounded non-negative measure µ.
• f is C 1

b in p, uniformly.
• g is Fréchet differentiable with |µg | dominated by µ .
• (x, r , p) 7→ (µg (·; x), µb(·; t, x), µσ(·; t, x), µf (·; t, x, r , p)) and well

as (∂r , ∂p)f (t, ·) are uniformly α-Hölder, uniformly in t ≤ T .

Theorem : Under the above conditions, ∇xv is well-defined. It is locally
uniformly α-Hölder in space (+ uniform continuity in time apparts from
atoms of µ).
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2 In particular, the solution v satisfies

v(t,X ) =g(X ) +

∫ T

t

f (s, x, v(s,X ),∇xv(s,X )σ(s,X ))ds

−
∫ T

t

∇xv(s,X )σ(s,X )dWs ,

Xt =X0 +

∫ t

0
b(s,X )ds +

∫ t

0
σ(s,X )dWs .



Related works on solutions of PPDE

• Ekren, Touzi, Zhang [10] : test function in terms of optimal stopping
and non-linear expectations, instead of tangent time-space points.
Very weak notion. Essentially requires concavity or d ≤ 2 + uniform
ellipticity and continuity.

• Ren, Touzi and Zhang [15] : degenerate case but uniform continuity
with respect to x 7→

∫ T

0 |xs |pds.
• Ekren and Zhang [11] : pseudo-Markovian solutions based on frozen

paths up to the exit time of a domain. In a similar spirit of our
approach. Degenerate case. But existence tricky to check.
Comparison in the class of pseudo-Markovian functions (similar
restriction as our).

• Cosso and Russo [8] : test functions in the more classical spirit of
tangent points min{(v − ϕ)(t, x), (t, x) ∈ [0;T ]× Ω} (or max).
Introduce an approach based on Gauge functions for comparison,
that still needs to be worked out.
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Thank you !
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