Almost sure hedging with price impact

B. Bouchard

Ceremade - Univ. Paris-Dauphine

4th NUS Workshop on Risk & Regulation, January 2016, Singapore

Joint works with G. Loeper (Monash Univ.) and Y. Zou (Paris-Dauphine)
Aim of this work

• Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).
• Not high frequency (no bid-ask spread), but still impact on prices. To be considered as a liquidity model.
• Permanent/resilient impact.
Option pricing with illiquidity or impact in the literature (part of)

- Equilibrium dynamics (modified price dynamics): Sircar and Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98.

- Liquidity curve (but no impact): Cetin, Jarrow, and Protter 04, Cetin, Soner, and Touzi 09.

- Illiquidity + impact: Loeper 14 (verification arguments).

- Related works: Liu and Yong 05, Almgren and Li 13, Millot and Abergel 11, Guéant and Pu 13,...
Impact rule and continuous time trading dynamics
Impact rule

Basic rule (only permanent for the moment): an order of $\delta$ units moves the price by

$$X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta \frac{X_{t-} + X_t}{2}.$$
Impact rule

- Basic rule (only permanent for the moment): an order of $\delta$ units moves the price by

$$X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta \frac{X_{t-} + X_t}{2}.$$ 

- We just model the curve around $\delta = 0$. This should be understood for a “small” order $\delta$. Would obtain the same with

$$X_{t-} \rightarrow X_t = X_{t-} + F(X_{t-}, \delta)$$

and costs

$$\int_0^\delta (X_{t-} + F(X_{t-}, \nu))d\nu$$

if $\partial_\delta F(x, 0) = f(x)$, $\partial^2_{\delta x} F(x, 0) = f'(x)$ and

$$F(x, 0) = \partial^2_{\delta^2} F(x, 0) = 0.$$
A trading signal is an Itô process of the form

\[ Y = Y_0 + \int_0^T b_s ds + \int_0^T a_s dW_s. \]
A trading signal is an Itô process of the form

\[ Y = Y_0 + \int_0^\cdot b_s \, ds + \int_0^\cdot a_s \, dW_s. \]

Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.
A trading signal is an Itô process of the form

\[ Y = Y_0 + \int_0^T b_s ds + \int_0^T a_s dW_s. \]

Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

Trade at times \( t_i^n = iT/n \) the quantity \( \delta_{t_i^n} = Y_{t_i^n} - Y_{t_{i-1}^n} \).
A trading signal is an Itô process of the form

\[ Y = Y_0 + \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s. \]

Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

Trade at times \( t_i^n = iT/n \) the quantity \( \delta_{t_i^n} = Y_{t_i^n} - Y_{t_{i-1}^n} \).

We assume that the stock price evolves according to

\[ X = X_{t_i^n} + \int_{t_i^n}^\cdot \sigma(X_s) dW_s \]

between two trades (can add a drift or be multivariate).
The corresponding dynamics are:

\[
Y_t^n := \sum_{i=0}^{n-1} Y_{t_i}^n \mathbf{1}_{\{t_i^n \leq t < t_{i+1}^n\}} + Y_T^n \mathbf{1}_{\{t=T\}}, \quad \delta^n_{t_i} = Y^n_{t_i} - Y^n_{t_{i-1}}
\]

\[
X^n = X_0 + \int_0^\cdot \sigma(X_s^n) dW_s + \sum_{i=1}^n \mathbf{1}_{[t_i^n, T]} \delta^n_{t_i} f(X^n_{t_i^n}),
\]

\[
V^n = V_0 + \int_0^\cdot Y^n_{s-} dX^n_s + \sum_{i=1}^n \mathbf{1}_{[t_i^n, T]} \frac{1}{2} (\delta^n_{t_i})^2 f(X^n_{t_i^n}),
\]

where

\[V^n = \text{cash part} + Y^n X^n = \text{"portfolio value".}\]
Passing to the limit $n \to \infty$, it converges in $S_2$ to

$$Y = Y_0 + \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s$$

$$X = X_0 + \int_0^\cdot \sigma(X_s) dW_s + \int_0^\cdot f(X_s) dY_s + \int_0^\cdot a_s(\sigma f')(X_s) ds$$

$$V = V_0 + \int_0^\cdot Y_s dX_s + \frac{1}{2} \int_0^\cdot a_s^2 f(X_s) ds ,$$

at a speed $\sqrt{n}$. 
Adding a resilience effect

- Given a speed of resilience $\rho > 0$,

\[
X^n = X_0 + \int_0^\cdot \sigma(X^n_s) dW_s + R^n,
\]

\[
R^n = R_0 + \sum_{i=1}^n 1_{[t_i^n, T]} \delta^n_{t_i^n} f(X^n_{t_i^n}) - \int_0^\cdot \rho R^n_s ds.
\]
Adding a resilience effect

Given a speed of resilience $\rho > 0$,

$$X^n = X_0 + \int_0^\cdot \sigma(X^n_s) dW_s + R^n,$$

$$R^n = R_0 + \sum_{i=1}^n \mathbf{1}_{[t^n_i, t^n_{i+1}]} \delta^n_{t^n_i} f(X^n_{t^n_i}) - \int_0^\cdot \rho R^n_s ds.$$

The continuous time dynamics becomes

$$X = X_0 + \int_0^\cdot \sigma(X_s) dW_s + \int_0^\cdot f(X_s) dY_s + \int_0^\cdot (a_s(\sigma f')(X_s) - \rho R_s) ds$$

$$R = R_0 + \int_0^\cdot f(X_s) dY_s + \int_0^\cdot (a_s(\sigma f')(X_s) - \rho R_s) ds$$

$$V = V_0 + \int_0^\cdot Y_s dX_s + \frac{1}{2} \int_0^\cdot a^2_s f(X_s) ds.$$
Hedging problem: two situations
Classical case (uncovered options)

- Has an \textit{initial} impact when build the initial position in stocks and a \textit{final impact} when liquidate it at the end.

Classical case (uncovered options)

- Has an initial impact when build the initial position in stocks and a final impact when liquidate it at the end.


Difficult : associated pde and dpp ?
Easy : once understood, standard stochastic target technics.
Classical case (uncovered options)

- Has an initial impact when build the initial position in stocks and a final impact when liquidate it at the end.


Difficult : associated pde and dpp ?
Easy : once understood, standard stochastic target technics.

Results :
- A quasilinear pde (the volatility term depends on the gradient).
- Perfect hedging by verification when coefficients are smooth enough.
- A modified delta-hedging rule : hedge in delta but at a modified asset price.
Covered options

- The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. **Avoids any initial and final market impact.**

- B., Loeper, and Zou. Hedging of covered options with linear market impact and gamma constraint.
  
Covered options

- The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. Avoids any initial and final market impact.


Easy: find the pde (simple delta hedging, cf. Loeper).
Difficulty: only a partial dpp, subsolution property by the (non-standard) smoothing approach of B. and Nutz 13.
Covered options

- The premium and payoff are paid in cash and stocks with a number of stocks decided by the trader. Avoids any initial and final market impact.


Easy: find the pde (simple delta hedging, cf. Loeper).
Difficulty: only a partial dpp, subsolution property by the (non-standard) smoothing approach of B. and Nutz 13.

Results:
- A fully non-linear pde (the volatility term depends on the Hessian).
- Perfect hedging by verification when coefficients are smooth enough.
- Delta-hedging as usual.
- Almost optimal hedging rules constructed in any case.
Covered vs Uncovered

Not a simple approximation!

Quasi-linear vs fully non-linear pde
Modified delta vs standard delta hedging rule.
The case of covered options


for the case of uncovered options.
Resilience does not play any role, we take $\rho \equiv 0$ so that

$$dY = a dW + b dt$$

$$dX = \sigma(X) dW + f(X) dY + a(\sigma f')(X) dt$$

$$dV = Y dX + \frac{1}{2} a_s^2 f(X) dt.$$
Resilience does not play any role, we take $\rho \equiv 0$ so that

\[
\begin{align*}
    dY &= adW + bdt \\
    dX &= \sigma(X)dW + f(X)dY + a(\sigma f')(X)dt = \sigma^a(X)dW + \mu^a,b(X)dt \\
    dV &= YdX + \frac{1}{2}a^2s f(X)dt.
\end{align*}
\]

with $\sigma^a = \sigma + fa$
Resilience does not play any role, we take $\rho \equiv 0$ so that

$$dY = adW + bdt = \gamma^a(X)dX + \mu_{Y}^{a,b}(X)dt$$
$$dX = \sigma(X)dW + f(X)dY + a(\sigma f')(X)dt = \sigma^a(X)dW + \mu_X^{a,b}(X)dt$$
$$dV = YdX + \frac{1}{2}a_s^2 f(X)dt.$$  

with $\sigma^a = \sigma + fa$ and $\gamma^a = a/ (\sigma + fa)$. 
Hedging and pricing - informal derivation

Resilience does not play any role, we take $\rho \equiv 0$ so that

$$dY = adW + bdt = \gamma^a(X)dX + \mu^a,b(X)dt$$
$$dX = \sigma(X)dW + f(X)dY + a(\sigma f')(X)dt = \sigma^a(X)dW + \mu^a,b(X)dt$$
$$dV = YdX + \frac{1}{2}a_s^2 f(X)dt.$$ 

with $\sigma^a = \sigma + fa$ and $\gamma^a = a/(\sigma + fa)$.

Super-hedging price:

$$v(t,x) := \inf\{v = c + yx : (c,y) \in \mathbb{R}^2 \text{ s.t. } G(t,x,v,y) \neq \emptyset\},$$

where $G(t,x,v,y)$ is the set of $(a,b)$ s.t. $\phi := (y,a,b)$ satisfies

$$V_T^{t,x,v,\phi} \geq g(X_T^{t,x,\phi}).$$
Let us assume that we use the delta-hedging rule:

\[ V = v(\cdot, X) , \quad Y = \partial_x v(\cdot, X). \]
Let us assume that we use the delta-hedging rule:

\[ V = v(\cdot, X), \quad Y = \partial_x v(\cdot, X). \]

Then, equating the \( dt \) terms implies

\[ \frac{1}{2} a^2 f(X) = \partial_t v(\cdot, X) + \frac{1}{2} (\sigma^a)^2(X) \partial_{xx} v(\cdot, X), \]
Let us assume that we use the delta-hedging rule:

\[ V = v(\cdot, X), \quad Y = \partial_x v(\cdot, X). \]

Then, equating the \( dt \) terms implies

\[ \frac{1}{2} a^2 f(X) = \partial_t v(\cdot, X) + \frac{1}{2} (\sigma^a)^2(X) \partial_{xx}^2 v(\cdot, X), \]

and applying Itô’s Lemma to \( Y - \partial_x v(\cdot, X) \) leads to

\[ \gamma^a = \partial_{xx}^2 v(\cdot, X). \]
Let us assume that we use the delta-hedging rule:

\[ V = v(\cdot, X), \quad Y = \partial_x v(\cdot, X). \]

Then, equating the \( dt \) terms implies

\[
\frac{1}{2} a^2 f(X) = \partial_t v(\cdot, X) + \frac{1}{2} \left( \sigma^a \right)^2(X) \partial_{xx}^2 v(\cdot, X),
\]

and applying Itô’s Lemma to \( Y - \partial_x v(\cdot, X) \) leads to

\[ \gamma^a = \partial_{xx}^2 v(\cdot, X). \]

By definition of \( \gamma^a \) and a little bit of algebra:

\[
\left[ -\partial_t v - \frac{1}{2} \frac{\sigma^2}{1 - f \partial_{xx}^2 v} \partial_{xx}^2 v \right](\cdot, X) = 0.
\]
The pricing pde should be

\[-\partial_t v - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx} v)} \partial_{xx}^2 v = 0 \text{ on } [0, T) \times \mathbb{R},\]

\[v(T-, \cdot) = g \text{ on } \mathbb{R}.\]
The pricing pde should be

$$-\partial_t v - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 v)} \partial_{xx}^2 v = 0 \quad \text{on } [0, T) \times \mathbb{R},$$

$$v(T -, \cdot) = g \quad \text{on } \mathbb{R}.$$

**Singular pde:**
- Can find smooth solutions s.t. $1 > f \partial_{xx}^2 v$, cf. Loeper 15 (under conditions).
- In general, needs to take care of $1 \neq f \partial_{xx}^2 v$
- One possibility: add a gamma constraint $\partial_{xx}^2 v \leq \bar{\gamma}$ with $f\bar{\gamma} < 1$.
- A constraint of the form $f \partial_{xx}^2 v > 1$ does not make sense.
Recall

\[ dY = \gamma^a(X) dX + \mu_{\gamma}^{a,b}(X) dt \quad \text{and} \quad dX = \sigma^a(X) dW + \mu_X^{a,b}(X) dt. \]

We now define \( \nu \) with respect to the \text{gamma constraint}

\[ \gamma^a(X) \leq \bar{\gamma}(X) \]

with

\[ f\bar{\gamma} < 1 - \varepsilon, \quad \varepsilon > 0. \]
Pricing pde:

\[
\min \left\{ -\partial_t v - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial^2_{xx} v)} \partial^2_{xx} v, \bar{\gamma} - \partial^2_{xx} v \right\} = 0 \quad \text{on } [0, T) \times \mathbb{R}.
\]

Propagation of the gamma constraint at the boundary:

\[
v(T-, \cdot) = \hat{g} \quad \text{on } \mathbb{R}
\]

with \(\hat{g}\) the smallest (viscosity) super-solution of

\[
\min \left\{ \varphi - g, \bar{\gamma} - \partial^2_{xx} \varphi \right\} = 0.
\]

See Soner and Touzi 00, and Cheridito, Soner and Touzi 05.
Use a weak formulation approach and results on small time behavior of double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner and Touzi 05.

It is based on the **Geometric DPP** (Soner and Touzi):

If 

\[ V_0 > v(0, X_0) \]

then we can find \((a, b, Y_0)\) such that

\[ V_\theta \geq v(\theta, X_\theta) \]

for any stopping time \(\theta\) with values in \([0, T]\).
Main difficulty: cannot establish the reverse Geometric DPP, i.e.

If $(a, b, Y_0)$ are such that

$$V_\theta > v(\theta, X_\theta)$$

at a stopping time $\theta$ with values in $[0, T]$, then

$$V_0 \geq v(0, X_0).$$
Sub-solution property

- **Main difficulty**: cannot establish the reverse Geometric DPP, i.e.

If \((a, b, Y_0)\) are such that

\[ V_\theta > v(\theta, X_\theta) \]

at a stopping time \(\theta\) with values in \([0, T]\), then

\[ V_0 \geq v(0, X_0). \]

- **Problem**:
  - at \(\theta\) we have a position \(Y_\theta\) that may not match with the position \(\hat{Y}_\theta\) associated to \(v(\theta, X_\theta)\). Can not jump from \(Y_\theta\) to \(\hat{Y}_\theta\)...
Sub-solution property

- Main difficulty: cannot establish the reverse Geometric DPP, i.e.

If \((a, b, Y_0)\) are such that

\[ V_\theta > v(\theta, X_\theta) \]

at a stopping time \(\theta\) with values in \([0, T]\), then

\[ V_0 \geq v(0, X_0). \]

- Problem:
  - at \(\theta\) we have a position \(Y_\theta\) that may not match with the position \(\hat{Y}_\theta\) associated to \(v(\theta, X_\theta)\). Can not jump from \(Y_\theta\) to \(\hat{Y}_\theta\)...
  - can neither go smoothly to it as it will move \(X\) because of the impact, and therefore \(\hat{Y}\) (sort of fixed point problem), compare with Cheridito, Soner, and Touzi 2005.
The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.

\[ \text{Assume } f, \sigma, \bar{\gamma} \text{ are constant, and } \hat{g} \text{ bounded and uniformly continuous, for simplicity.} \]

Step 1. Using Perron's method + comparison, construct a (bounded) viscosity solution \( w_\iota \) of

\[ \min \{ -\partial_t \phi - \frac{1}{2} \sigma^2 (1 - f \partial^2_{xx} \phi) \partial^2_{xx} \phi, \bar{\gamma} - \partial^2_{xx} \phi \} = 0 \text{ on } [0, T) \times \mathbb{R}, \]

with terminal condition

\[ w_\iota (T, \cdot) = \hat{g} + \iota \text{ on } \mathbb{R} \text{ with } \iota > 0. \]
The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.

Assume $f, \sigma, \bar{\gamma}$ are constant, and $\hat{g}$ bounded and uniformly continuous, for simplicity.
The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and Nutz 13.

□ Assume $f, \sigma, \bar{\gamma}$ are constant, and $\hat{g}$ bounded and uniformly continuous, for simplicity.

Step 1. Using Perron’s method + comparison, construct a (bounded) viscosity solution $w^\iota$ of

$$\min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx} \varphi)} \partial_{xx} \varphi , \bar{\gamma} - \partial_{xx} \varphi \right\} = 0 \quad \text{on } [0, T) \times \mathbb{R},$$

with terminal condition

$$w^\iota(T, \cdot) = \hat{g} + \iota \quad \text{on } \mathbb{R}$$

with $\iota > 0$. 

Step 2. Up to replacing $w^t$ by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that $w^t$ is quasi-concave
Step 2. Up to replacing $w^t$ by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that $w^t$ is quasi-concave and then

$$\min \left\{ -\partial_t w^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t)} \partial_{xx}^2 w^t , \bar{\gamma} - \partial_{xx}^2 w^t \right\} \geq 0 \text{ a.e.}$$

with $\partial_{xx}^2 w^t$ the density of the absolute continuous part of the second order derivative measure.

See Jensen 88.
Step 2. Up to replacing $w^t$ by an approximating sequence of quasi-concave functions (by quadratic inf-convolution), we can assume that $w^t$ is quasi-concave and then

$$\min \left\{ -\partial_t w^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t)} \partial_{xx}^2 w^t, \bar{\gamma} - \partial_{xx}^2 w^t \right\} \geq 0 \text{ a.e.}$$

with $\partial_{xx}^2 w^t$ the density of the absolute continuous part of the second order derivative measure, and

$$w^t(T, \cdot) \geq \hat{g} + \iota/2.$$ 

See Jensen 88.
Step 3. Consider a (non-negative) smooth kernel $\psi$ with support $[-1, 0] \times [-1, 1]$, take a window size $\delta > 0$, and set

$$\psi_\delta = \delta^{-1} \psi(\delta^{-1})$$
Step 3. Consider a (non-negative) smooth kernel $\psi$ with support $[-1, 0] \times [-1, 1]$, take a window size $\delta > 0$, and set

$$\psi_\delta = \delta^{-1} \psi(\delta^{-1} \cdot)$$

and

$$w_\delta = w \ast \psi_\delta := \int w(t', x') \psi_\delta(t' - \cdot, x' - \cdot) dt' dx'.$$
Step 3. Consider a (non-negative) smooth kernel $\psi$ with support $[-1, 0] \times [-1, 1]$, take a window size $\delta > 0$, and set

$$
\psi_\delta = \delta^{-1} \psi(\delta^{-1} \cdot) \quad \text{and} \quad w^\epsilon_\delta = w^\epsilon \ast \psi_\delta := \int w^\epsilon(t', x') \psi_\delta(t' - \cdot, x' - \cdot) dt' dx'.
$$

$$
0 \leq \min \left\{ -\partial_t w^\epsilon - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^\epsilon)} \partial_{xx}^2 w^\epsilon, \bar{\gamma} - \partial_{xx}^2 w^\epsilon \right\} \ast \psi_\delta
$$
Step 3. Consider a (non-negative) smooth kernel \( \psi \) with support \([-1, 0] \times [-1, 1] \), take a window size \( \delta > 0 \), and set

\[
\psi_\delta = \delta^{-1} \psi(\delta^{-1} \cdot) \quad \text{and} \quad w_\delta^t = w^t \ast \psi_\delta := \int w^t(t', x') \psi_\delta(t' - \cdot, x' - \cdot) dt' dx'.
\]

The pde operator is concave

\[
0 \leq \min \left\{ -\partial_tw^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t)} \partial_{xx}^2 w^t, \bar{\gamma} - \partial_{xx}^2 w^t \right\} \ast \psi_\delta
\]

\[
\leq \min \left\{ -\partial_tw^t \ast \psi_\delta - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t \ast \psi_\delta)} \partial_{xx}^2 w^t \ast \psi_\delta, \bar{\gamma} - \partial_{xx}^2 w^t \ast \psi_\delta \right\}
\]
Step 3. Consider a (non-negative) smooth kernel $\psi$ with support $[-1, 0] \times [-1, 1]$, take a window size $\delta > 0$, and set

$$\psi_\delta = \delta^{-1} \psi(\delta^{-1} \cdot) \quad \text{and} \quad w^t_\delta = w^t \ast \psi_\delta := \int w^t(t', x') \psi_\delta(t' - \cdot, x' - \cdot) dt' dx'. $$

The pde operator is concave decreasing, and $\partial_{xx}^2 w^t_\delta \leq \partial_{xx}^2 w^t \ast \psi_\delta$ (by quasi-concavity),

$$0 \leq \min \left\{ -\partial_tw^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t)} \partial_{xx}^2 w^t , \bar{\gamma} - \partial_{xx}^2 w^t \right\} \ast \psi_\delta$$

$$\leq \min \left\{ -\partial_tw^t \ast \psi_\delta - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t \ast \psi_\delta)} \partial_{xx}^2 w^t \ast \psi_\delta, \bar{\gamma} - \partial_{xx}^2 w^t \ast \psi_\delta \right\}$$

$$\leq \min \left\{ -\partial_tw^t_\delta - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t_\delta)} \partial_{xx}^2 w^t_\delta , \bar{\gamma} - \partial_{xx}^2 w^t_\delta \right\}$$
Step 3. Consider a (non-negative) smooth kernel $\psi$ with support $[-1, 0] \times [-1, 1]$, take a window size $\delta > 0$, and set

$$\psi_\delta = \delta^{-1} \psi(\delta^{-1} \cdot) \text{ and } w_\delta^t = w^t \ast \psi_\delta := \int w^t(t', x') \psi_\delta(t' - \cdot, x' - \cdot) dt' dx'.$$

The pde operator is concave decreasing, and $\partial_{xx}^2 w_\delta^t \leq \partial_{xx}^2 w^t \ast \psi_\delta$ (by quasi-concavity),

$$0 \leq \min \left\{ -\partial_t w^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t)} \partial_{xx}^2 w^t, \, \bar{\gamma} - \partial_{xx}^2 w^t \right\} \ast \psi_\delta$$

$$\leq \min \left\{ -\partial_t w^t \ast \psi_\delta - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t \ast \psi_\delta)} \partial_{xx}^2 w^t \ast \psi_\delta, \, \bar{\gamma} - \partial_{xx}^2 w^t \ast \psi_\delta \right\}$$

$$\leq \min \left\{ -\partial_t w_\delta^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w_\delta^t)} \partial_{xx}^2 w_\delta^t, \, \bar{\gamma} - \partial_{xx}^2 w_\delta^t \right\}$$

while, for $\delta$ small with respect to $\iota$,

$$w_\delta^t(T, \cdot) \geq \hat{g}.$$
Step 4. We have produced a smooth function satisfying

\[
\min \left\{ -\partial_t w_\delta^t - \frac{1}{2} \frac{\sigma^2}{1 - f \partial_{xx}^2 w_\delta^t} \partial_{xx}^2 w_\delta^t, \tilde{\gamma} - \partial_{xx}^2 w_\delta^t \right\} \geq 0
\]

and

\[
w_\delta^t(T, \cdot) \geq \hat{g}.
\]
Step 4. We have produced a smooth function satisfying

\[
\min \left\{ -\partial_t w_\delta^t - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx} w_\delta^t)} \partial_{xx}^2 w_\delta^t, \bar{\gamma} - \partial_{xx}^2 w_\delta^t \right\} \geq 0
\]

and

\[
w_\delta^t(T, \cdot) \geq \hat{g}.
\]

Taking

\[
V = w_\delta^t(\cdot, X) \quad \text{and} \quad Y = \partial_x w_\delta^t(\cdot, X),
\]

we obtain

\[
V_T \geq \hat{g}(X_T) \geq g(X_T).
\]
Step 4. We have produced a smooth function satisfying

$$\min \left\{ -\partial_t w^t_\delta - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^t_\delta)} \partial_{xx}^2 w^t_\delta, \tilde{\gamma} - \partial_{xx}^2 w^t_\delta \right\} \geq 0$$

and

$$w^t_\delta(T, \cdot) \geq \hat{g}.$$

Taking

$$V = w^t_\delta(\cdot, X) \quad \text{and} \quad Y = \partial_x w^t_\delta(\cdot, X),$$

we obtain

$$V_T \geq \hat{g}(X_T) \geq g(X_T).$$

This implies that $v \leq w^t_\delta \to w^t$, as $\delta \to 0$. 
Step 5. Since $w^\ell$ is solution of

$$\min \left\{ -\partial_t w^\ell - \frac{1}{2} \frac{\sigma^2}{1 - f \partial_{xx}^2 w^\ell} \partial_{xx}^2 w^\ell, \; \tilde{\gamma} - \partial_{xx}^2 w^\ell \right\} = 0$$

with

$$w^\ell(T, \cdot) = \hat{g} + \ell,$$
Step 5. Since $w^\iota$ is solution of

$$\min \left\{ -\partial_t w^\iota - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx} w^\iota)} \partial_{xx}^2 w^\iota, \tilde{\gamma} - \partial_{xx}^2 w^\iota \right\} = 0$$

with

$$w^\iota(T, \cdot) = \hat{g} + \iota,$$

$w^\iota \to w$ where $w$ is solution of

$$\min \left\{ -\partial_t w - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx} w)} \partial_{xx}^2 w, \tilde{\gamma} - \partial_{xx}^2 w \right\} = 0$$

with

$$w(T, \cdot) = \hat{g}.$$
Step 5. Since $w^\iota$ is solution of

$$\min \left\{ -\partial_t w^\iota - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^\iota)} \partial_{xx}^2 w^\iota, \tilde{\gamma} - \partial_{xx}^2 w^\iota \right\} = 0$$

with

$$w^\iota(T, \cdot) = \hat{g} + \iota,$$

$w^\iota \to w$ where $w$ is solution of

$$\min \left\{ -\partial_t w - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w)} \partial_{xx}^2 w, \tilde{\gamma} - \partial_{xx}^2 w \right\} = 0$$

with

$$w(T, \cdot) = \hat{g}.$$

It satisfies $w \leftarrow w^\iota \geq v.$

Step 6. But $v$ is a super-solution of the same equation: $w \leq v$ by comparison, and therefore $w = v$ by the above.
Step 5. Since $w^\iota$ is solution of

$$\min \left\{ -\partial_tw^\iota - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w^\iota)} \partial_{xx}^2 w^\iota, \ \tilde{\gamma} - \partial_{xx}^2 w^\iota \right\} = 0$$

with

$$w^\iota(T, \cdot) = \hat{g} + \iota,$$

$w^\iota \to w$ where $w$ is solution of

$$\min \left\{ -\partial_tw - \frac{1}{2} \frac{\sigma^2}{(1 - f \partial_{xx}^2 w)} \partial_{xx}^2 w, \ \tilde{\gamma} - \partial_{xx}^2 w \right\} = 0$$

with

$$w(T, \cdot) = \hat{g}.$$

It satisfies $w \leftarrow w^\iota \geq v$.

Step 6. But $v$ is a super-solution of the same equation : $w \leq v$ by comparison, and therefore $w = v$ by the above.
To sum up:

\[
\begin{align*}
\text{super-solution} & \geq \text{solution} \\
\delta, \nu \to 0 & \quad \Rightarrow \\
\text{super-hedging} & \geq v
\end{align*}
\]
Remark: almost optimal hedging rule

$w^t_\delta$ allows one to hedge by a usual delta-hedging strategy and

$v \leftarrow \epsilon^t_\delta + v \geq w^t_\delta \geq v$

⇒ can be as close as one wants to the super-hedging price, for small $\delta, \nu$. 
General case

- Non-constant coefficients
  - start with a solution of the pde with shaken coefficients in the sens of Krylov:

  \[
  \min_{x' \in B_\varepsilon(x)} \min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2(x')}{\left(1 - f(x') \partial^2_{xx} \varphi\right)} \partial^2_{xx} \varphi, \quad \tilde{\gamma}(x') - \partial^2_{xx} \varphi \right\} (t, x) = 0.
  \]
General case

- **Non-constant coefficients**

  start with a solution of the pde with shaken coefficients in the sense of Krylov:

  \[
  \min_{x' \in B_\varepsilon(x)} \min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2(x')}{1 - f(x') \partial_{xx} \varphi} \partial_{xx} \varphi , \ \bar{\gamma}(x') - \partial_{xx} \varphi \right\} (t, x) = 0.
  \]

  or equivalently (formally)

  \[
  \min_{x' \in B_\varepsilon(x)} \min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2(x)}{1 - f(x) \partial_{xx} \varphi} \partial_{xx} \varphi , \ \bar{\gamma}(x) - \partial_{xx} \varphi \right\} (t', x') = 0,
  \]

  so that we can freeze the coefficients at their value at the center of the ball before integrating on this ball.

- \[\hat{g}\] uniformly continuous with linear growth

  use a space dependent window for the kernel (to handle the linear growth)

  further approximate \[\hat{g}\] from above by functions with affine behavior outside of a compact set (to keep uniform convergence when using a symmetric kernel).
General case

- Non-constant coefficients

Start with a solution of the PDE with shaken coefficients in the sense of Krylov:

\[
\min_{x' \in B_\varepsilon(x)} \min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2(x')}{1 - f(x')\partial_{xx}^2 \varphi} \partial_{xx}^2 \varphi, \; \bar{\gamma}(x') - \partial_{xx}^2 \varphi \right\} (t, x) = 0.
\]

or equivalently (formally)

\[
\min_{x' \in B_\varepsilon(x)} \min \left\{ -\partial_t \varphi - \frac{1}{2} \frac{\sigma^2(x)}{1 - f(x)\partial_{xx}^2 \varphi} \partial_{xx}^2 \varphi, \; \bar{\gamma}(x) - \partial_{xx}^2 \varphi \right\} (t', x') = 0,
\]

so that we can freeze the coefficients at their value at the center of the ball before integrating on this ball.

- \( \hat{g} \) uniformly continuous with linear growth

Use a space dependent window for the kernel (to handle the linear growth)

Further approximate \( \hat{g} \) from above by functions with affine behavior outside of a compact set (to keep uniform convergence when using a symmetric kernel).
Numerical example
Constant impact and constraint.

Bachelier model: \( dX_t = 0.2 \, dW_t \).

Butterfly option: \( g(x) = (x + 1)^+ - 2x^+ + (x - 1)^+ \), \( T = 2 \).
Constant impact and constraint.

Bachelier model: $dX_t = 0.2 \, dW_t$.

Butterfly option: $g(x) = (x + 1)^+ - 2x^+ + (x - 1)^+, \ T = 2$.

Figure: Left: Dashed line: $f = 0.5, \tilde{\gamma} = 1.75$; solid line: $f = 0, \tilde{\gamma} = 1.75$; dotted line: $f = 0, \tilde{\gamma} = +\infty$. 
F. Abergel and G. Loeper.
Pricing and hedging contingent claims with liquidity costs and market impact.
SSRN.

B. Bouchard, G. Loeper, and Y. Zou.
Almost-sure hedging with permanent price impact.

B. Bouchard, G. Loeper, and Y. Zou.
Hedging of covered options with linear market impact and gamma constraint.

B. Bouchard and M. Nutz.
Stochastic target games and dynamic programming via regularized viscosity solutions.

U. Çetin, R. A. Jarrow, and P. Protter.
Liquidity risk and arbitrage pricing theory.

U. Çetin, H. M. Soner, and N. Touzi.
Option hedging for small investors under liquidity costs.

P. Cheridito, H. M. Soner, and N. Touzi.
The multi-dimensional super-replication problem under gamma constraints.
R. Frey.
Perfect option hedging for a large trader.

R. Jensen.
The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations.

G. Loeper.
Option Pricing with Market Impact and Non-Linear Black and Scholes PDEs.
SSRN.

G. Loeper.
Solution of a fully non-linear Black and Scholes equation coming from a linear market impact model.
SSRN.

P. J. Schönbucher and P. Wilmott.
The feedback effects of hedging in illiquid markets.

H. M. Soner and N. Touzi.
Superreplication under gamma constraints.