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Motivation



Aim of this work

• Consider a model with price impact and liquidity cost, but in which
hedging still makes sense without being degenerate (in any sense).

• Not high frequency (no bid-ask spread), but still impact on prices.
To be considered as a liquidity model.

• Permanent/resilient impact.



Option pricing with illiquidity or impact in the
literature (part of)

2 Equilibrium dynamics (modified price dynamics) : Sircar and
Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98.

2 Liquidity curve (but no impact) : Cetin, Jarrow and Protter 04, Cetin,
Soner and Touzi 09.

2 Illiquidity + impact : Loeper 14 (verification arguments).

2 Related works : Liu and Yong 05, Almgren and Li 13, Millot and
Abergel 11, Guéant and Pu 13,...



Impact rule and continuous time trading dynamics



Impact rule
2 Basic rule (only permanent for the moment) : an order of δ units
moves the price by

Xt− −→ Xt = Xt− + δf (Xt−),

and costs
δXt− +

1
2
δ2f (Xt−) = δ

Xt− + Xt

2
.

2 We just model the curve around δ = 0. This should be understood for
a “small” order δ. Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

and costs ∫ δ

0
(Xt− + F (Xt−, ι))dι

if ∂δF (x , 0) = f (x), ∂2
δxF (x , 0) = f ′(x) and

F (x , 0) = ∂2
δδF (x , 0) = 0.
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Trading signal and discrete trading dynamics

2 A trading signal is an Itô process of the form

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs .

2 Need to define the dynamics of the wealth and of the asset. As usual,
consider discrete trading and pass to the limit.

2 Trade at times tn
i = iT/n the quantity δntni = Ytni − Ytni−1 .

2 We assume that the stock price evolves according to

X = Xtni +

∫ ·
tni

σ(Xs)dWs

between two trades (can add a drift or be multivariate).
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2 The corresponding dynamics are

Y n
t :=

n−1∑
i=0

Ytni 1{tni ≤t<tni+1} + YT1{t=T} , δ
n
tni

= Y n
tni
− Y n

tni−1

X n = X0 +

∫ ·
0
σ(X n

s )dWs +
n∑

i=1

1[tni ,T ]δ
n
tni

f (X n
tni −

),

V n = V0 +

∫ ·
0

Y n
s−dX n

s +
n∑

i=1

1[tni ,T ]
1
2

(δntni
)2f (X n

tni −
),

where
V n = cash part + Y nX n = “portfolio value” .



2 Passing to the limit n→∞, it converges in S2 to

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

as(σf ′)(Xs)ds︸ ︷︷ ︸
(Y n

tni
−Y n

tni−1
)f (Xn

tni −
)

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds︸ ︷︷ ︸

(Y n
tni
−Y n

tni−1
)2f (Xn

tni −
)

,

at a speed
√

n.



Adding a resilience effect

2 Given a speed of resilience ρ > 0,

X n = X0 +

∫ ·
0
σ(X n

s )dWs + Rn,

Rn = R0 +
n∑

i=1

1[tni ,T ]δ
n
tni

f (X n
tni −

)−
∫ ·

0
ρRn

s ds.

2 The continuous time dynamics becomes

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

(as(σf ′)(Xs)− ρRs)ds

R= R0 +

∫ ·
0

f (Xs)dYs +

∫ ·
0

(as(σf ′)(Xs)− ρRs)ds

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds.
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Hedging problem : two situations



Classical case (uncovered options)

2 Has an initial impact when build the initial position in stocks and a
final impact when liquidate it at the end.
� B., Loeper, and Zou. Almost-sure hedging with permanent price impact. To appear in Finance and

Stochastics, 2015.

Difficult : associated pde and dpp ?
Easy : once understood, standard stochastic target technics.

Results :
- A quasilinear pde (the volatility term depends on the gradient).
- Perfect hedging by verification when coefficients are smooth enough.
- A modified delta-hedging rule : hedge in delta but at a modified asset
price.
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Covered options

2 The premium and payoff are paid in cash and stocks with a number of
stocks decided by the trader. Avoids any initial and final market impact.
� B., Loeper, and Zou. Hedging of covered options with linear market impact and gamma constraint.

arXiv :1512.07087, 2015.

Easy : find the pde (simple delta hedging, cf. Loeper).
Difficulty : only a partial dpp, subsolution property by the (non-standard)
smoothing approach of B. and Nutz 13.

Results :
- A fully non-linear pde (the volatility term depends on the Hessian).
- Perfect hedging by verification when coefficients are smooth enough.
- Delta-hedging as usual.
- Almost optimal hedging rules constructed in any case.
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Covered vs Uncovered

Not a simple approximation !

Quasi-linear vs fully non-linear pde
Modified delta vs standard delta hedging rule.



The case of covered options
See http ://www.ceremade.dauphine.fr/∼bouchard/pdf/BLZ_slides.pdf

for the case of uncovered options.



Hedging and pricing - informal derivation

2 Resilience does not play any role, we take ρ ≡ 0 so that

dY = adW + bdt

= γa(X )dX + µa,b
Y (X )dt

dX = σ(X )dW + f (X )dY + a(σf ′)(X )dt

= σa(X )dW + µa,b
X (X )dt

dV = YdX +
1
2
a2
s f (X )dt.

with σa = σ + fa and γa = a/(σ + fa).

2 Super-hedging price :

v(t, x) := inf{v = c + yx : (c , y) ∈ R2 s.t. G(t, x , v , y) 6= ∅},

where G(t, x , v , y) is the set of (a, b) s.t. φ := (y , a, b) satisfies

V t,x,v ,φ
T ≥ g(X t,x,φ

T ).
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Let us assume that we use the delta-hedging rule :

V = v(·,X ) , Y = ∂xv(·,X ).

Then, equating the dt terms implies

1
2
a2f (X ) = ∂tv(·,X ) +

1
2

(σa)2(X )∂2
xxv(·,X ),

and applying Itô’s Lemma to Y − ∂xv(·,X ) leads to

γa = ∂2
xxv(·,X ).

By definition of γa and a little bit of algebra :[
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv
]

(·,X ) = 0.
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The pricing pde should be

−∂tv −
1
2

σ2

(1− f ∂2
xxv)

∂2
xxv = 0 on [0,T )× R,

v(T−, ·) = g on R.

Singular pde :
- Can find smooth solutions s.t. 1 > f ∂2

xxv, cf. Loeper 15 (under
conditions).
- In general, needs to take care of 1 6= f ∂2

xxv
- One possibility : add a gamma constraint ∂2

xxv ≤ γ̄ with f γ̄ < 1.
- A constraint of the form f ∂2

xxv > 1 does not make sense.
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Hedging with a gamma contraint

Recall

dY = γa(X )dX + µa,b
Y (X )dt and dX = σa(X )dW + µa,b

X (X )dt.

2 We now define v with respect to the gamma constraint

γa(X ) ≤ γ̄(X )

with
f γ̄ < 1− ε, ε > 0.



Pricing pde :

min
{
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv , γ̄ − ∂2

xxv
}

= 0 on [0,T )× R.

Propagation of the gamma contraint at the boundary :

v(T−, ·) = ĝ on R

with ĝ the smallest (viscosity) super-solution of

min
{
ϕ− g , γ̄ − ∂2

xxϕ
}

= 0.

See Soner and Touzi 00, and Cheridito, Soner and Touzi 05.



Super-solution property

Use a weak formulation approach and results on small time behavior of
double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner
and Touzi 05.

It is based on the Geometric DPP (Soner and Touzi) :
if

V0 > v(0,X0)

then we can find (a, b,Y0) such that

Vθ ≥ v(θ,Xθ)

for any stopping time θ with values in [0,T ].



Sub-solution property

2 Main difficulty : can not establish the reverse Geometric DPP, i.e.

If (a, b,Y0) are such that

Vθ > v(θ,Xθ)

at a stopping time θ with values in [0,T ], then

V0 ≥ v(0,X0).

2 Problem :
- at θ we have a position Yθ that may not match with the position Ŷθ
associated to v(θ,Xθ). Can not jump from Yθ to Ŷθ...
- can neither go smoothly to it as it will move X because of the impact,
and therefore Ŷ (sort of fixed point problem), compare with Cheridito,
Soner, and Touzi 2005.
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The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and
Nutz 13.

2 Assume f , σ, γ̄ are constant, and ĝ bounded and uniformly continuous,
for simplicity.

Step 1. Using Perron’s method + comparison, construct a (bounded)
viscosity solution wι of

min
{
−∂tϕ−

1
2

σ2

(1− f ∂2
xxϕ)

∂2
xxϕ , γ̄ − ∂2

xxϕ

}
= 0 on [0,T )× R,

with terminal condition

wι(T , ·) = ĝ + ι on R

with ι > 0.
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Step 2. Up to replacing wι by an approximating sequence of
quasi-concave functions (by quadratic inf-convolution), we can assume
that wι is quasi-concave

and then

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
≥ 0 a.e.

with ∂2
xxwι the density of the absolute continuous part of the second

order derivative measure

, and

wι(T , ·) ≥ ĝ + ι/2.

See Jensen 88.
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Step 3. Consider a (non-negative) smooth kernel ψ with support
[−1, 0]× [−1, 1], take a window size δ > 0, and set

ψδ = δ−1ψ(δ−1·)

and wιδ = wι ?ψδ :=

∫
wι(t ′, x ′)ψδ(t ′−·, x ′−·)dt ′dx ′.

The pde operator is concave decreasing, and ∂2
xxwιδ ≤ ∂2

xxwι ? ψδ (by
quasi-concavity),

0 ≤ min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
?ψδ

≤ min
{
−∂twι?ψδ −

1
2

σ2

(1− f ∂2
xxwι?ψδ)

∂2
xxw

ι?ψδ, γ̄ − ∂2
xxw

ι?ψδ

}
≤ min

{
−∂twιδ −

1
2

σ2

(1− f ∂2
xxwιδ)

∂2
xxw

ι
δ , γ̄ − ∂2

xxw
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Step 4. We have produced a smooth function satisfying
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ι
δ , γ̄ − ∂2

xxw
ι
δ

}
≥ 0

and
wιδ(T , ·) ≥ ĝ .

Taking
V = wιδ(·,X ) and Y = ∂xwιδ(·,X ),

we obtain
VT ≥ ĝ(XT ) ≥ g(XT ).

This implies that v ≤ wιδ → wι, as δ → 0.
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Step 5. Since wι is solution of

min
{
−∂twι −

1
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σ2

(1− f ∂2
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ι , γ̄ − ∂2
xxw

ι

}
= 0

with
wι(T , ·) = ĝ + ι,

wι → w where w is solution of

min
{
−∂tw −

1
2

σ2

(1− f ∂2
xxw)

∂2
xxw , γ̄ − ∂2

xxw
}

= 0

with
w(T , ·) = ĝ .

It satisfies w← wι ≥ v.

Step 6. But v is a super-solution of the same equation : w ≤ v by
comparison, and therefore w = v by the above.



Step 5. Since wι is solution of

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
= 0

with
wι(T , ·) = ĝ + ι,
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It satisfies w← wι ≥ v.

Step 6. But v is a super-solution of the same equation : w ≤ v by
comparison, and therefore w = v by the above.



Step 5. Since wι is solution of

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
= 0

with
wι(T , ·) = ĝ + ι,
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It satisfies w← wι ≥ v.

Step 6. But v is a super-solution of the same equation : w ≤ v by
comparison, and therefore w = v by the above.



Step 5. Since wι is solution of

min
{
−∂twι −

1
2

σ2

(1− f ∂2
xxwι)

∂2
xxw

ι , γ̄ − ∂2
xxw

ι

}
= 0

with
wι(T , ·) = ĝ + ι,
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To sum up :

v︸︷︷︸
super-solution

≥ w︸︷︷︸
solution

←−︸︷︷︸
δ,ι→0

wιδ︸︷︷︸
super-hedging

≥ v



Remark : almost optimal hedging rule

2 wιδ allows one to hedge by a usual delta-hedging strategy and

v← ειδ + v ≥ wιδ ≥ v

⇒ can be as close as one wants to the super-hedging price, for small δ, ι.



General case
2 Non-constant coefficients
� start with a solution of the pde with shaken coefficients in the sens of
Krylov :

min
x′∈Bε(x)

min
{
−∂tϕ−

1
2

σ2(x ′)
(1− f (x ′)∂2

xxϕ)
∂2

xxϕ , γ̄(x ′)− ∂2
xxϕ

}
(t, x) = 0.

or equivalently (formally)

min
x′∈Bε(x)

min
{
−∂tϕ−

1
2

σ2(x)

(1− f (x)∂2
xxϕ)

∂2
xxϕ , γ̄(x)− ∂2

xxϕ

}
(t ′, x ′) = 0,

so that we can freeze the coefficients at their value at the center of the
ball before integrating on this ball.

2 ĝ uniformly continuous with linear growth
� use a space dependent window for the kernel (to handle the linear
growth)
� further approximate ĝ from above by functions with affine behavior
outside of a compact set (to keep uniform convergence when using a
symmetric kernel).
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Numerical example



2 Constant impact and constraint.
2 Bachelier model : dXt = 0.2 dWt .
2 Butterfly option : g(x) = (x + 1)+ − 2x+ + (x − 1)+, T = 2.
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Figure : Left : Dashed line : f = 0.5, γ̄ = 1.75 ; solid line : f = 0, γ̄ = 1.75 ; dotted line : f = 0, γ̄ = +∞.
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Figure : Left : Dashed line : f = 0.5, γ̄ = 1.75 ; solid line : f = 0, γ̄ = 1.75 ; dotted line : f = 0, γ̄ = +∞.
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