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Abstract

Within a financial model with linear price impact, we study the
problem of hedging a covered European option under gamma con-
straint. Using stochastic target and partial differential equation smooth-
ing techniques, we prove that the super-replication price is the viscosity
solution of a fully non-linear parabolic equation. As a by-product, we
show how ε-optimal strategies can be constructed. Finally, a numerical
resolution scheme is proposed.
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Introduction
Inspired by [1, 18], the authors in [4] considered a financial market with permanent
price impact, in which the impact function behaves as a linear function (around
the origin) in the number of bought stocks. This class of models is dedicated to the
pricing and hedging of derivatives in situations where the notional of the product
hedged is such that the delta-hedging is non-negligible compared to the average
daily volume traded on the underlying asset. Hence, the delta-hedging strategy will
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have an impact on the price dynamics, and will also incur liquidity costs. The linear
impact models studied in [1, 4, 18] incorporate both the effects into the pricing and
hedging of the derivative, while maintaining the completeness of the market (up
to a certain extent) and eventually leading to exact replication strategies. As in
perfect market models, this approach can provide an approximation of the real
market conditions that can be used by practitioners to help them in the design
of a suitable hedge in a systematic way, without having to rely on an ad hoc risk
criterion.

In [4], the authors considered the hedging of a cash-settled European option:
at inception the option seller has to build the initial delta-hedge, and conversely at
maturity the hedge must be liquidated to settle the final claim in cash. It is shown
therein that the price function of the optimal super-replicating strategy no longer
solves a linear parabolic equation, as in the classical case, rather a quasi-linear one.
Moreover, the hedging strategy consists in following a modified delta-hedging rule
where the delta is computed at the “unperturbed” value of the underlying, i.e., the
one the underlying would have if the trader’s position were liquidated immediately.

The approach and the results obtained in [4] thus differ substantially from
[1, 18]. Indeed, while in [1, 18] the impact model considered is the same, the
control problem is different in the sense that it is applied to the hedging of covered
options. This refers to situations where the buyer of the option delivers at inception
the required initial delta position, and accepts a mix of stocks (at their current
market price) and cash as payment of the final claim, which eliminates the cost
incurred by the initial and final hedge. Quite surprisingly, this is not a genuine
approximation of the problem studied in [4]. The question of the initial and final
hedge is fundamental, to the point that the structure of the pricing question is
completely different: in [4] the equation is quasi-linear, while it is fully non-linear
in [1, 18].

As opposed to [4], authors in [1, 18] use a verification argument to build an
exact replication strategy. Due to the special form of the non-linearity, the equation
is ill-posed when the solution does not satisfy a gamma-type constraint. The aim
of the current paper is to provide a direct characterization via stochastic target
techniques, and to incorporate right from the beginning a gamma constraint on
the hedging strategy.

The super-solution property can be proved by (essentially) following the argu-
ments of [8]. The sub-solution characterization is much more difficult to obtain.
Actually, we could not prove the required geometric dynamic programming princi-
ple, unlike [8], because of the strong interaction between the hedging strategy and
the underlying price process due to the market impact. Instead, we use the smooth-
ing technique developed in [5]. We construct a sequence of smooth super-solutions
which, by a verification argument, provide upper-bounds for the super-hedging
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price. As they converge to a solution of the targeted pricing equation, a compar-
ison principle argument implies that their limit is the super-hedging price. As a
by-product, this construction provides explicit ε-optimal hedging strategies. We
also provide a comparison principle and a numerical resolution scheme. For sim-
plicity, we first consider a model that has only permanent price impact, we explain
in Section 3 why adding a resilience effect does not affect our analysis. Note that
this is because the resilience effect we consider here has no quadratic variation, as
opposed to [1], in which the resilience can destroy the parabolicity of the equation,
and renders the exact replication non optimal.

We close this introduction by pointing out some related references. [6] incor-
porates liquidity costs but no price impact, the price curve is not affected by the
trading strategy. It can be modified by adding restrictions on admissible strate-
gies as in [7] and [24]. This leads to a modified pricing equation, which exhibits
a quadratic term in the second order derivative of the solution, and renders the
pricing equation fully non-linear, and even not unconditionally parabolic. Other
articles focus on the derivation of the price dynamics through clearing condition,
see e.g., [12], [22], [21] in which the supply and demand curves arise from “reference”
and “program” traders (i.e., option hedgers); leading to a modified price dynamics,
but without taking into account the liquidity costs, see also [17]. Finally, the series
of papers [23], [8], [24] addresses the liquidity issue indirectly by imposing bounds
on the “gamma” of admissible trading strategies, no liquidity cost or price impact
are modeled explicitly.

General notations. Throughout this paper, Ω is the canonical space of contin-
uous functions on R+ starting at 0, P is the Wiener measure, W is the canonical
process, and F = (Ft)t≥0 is the augmentation of its raw filtration F◦ = (F◦t )t≥0. All
random variables are defined on (Ω,F∞,P). We denote by |x| the Euclidean norm
of x ∈ Rn, the integer n ≥ 1 is given by the context. Unless otherwise specified,
inequalities involving random variables are taken in the P− a.s. sense. We use the
convention x/0 = sign(x)×∞ with sign(0) = +.

1 Model and hedging problem
This section is dedicated to the derivation of the dynamics and the description of
the gamma constraint. We also explain in detail how the pricing equation can be
obtained and state our main result.
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1.1 Impact rule and discrete time trading dynamics
We consider the framework studied in [4]. Namely, the impact of a strategy on
the price process is modeled by an impact function f : the price variation due to
buying a (infinitesimal) number δ ∈ R of shares is δf(x), given that the price of
the asset is x before the trade. The cost of buying the additional δ units is

δx+
1

2
δ2f(x) = δ

∫ δ

0

1

δ
(x+ ιf(x))dι,

in which ∫ δ

0

1

δ
(x+ ιf(x))dι

can be interpreted as the average cost for each additional unit.
Between two trading instances τ1, τ2 with τ1 ≤ τ2, the dynamics of the stock is

given by the strong solution of the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt.

Throughout this paper, we assume that

f ∈ C2
b and inf f > 0,

(µ, σ) is Lipschitz and bounded, inf σ > 0. (1.1)

As in [4], the number of shares the trader would like to hold is given by a
continuous Itô process Y of the form

Y = Y0 +

∫ ·
0
bsds+

∫ ·
0
asdWs. (1.2)

We say1 that (a, b) belongs to A◦k if (a, b) is continuous, F-adapted,

a = a0 +

∫ ·
0
βsds+

∫ ·
0
αsdWs

where (α, β) is continuous, F-adapted, and ζ := (a, b, α, β) is essentially bounded
by k and such that

E
[
sup

{
|ζs′ − ζs|, t ≤ s ≤ s′ ≤ s+ δ ≤ T

}
|F◦t
]
≤ kδ

for all 0 ≤ δ ≤ 1 and t ∈ [0, T − δ].
1In [4], (a, b) is only required to be progressively measurable and essentially bounded.

The additional restrictions imposed here will be necessary for our results in Section 2.2.
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We then define

A◦ := ∪kA◦k.

To derive the continuous time dynamics, we first consider a discrete time setting
and then pass to the limit. In the discrete time setting, the position is re-balanced
only at times

tni := iT/n, i = 0, . . . , n, n ≥ 1.

In other words, the trader keeps the position Ytni in stocks over each time interval
[tni , t

n
i+1). Hence, his position in stocks at t is

Y n
t :=

n−1∑
i=0

Ytni 1{tni ≤t<tni+1} + YT1{t=T}, (1.3)

and the number of shares purchased at tni+1 is

δntni+1
:= Ytni+1

− Ytni .

Given our impact rule, the corresponding dynamics for the stock price process is

Xn = X0 +

∫ ·
0
µ(Xn

s )ds+

∫ ·
0
σ(Xn

s )dWs +
n∑
i=1

1[tni ,T ]δ
n
tni
f(Xn

tni −), (1.4)

in which X0 is a constant.
The portfolio process is described as the sum V n of the amount of cash held

and the potential wealth Y nXn associated to the position in stocks:

V n = cash position + Y nXn.

It does not correspond to the liquidation value of the portfolio, except when Y n = 0.
This is due to the fact that the liquidation of Y n stocks does not generate a gain
equal to Y nXn, because of the price impact. However, one can infer the exact
composition in cash and stocks of the portfolio from the knowledge of the couple
(V n, Y n).

Throughout this paper, we assume that the risk-free interest rate is zero (for
ease of notations). Then,

V n = V0 +

∫ ·
0
Y n
s−dX

n
s +

n∑
i=1

1[tni ,T ]
1

2
(δntni )2f(Xn

tni −). (1.5)

This wealth equation is derived as in [4] following elementary calculations. The
last term of the right-hand side comes from the fact that, at time tni , δ

n
tni

shares are
bought at the average execution price Xn

tni −
+ 1

2δ
n
tni
f(Xn

tni −
), and the stock’s price

ends at Xn
tni −

+ δntni
f(Xn

tni −
), whence the additional profit term. However, one can

check that a profitable round trip trade can not be built, see [4, Remark 3].
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Remark 1.1. Note that in this work we restrict ourselves to a permanent price im-
pact, no resilience effect is modeled. We shall explain in Section 3 below why taking
resilience into account does not affect our analysis. See in particular Proposition
3.1.

1.2 Continuous time trading dynamics
The continuous time trading dynamics is obtained by passing to the limit n→∞,
i.e., by considering strategies with increasing frequency of rebalancement.

Proposition 1.2. [4, Proposition 1] Let Z := (X,Y, V ) where Y is defined as in
(1.2) for some (a, b) ∈ A◦, and (X,V ) solves

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0
f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs))ds

= X0 +

∫ ·
0
σasX (Xs)dWs +

∫ ·
0
µas,bsX (Xs)ds (1.6)

with

σasX := (σ + asf) , µas,bsX := (µ+bsf + asσf
′),

and
V = V0 +

∫ ·
0
YsdXs +

1

2

∫ ·
0
a2
sf(Xs)ds. (1.7)

Let Zn := (Xn, Y n, V n) be defined as in (1.4)-(1.3)-(1.5). Then, there exists a
constant C > 0 such that

sup
[0,T ]

E
[
|Zn − Z|2

]
≤ Cn−1

for all n ≥ 1.

For the rest of the paper, we shall therefore consider (1.7)-(1.6) for the dynamics
of the portfolio and price processes.

Remark 1.3. As explained in [4], the previous analysis could be extended to a
non-linear impact rule in the size of the order. To this end, we note that the
continuous time trading dynamics described above would be the same for a more
general impact rule δ 7→ F (x, δ) whenever it satisfies F (x, 0)= ∂2

δδF (x, 0) = 0 and
∂δF (x, 0) = f(x). For our analysis, we only need to consider the value and the
slope of the impact function at the origin.
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1.3 Hedging equation and gamma constraint
Given φ = (y, a, b) ∈ R × A◦ and (t, x, v) ∈ [0, T ] × R × R, we now write (Xt,x,φ,
Y t,φ , V t,x,v,φ) for the solution of (1.6)-(1.2)-(1.7) associated to the control (a, b)
with time-t initial condition (x, y, v).

In this paper, we consider covered options, in the sense that the trader is given
at the initial time t the number of shares Yt = y required to launch his hedging
strategy and can pay the option’s payoff at T in cash and stocks (evaluated at their
time-T value). Therefore, he does not exert any immediate impact at time t nor T
due to the initial building or final liquidation of his position in stocks. Recalling
that V stands for the sum of the position in cash and the number of held shares
multiplied by their price, the super-hedging price at time t of the option with payoff
g(Xt,x,φ

T ) is defined as

v(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. G(t, x, v, y) 6= ∅},

in which G(t, x, v, y) is the set of elements (a, b) ∈ A◦ such that φ := (y, a, b)
satisfies

V t,x,v,φ
T ≥ g(Xt,x,φ

T ).

In order to understand what the associated partial differential equation is, let
us first rewrite the dynamics of Y in terms of X:

dY t,φ
t = γatY (Xt,x,φ

t )dXt,x,φ
t + µat,btY (Xt,x,φ

t )dt

with

γaY :=
a

σ + fa
and µa,bY := b− γaY µ

a,b
X . (1.8)

Assuming that the hedging strategy consists in tracking the super-hedging price,
as in classical complete market models, then one should have V t,x,v,φ = v(·, Xt,x,φ).
If v is smooth, recalling (1.6)-(1.7) and applying Itô’s lemma twice implies

Y t,φ = ∂xv(·, Xt,x,φ) , γaY (Xt,x,φ) = ∂2
xxv(·, Xt,x,φ), (1.9)

and

1

2
a2f(Xt,x,φ) = ∂tv(·, Xt,x,φ) +

1

2
(σaX)2(Xt,x,φ)∂2

xxv(·, Xt,x,φ). (1.10)

Then, the right-hand side of (1.9) combined with the definition of γaY leads to

a =
σ∂2

xxv(·, Xt,x,φ)

1− f∂2
xxv(·, Xt,x,φ)

, σaX =
σ

1− f∂2
xxv(·, Xt,x,φ)

,
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and (1.10) simplifies to[
−∂tv −

1

2

σ2

(1− f∂2
xxv)

∂2
xxv

]
(·, Xt,x,φ) = 0 on [t, T ). (1.11)

This is precisely the pricing equation obtained in [1, 18].
Equation (1.11) needs to be considered with some precautions due to the sin-

gularity at f∂2
xxv = 1. Hence, one needs to enforce that 1−f∂2

xxv does not change
sign. We choose to restrict the solutions to satisfy 1− f∂2

xxv > 0, since having the
opposite inequality would imply that a does not have the same sign as ∂2

xxv, so
that, having sold a convex payoff, one would sell when the stock goes up and buy
when it goes down, a very counter-intuitive fact.

In the following, we impose that the constraint

−k ≤γaY (Xt,x,φ) ≤ γ̄(Xt,x,φ) , on [t, T ] P− a.e., (1.12)

should hold for some k ≥ 0, in which γ̄ is a bounded continuous map satisfying

ι ≤ γ̄ ≤ 1/f − ι, for some ι > 0. (1.13)

We denote by Ak,γ̄(t, x) the collection of elements (a, b) ∈ A◦k such that (1.12)
holds and define

Aγ̄(t, x) := ∪k≥0Ak,γ̄(t, x).

Then, the equation (1.11) has to be modified to take this gamma constraint
into account, leading naturally to

F [vγ̄ ] := min

{
−∂tvγ̄ −

1

2

σ2

1− f∂2
xxvγ̄

∂2
xxvγ̄ , γ̄ − ∂2

xxvγ̄

}
= 0 on [0, T )× R,

(1.14)
in which vγ̄ is defined as v but with

Gγ̄(t, x, v, y) := G(t, x, v, y) ∩ Aγ̄(t, x)

in place of G(t, x, v, y). More precisely,

vγ̄(t, x) := inf{v = c+ yx : (c, y) ∈ R2 s.t. Gγ̄(t, x, v, y) 6= ∅}. (1.15)

As for the T -boundary condition, we know that vγ̄(T, ·) = g by definition.
However, as usual, the constraint on the gamma in (1.14) should propagate up
to the boundary and g has to be replaced by its face-lifted version ĝ, defined as
the smallest function above g that is a viscosity super-solution of the equation
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γ̄ − ∂2
xxϕ ≥ 0. It is obtained by considering any twice continuously differentiable

function Γ̄ such that ∂2
xxΓ̄ = γ̄, and then setting

ĝ := (g − Γ̄)conc + Γ̄,

in which the superscript conc means concave envelope, cf. [23, Lemma 3.1].2 Hence,
we expect that

vγ̄(T−, ·) = ĝ on R.

From now on, we assume that

ĝ is uniformly continuous,
g is lower-semicontinuous, g− is bounded and g+ has linear growth. (1.16)

We are now in a position to state our main result. From now on

vγ̄(T, x) stands for lim
(t′, x′)→ (T, x)

t′ < T

vγ̄(t′, x′)

whenever it is well defined.

Theorem 1.4. The value function vγ̄ is continuous with linear growth. Moreover,
vγ̄ is the unique viscosity solution with linear growth of

F [ϕ]1[0,T ) + (ϕ− ĝ)1{T} = 0 on [0, T ]× R. (1.17)

We conclude this section with additional remarks.

Remark 1.5. Note that ĝ can be uniformly continuous without g being continuous.
Take for instance g(x) = 1{x≥K} with K ∈ R, and consider the case where γ̄ > 0

is a constant. Then, ĝ(x) = [1{x≥xo}
γ̄
2 (x− xo)2] ∧ 1 with xo := K − (2/γ̄)

1
2 .

Remark 1.6. The map ĝ inherits the linear growth of g. Indeed, let c0, c1 ≥ 0 be
constants such that |g(x)| ≤ w(x) := c0 + c1|x|. Since ĝ ≥ g by construction, we
have ĝ− ≤ w. On the other hand, since γ̄ ≥ ι > 0, by (1.13), it follows from the
arguments in [23, Lemma 3.1] that ĝ ≤ (w − Γ̃)conc + Γ̃, in which Γ̃(x) = ιx2/2.
Now, one can easily check by direct computations that

(w − Γ̃)conc = (w − Γ̃)(xo)1[−xo,xo] + (w − Γ̃)1[−xo,xo]c

with xo := c1/ι. Hence, (w − Γ̃)conc + Γ̃ has the same linear growth as w.

2Obviously, adding an affine map to Γ̄ does not change the definition of ĝ.
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Remark 1.7. As will appear in the rest of our analysis, one could very well in-
troduce a time dependence in the impact function f and in γ̄. Another interesting
question studied by the second author in [18] and [19] concerns the smoothness
of the solution and how the constraint on ∂2

xxv gets naturally enforced by the fast
diffusion arising when 1− f∂2

xxv is close to 0.

Remark 1.8 (Existence of a smooth solution to the original partial differential
equation). When the pricing equation (1.17) admits smooth solutions (cf. [18] and
[19]) that allow to use the verification theorem, then one can construct exact replica-
tion strategies from the classical solution. By the comparison principle of Theorem
2.11 below, this shows that the value function is the classical solution of the pricing
equation, and that the optimal strategy exists and is an exact replication strategy
of the option with payoff function ĝ. We will explain in Remark 2.18 below how
almost optimal super-hedging strategies can be constructed explicitly even when no
smooth solution exists.

Remark 1.9 (Monotonicity in the impact function). Note that the map λ ∈ R 7→
σ2(x)M
1−λM is non-decreasing on {λ : λM < 1}, for all (t, x,M) ∈ [0, T ] × R × R. Let
us now write vγ̄ as vfγ̄ to emphasize its dependence on f , and consider another

impact function f̃ satisfying the same requirements as f . We denote by vf̃γ̄ the
corresponding super-hedging price. Then, the above considerations combined with
Theorem 1.4 and the comparison principle of Theorem 2.11 below imply that vf̃γ̄ ≥
vfγ̄ whenever f̃ ≥ f on R. The same implies that vfγ̄ ≥ v in which v solves the
heat-type equation

−∂tϕ−
1

2
σ2∂2

xxϕ = 0 on [0, T )× R,

with terminal condition ϕ(T, ·) = g (recall that ĝ ≥ g). See Section 4.2 for a
numerical illustration of this fact.

2 Viscosity solution characterization
In this section, we provide the proof of Theorem 1.4. Our strategy is the following.

1. First, we adapt the partial differential equation smoothing technique used
in [5] to provide a smooth supersolutions v̄ε,K,δγ̄ of (1.17) on [δ, T ]× R, with
ε > 0, from which super-hedging strategies can be constructed by a standard
verification argument. In particular, v̄ε,K,δγ̄ ≥ vγ̄ on [δ, T ]×R. Moreover, this
sequence has a uniform linear growth and converges to a viscosity solution
v̄γ̄ of (1.17) as δ, ε→ 0 and K →∞. See Section 2.1.
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2. Second, we construct a lower bound vγ̄ for vγ̄ that is a supersolution of
(1.17). It is obtained by considering a weak formulation of the super-hedging
problem and following the arguments of [8, Section 5] based on one side of
the geometric dynamic programming principle, see Section 2.2. It is shown
that this function has linear growth as well.

3. We can then conclude by using the above and the comparison principle for
(1.17) of Theorem 2.11 below: vγ̄ ≥ v̄γ̄ but vγ̄ ≤ vγ̄ ≤ v̄γ̄ so that vγ̄ = v̄γ̄ =
vγ̄ and vγ̄ is a viscosity solution of (1.17), and has linear growth.

4. Our comparison principle, Theorem 2.11 below, allows us to conclude that
vγ̄ is the unique solution of (1.17) with linear growth.

As already mentioned in the introduction, unlike [8], we could not prove the
required geometric dynamic programming principle that should directly lead to a
subsolution property (thus avoiding to use the smoothing technique mentioned in
1. above). This is due to the strong interaction between the hedging strategy and
the underlying price process through the market impact. Such a feedback effect is
not present in [8].

2.1 A sequence of smooth supersolutions
We first construct a sequence of smooth supersolutions v̄ε,K,δγ̄ of (1.17) which ap-
pears to be an upper bound for the super-hedging price vγ̄ , by a simple verification
argument. For this, we adapt the methodology introduced in [5]: we first construct
a viscosity solution of a version of (1.17) with shaken coefficients (in the terminol-
ogy of [15]) and then smooth it out with a kernel. The main difficulty here is that
our terminal condition ĝ is unbounded, unlike [5]. This requires additional non
trivial technical developments.

2.1.1 Construction of a solution for the operator with shaken co-
efficients

We start with the construction of the operator with shaken coefficients. Given
ε > 0 and a (uniformly) strictly positive continuous map κ with linear growth,
that will be defined later on, let us introduce a family of perturbations of the
operator appearing in (1.17):

F εκ(t, x, q,M) := min
x′∈Dεκ(x)

min

{
−q − σ2(x′)M

2(1− f(x′)M)
, γ̄(x′)−M

}
,
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where

Dε
κ(x) := {x′ ∈ R : (x− x′)/κ(x′) ∈ [−ε, ε]}. (2.1)

For ease of notation, we set

F εκ[ϕ](t, x) := F εκ(t, x, ∂tϕ(t, x), ∂2
xxϕ(t, x)),

whenever ϕ is smooth.

Remark 2.1. For later use, note that the map M ∈ (−∞, γ̄(x)] 7→ σ2(x)M
2(1−f(x)M)

is non-decreasing and convex, for each x ∈ R, recall (1.13). Hence, (q,M) ∈
R × (−∞, γ̄(x)] 7→ F εκ(·, q,M) is concave and non-increasing in M , for all ε ≥ 0.
This is fundamental for our smoothing approach to go through.

We also modify the original terminal condition ĝ by using an approximating
sequence whose elements are affine for large values of |x|.

Lemma 2.2. For all K > 0 there exists a uniformly continuous map ĝK and
xK ≥ K such that

• ĝK is affine on [xK ,∞) and on (−∞,−xK ]

• ĝK = ĝ on [−K,K]

• ĝK ≥ ĝ

• ĝK − Γ̄ is concave for any C2 function Γ̄ satisfying ∂2
xxΓ̄ = γ̄.

Moreover, (ĝK)K>0 is uniformly bounded by a map with linear growth and converges
to ĝ uniformly on compact sets.

Proof. Fix a C2 function Γ̄◦ satisfying ∂2
xxΓ̄◦ = γ̄. By definition, ĝ−Γ̄◦ is concave.

Let us consider an element ∆+ (resp. ∆−) of its super-differential at K (resp. −K).
Set

ĝ◦K(x) :=ĝ(x)1[−K,K](x)

+
[
ĝ(K) + (∆+ + ∂xΓ̄◦(K))(x−K)

]
1(K,∞)(x)

+
[
ĝ(−K) + (∆− + ∂xΓ̄◦(−K))(x+K)

]
1(−∞,−K)(x).

Consider now another C2 function Γ̄ satisfying ∂2
xxΓ̄ = γ̄. Since Γ̄◦ and Γ̄ differ

only by an affine map, the concavity of ĝ◦K − Γ̄ is equivalent to that of ĝ◦K − Γ̄◦.
The concavity of the latter follows from the definition of ĝ◦K , as the superdiffential
of ĝ◦K − Γ̄◦ is non-increasing by construction. In particular, ĝ◦K − Γ̄◦ ≥ ĝ − Γ̄◦ and
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therefore ĝ◦K ≥ ĝ.
We finally define ĝK by

ĝK = min{ĝ◦K , (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦}, (2.2)

with c0 > 0 and c1 ≥ 0 such that

−c0 ≤ ĝ(x) ≤ c0 + c1|x|, x ∈ R,

recall Remark 1.6. The function ĝK has the same linear growth as 2c0 + c1| · |, by
the same reasoning as in Remark 1.6. Since 2c0 > c0, ĝK = ĝ◦K = ĝ on [−K,K].
Furthermore, as the minimum of two concave functions is concave, so is ĝK − Γ̄ for
any C2 function Γ̄ satisfying ∂2

xxΓ̄ = γ̄. The other assertions are immediate. �

We now set

ĝεK := ĝK + ε (2.3)

and consider the equation

F εκ[ϕ]1[0,T ) + (ϕ− ĝεK)1{T} = 0. (2.4)

We then choose κ and ε◦ ∈ (0, 1) such that

κ ∈ C∞ with bounded derivatives of all orders,
inf κ > 0 and κ = |ĝK |+ 1 on (−∞,−xK ] ∪ [xK ,∞),

−1/ε◦ < ∂xκ < 1/ε◦,
(2.5)

in which xK ≥ K is defined in Lemma 2.2. We omit the dependence of κ on K for
ease of notations.

Remark 2.3. For later use, note that the condition |∂xκ| < 1/ε◦ ensures that the
map x 7→ x + εκ(x) and x 7→ x − εκ(x) are uniformly strictly increasing for all
0 ≤ ε ≤ ε◦. Also observe that xn → x and x′n ∈ Dε

κ(xn), for all n, imply that x′n
converges to an element x′ ∈ Dε

κ(x), after possibly passing to a subsequence. In
particular, F εκ is continuous.

When κ ≡ 1 and ĝεK ≡ ĝ + ε, (2.4) corresponds to the operator in (1.17) with
shaken coefficients, in the traditional terminology of [15]. The function κ will be
used below to handle the potential linear growth at infinity of ĝ. The introduction
of the additional approximation ĝεK is motivated by the fact that the proof of
Proposition 2.7 below requires an affine behavior at infinity. As already mentioned,
these additional complications do not appear in [5] because their terminal condition
is bounded.
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We now prove that (2.4) admits a viscosity solution that remains above the
terminal condition ĝ on a small time interval [T − cKε , T ]. As already mentioned,
we will later smooth this solution out with a regular kernel, so as to provide a
smooth supersolution of (1.17).

Proposition 2.4. For all ε ∈ [0, ε◦] and K > 0, there exists a unique continuous
viscosity solution v̄ε,Kγ̄ of (2.4) that has linear growth. It satisfies

v̄ε,Kγ̄ ≥ ĝK + ε/2, on [T − cKε , T ]× R, (2.6)

for some cKε ∈ (0, T ).
Moreover, {[v̄ε,Kγ̄ ]+, ε ∈ [0, ε◦],K > 0} is bounded by a map with linear growth, and
{[v̄ε,Kγ̄ ]−, ε ∈ [0, ε◦],K > 0} is bounded by sup g−.

Proof. The proof is mainly a modification of the usual Perron’s method, see [10,
Section 4].
a. We first prove that there exists two continuous functions w̄ and w with linear
growth that are respectively super- and subsolution of (2.4) for any ε ∈ [0, ε◦].

Since ĝεK = ĝK + ε ≥ g by Lemma 2.2, it suffices to set

w := inf g > −∞,

see (1.16). To construct a supersolution w̄, let us fix η ∈ (0, ι ∧ inf f−1) with ι as
in (1.13), set Γ̃(x) = ηx2/2 and define g̃ = (ĝε◦K − Γ̃)conc + Γ̃. Then, g̃ ≥ ĝε◦K , while
the same reasoning as in Remark 1.6 implies that g̃ shares the same linear growth
as ĝε◦K , see (2.3) and Lemma 2.2. We then define w̄ by

w̄(t, x) = g̃(x) + 1 + (T − t)A

in which

A := sup
σ2γ̄

2(1− fγ̄)
.

The constant A is finite, and w̄ has the same linear growth as g̃, see (1.1)-(1.13).
Since a concave function is a viscosity supersolution of −∂2

xxϕ ≥ 0, we deduce that
g̃ is a viscosity supersolution of η− ∂2

xxϕ ≥ 0. Then, w̄ is a viscosity supersolution
of

min
{
−∂tϕ−A , η − ∂2

xxϕ
}
≥ 0.

Since γ̄ ≥ ι ≥ η, it remains to use Remark 2.1 to conclude that w̄ is a supersolution
of (2.4).
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b. We now express (2.4) as a single equation over the whole domain [0, T ] × R
using the following definitions

F ε,Kκ,+ (t, x, r, q,M) := F εκ(t, x, q,M)1[0,T ) + max
{
F εκ(t, x, q,M), r − ĝεK(x)

}
1{T}

F ε,Kκ,− (t, x, r, q,M) := F εκ(t, x, q,M)1[0,T ) + min
{
F εκ(t, x, q,M), r − ĝεK(x)

}
1{T}.

As usual F ε,Kκ,± [ϕ](t, x) := F ε,Kκ,± (t, x, ϕ(t, x), ∂tϕ(t, x), ∂2
xxϕ(t, x)). Recall that the

formulations in terms of F ε,Kκ,± lead to the same viscosity solutions as (2.4) (see
Lemma 5.1 in the Appendix). This is the formulation to which we apply Perron’s
method. In view of a., the functions w and w̄ are sub- and supersolution of F ε,Kκ,− = 0

and F ε,Kκ,+ = 0. Define:

v̄ε,Kγ̄ := sup{v ∈ USC : w ≤ v ≤ w̄ and v is a subsolution of F ε,Kκ,− = 0},

in which USC denotes the class of upper-semicontinuous maps. Then, the upper-
(resp. lower-)semicontinuous envelope (v̄ε,Kγ̄ )∗ (resp. (v̄ε,Kγ̄ )∗) of v̄ε,Kγ̄ is a viscosity
subsolution of F ε,Kκ,− [ϕ] = 0 (resp. supersolution of F ε,Kκ,+ [ϕ] = 0) with linear growth,
recall the continuity property of Remark 2.3 and see e.g. [10, Section 4]. The
comparison result of Theorem 2.11 stated below implies that

(v̄ε,Kγ̄ )∗ = (v̄ε,Kγ̄ )∗, on [0, T ]× R.

Hence, v̄ε,Kγ̄ is a continuous viscosity solution of (2.4), recall Lemma 5.1. By con-
struction, it has linear growth. Uniqueness in this class follows from Theorem 2.11
again.
c. It remains to prove (2.6). For this, we need a control on the behavior of v̄ε,Kγ̄
as t→ T . It is enough to obtain it for a lower bound vε,K that we first construct.
Let ϕ be a test function such that

(strict) min
[0,T )×R

(v̄ε,Kγ̄ − ϕ) = (v̄ε,Kγ̄ − ϕ)(t0, x0)

for some (t0, x0) ∈ [0, T )× R. By the supersolution property,

min
x′∈Dεκ(x0)

{γ̄(x′)− ∂2
xxϕ(t0, x0)} ≥ 0.

Recalling (1.1) and (1.13), this implies that, for x′ ∈ Dε
κ(x0),

1− f(x′)∂2
xxϕ(t0, x0) ≥ ιf(x′) ≥ ι inf f =: ι̃ > 0.
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Using the supersolution property and the above inequalities yields

0 ≤ min
x′∈Dεκ(x0)

{
−∂tϕ(t0, x0)− σ2(x′)∂2

xxϕ(t0, x0)

2(1− f(x′)∂2
xxϕ(t0, x0))

}
≤ min

x′∈Dεκ(x0)

{
−∂tϕ(t0, x0)−

σ2(x′)
[
∂2
xxϕ(t0, x0)− γ̄(x0)

]
2(1− f(x′)∂2

xxϕ(t0, x0))

}

≤ −∂tϕ(t0, x0)− σ̃2∂2
xxϕ(t0, x0)

2ι̃
+
σ̃2γ̄(x0)

2ι̃

where σ̃ := supσ.
Denote by vε,K the unique viscosity solution of{

−∂tϕ−
σ̃2∂2

xxϕ

2ι̃
+
σ̃2γ̄

2ι̃

}
1[0,T ) + (ϕ− ĝεK)1{T} = 0. (2.7)

The comparison principle for (2.7) and the Feynman-Kac formula imply that

v̄ε,Kγ̄ (t, x) ≥ vε,K(t, x) = E
[
−
∫ T−t

0

σ̃2γ̄(Sxr )

2ι̃
dr + ĝεK(SxT−t)

]
where

Sx = x+
σ̃√
ι̃
W.

It remains to show that (2.6) holds for vε,K in place of v̄ε,Kγ̄ . The argument is
standard. Since ĝK is uniformly continuous, see Lemma 2.2, we can find BK

ε > 0
such that ∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{|SxT−t−x|≤BKε } ≤ ε
for all ε > 0. We now consider the case |SxT−t − x| > BK

ε . Let C > 0 denote a
generic constant that does not depend on (t, x) but can change from line to line.
Because, ĝK is affine on [xK ,∞) and on (−∞,−xK ], see Lemma 2.2,

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≥xK}] ≤ C(T − t)
1
2 if x ≥ xK ,

and
E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≤−xK}] ≤ C(T − t)
1
2 if x ≤ −xK .

On the other hand, by linear growth of ĝεK , if x < xK , then

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣1{SxT−t≥xK}1{|SxT−t−x|≥BKε }]
≤ E

[∣∣ĝεK(SxT−t)− ĝεK(x)
∣∣2] 1

2 P
[
|SxT−t − x| ≥ |xK − x| ∨BK

ε

] 1
2

≤ C (1 + |x|)(T − t)
1
2

|xK − x| ∨BK
ε

≤ C

BK
ε

(T − t)
1
2 .
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The (four) remaining cases are treated similarly, and we obtain

E
[∣∣ĝεK(SxT−t)− ĝεK(x)

∣∣] ≤ C

BK
ε

(T − t)
1
2 + ε.

Since γ̄ is bounded, this shows that

|vε,K(t, x)− ĝεK(x)| ≤ C

BK
ε

(T − t)
1
2 + ε

for t ∈ [T − 1, T ]. Hence the required result for vε,K . Since v̄ε,Kγ̄ ≥ vε,K , this
concludes the proof of (2.6). �

For later use, note that, by stability, v̄ε,Kγ̄ converges to a solution of (1.17) when
ε→ 0 and K →∞.

Proposition 2.5. As ε→ 0 and K →∞, v̄ε,Kγ̄ converges to a function v̄γ̄ that is
the unique viscosity solution of (1.17) with linear growth.

Proof. The family of functions {v̄ε,Kγ̄ , ε ∈ (0, ε◦],K > 0} is uniformly bounded
by a map with linear growth, see Proposition 2.4. In view of the comparison result
of Theorem 2.11 below, it suffices to apply [2, Theorem 4.1]. �

Remark 2.6. The bounds on v̄γ̄ can be made explicit, which can be useful to design
a numerical scheme, see Section 4.1 below. First, as a by-product of the proof of
Proposition 2.4, v̄ε,Kγ̄ ≥ inf g. Passing to the limit as ε→ 0 and K →∞ leads to

v̄γ̄ ≥ inf g =: w.

We have also obtained that

v̄ε,Kγ̄ ≤ (ĝε◦K − Γ̃)conc + Γ̃ + 1 +A

in which x 7→ Γ̃(x) = ηx2/2 for some η ∈ (0, ι ∧ inf f−1) with ι as in (1.13), and
A := T sup(σ2γ̄/[2(1− fγ̄)]). On the other hand, (2.2) implies

ĝε◦K ≤ 1 + (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦

for Γ̄◦ such that ∂2
xxΓ̄◦ = γ̄. Then,

v̄ε,Kγ̄ ≤
(

1 + (2c0 + c1| · | − Γ̄◦)conc + Γ̄◦ − Γ̃
)conc

+ Γ̃ + 1 +A

≤
(

1 + (2c0 + c1| · | − Γ̃)conc + Γ̃− Γ̃
)conc

+ Γ̃ + 1 +A

=
(

1 + 2c0 + c1| · | − Γ̃
)conc

+ Γ̃ + 1 +A =: w̄
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and
v̄γ̄ ≤ w̄.

The function w̄ defined above can be computed explicitly by arguing as in Remark
1.6.

Also note that (2.2) and the arguments of Remark 1.6 imply that there exists a
constant C > 0 such that

lim sup
|x|→∞

|v̄ε,Kγ̄ (x)|/(1 + |ĝK(x)|) ≤ C, for all ε ∈ [0, ε◦] and K > 0. (2.8)

2.1.2 Regularization and verification

Prior to applying our verification argument, it remains to smooth out the function
v̄ε,Kγ̄ . This is similar to [5, Section 3], but here again the fact that ĝ may not be
bounded incurs additional difficulties. In particular, we need to use a kernel with
a space dependent window.

We first fix a smooth kernel

ψδ := δ−2ψ(·/δ)

in which δ > 0 and ψ ∈ C∞b is a non-negative function with the closure of its
support [−1, 0]× [−1, 1] that integrates to 1, and such that∫

yψ(·, y)dy = 0. (2.9)

Let us set

v̄ε,K,δγ̄ (t, x) :=

∫
R×R

v̄ε,Kγ̄ ([t′]+, x′)
1

κ(x)
ψδ

(
t′ − t, x

′ − x
κ(x)

)
dt′dx′. (2.10)

We recall that κ enters into the definition of F εκ and satisfies (2.5).
The following shows that v̄ε,K,δγ̄ is a smooth supersolution of (1.17) with a

space gradient admitting bounded derivatives. This is due to the space dependent
rescaling of the window by κ and will be crucial for our verification arguments.

Proposition 2.7. For all 0 < ε < ε◦ and K > 0 large enough, there exists δ◦ > 0
such that v̄ε,K,δγ̄ is a C∞ supersolution of (1.17) for all 0 < δ < δ◦. It has linear
growth and ∂xv̄ε,K,δγ̄ has bounded derivatives of any order.

Proof. a. It follows from (2.5) and (2.8) that

lim sup
|x|→∞

|v̄ε,Kγ̄ (x)|/(1 + |κ(x)|) <∞.
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Direct computations and (2.5) then show that v̄ε,K,δγ̄ has linear growth and that all
derivatives of ∂xv̄ε,K,δγ̄ are uniformly bounded.
b. We now prove the supersolution property inside the parabolic domain. Since
the proof is very close to that of [5, Theorem 3.3], we only provide the arguments
that require to be adapted, and refer to their proof for other elementary details.
Fix ` > 0 and set

v`(t, x) := v̄ε,K,δγ̄ (t, (−`) ∨ x ∧ `).

We omit the superscripts that are superfluous in this proof. Given k ≥ 1, set

v`,k(z) := inf
z′∈[0,T ]×R

(
v`(z

′) + k|z − z′|2
)
.

Since v` is bounded and continuous, the infimum in the above is achieved by a
point ẑ`,k(z) = (t̂`,k(z), x̂`,k(z)), and v`,k is bounded, uniformly in k ≥ 1. This
implies that we can find C` > 0, independent of k, such that

|z − ẑ`,k(z)|2 ≤ C`/k =: (ρ`,k)
2. (2.11)

Moreover, a simple change of variables argument shows that, if ϕ is a smooth
function such that v`,k − ϕ achieves a minimum at z ∈ [0, T )× (−`, `), then

(∂tϕ, ∂xϕ, ∂
2
xxϕ)(z) ∈ P̄−v`(ẑ`,k(z)),

where P̄−v`(ẑ`,k(z)) denotes the closed parabolic subjet of v` at ẑ`,k(z); see e.g. [10]
for the definition. Then, Proposition 2.4 implies that v`,k is a supersolution of

min
x′∈Dεκ(x̂`,k)

min

{
−∂tϕ−

σ2(x′)∂2
xxϕ

2(1− f(x′)∂2
xxϕ)

, γ̄(x′)− ∂2
xxϕ

}
≥ 0

on [ρ`,k, T−ρ`,k)×(−`+ρ`,k, `−ρ`,k). We next deduce from (2.11) that x′ ∈ Dε/2
κ (x)

implies

− ε
2
κ(x′)− C`/k

1
2 ≤ x̂`,k(t, x)− x′ ≤ ε

2
κ(x′) + C`/k

1
2 .

Since inf κ > 0, this shows that x′ ∈ Dε
κ(x̂`,k(t, x)) for k large enough with respect

to `. Hence, v`,k is a supersolution of

min
x′∈Dε/2κ

min

{
−∂tϕ−

σ2(x′)∂2
xxϕ

2(1− f(x′)∂2
xxϕ)

, γ̄(x′)− ∂2
xxϕ

}
≥ 0

on [ρ`,k, T − ρ`,k)× (−`+ ρ`,k, `− ρ`,k).
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We now argue as in [13]. Since v`,k is semi-concave, there exist ∂2,abs
xx v`,k ∈ L1

and a Lebesgue-singular negative Radon measure ∂2,sing
xx v`,k such that

∂2
xxv`,k(dz) = ∂2,abs

xx v`,k(z)dz + ∂2,sing
xx v`,k(dz) in the distribution sense

and

(∂tv`,k, ∂xv`,k, ∂
2,abs
xx v`,k) ∈ P̄−v`,k a.e. on [ρk, T − ρk]× (−`+ ρ`,k, `− ρ`,k),

see [14, Section 3]. Hence, the above implies that

min
x′∈Dε/2κ

min

{
−∂tv`,k −

σ2(x′)∂2,abs
xx v`,k

2(1− f(x′)∂2,abs
xx v`,k)

, γ̄(x′)− ∂2,abs
xx v`,k

}
≥ 0

a.e. on [ρ`,k, T − ρ`,k)× (−`+ ρ`,k, `− ρ`,k), or equivalently, by (2.1),

min

{
−∂tv`,k −

σ2(x)∂2,abs
xx v`,k

2(1− f(x)∂2,abs
xx v`,k)

, γ̄(x)− ∂2,abs
xx v`,k

}
(t′, x′) ≥ 0

for all x and for a.e. (t′, x′) ∈ [ρ`,k, T − ρ`,k) × (−` + ρ`,k, ` − ρ`,k) such that
2|x′ − x| ≤ εκ(x). Take 0 < δ < ε/2. Integrating the previous inequality with
respect to (t′, x′) with the kernel function ψδ(·, ·/κ)/κ, using the concavity and
monotonicity property of Remark 2.1 and the fact that ∂2,sing

xx v`,k is non-positive,
we obtain

min

{
−∂tvδ`,k −

σ2∂2
xxv

δ
`,k

2(1− f∂2
xxv

δ
`,k)

, γ̄ − ∂2
xxv

δ
`,k

}
≥ 0 (2.12)

on [ρ`,k + δ, T − ρ`,k)× (−x−`,k, x
+
`,k), in which

vδ`,k(t, x) :=

∫
R×R

v`,k([t
′]+, x′)

1

κ(x)
ψδ

(
t′ − ·, x

′ − ·
κ(x)

)
dt′dx′

and
x+
`,k +

δ

2
κ(x+

`,k) = `− ρ`,k and − x−`,k −
δ

2
κ(−x−`,k) = −`+ ρ`,k.

The above are well defined, see Remark 2.3. By Remark 2.3 and (2.11), ±x±`,k →
±∞ and ρ`,k → 0 as k → ∞ and then ` → ∞. Moreover, vδ`,k → v̄ε,K,δγ̄ as k → ∞
and then ` → ∞, and the derivatives also converge. Hence, (2.12) implies that
v̄ε,K,δγ̄ is a supersolution of (1.17) on [δ, T )× R.
c. We conclude by discussing the boundary condition at T . We know from Propo-
sition 2.4 that

v̄ε,Kγ̄ ≥ ĝK + ε/2, on [T − cKε , T ]× R.
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Since ĝ is uniformly continuous, see (1.16), so is ĝK , and therefore v̄ε,K,δγ̄ (T, ·) ≥ ĝK
on the compact set [−2xK , 2xK ] for δ > 0 small enough with respect to ε, see
Lemma 2.2 for the definition of xK ≥ K. Now observe that x ≥ 2xK and |x′−x| ≤
δκ(x) imply that x′ ≥ 2xK(1− δcK1 )− δcK0 in which cK1 and cK0 are constants. This
actually follows from the affine behavior of κ on [xK ,∞), see (2.5) and Lemma 2.2.
For δ small enough, we then obtain x′ ≥ xK . Since ĝK is affine on [xK ,∞), and
since ψ is symmetric in its second argument, see (2.9), it follows that

v̄ε,K,δγ̄ (T, x) ≥
∫
R×R

ĝK(x′)
1

κ(x)
ψδ

(
t′ − T, x

′ − x
κ(x)

)
dt′dx′ = ĝK(x)

for all x ≥ 2xK . This also holds for x ≤ −2xK , by the same arguments. �

We can now use a verification argument and provide the main result of this
section.

Theorem 2.8. Let v̄γ̄ be defined as in Proposition 2.5. It has linear growth. More-
over, v̄γ̄ ≥ vγ̄ on [0, T ]× R.

Proof. The linear growth property has already been stated in Proposition 2.5.
We now show that v̄γ̄ ≥ vγ̄ by applying a verification argument to v̄ε,K,δγ̄ . From
now on 0 < ε ≤ ε◦ in which ε◦ is as in (2.5). The parameters K, δ > 0 are chosen
as in Proposition 2.7.

Fix (t, x) ∈ (0, T ) × R and δ ∈ (0, t ∧ ε). Let (X,Y, V ) be defined as in (1.6)-
(1.2)-(1.7) with (x, ∂xv̄ε,K,δγ̄ (t, x), v̄ε,K,δγ̄ (t, x) − ∂xv̄ε,K,δγ̄ (t, x)x) as initial condition
at t, and for the Markovian controls

â =

(
σ∂2

xxv̄ε,K,δγ̄

1− f∂2
xxv̄ε,K,δγ̄

)
(·, X)

b̂ =

(
∂2
txv̄ε,K,δγ̄ + ∂2

xxv̄ε,K,δγ̄ (µ+ âσf ′) + 1
2∂

3
xxxv̄ε,K,δγ̄ (σ + âf)2

1− f∂2
xxv̄ε,K,δγ̄

)
(·, X).

By definition of F , (1.13) and (1.1), the above is well-defined as the denomina-
tors are always bigger than inf fι > 0. All the involved functions being bounded
and Lipschitz, see Proposition 2.7, it is easy to check that a solution to the cor-
responding stochastic differential equation exists, and that (â, b̂) ∈ A◦. Direct
computations then show that Y = ∂xv̄ε,K,δγ̄ (·, X). Moreover, the fact that v̄ε,K,δγ̄ is
a supersolution of F [ϕ] = 0 on [t, T ]×R ensures that the gamma constraint (1.12)
holds, for some k ≥ 1, and that

−∂tv̄ε,K,δγ̄ (·, X)− 1

2
σ(X)â ≥ 0 on [t, T ).
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The last inequality combined with the definition of â implies

1

2
f(X)â2 ≥ ∂tv̄ε,K,δγ̄ (·, X) +

1

2
(σ(X) + f(X)â)â

= ∂tv̄
ε,K,δ
γ̄ (·, X) +

1

2
(σâX(X))2∂2

xxv̄ε,K,δγ̄ (·, X) on [t, T ).

Hence,

VT = v̄ε,K,δγ̄ (t, x) +
1

2

∫ T

t
f(Xu)â2

u du+

∫ T

t
∂xv̄ε,K,δγ̄ (u,Xu) dXu

≥ v̄ε,K,δγ̄ (t, x) +

∫ T

t
dv̄ε,K,δγ̄ (u,Xu)

= v̄ε,K,δγ̄ (T,XT ) ≥ g(XT ),

in which the last inequality follows from Proposition 2.7 again.
It remains to pass to the limit δ, ε→ 0. By Proposition 2.4, v̄ε,Kγ̄ is continuous,

so that v̄ε,K,δγ̄ converges pointwise to v̄ε,Kγ̄ as δ → 0. By Proposition 2.5, v̄ε,Kγ̄
converges pointwise to v̄γ̄ as ε→ 0 and K →∞. In view of the above this implies
the required result: v̄γ̄ ≥ vγ̄ . �

Remark 2.9. Note that, in the above proof, we have constructed a super-hedging
strategy in Ak,γ̄(t, x) and starting with |Yt| ≤ k, for some k ≥ 1 which can be
chosen in a uniform way with respect to (t, x), while v̄ε,K,δγ̄ has linear growth.

2.1.3 Comparison principle

We provide here the comparison principle that was used several times in the above.
Before stating it, let us make the following observation, based on direct computa-
tions. Recall (1.1) and (1.13).

Proposition 2.10. Fix ρ > 0. Consider the map

(t, x,M) ∈ [0, T ]× R× R 7→ Ψ(t, x,M) =
σ2(x)M

2(eρt − f(x)M)
.

Then, M 7→ Ψ(t, x,M) is continuous, uniformly in (t, x), on

O := {(t, x,M) ∈ [0, T ]× R× R : M ≤ eρtγ̄(x)}.

Moreover, there exists L > 0 such that x 7→ Ψ(t, x,M) is L-Lipschitz on O.
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Theorem 2.11. Fix ε ∈ [0, ε◦]. Let U (resp. V ) be a upper semicontinuous viscosity
subsolution (resp. lower semicontinuous supersolution) of F εκ = 0 on [0, T ) × R.
Assume that U and V have linear growth and that U ≤ V on {T}×R, then U ≤ V
on [0, T ]× R.

Proof. Set Û(t, x) := eρtU(t, x), V̂ (t, x) := eρtV (t, x). Then, Û and V̂ are
respectively sub- and supersolution of

min
x′∈Dεκ

min

{
ρϕ− ∂tϕ−

σ2(x′)∂xxϕ

2(eρt − f(x′)∂xxϕ)
, eρtγ̄(x′)− ∂xxϕ

}
= 0 (2.13)

on [0, T )×R. For later use, note that the infimum over Dε
κ is achieved in the above,

by the continuity of the involved functions.
If sup[0,T ]×R(Û − V̂ ) > 0, then we can find λ ∈ (0, 1) such that sup[0,T ]×R(Û −

V̂λ) > 0 with V̂λ := λV̂ + (1− λ)w, in which

w(t, x) := (T − t)A+ (cU0 + cU1 | · | −
ι

4
| · |2)conc(x) +

ι

4
|x|2

with cU0 , cU1 two constants such that eρT |U | ≤ cU0 + cU1 | · | and

A :=
1

2
sup

σ2

1− ι
2f

ι

2
,

where ι > 0 is as in (1.13). Note that

V̂λ(T, ·) ≥ Û(T, ·), (2.14)

and that

w is a viscosity supersolution of (2.13)
V̂λ is a viscosity supersolution of λγ̄ + (1− λ) ι2 − ∂

2
xxϕ ≥ 0.

(2.15)

Moreover, by Remark 2.1, V̂λ is a supersolution of (2.13). Define for ε > 0 and
n ≥ 1

Θε
n := sup

(t,x,y)∈[0,T ]×R2

[
Û(t, x)− V̂λ(t, y)−

(ε
2
|x|2 +

n

2
|x− y|2

) ]
=: η > 0, (2.16)

in which the last inequality holds for n > 0 large enough and ε > 0 small enough.
Denote by (tεn, x

ε
n, y

ε
n) the point at which this supremum is achieved. By (2.14), it

must hold that tεn < T , and, by standard arguments, see e.g., [10, Proposition 3.7],

lim
n→∞

n|xεn − yεn|2 = 0. (2.17)
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Moreover, Ishii’s lemma implies the existence of (aεn,M
ε
n, N

ε
n) ∈ R3 such that

(aεn, εx
ε + n(xεn − yεn),M ε

n) ∈ P̄2,+Û(tεn, x
ε
n)

(aεn,−n(xεn − yεn), N ε
n) ∈ P̄2,−V̂λ(tεn, y

ε
n),

in which P̄2,+ and P̄2,− denote as usual the closed parabolic super- and subjets,
see [10], and(

M ε
n 0

0 −N ε
n

)
≤ Rεn +

1

n
(Rεn)2 = 3n

(
1 −1
−1 1

)
+

(
3ε+ ε2

n −ε
−ε 0

)
with

Rεn := n

(
1 + ε

n −1
−1 1

)
.

In particular,

M ε
n −N ε

n ≤ δεn with δεn := ε+
ε2

n
. (2.18)

Then, by (2.15) and (1.13),

0 < (1− λ)
ι

2
≤ eρtεn γ̄(ŷεn)−N ε

n ≤ eρt
ε
n γ̄(ŷεn)−M ε

n + δεn, (2.19)

in which ŷεn ∈ Dε
κ(yεn). In view of Remark 2.3, this shows that eρtεn γ̄(x̂εn)−M ε

n > 0
for some x̂εn ∈ Dε

κ(xεn), for n large enough and ε small enough, recall (2.17). Hence,
the super- and subsolution properties of V̂λ and Û imply that we can find uεn ∈
[−ε, ε] together with ŷεn and x̂εn such that

ŷεn + uεnκ(ŷεn) = yεn , x̂
ε
n + uεnκ(x̂εn) = xεn (2.20)

and

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n)) ≤ σ2(x̂εn)M ε

n

2(eρtεn − f(x̂εn)M ε
n)
− σ2(ŷεn)N ε

n

2(eρtεn − f(ŷεn)N ε
n)
.

By Remark 2.1 and (2.18), this shows that

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n))

≤ σ2(x̂εn)(N ε
n + δεn)

2(eρtεn − f(x̂εn)(N ε
n + δεn))

− σ2(ŷεn)N ε
n

2(eρtεn − f(ŷεn)N ε
n)
.
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It remains to apply Proposition 2.10 together with (2.19) for n large enough and ε
small enough to obtain

ρ(Û(tεn, x
ε
n)− V̂λ(tεn, y

ε
n))

≤ σ2(x̂εn)N ε
n

2(eρtεn − f(x̂εn)N ε
n)
− σ2(ŷεn)N ε

n

2(eρtεn − f(ŷεn)N ε
n)

+Oεn(1)

≤ L |x̂εn − ŷεn|+Oεn(1)

for some L > 0 and where Oεn(1) → 0 as n → ∞ and then ε → 0. By continuity
and (2.17) combined with Remark 2.3 and (2.20), this contradicts (2.16) for n large
enough. �

2.2 Supersolution property for the weak formulation
In this part, we provide a lower bound vγ̄ for vγ̄ that is a supersolution of (1.17). It
is constructed by considering a weak formulation of the stochastic target problem
(1.15) in the spirit of [8, Section 5]. Since our methodology is slightly different, we
provide the main arguments.

On C(R+)5, let us now denote by (ζ̃ := (ã, b̃, α̃, β̃), W̃ ) the coordinate process
and let F̃◦ = (F̃◦s )s≤T be its raw filtration. We say that a probability measure P̃
belongs to Ãk if W̃ is a P̃-Brownian motion and if for all 0 ≤ δ ≤ 1 and r ≥ 0 it
holds P̃-a.s. that

ã = ã0 +

∫ ·
0
β̃sds+

∫ ·
0
α̃sdW̃s for some ã0 ∈ R, (2.21)

sup
R+

|ζ̃| ≤ k , (2.22)

and

EP̃
[
sup

{
|ζ̃s′ − ζ̃s|, r ≤ s ≤ s′ ≤ s+ δ

}
|F̃◦r
]
≤ kδ. (2.23)

For φ̃ := (y, ã, b̃), y ∈ R, we define (X̃x,φ̃, Ỹ φ̃, Ṽ x,v,φ̃) as in (1.6)-(1.2)-(1.7) asso-
ciated to the control (ã, b̃) with time-0 initial condition (x, y, v), and with W̃ in
place of W . For t ≤ T and k ≥ 1, we say that P̃ ∈ G̃k,γ̄(t, x, v, y) if[

Ṽ x,v,φ̃
T−t ≥ g(X̃x,φ̃

T−t) and − k ≤ γãY (X̃x,φ̃) ≤ γ̄(X̃x,φ̃) on R+

]
P̃− a.s. (2.24)

We finally define

vkγ̄(t, x) := inf{v = c+ yx : (c, y) ∈ R× [−k, k] s.t. Ãk ∩ G̃k,γ̄(t, x, v, y) 6= ∅},
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and
vγ̄(t, x) := lim inf

(k, t′, x′)→ (∞, t, x)
(t′, x′) ∈ [0, T )× R

vkγ̄(t′, x′), (t, x) ∈ [0, T ]× R. (2.25)

The following is an immediate consequence of our definitions.

Proposition 2.12. vγ̄ ≥ vγ̄ on [0, T )× R.

In the rest of this section, we show that vγ̄ is a viscosity supersolution of (1.17).
We start with an easy remark.

Remark 2.13. Observe that the gamma constraint in (2.24) implies that we can
find ε > 0 such that

ε

1 + kε−1
≤ σãX(X̃x,φ̃) ≤ ε−1 + ε−2 and |ã| ≤ ε−1 P̃− a.s.,

for all P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y) and k ≥ 1. Indeed, if ã ≥ −σ/f then −k ≤ γãY ≤ γ̄
implies

(− kσ

1 + kf
) ∨ (−σ

f
) ≤ ã ≤ γ̄σ

1− γ̄f
and ãf + σ ≥ σ/(1 + kf).

Then our claim follows from (1.1)-(1.13). On the other hand, if σ + ãf < 0,
then γãY ≤ γ̄ implies ã ≥ γ̄σ/(1 − fγ̄) ≥ 0, see (1.13), while ã < −f/σ < 0, a
contradiction.

We then show that vkγ̄ has linear growth, for k large enough.

Proposition 2.14. There exists ko ≥ 1 such that {|vkγ̄ |, k ≥ ko} is uniformly
bounded from above by a continuous map with linear growth.

Proof. a. First note that Remark 2.9 implies that {(vkγ̄)+, k ≥ ko} is uniformly
bounded from above by a map with linear growth, for some ko large enough.
b. Let us now fix P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y). Using Remark 2.13 combined with
(1.1) and the condition that (ã, b̃, α̃, β̃) is P̃-essentially bounded, one can find
P̌ ∼ P̃ under which

∫ ·
0 Ỹ

φ̃
s dX̃

x,φ̃
s is a martingale on [0, T − t]. Then, the condi-

tion Ṽ x,v,φ̃
T−t ≥ g(X̃x,φ̃

T−t) P̃-a.s. implies v + EP̌[1
2

∫ T−t
0 ã2

sf(X̃x,φ̃
s )ds] ≥ inf g > −∞,

recall (1.16). By Remark 2.13 and (1.1), v ≥ inf g − C > −∞, for some constant
C independent of P̃ ∈ ∪k(Ãk ∩ G̃k,γ̄(t, x, v, y)). Hence {(vkγ̄)−, k ≥ ko} is bounded
by a constant. �

We now prove that existence holds in the problem defining vkγ̄ and that it is
lower-semicontinuous.
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Proposition 2.15. For all (t, x) ∈ [0, T ]×R and k ≥ 1 large enough, there exists
(c, y) ∈ R × [−k, k] such that vkγ̄(t, x) = c + yx and Ãk ∩ G̃k,γ̄(t, c + xy, y) 6= ∅.
Moreover, vkγ̄ is lower-semicontinuous for each k ≥ 1 large enough.

Proof. By [20, Proposition XIII.1.5] and the condition (2.23) taken for r = 0, the
set Ãk is weakly relatively compact. Moreover, [16, Theorem 7.10 and Theorem 8.1]
implies that any limit point (P∗, t∗, x∗, c∗, y∗) of a sequence (Pn, tn, xn, cn, yn)n≥1

such that Pn ∈ Ãk ∩ G̃k,γ̄(tn, xn, cn + xnyn, yn) for each n ≥ 1 satisfies P∗ ∈
Ãk ∩ G̃k,γ̄(t∗, x∗, c∗ + x∗y∗, y∗). Since vkγ̄ is locally bounded, by Proposition 2.14
when k ≥ ko, the announced existence and lower-semicontinuity readily follow. �

We can finally prove the main result of this section.

Theorem 2.16. The function vγ̄ is a viscosity supersolution of (1.17). It has linear
growth.

Proof. The linear growth property is an immediate consequence of the uniform
linear growth of {|vkγ̄ |, k ≥ ko} stated in Proposition 2.14. To prove the supersolu-
tion property, it suffices to show that it holds for each vkγ̄ , with k ≥ ko, and then
to apply standard stability results, see e.g. [2].
a. We first prove the supersolution property on [0, T )×R. We adapt the arguments
of [8] to our context. Let us consider a C∞b test function ϕ and (t0, x0) ∈ [0, T )×R
such that

(strict) min
[0,T )×R

(vkγ̄ − ϕ) = (vkγ̄ − ϕ)(t0, x0) = 0.

Recall that vkγ̄ is lower-semicontinuous by Proposition 2.15.
Because the infimum is achieved in the definition of vkγ̄ , by the afore-mentioned

proposition, there exists |y0| ≤ k and P̃ ∈ Ãk ∩ G̃k(t0, x0, v0, y0), such that v0 :=

c0+y0x0 = vkγ̄(t0, x0) for some c0 ∈ R. Let us set (X̃, Ỹ , Ṽ ) := (X̃x0,φ̃, Ỹ φ̃, Ṽ x0,v0,φ̃)

where φ̃ = (y0, ã, b̃). Let θo be a stopping time for the augmentation of the raw
filtration F̃◦, and define

θ := θo ∧ θ1 with θ1 := inf{s : |X̃s − x0| ≥ 1}.

Then, it follows from Proposition 2.17 below that

Ṽθo ≥ vkγ̄(t0 + θo, X̃θo) ≥ ϕ(t0 + θo, X̃θo),

in which here and hereafter inequalities are taken in the P̃-a.s. sense. After applying
Itô’s formula twice, the above inequality reads:∫ θ

0
`s ds+

∫ θ

0

(
y0 − ∂xϕ(t0, x0) +

∫ s

0
mrdr +

∫ s

0
nrdX̃r

)
dX̃s ≥ 0. (2.26)
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where

` := 1
2 ã

2f(X̃)− Lãϕ(t0 + ·, X̃·) , m := µã,b̃Y (X̃)− Lã∂xϕ(t0 + ·, X̃·)
n := γãY (X̃)− ∂2

xxϕ(t0 + ·, X̃·),

with
Lã := ∂t +

1

2
(σãX)2∂2

xx

For the rest of the proof, we recall (2.22). Together with (1.1) and Remark 2.13,
this implies that σãX(X̃), σãX(X̃)−1 and µã,b̃X (X̃) are P̃-essentially bounded. After
performing an equivalent change of measure, we can thus find P̌ ∼ P̃ and a P̌-
Brownian motion W̌ such that:

X̃ =

∫ ·
0
σãsX (X̃s)dW̌s. (2.27)

Clearly, both P̌ and W̌ depend on (ã, b̃, y0).
1. We first show that y0 = ∂xϕ(t0, x0), and therefore∫ θ

0
`s ds+

∫ θ

0

∫ s

0
mrdrdX̃s +

∫ θ

0

∫ s

0
nrdX̃rdX̃s ≥ 0. (2.28)

Let P̌λ ∼ P̌ be the measure under which

W̌ λ := W̌ +

∫ ·
0
λ[σãsX (X̃s)]

−1(y0 − ∂xϕ(t0, x0))ds

is a P̌λ-Brownian motion. Consider the case θo := η > 0. Since all the coefficients
are bounded, taking expectation under P̌λ and using (2.26) imply

C ′η ≥ λ(y0 − ∂xϕ(t0, x0))2EP̌λ [θ]

+EP̌λ
[∫ θ

0

(∫ s

0
mrdr +

∫ s

0
nrdX̃r

)
λ(y0 − ∂xϕ(t0, x0))ds

]
for some C ′ > 0. We now divide both sides by η and use the fact that (η∧θ1)/η → 1
P̌λ-a.s. as η → 0 to obtain

C ′ ≥ λ(y0 − ∂xϕ(t0, x0))2.

Then, we send λ→∞ to deduce that y0 = ∂xϕ(t0, x0).
2. We now prove that

∂2
xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0). (2.29)
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We first consider the time change

h(t) = inf{r ≥ 0 :

∫ r

0

[
(σãsX (X̃s))

21[0,θ](s) + 1[0,θ]c(s)
]
ds ≥ t}.

Again, σãX(X̃) and σãX(X̃)−1 are essentially bounded by Remark 2.13, so that h is
absolutely continuous and its density h satisfies

0 < ht ≤ h(t) :=
[
(σãX(X̃))21[0,θ](t) + 1[0,θ]c(t)

]−1
≤ h̄t (2.30)

for some constants h and h̄, for all t ≥ 0. Moreover, Ŵ := X̃h is a Brownian motion
in the time changed filtration. Let us now take θo := h−1(η) for some 0 < η < 1.
Then, (2.28) reads

0 ≤
∫ η∧h−1(θ1)

0
`h(s)h(s) ds+

∫ η∧h−1(θ1)

0

∫ s

0
mh(r)h(r)drdŴs

+

∫ η∧h−1(θ1)

0

∫ s

0
nh(r)dŴrdŴs. (2.31)

Since all the involved processes are continuous and bounded, and since (η∧h−1(θ1))/η →
1 a.s. as η → 0, the above combined with [8, Theorem A.1 b. and Proposition A.3]
implies that

γã0Y (x0)− ∂2
xxϕ(t0, x0) = lim

r↓0
nh(r) = lim

r↓0
nr ≥ 0.

Since γãY (X̃) ≤ γ̄(X̃), this proves (2.29).
3. It remains to show that the first term in the definition of F [ϕ](t0, x0) is also
non-negative, recall (1.14). Again, let us take θo := h−1(η) and recall from 2. that
limη→0(η ∧ h−1(θ1))/η = 1 P̌-a.s. Note that ã being of the form (2.21) with the
condition (2.22), it satisfies [8, Condition (A.2)], and so does n. Using [8, Theorem
A.2 and Proposition A.3] and (2.31), we then deduce that `0h(0)− 1

2n0 ≥ 0. Hence,
(2.30) and direct computations based on (1.8) imply

0 ≤ 1

2
ã2

0f(x0)− Lã0ϕ(t0, x0)− 1

2

(
γã0Y (x0)− ∂2

xxϕ(t0, x0)
)

(σã0X (x0))2

=
1

2
ã2

0f(x0)− ∂tϕ(t0, x0)− 1

2
γã0Y (x0)(σã0X (x0))2

= −∂tϕ(t0, x0)− 1

2

σ2(x0)

1− f(x0)γã0Y (x0)
γã0Y (x0)

≤ −∂tϕ(t0, x0)− 1

2

σ2(x0)

1− f(x0)∂2
xxϕ(t0, x0)

∂2
xxϕ(t0, x0),
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in which we use the facts that ∂2
xxϕ(t0, x0) ≤ γã0Y (x0) ≤ γ̄(x0) and z 7→ z/(1 −

f(x0)z) in non-decreasing on (−∞, γ̄(x0)] ⊂ (−∞, 1/f(x0)), for the last inequality.
b. We now consider the boundary condition at T . Since vkγ̄ is a supersolution of
γ̄ − ∂2

xxϕ ≥ 0 on [0, T )×R, the same arguments as in [11, Lemma 5.1] imply that
vkγ̄ − Γ̄ is concave for any twice differentiable function Γ̄ such that ∂2

xxΓ̄ = γ̄. The
function vkγ̄ being lower-semicontinuous, the map

x 7→ G(x) := lim inf
t′ → T, x′ → x

t′ < T

vkγ̄(t′, x′)

is such that G ≥ g and G−Γ̄ is concave. Hence, G = (G−Γ̄)conc+Γ̄ ≥ (g−Γ̄)conc+Γ̄
= ĝ. �

It remains to state the dynamic programming principle used in the above proof.

Proposition 2.17. Fix (t, x, v, y) ∈ [0, T ] × R2 × [−k, k] and let θ be a stopping
time for the P̃-augmentation of F̃◦ that takes P̃-a.s. values in [0, T − t]. Assume
that P̃ ∈ Ãk ∩ G̃k,γ̄(t, x, v, y). Then,

Ṽ x,v,φ̃
θ ≥ vkγ̄(t+ θ, X̃x,φ̃

θ ) P̃− a.s.,

in which φ̃ := (y, ã, b̃).

Proof. Since vkγ̄ is lower-semicontinuous and all the involved processes have con-
tinuous paths, up to approximating θ by a sequence of stopping times valued in
finite time grids, it suffices to prove our claim in the case θ ≡ r ∈ [0, T − t]. Let P̃ω
be a regular conditional probability given F̃◦r for P̃. It coincides with P̃[·|F̃◦r ](ω)
outside a set N of P̃-measure zero. Then, for all ω /∈ N , 0 ≤ δ ≤ 1 and r ≥ 0 the
conditions (2.21)-(2.22)-(2.23) hold for P̃rω defined on C(R+)5 by

P̃rω[ω′ ∈ A] = P̃ω[ω′r+· ∈ A].

Moreover, [9, Theorem 3.3] ensures that, after possibly modifying N ,

P̃rω
[
Ṽ
ξr(ω),ϑr(ω),φ̂(ω)
T−(t+r) ≥ g(X̃

ξr(ω),φ̂(ω)
T−(t+r) )

]
= 1

and P̃rω
[
γãY (X̃ξr(ω),φ̂(ω)) ≤ γ̄(X̃ξr(ω),φ̂(ω)) on R+

]
= 1,

for ω /∈ N , in which

(ξr, ϑr, φ̂) := (X̃x,φ̃
r , Ṽ x,v,φ̃

r , (Ỹ x,φ̃
r , ã, b̃)).

This shows that ϑr(ω) ≥ vkγ̄(t + r, ξr(ω)) outside the null set N , which is the
required result. �
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2.3 Conclusion of the proof and construction of almost
optimal strategies

We first conclude the proof of Theorem 1.4.
Proof of Theorem 1.4. Proposition 2.5 and Theorem 2.8 imply that v̄γ̄ ≥ vγ̄ in
which v̄γ̄ has linear growth and is a continuous viscosity solution of (1.17). On the
other hand, Proposition 2.12 and Theorem 2.16 imply that vγ̄ ≤ vγ̄ on [0, T )× R
in which vγ̄ has linear growth and is a viscosity supersolution of (1.17). By the
comparison result of Theorem 2.11 applied with ε = 0, vγ̄ ≥ v̄γ̄ . Hence,

vγ̄ = vγ̄ = v̄γ̄ on [0, T )× R and vγ̄ = v̄γ̄ on [0, T ]× R (2.32)

Since v̄γ̄ is continuous, this shows that

lim
(t′, x′)→ (T, x)

t′ < T

vγ̄(t′, x′) = v̄γ̄(T, x) = vγ̄(T, x).

Hence, vγ̄ is a viscosity solution of (1.17), with linear growth. �

Remark 2.18 (Almost optimal controls). In the proof of Theorem 2.8, we have
constructed a super-hedging strategy starting from v̄ε,K,δγ̄ (t, x). Since v̄ε,K,δγ̄ (t, x)→
v̄γ̄(t, x) = vγ̄(t, x) as δ, ε → 0 and K → ∞, this provides a way to construct
super-hedging strategies associated to any initial wealth v > vγ̄(t, x).

3 Adding a resilience effect
In this section, we explain how a resilience effect can be added to our model. In
the discrete rebalancement setting, we replace the dynamics (1.4) by

Xn = X0 +

∫ ·
0
µ(Xn

s )ds+

∫ ·
0
σ(Xn

s )dWs +Rn,

in which Rn is defined by

Rn = R0 +

n∑
i=1

1[tni ,T ]δ
n
tni
f(Xn

tni −)−
∫ ·

0
ρRns ds,

for some ρ > 0 and R0 ∈ R. The process Rn models the impact of past trades on
the price, the last term in its dynamics is the resilience effect. Then, the continuous
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time dynamics becomes

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0
f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs)− ρRs)ds

R = R0 +

∫ ·
0
f(Xs)dYs +

∫ ·
0

(as(σf
′)(Xs)− ρRs)ds

V = V0 +

∫ ·
0
YsdXs +

1

2

∫ ·
0
a2
sf(Xs)ds.

This is obtained as a straightforward extension of [4, Proposition 1.1].

Let vRγ̄ (t, x) be defined as the super-hedging price vγ̄(t, x) but for these new
dynamics and for Rt = 0. The following states that vRγ̄ = vγ̄ , i.e. adding a resilience
effect does not affect the super-hedging price.

Proposition 3.1. vγ̄ = vRγ̄ on [0, T ]× R.

Proof. 1. To show that vγ̄ ≥ vRγ̄ , it suffices to reproduce the arguments of the
proof of Theorem 2.8 in which the drift part of the dynamics of X does not play
any role. More precisely, these arguments show that v̄γ̄ ≥ vRγ̄ . Then, one uses the
fact that vγ̄ = v̄γ̄ , by (2.32).
2. As for the opposite inequality, we use the weak formulation of Section 2.2 and
a simple Girsanov’s transformation. For ease of notations, we restrict to t = 0.
Fix v > vRγ̄ (0, x), for some x ∈ R. Then, one can find k ≥ 1, (c, y) ∈ R ×
[−k, k] satisfying v = c + yx, and (a, b) ∈ Ak,γ̄(0, x) such that VT ≥ g(XT ), with
(V,X, Y,R) defined by the corresponding initial data and controls. We let

a = a0 +

∫ ·
0
βsds+

∫ ·
0
αsdWs

be the decomposition of a into an Itô process, see Section 1.1. Let QR ∼ P be the
probability measure under which WR := W −

∫ ·
0(ρRs/σ(Xs))ds is a QR-Brownian

motion, recall (1.1). Then,

X = X0 +

∫ ·
0
σ(Xs)dW

R
s +

∫ ·
0
f(Xs)dYs +

∫ ·
0

(µ(Xs) + as(σf
′)(Xs))ds

Y = Y0 +

∫ ·
0

(bs + asρRs/σ(Xs))ds+

∫ ·
0
asdW

R
s

a = a0 +

∫ ·
0

(βs + αsρRs/σ(Xs))ds+

∫ ·
0
αsdW

R
s

V = V0 +

∫ ·
0
YsdXs +

1

2

∫ ·
0
a2
sf(Xs)ds.
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Upon seeing (a, b+ aρR/σ(X), α, β + αρR/σ(X),WR) as a generic element of the
canonical space C([0, T ])5 introduced in Section 2.2, then QR belongs to Ãk ∩
G̃k,γ̄(t, x, v, y), and therefore v > vγ̄(0, x). Hence, vRγ̄ (0, x) ≥ vγ̄(0, x), and thus
vRγ̄ (0, x) ≥ vγ̄(0, x) by (2.32). �

4 Numerical approximation and examples
In this section, we provide an example of numerical schemes that converges towards
the unique continuous viscosity solution of (1.17) with linear growth. The scheme
is then exemplified using two numerical applications in the case of constant market
impact and gamma constraint.

4.1 Finite difference scheme
Given a map φ and h := (ht, hx) ∈ (0, 1)2, define

Lh1(t, x, y, φ) := −φ(t+ ht, x)− y
ht

− σ2(x)Gh(t, x, y, φ)

2(1− f(x)Gh(t, x, y, φ))

Lh2(t, x, y, φ) := γ̄(x)−Gh(t, x, y, φ)

where
Gh(t, x, y, φ) :=

φ(t+ ht, x+ hx) + φ(t+ ht, x− hx)− 2y

h2
x

.

The numerical scheme is set on the grid πh := {(ti, xj) = (iht, x + jhx) : i ≤
nt, j ≤ nx}, with ntht = T for some nt ∈ N, and nxhx = x − x, for some real
numbers x < x. To paraphrase, vhγ̄ is defined on πh as the solution of

S(h, ti, xj , v
h
γ̄(ti, xj), v

h
γ̄) = 0 for i < nt, 1 ≤ j ≤ nx − 1 (4.1)

vhγ̄ = ĝ on πh ∩ {({T} × R) ∪ ([0, T ] ∩ {x, x})}

where
S(h, t, x, y, φ) := (w̄ − y) ∨ (y − w) ∧ min

l=1,2

{
Lhl (t, x, y, φ)

}
with w̄ and w as in Remark 2.6.

Theorem 4.1. The equation (4.1) admits a unique solution vhγ̄ , for all h :=

(ht, hx) ∈ (0, 1)2. Moreover, if ht/h2
x → 0 and h2

x → 0, then vhγ̄ converges lo-
cally uniformly to the unique continuous viscosity solution of (1.17) that has linear
growth.
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Proof. The existence of a solution, that is bounded by the map with linear
growth |w̄| + |w|, is obvious. We now prove uniqueness. First observe that Lh2 is
strictly increasing in its y-component, and that

∂Lh1
∂y

(t, x, y, φ) =
1

ht
+

σ2(x)

h2
x(1− f(x)Gh(t, x, y, φ))2

> 0

on the domain {y : Lh2(ti, xj , y, φ) ≥ 0}. Uniqueness of the solution follows.
It is easy to see that φ 7→ S(·, φ) is non-decreasing, so that our scheme is

monotone. Consistency is clear. Moreover, it is not difficult to check that the
comparison result of Theorem 2.11 extends to this equation (there is an equivalence
of the notions of super- and subsolutions in the class of functions w such that
w ≤ w ≤ w̄). It then follows from [3, Theorem 2.1] that vhγ̄ converges locally
uniformly to the unique continuous viscosity solution with linear growth of[

(w̄ − ϕ) ∨ (ϕ− w) ∧ F [ϕ]
]
1[0,T ) + (ϕ− ĝ)1{T} = 0.

In view of (2.32), Remark 2.6 and Theorem 1.4, vγ̄ is the unique viscosity solution
of the above equation. �

4.2 Numerical examples: the fixed impact case
To illustrate the above numerical scheme, we place ourselves in the simpler case
where f ≡ λ > 0 and γ̄ > 0 are constant. The dynamics of the stock is given by
the Bachelier model

dXt = σ dWt,

with σ := 0.2. In the following, T = 2.
First, we consider a European Butterfly option with three strikes K1 = −1 <

K2 = 0 < K3 = 1, where K1 + 1/(2γ̄) ≤ K2 ≤ K3 − 1/(2γ̄). Its pay-off is

g(x) = (x−K1)+ − 2(x−K2)+ + (x−K3)+,

and the corresponding face-lifted function ĝ can be computed explicitly:

ĝ(x) =
γ̄

2
(x− x−1 )21[x−1 ,x

+
1 ) + (x−K1)1[x+1 ,K2)

+(x−K1 − 2(x−K2))1[K2,x
−
2 )

+
( γ̄

2
(x− x+

2 )2 + 2K2 − (K1 +K3)
)
1[x−2 ,x

+
2 )

+(2K2 − (K1 +K3))1[x+2 ,+∞),

where x±1 = K1 ± 1/(2γ̄) and x±2 = K3 ± 1/(2γ̄).

34



In Figure 1, we separately show the effect of the gamma constraint and of the
market impact. As observed in Remark 1.9, the price is non-decreasing with respect
to the impact parameter λ and bounded from below by the hedging price obtained
in the model without impact nor gamma constraint. On the left and right tails
of the curves, we observe the effect of the gamma constraint. It does not operate
around x = 0 where the gamma is non-positive. The effect of the market impact
operates only in areas of high convexity (around x = −1.5 and x = 1.5) or of high
concavity (around x = 0).
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Figure 1: Left: Super-hedging price of the Butterfly option. Dashed line:
λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞.
Right: Difference with the price associated to λ = 0, γ̄ = +∞. Dashed line:
λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75 .

In Figure 2, we perform similar computations but for a call spread option,
where

g(x) = (x−K1)+ − (x−K2)+,

with K1 = −1 < K2 = 1 such that K1 + 1/(2γ̄) ≤ K2. The face-lifted function ĝ
is given by

ĝ(x) =
γ̄

2
(x− x−)21[x−,x+) + (x−K1)1[x+,K2) + (K2 −K1)1[K2,+∞)

with x± = K1 ± 1/(2γ̄).
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Figure 2: Left: Super-hedging price of the Call Spread option. Dashed line:
λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75; dotted line: λ = 0, γ̄ = +∞.
Right: Difference with the price associated to λ = 0, γ̄ = +∞. Dashed line:
λ = 0.5, γ̄ = 1.75; solid line: λ = 0, γ̄ = 1.75 .

5 Appendix
The following is very standard, we prove it for completeness.

Lemma 5.1. A upper-semicontinuous (resp. lower-semicontinuous) map is a vis-
cosity subsolution (resp. supersolution) of

F εκ[ϕ]1[0,T ) + (ϕ− ĝεK)1{T} = 0

if and only if it is a viscosity subsolution (resp. supersolution) of F ε,Kκ,− [ϕ] = 0 (resp.
F ε,Kκ,+ [ϕ] = 0).

Proof. The equivalence on [0, T ) is evident, we only consider the parabolic bound-
ary {T} × R. Since F ε,Kκ,+ ≥ F εκ and F ε,Kκ,− ≤ F εκ, only one implication is not com-
pletely trivial.
a. Let v be a viscosity supersolution of F ε,Kκ,+ [ϕ] = 0, and ϕ ∈ C2 be a test function
such that

(strict) min
[0,T ]×R

(v − ϕ) = (v − ϕ)(T, x0) = 0,
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for some x0 ∈ R. We define a new test function φ ∈ C2,

φ(t, x) := ϕ(t, x)− C(T − t),

so that ∂tφ = ∂tϕ+ C. For C > 0 large enough,

min
x′∈Dεκ

min

{
−∂tφ−

σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)
, γ̄(x′)− ∂xxφ

}
< 0

at (T, x0). Since,

(strict) min
[0,T ]×R

(v − φ) = (v − φ)(T, x0) = 0,

it must hold that F ε,Kκ,+ [φ](T, x0) ≥ 0, and therefore

v(T, x0)− ĝεK(x0) = ϕ(T, x0)− ĝεK(x0) = φ(T, x0)− ĝεK(x0) ≥ 0.

b. Let now v be a viscosity subsolution of F ε,Kκ,− [ϕ] = 0, and ϕ ∈ C2 be a test
function such that

(strict) max
[0,T ]×R

(v − ϕ) = (u− ϕ)(T, x0),

for some x0 ∈ R. Then, F ε,Kκ,− [ϕ](T, x0) ≤ 0. By replacing ϕ by φ, defined for α > 0
as

φ(t, x) := ϕ(t, x0 + α(x− x0)) + C(T − t),

we obtain a new test function at (T, x0). Since inf γ̄ > 0, recall (1.1), we can take
α small enough so that

min
x′∈Dεκ

{γ̄(x′)− ∂xxφ(T, x0)} > 0.

As in the previous step, we can now choose C > 0 such that

min
x′∈Dεκ

{
−∂tφ−

σ2(x′)∂xxφ

2(1− f(x′)∂xxφ)

}
> 0

at (T, x0). Since F ε,Kκ,− [φ](T, x0) ≤ 0, we conclude that v(T, x0) = φ(T, x0) ≤
ĝεK(x0). �
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