Almost sure hedging under permanent price impact

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae-ParisTech

13 mars 2015

Joint work with G. Loeper (BNP-Paribas) and Y. Zou (Paris-Dauphine)

ション ふゆ アメリア メリア しょうくの

Motivation

Aim of this work

- \Box Aim :
 - Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Aim of this work

□ Aim :

- Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).
- Not high frequency (no bid-ask spread), but still impact on prices. To be considered as a liquidity model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aim of this work

\Box Aim :

- Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).
- Not high frequency (no bid-ask spread), but still impact on prices. To be considered as a liquidity model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Here, only permanent impact.

Option pricing with illiquidity or impact in the literature (part of)

□ Equilibrium dynamics (modified price dynamics) : Sircar and Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98.

□ Liquidity curve (but no impact) : Cetin, Jarrow and Protter 04, Cetin, Soner and Touzi 09.

□ Illiquidity + impact : Loeper 14 (verification arguments).

 \Box Related works : Liu and Yong 05, Almgren and Li 2013, Millot and Abergel 2011, Guéant and Pu 2013,...

Impact rule and continuous time trading dynamics

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 \square Basic rule : a small order δ moves the price by

$$X_{t-} \longrightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta(\frac{1}{2}X_{t-} + \frac{1}{2}X_t).$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 \Box Basic rule : a small order δ moves the price by

$$X_{t-} \longrightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta(\frac{1}{2} X_{t-} + \frac{1}{2} X_t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Box We just model the curve around $\delta = 0$.

 \Box Basic rule : a small order δ moves the price by

$$X_{t-} \longrightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta(\frac{1}{2}X_{t-} + \frac{1}{2}X_t).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Box We just model the curve around $\delta = 0$. This should be understood for a "small" order δ .

 \Box Basic rule : a small order δ moves the price by

$$X_{t-} \longrightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta(\frac{1}{2} X_{t-} + \frac{1}{2} X_t).$$

 \Box We just model the curve around $\delta = 0$. This should be understood for a "small" order δ .

Would obtain the same with

$$X_{t-} \longrightarrow X_t = X_{t-} + F(X_{t-}, \delta)$$

ション ふゆ アメリア メリア しょうくの

if F(x,0) = 0 and $\partial_{\delta}F(x,\delta) = f(x) + o(\delta)$.

 $\hfill\square$ A trading signal is an Itô process of the form

$$Y=Y_0+\int_0^{\cdot}b_sds+\int_0^{\cdot}a_sdW_s.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\hfill\square$ A trading signal is an Itô process of the form

$$Y=Y_0+\int_0^{\cdot}b_sds+\int_0^{\cdot}a_sdW_s.$$

 \Box Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

ション ふゆ アメリア メリア しょうくの

 $\hfill\square$ A trading signal is an Itô process of the form

$$Y=Y_0+\int_0^{\cdot}b_sds+\int_0^{\cdot}a_sdW_s.$$

 \Box Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

ション ふゆ アメリア メリア しょうくの

$$\Box$$
 Trade at times $t_i^n = iT/n$ the quantity $\delta_{t_i^n}^n = Y_{t_i^n} - Y_{t_{i-1}^n}$.

□ A trading signal is an Itô process of the form

$$Y=Y_0+\int_0^{\cdot}b_sds+\int_0^{\cdot}a_sdW_s.$$

 \Box Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

$$\Box$$
 Trade at times $t_i^n = iT/n$ the quantity $\delta_{t_i^n}^n = Y_{t_i^n} - Y_{t_{i-1}^n}$.

 \Box We assume that the stock price evolves according to

$$X = X_{t_i^n} + \int_{t_i^n}^{\cdot} \sigma(X_s) dW_s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

between two trades (can add a drift or be multivariate without extra complications).

 \square Passing to the limit $n \to \infty$, it converges in **S**₂ to

$$Y = Y_0 + \int_0^{\cdot} b_s ds + \int_0^{\cdot} a_s dW_s$$

$$X = X_0 + \int_0^{\cdot} \sigma(X_s) dW_s + \int_0^{\cdot} f(X_s) dY_s + \int_0^{\cdot} a_s \sigma f'(X_s) ds$$

$$V = V_0 + \int_0^{\cdot} Y_s dX_s + \frac{1}{2} \int_0^{\cdot} a_s^2 f(X_s) ds,$$

at a speed \sqrt{n} , where

V = cash part + YS = "portfolio value".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How to define the super-hedging problem?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Super-hedging problem

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \Box Fix a claim $g = (g_0, g_1)$ with
 - $g_0 = \operatorname{cash} part$
 - $g_1 = \#$ of stocks to deliver.

Super-hedging problem

- \Box Fix a claim $g = (g_0, g_1)$ with
 - $g_0 = \operatorname{cash} part$
 - $g_1 = \#$ of stocks to deliver.

 \Box Super-hedging price = minimal initial cash so that

 $V_T - Y_T X_T \ge g_0(X_T)$ and $Y_T = g_1(X_T)$.

(Recall that $V = \cosh + YX$)

 $\square \hat{w}(0, X_0, Y_0)$ is the min over V_0 such that super-hedge for some (a, b), starting from Y_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\square \hat{w}(0, X_0, Y_0)$ is the min over V_0 such that super-hedge for some (a, b), starting from Y_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

□ Problems :

 $\square \hat{w}(0, X_0, Y_0)$ is the min over V_0 such that super-hedge for some (a, b), starting from Y_0 .

ション ふゆ アメリア メリア しょうくの

□ Problems :

• certainly needs an initial jump of Y at 0 to have $"Y_{0+} = \partial_x \hat{w}(0, X_{0+}, Y_{0+})"$

 $\square \hat{w}(0, X_0, Y_0)$ is the min over V_0 such that super-hedge for some (a, b), starting from Y_0 .

ション ふゆ アメリア メリア しょうくの

□ Problems :

- certainly needs an initial jump of Y at 0 to have $"Y_{0+} = \partial_x \hat{w}(0, X_{0+}, Y_{0+})"$
- from the pde point of view, will be on a curve $Y = \partial_x \hat{w}(\cdot, X, Y)$!

Another difficulty

 $\hfill\square$ Expending the dynamics leads to

$$Y = Y_0 + \int_0^{\cdot} b_s ds + \int_0^{\cdot} a_s dW_s$$

$$X = X_0 + \int_0^{\cdot} (\sigma + a_s f)(X_s) dW_s + \int_0^{\cdot} (a_s \sigma f' + b_s f)(X_s) ds$$

$$V = V_0 + \int_0^{\cdot} Y_s (\sigma + a_s f)(X_s) dW_s + \int_0^{\cdot} Y_s (a_s \sigma f' + b_s f)(X_s) ds$$

$$+ \frac{1}{2} \int_0^{\cdot} a_s^2 f(X_s) ds,$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Another difficulty

□ Expending the dynamics leads to

$$Y = Y_0 + \int_0^{\cdot} \frac{b_s ds}{\sigma} + \int_0^{\cdot} a_s dW_s$$

$$X = X_0 + \int_0^{\cdot} (\sigma + a_s f)(X_s) dW_s + \int_0^{\cdot} (a_s \sigma f' + b_s f)(X_s) ds$$

$$V = V_0 + \int_0^{\cdot} Y_s (\sigma + a_s f)(X_s) dW_s + \int_0^{\cdot} Y_s (a_s \sigma f' + b_s f)(X_s) ds$$

$$+ \frac{1}{2} \int_0^{\cdot} a_s^2 f(X_s) ds,$$

 \Box \emph{b} appears linearly and is not constrained a-priori \Rightarrow singular control problem !

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Box Formally, if $v = \hat{w}(t, x, y)$, we can find (a, b) such that

 $0 = d(V^{\nu} - \hat{w}(\cdot, X_{\cdot}, Y_{\cdot}))$

but not better (i.e. with >).

 \Box Formally, if $v = \hat{w}(t, x, y)$, we can find (a, b) such that

 $0 = d(V^{\vee} - \hat{w}(\cdot, X_{\cdot}, Y_{\cdot})) = b[Yf(X) - (f\partial_{x}\hat{w} + \partial_{y}\hat{w})(\cdot, X, Y)]dt + \cdots$

but not better (i.e. with >).

 \Box Formally, if $v = \hat{w}(t, x, y)$, we can find (a, b) such that

 $0 = d(V^{\nu} - \hat{w}(\cdot, X, Y)) = b[Yf(X) - (f\partial_X \hat{w} + \partial_Y \hat{w})(\cdot, X, Y)]dt + \cdots$

but not better (i.e. with >). In particular, we should have

 $yf(x) = f(x)\partial_x \hat{w}(t,x,y) + \partial_y \hat{w}(t,x,y).$

 \Box The fact that (formally)

$$yf(x) = f(x)\partial_x \hat{w}(t,x,y) + \partial_y \hat{w}(t,x,y)$$

implies

 $\hat{w}(t, x, y) - \Im(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y))$ in which

$$\mathbf{x}(x,\delta) = x + \int_0^{\delta} f(\mathbf{x}(x,s)) ds$$
 and $\mathfrak{I}(x,\delta) := \int_0^{\delta} sf(\mathbf{x}(x,s)) ds.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Box The fact that (formally)

$$yf(x) = f(x)\partial_x \hat{w}(t,x,y) + \partial_y \hat{w}(t,x,y)$$

implies

 $\hat{w}(t, x, y) - \Im(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y))$ in which

$$\mathbf{x}(x,\delta) = x + \int_0^{\delta} f(\mathbf{x}(x,s)) ds$$
 and $\Im(x,\delta) := \int_0^{\delta} sf(\mathbf{x}(x,s)) ds$.

□ Interpretation :

Split δ in δ/n then

• $x(x, \delta)$: impact of a jump δ on Y by using the splitting rule,

$$x + \frac{\delta}{n}f(x) \simeq \mathbf{x}(x, \frac{\delta}{n}) \rightsquigarrow \mathbf{x}(\mathbf{x}(x, \frac{\delta}{n}), \frac{\delta}{n})) = \mathbf{x}(x, \frac{2\delta}{n}) \rightsquigarrow \dots \simeq \mathbf{x}(x, \delta)$$

 \Box The fact that (formally)

$$yf(x) = f(x)\partial_x \hat{w}(t,x,y) + \partial_y \hat{w}(t,x,y)$$

implies

 $\hat{w}(t, x, y) - \Im(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y))$ in which

$$\mathbf{x}(x,\delta) = x + \int_0^{\delta} f(\mathbf{x}(x,s)) ds$$
 and $\Im(x,\delta) := \int_0^{\delta} sf(\mathbf{x}(x,s)) ds$.

□ Interpretation :

- $x(x, \delta)$: impact of a jump δ on Y by using the splitting rule,
- ℑ(x, δ) : corresponding impact on the portfolio value V if the initial stock position is 0.

Split δ in δ/n then

$$x + \frac{\delta}{n}f(x) \simeq x(x, \frac{\delta}{n}) \rightsquigarrow x(x(x, \frac{\delta}{n}), \frac{\delta}{n})) = x(x, \frac{2\delta}{n}) \rightsquigarrow \ldots \simeq x(x, \delta)$$

Specification with jumps

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Adding jumps and splitting of large orders

 $\hfill\square$ We now consider a trading signal of the form

$$Y = Y_{0-} + \int_0^{\cdot} b_s ds + \int_0^{\cdot} a_s dW_s + \int_0^{\cdot} \delta \nu(d\delta, ds)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Adding jumps and splitting of large orders • We now consider a trading signal of the form

$$Y = Y_{0-} + \int_0^{\cdot} b_s ds + \int_0^{\cdot} a_s dW_s + \int_0^{\cdot} \delta \nu(d\delta, ds)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Box Jumps δ_i at time τ_i is passed on $[\tau_i, \tau_i + \varepsilon]$ at a rate δ_i / ε .

Adding jumps and splitting of large orders • We now consider a trading signal of the form

$$Y = Y_{0-} + \int_0^{\cdot} b_s ds + \int_0^{\cdot} a_s dW_s + \int_0^{\cdot} \delta \nu(d\delta, ds)$$

 \Box Jumps δ_i at time τ_i is passed on $[\tau_i, \tau_i + \varepsilon]$ at a rate δ_i / ε .

 \Box The limit dynamics when $\varepsilon \to 0$ is $(\Delta \mathrm{x}(x,\delta) = \mathrm{x}(x,\delta) - x)$

$$X = X_{0-} + \int_0^{\cdot} \sigma(X_s) dW_s + \int_0^{\cdot} f(X_s) dY_s^c + \int_0^{\cdot} a_s \sigma f'(X_s) ds$$

+
$$\int_0^{\cdot} \int \Delta x(X_{s-}, \delta) \nu(d\delta, ds)$$

$$V = V_{0-} + \int_0^{\cdot} Y_s dX_s^c + \frac{1}{2} \int_0^{\cdot} a_s^2 f(X_s) ds$$

+
$$\int_0^{\cdot} \int (Y_{s-} \Delta x(X_{s-}, \delta) + \Im(X_{s-}, \delta)) \nu(d\delta, ds).$$

Geometric dynamic principle

 $\hfill\square$ With this construction, we have the relation

$$w(t, \mathbf{x}(x, -y)) = \hat{w}(t, x, y) - \Im(\mathbf{x}(x, -y), y).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?
Geometric dynamic principle

 $\hfill\square$ With this construction, we have the relation

$$w(t, \mathbf{x}(x, -y)) = \hat{w}(t, x, y) - \Im(\mathbf{x}(x, -y), y).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box Geometric dynamic programming transferred from \hat{w} to w.

Geometric dynamic principle

 $\hfill\square$ With this construction, we have the relation

$$w(t, \mathbf{x}(x, -y)) = \hat{w}(t, x, y) - \Im(\mathbf{x}(x, -y), y).$$

 \Box Geometric dynamic programming transferred from \hat{w} to w.

 $\Box \quad \text{GDP} : (i) \text{ If } v > w(t, x) \text{ then } \exists (a, b, \nu) \text{ and } y \in \mathbb{R} \text{ s.t.}$ $V_{\theta} \geq w(\theta, x(X_{\theta}, -Y_{\theta})) + \Im(x(X_{\theta}, -Y_{\theta}), Y_{\theta}),$ for all $\theta \ge t$, where $(X_t, Y_t, V_t) = (x(x, y), y, v + \Im(x, y)).$

Geometric dynamic principle

 $\hfill\square$ With this construction, we have the relation

$$w(t, \mathbf{x}(x, -y)) = \hat{w}(t, x, y) - \Im(\mathbf{x}(x, -y), y).$$

 \Box Geometric dynamic programming transferred from \hat{w} to w.

 \Box GDP : (i) If v > w(t, x) then \exists (a, b, ν) and $y \in \mathbb{R}$ s.t. $V_{\theta} > w(\theta, \mathbf{x}(X_{\theta}, -Y_{\theta})) + \Im(\mathbf{x}(X_{\theta}, -Y_{\theta}), Y_{\theta}),$ for all $\theta \geq t$, where $(X_t, Y_t, V_t) = (x(x, y), y, v + \Im(x, y))$. (ii) If v < w(t, x) then $\mathbb{A}(a, b, \nu)$, v and $\theta > t$ s.t. $V_{\theta} > w(\theta, \mathbf{x}(X_{\theta}, -Y_{\theta})) + \Im(\mathbf{x}(X_{\theta}, -Y_{\theta}), Y_{\theta}),$ with $(X_t, Y_t, V_t) = (\mathbf{x}(x, y), y, v + \Im(x, y)).$ ション ふゆ く 山 マ チャット しょうくしゃ

Pricing equation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\Box \text{ If } v = w(t, x) \text{ the GDP "implies"}$ $d\mathcal{E}_t := dV_t - dw(t, x(X_t, -Y_t)) - d\Im(x(X_t, -Y_t), Y_t) = 0,$ where $(X_t, Y_t, V_t) = (x(x, y), y, v + \Im(x, y)).$

Pricing equation

$$\Box \text{ If } v = w(t, x) \text{ the GDP "implies"}$$
$$d\mathcal{E}_t := dV_t - dw(t, x(X_t, -Y_t)) - d\Im(x(X_t, -Y_t), Y_t) = 0,$$
where $(X_t, Y_t, V_t) = (x(x, y), y, v + \Im(x, y)).$

 \Box Key property :

$$d\mathcal{E} = [\check{Y} - Y] [(f'f)(X)a^2/2dt - \sigma(X)dW] + \hat{F}[w](\cdot, \mathbf{x}(X, -Y), Y)dt$$

in which $\check{Y} = Y$ iff

$$Y = \hat{y}(\cdot, X) := x^{-1}(X, X + f(X)\partial_x w(\cdot, X)).$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box By identifying the *dW* and *dt* terms, we obtain the PDE :

 $0 = \hat{F}[w](\cdot, \hat{y})$

 \Box By identifying the *dW* and *dt* terms, we obtain the PDE :

$$0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x[w + \Im] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2[w + \Im]$$

where

$$\hat{\mu}(\cdot,y) := rac{1}{2} [\partial^2_{xx} \mathrm{x} \sigma^2](\mathrm{x}(\cdot,y),-y) \hspace{0.2cm} ext{and} \hspace{0.2cm} \hat{\sigma}(\cdot,y) := (\sigma \partial_x \mathrm{x})(\mathrm{x}(\cdot,y),-y),$$

and

$$\hat{y}(t,x) := x^{-1}(x,x+f(x)\partial_x w(t,x)).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box By identifying the *dW* and *dt* terms, we obtain the PDE :

$$0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x[w + \Im] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2[w + \Im]$$

where

$$\hat{\mu}(\cdot,y) := rac{1}{2} [\partial^2_{xx} \mathrm{x} \sigma^2](\mathrm{x}(\cdot,y),-y) ext{ and } \hat{\sigma}(\cdot,y) := (\sigma \partial_x \mathrm{x})(\mathrm{x}(\cdot,y),-y),$$

and

$$\hat{y}(t,x) := x^{-1}(x,x+f(x)\partial_x w(t,x)).$$

□ Terminal condition

$$G(x) := \inf \{yx(x,y) + g_0(x(x,y)) - \Im(x,y) : y = g_1(x(x,y))\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Box By identifying the *dW* and *dt* terms, we obtain the PDE :

$$0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y})\partial_x[w + \Im] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2\partial_{xx}^2[w + \Im]$$

where

$$\hat{\mu}(\cdot,y) := rac{1}{2} [\partial^2_{xx} \mathrm{x} \sigma^2](\mathrm{x}(\cdot,y),-y) ext{ and } \hat{\sigma}(\cdot,y) := (\sigma \partial_x \mathrm{x})(\mathrm{x}(\cdot,y),-y),$$

and

$$\hat{y}(t,x) := x^{-1}(x,x+f(x)\partial_x w(t,x)).$$

Terminal condition

$$G(x) := \inf \{yx(x,y) + g_0(x(x,y)) - \Im(x,y) : y = g_1(x(x,y))\}.$$

□ To be first taken in the discontinuous viscosity sense for the relaxed semi-limits associated to problems with bounded controls (comparison holds-> uniqueness + numerical schemes / smooth solution).

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{F}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\Im] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\Im] = 0.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{F}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

ション ふゆ アメリア メリア しょうくしゃ

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \Im(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{F}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \Im(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box We can use a strategy ensuring $Y = \check{Y} = \hat{y}(\cdot, \hat{X})$:

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{\mathcal{F}}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \mathfrak{I}(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box We can use a strategy ensuring $Y = \check{Y} = \hat{y}(\cdot, \hat{X})$:

• Make an initial jump of size $Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_{0-})))$.

ション ふゆ く 山 マ チャット しょうくしゃ

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{\mathcal{F}}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \mathfrak{I}(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box We can use a strategy ensuring $Y = \check{Y} = \hat{y}(\cdot, \hat{X})$:

• Make an initial jump of size $Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_{0-})))$.

ション ふゆ く 山 マ ふ し マ うくの

• Follow (a, b) such that $Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_x w(t, \hat{X}))).$

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{\mathcal{F}}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \mathfrak{I}(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box We can use a strategy ensuring $Y = \check{Y} = \hat{y}(\cdot, \hat{X})$:

• Make an initial jump of size $Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_{0-})))$.

ション ふゆ く 山 マ ふ し マ うくの

• Follow (a, b) such that $Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_x w(t, \hat{X}))).$

Then

•
$$V_{T-} = G(x(X_{T-}, -Y_{T-})) + \Im(x(X_{T-}, -Y_{T-}), Y_{T-}).$$

 \Box Assume that *w* is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{\mathcal{F}}[w](\cdot,\hat{y}) = -\partial_t w - \hat{\mu}(\cdot,\hat{y})\partial_x[w+\mathfrak{I}] - \frac{1}{2}\hat{\sigma}(\cdot,\hat{y})^2\partial_{xx}^2[w+\mathfrak{I}] = 0.$$

 \Box Then $\mathcal{E}_t := V - w(\cdot, \mathrm{x}(X, -Y)) - \mathfrak{I}(\mathrm{x}(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\check{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = \mathbf{x}(X, -Y)$

 \Box We can use a strategy ensuring $Y = \check{Y} = \hat{y}(\cdot, \hat{X})$:

- Make an initial jump of size $Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_{0-})))$.
- Follow (a, b) such that $Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_x w(t, \hat{X}))).$

Then

•
$$V_{T-} = G(\mathbf{x}(X_{T-}, -Y_{T-})) + \Im(\mathbf{x}(X_{T-}, -Y_{T-}), Y_{T-}).$$

• Liquidate Y_{T-} : $V_T = G(X_T)$ and $Y_T = 0$.

◆□ → ◆圖 → ◆臣 → ◆臣 → ○ ◆ ○ ◆ ○ ◆

Constant impact

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \Box Model : $dX_t = \sigma(X_t)dW_t$ (between trades) and $f(X) = \lambda$.

Constant impact

 \Box Model : $dX_t = \sigma(X_t)dW_t$ (between trades) and $f(X) = \lambda$.

 \Box In this case, $x(x, \delta) = x + \lambda \delta$, $\Im(x, \delta) = \frac{1}{2} \delta^2 \lambda$, and the pde is

$$-\partial_t w - \frac{1}{2}\sigma^2(x + \lambda \partial_x w)\partial_{xx}^2 w = 0$$

ション ふゆ アメリア メリア しょうくしゃ

For $\lambda = 0$ or $\sigma = \text{cst}$, this is the usual heat equation !!!

Constant impact

 $\Box \text{ Model} : dX_t = \sigma(X_t) dW_t \text{ (between trades) and } f(X) = \lambda.$

 \Box In this case, $x(x,\delta) = x + \lambda \delta$, $\Im(x,\delta) = \frac{1}{2}\delta^2 \lambda$, and the pde is

$$-\partial_t w - \frac{1}{2}\sigma^2 (x + \lambda \partial_x w) \partial_{xx}^2 w = 0$$

For $\lambda = 0$ or $\sigma = \text{cst}$, this is the usual heat equation !!!

 \Box We can use the strategy : $Y = \partial_x w(\cdot, \hat{X}) = \partial_x w(\cdot, X - \lambda Y).$

Thank you very much!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで