Almost sure hedging under permanent price impact

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae-ParisTech

13 mars 2015

Joint work with G. Loeper (BNP-Paribas) and Y. Zou (Paris-Dauphine)
Motivation
Aim of this work

- Aim:
 - Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).
Aim of this work

Aim:

- Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).
- Not high frequency (no bid-ask spread), but still impact on prices. To be considered as a liquidity model.
Aim of this work

□ Aim :

• Consider a model with price impact and liquidity cost, but in which hedging still makes sense without being degenerate (in any sense).

• Not high frequency (no bid-ask spread), but still impact on prices. To be considered as a liquidity model.

• Here, only permanent impact.
Option pricing with illiquidity or impact in the literature (part of)

- Equilibrium dynamics (modified price dynamics) : Sircar and Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98.

- Liquidity curve (but no impact) : Cetin, Jarrow and Protter 04, Cetin, Soner and Touzi 09.

- Illiquidity + impact : Loeper 14 (verification arguments).

- Related works : Liu and Yong 05, Almgren and Li 2013, Millot and Abergel 2011, Guéant and Pu 2013,...
Impact rule and continuous time trading dynamics
Impact rule

- Basic rule: A small order \(\delta \) moves the price by

\[
X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),
\]

and costs

\[
\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta \left(\frac{1}{2} X_{t-} + \frac{1}{2} X_t \right).
\]
Impact rule

- **Basic rule**: a small order δ moves the price by

$$X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta \left(\frac{1}{2} X_{t-} + \frac{1}{2} X_t \right).$$

- **We just model the curve around $\delta = 0$.**
Impact rule

- Basic rule: a small order δ moves the price by

$$X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta(\frac{1}{2} X_{t-} + \frac{1}{2} X_t).$$

- We just model the curve around $\delta = 0$. This should be understood for a “small” order δ.

Impact rule

□ Basic rule: a small order δ moves the price by

$$X_{t-} \rightarrow X_t = X_{t-} + \delta f(X_{t-}),$$

and costs

$$\delta X_{t-} + \frac{1}{2} \delta^2 f(X_{t-}) = \delta\left(\frac{1}{2} X_{t-} + \frac{1}{2} X_t\right).$$

□ We just model the curve around $\delta = 0$. This should be understood for a “small” order δ.

Would obtain the same with

$$X_{t-} \rightarrow X_t = X_{t-} + F(X_{t-}, \delta)$$

if $F(x, 0) = 0$ and $\partial_\delta F(x, \delta) = f(x) + o(\delta)$.
Trading signal and discrete trading dynamics

- A trading signal is an Itô process of the form

\[Y = Y_0 + \int_0^t b_s ds + \int_0^t a_s dW_s. \]
Trading signal and discrete trading dynamics

- A trading signal is an Itô process of the form

\[Y = Y_0 + \int_0^T b_s ds + \int_0^T a_s dW_s. \]

- Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.
Trading signal and discrete trading dynamics

- A trading signal is an Itô process of the form

\[Y = Y_0 + \int_0^t b_s ds + \int_0^t a_s dW_s. \]

- Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

- Trade at times \(t^n_i = iT/n \) the quantity \(\delta^n_{t^n_i} = Y_{t^n_i} - Y_{t^n_{i-1}} \).
A trading signal is an Itô process of the form

\[Y = Y_0 + \int_0^\cdot b_s \, ds + \int_0^\cdot a_s \, dW_s. \]

Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit.

Trade at times \(t_i^n = iT/n \) the quantity \(\delta_{t_i^n} = Y_{t_i^n} - Y_{t_i^n}^{-1} \).

We assume that the stock price evolves according to

\[X = X_{t_i^n} + \int_{t_i^n}^\cdot \sigma(X_s) \, dW_s \]

between two trades (can add a drift or be multivariate without extra complications).
Trading signal and discrete trading dynamics

- Passing to the limit \(n \to \infty \), it converges in \(S_2 \) to

\[
Y = Y_0 + \int_0^t b_s ds + \int_0^t a_s dW_s
\]
\[
X = X_0 + \int_0^t \sigma(X_s) dW_s + \int_0^t f(X_s) dY_s + \int_0^t a_s \sigma(X_s) f'(X_s) ds
\]
\[
V = V_0 + \int_0^t Y_s dX_s + \frac{1}{2} \int_0^t a_s^2 f(X_s) ds,
\]

at a speed \(\sqrt{n} \), where

\[
V = \text{cash part} + YS = \text{“portfolio value”}.
\]
How to define the super-hedging problem?
Super-hedging problem

- Fix a claim \(g = (g_0, g_1) \) with
 - \(g_0 \) = cash part
 - \(g_1 \) = \# of stocks to deliver.
Fix a claim $g = (g_0, g_1)$ with
- $g_0 =$ cash part
- $g_1 =$ # of stocks to deliver.

Super-hedging price = minimal initial cash so that
\[V_T - Y_T X_T \geq g_0(X_T) \text{ and } Y_T = g_1(X_T). \]
(Recall that $V = \text{cash} + YX$)
\[\hat{w}(0, X_0, Y_0) \] is the min over \(V_0 \) such that super-hedge for some \((a, b)\), starting from \(Y_0 \).
\(\hat{w}(0, X_0, Y_0) \) is the min over \(V_0 \) such that super-hedge for some \((a, b) \), starting from \(Y_0 \).

Problems:
\(\hat{\nu}(0, X_0, Y_0) \) is the min over \(V_0 \) such that super-hedge for some \((a, b)\), starting from \(Y_0 \).

Problems:
- certainly needs an initial jump of \(Y \) at 0 to have \(Y_{0+} = \partial_x \hat{\nu}(0, X_{0+}, Y_{0+}) \)
\(\hat{w}(0, X_0, Y_0) \) is the min over \(V_0 \) such that super-hedge for some \((a, b)\), starting from \(Y_0 \).

Problems:

- certainly needs an initial jump of \(Y \) at 0 to have “\(Y_{0+} = \partial_x \hat{w}(0, X_{0+}, Y_{0+}) \)”
- from the pde point of view, will be on a curve \(Y = \partial_x \hat{w}(\cdot, X, Y) \)!
Another difficulty

- Expending the dynamics leads to

\[Y = Y_0 + \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s \]

\[X = X_0 + \int_0^\cdot (\sigma + a_s f)(X_s) dW_s + \int_0^\cdot (a_s \sigma f' + b_s f)(X_s) ds \]

\[V = V_0 + \int_0^\cdot Y_s (\sigma + a_s f)(X_s) dW_s + \int_0^\cdot Y_s (a_s \sigma f' + b_s f)(X_s) ds \]

\[+ \frac{1}{2} \int_0^\cdot a_s^2 f(X_s) ds, \]
Another difficulty

- Expanding the dynamics leads to

\[Y = Y_0 + \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s \]

\[X = X_0 + \int_0^\cdot (\sigma + a_s f)(X_s) dW_s + \int_0^\cdot (a_s \sigma f' + b_s f)(X_s) ds \]

\[V = V_0 + \int_0^\cdot Y_s (\sigma + a_s f)(X_s) dW_s + \int_0^\cdot Y_s (a_s \sigma f' + b_s f)(X_s) ds \]

\[+ \frac{1}{2} \int_0^\cdot a_s^2 f(X_s) ds, \]

- \(b \) appears linearly and is not constrained a-priori \(\Rightarrow \) singular control problem!
Formally, if $\nu = \hat{w}(t, x, y)$, we can find (a, b) such that

$$0 = d(V^\nu - \hat{w}(\cdot, X., Y.))$$

but not better (i.e. with $>$).
Formally, if \(\nu = \hat{\nu}(t, x, y) \), we can find \((a, b)\) such that

\[
0 = d(V^\nu - \hat{\nu}(\cdot, X, Y)) = b[Yf(X) - (f \partial_x \hat{\nu} + \partial_y \hat{\nu})(\cdot, X, Y)]dt + \cdots
\]

but not better (i.e. with \(>\)).
Formally, if $v = \hat{w}(t, x, y)$, we can find (a, b) such that

$$0 = d(V^v - \hat{w}(\cdot, X, Y)) = b[Yf(X) - (f \partial_x \hat{w} + \partial_y \hat{w})(\cdot, X, Y)]dt + \cdots$$

but not better (i.e. with $>$). In particular, we should have

$$yf(x) = f(x)\partial_x \hat{w}(t, x, y) + \partial_y \hat{w}(t, x, y).$$
Learning from the above definition

- The fact that (formally)
 \[yf(x) = f(x)\partial_x \hat{w}(t, x, y) + \partial_y \hat{w}(t, x, y) \]
 implies
 \[\hat{w}(t, x, y) - \mathcal{I}(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y)) \]
in which
 \[x(x, \delta) = x + \int_0^\delta f(x(x, s))ds \quad \text{and} \quad \mathcal{I}(x, \delta) := \int_0^\delta sf(x(x, s))ds. \]
Learning from the above definition

The fact that (formally)
\[yf(x) = f(x)\partial_x \hat{w}(t, x, y) + \partial_y \hat{w}(t, x, y) \]
implies
\[\hat{w}(t, x, y) - \mathcal{I}(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y)) \]
in which
\[x(x, \delta) = x + \int_0^\delta f(x(x, s))ds \quad \text{and} \quad \mathcal{I}(x, \delta) := \int_0^\delta sf(x(x, s))ds. \]

Interpretation:
- \(x(x, \delta) \): impact of a jump \(\delta \) on \(Y \) by using the splitting rule,

Split \(\delta \) in \(\delta/n \) then
\[x + \frac{\delta}{n}f(x) \simeq x(x, \frac{\delta}{n}) \sim x(x(x, \frac{\delta}{n}), \frac{\delta}{n})) = x(x, \frac{2\delta}{n}) \sim \ldots \simeq x(x, \delta) \]
Learning from the above definition

- The fact that (formally)

\[yf(x) = f(x)\partial_x \hat{w}(t, x, y) + \partial_y \hat{w}(t, x, y) \]

implies

\[\hat{w}(t, x, y) - \mathcal{I}(x(x, -y), y) = \hat{w}(t, x(x, -y), 0) =: w(t, x(x, -y)) \]

in which

\[x(x, \delta) = x + \int_0^\delta f(x(x, s))ds \quad \text{and} \quad \mathcal{I}(x, \delta) := \int_0^\delta sf(x(x, s))ds. \]

- Interpretation:
 - \(x(x, \delta) \): impact of a jump \(\delta \) on \(Y \) by using the splitting rule,
 - \(\mathcal{I}(x, \delta) \): corresponding impact on the portfolio value \(V \) if the initial stock position is 0.

Split \(\delta \) in \(\delta/n \) then

\[x + \frac{\delta}{n} f(x) \sim x(x, \frac{\delta}{n}) \sim x(x(x, \frac{\delta}{n}), \frac{\delta}{n})) = x(x, \frac{2\delta}{n}) \sim \ldots \sim x(x, \delta) \]
Specification with jumps
Adding jumps and splitting of large orders

We now consider a trading signal of the form

\[Y = Y_0 - \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s + \int_0^\cdot \delta \nu (d\delta, ds) \]
Adding jumps and splitting of large orders

- We now consider a trading signal of the form

\[
Y = Y_0 - \int_0^T b_s ds + \int_0^T a_s dW_s + \int_0^T \delta \nu(d\delta, ds)
\]

- Jumps \(\delta_i \) at time \(\tau_i \) is passed on \([\tau_i, \tau_i + \varepsilon]\) at a rate \(\delta_i / \varepsilon \).
Adding jumps and splitting of large orders

We now consider a trading signal of the form

\[Y = Y_0 - \int_0^\cdot b_s ds + \int_0^\cdot a_s dW_s + \int_0^\cdot \delta \nu (d\delta, ds) \]

Jumps \(\delta_i \) at time \(\tau_i \) is passed on \([\tau_i, \tau_i + \varepsilon]\) at a rate \(\delta_i / \varepsilon \).

The limit dynamics when \(\varepsilon \to 0 \) is \((\Delta x(x, \delta) = x(x, \delta) - x) \)

\[X = X_0 + \int_0^\cdot \sigma (X_s) dW_s + \int_0^\cdot f(X_s) dY_s^c + \int_0^\cdot a_s \sigma f'(X_s) ds \]
\[+ \int_0^\cdot \int_0^\cdot \Delta x(X_{s-}, \delta) \nu (d\delta, ds) \]

\[V = V_0 + \int_0^\cdot Y_s dX_s^c + \frac{1}{2} \int_0^\cdot a_s^2 f(X_s) ds \]
\[+ \int_0^\cdot \int_0^\cdot \left(Y_{s-} \Delta x(X_{s-}, \delta) + I(X_{s-}, \delta) \right) \nu (d\delta, ds). \]
Geometric dynamic principle

- With this construction, we have the relation

\[w(t, x(x, -y)) = \hat{w}(t, x, y) - \mathcal{I}(x(x, -y), y). \]
Geometric dynamic principle

- With this construction, we have the relation

\[w(t, x(x, -y)) = \hat{w}(t, x, y) - I(x(x, -y), y). \]

- Geometric dynamic programming transferred from \(\hat{w} \) to \(w \).
Geometric dynamic principle

- With this construction, we have the relation
 \[w(t, x(x, -y)) = \hat{w}(t, x, y) - \mathcal{I}(x(x, -y), y). \]

- Geometric dynamic programming transferred from \(\hat{w} \) to \(w \).

- GDP: (i) If \(v > w(t, x) \) then \(\exists (a, b, \nu) \) and \(y \in \mathbb{R} \) s.t.
 \[V_\theta \geq w(\theta, x(X_\theta, -Y_\theta)) + \mathcal{I}(x(X_\theta, -Y_\theta), Y_\theta), \]
 for all \(\theta \geq t \), where \((X_t, Y_t, V_t) = (x(x, y), y, v + \mathcal{I}(x, y)) \).
Geometric dynamic principle

- With this construction, we have the relation

\[w(t, x(x, -y)) = \hat{w}(t, x, y) - J(x(x, -y), y). \]

- Geometric dynamic programming transferred from \(\hat{w} \) to \(w \).

- GDP: (i) If \(v > w(t, x) \) then \(\exists (a, b, \nu) \) and \(y \in \mathbb{R} \) s.t.

\[V_\theta \geq w(\theta, x(X_\theta, -Y_\theta)) + J(x(X_\theta, -Y_\theta), Y_\theta), \]

for all \(\theta \geq t \), where \((X_t, Y_t, V_t) = (x(x, y), y, v + J(x, y)) \).

(ii) If \(v < w(t, x) \) then \(\not\exists (a, b, \nu), y \) and \(\theta \geq t \) s.t.

\[V_\theta > w(\theta, x(X_\theta, -Y_\theta)) + J(x(X_\theta, -Y_\theta), Y_\theta), \]

with \((X_t, Y_t, V_t) = (x(x, y), y, v + J(x, y)) \).
If \(v = w(t, x) \) the GDP “implies”

\[
d\mathcal{E}_t := dV_t - dw(t, x(X_t, -Y_t)) - d\mathcal{I}(x(X_t, -Y_t), Y_t) = 0,
\]

where \((X_t, Y_t, V_t) = (x(x, y), y, v + \mathcal{I}(x, y)) \).
Pricing equation

- If $v = w(t, x)$ the GDP “implies”

$$dE_t := dV_t - dw(t, x(X_t, - Y_t)) - d\mathcal{I}(x(X_t, - Y_t), Y_t) = 0,$$

where $(X_t, Y_t, V_t) = (x(x, y), y, v + \mathcal{I}(x, y))$.

- Key property:

$$dE = [\dot{Y} - Y] \left[(f'f)(X) a^2 / 2 \, dt - \sigma(X) dW \right] + \hat{F}[w](\cdot, x(X, - Y), Y) dt$$

in which $\dot{Y} = Y$ iff

$$Y = \hat{y}(\cdot, X) := x^{-1}(X, X + f(X) \partial_x w(\cdot, X)).$$
Pricing equation - viscosity sense

- By identifying the dW and dt terms, we obtain the PDE:

$$0 = \hat{F}[w](\cdot, \hat{y})$$
Pricing equation - viscosity sense

- By identifying the \(dW \) and \(dt \) terms, we obtain the PDE:

\[
0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x [w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2 [w + \mathcal{I}]
\]

where

\[
\hat{\mu}(\cdot, y) := \frac{1}{2} \left[\partial_{xx}^2 x \sigma^2 \right](x(\cdot, y), -y) \quad \text{and} \quad \hat{\sigma}(\cdot, y) := (\sigma \partial_x x)(x(\cdot, y), -y),
\]

and

\[
\hat{y}(t, x) := x^{-1}(x, x + f(x) \partial_x w(t, x)).
\]
Pricing equation - viscosity sense

□ By identifying the dW and dt terms, we obtain the PDE:

$$0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y})\partial_x [w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2 [w + \mathcal{I}]$$

where

$$\hat{\mu}(\cdot, y) := \frac{1}{2} [\partial_{xx}^2 x \sigma^2](x(\cdot, y), -y) \quad \text{and} \quad \hat{\sigma}(\cdot, y) := (\sigma \partial_x x)(x(\cdot, y), -y),$$

and

$$\hat{y}(t, x) := x^{-1}(x, x + f(x)\partial_x w(t, x)).$$

□ Terminal condition

$$G(x) := \inf \{yx(x, y) + g_0(x(x, y)) - \mathcal{I}(x, y) : y = g_1(x(x, y))\}.$$
Pricing equation - viscosity sense

- By identifying the \(dW \) and \(dt \) terms, we obtain the PDE:

\[
0 = \hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y})\partial_x[w + \mathcal{I}] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2\partial^2_{xx}[w + \mathcal{I}]
\]

where

\[
\hat{\mu}(\cdot, y) := \frac{1}{2}[\partial^2_{xx}x\sigma^2](x(\cdot, y), -y) \quad \text{and} \quad \hat{\sigma}(\cdot, y) := (\sigma\partial_x x)(x(\cdot, y), -y),
\]

and

\[
\hat{y}(t, x) := x^{-1}(x, x + f(x)\partial_x w(t, x)).
\]

- Terminal condition

\[
G(x) := \inf \{yx(x, y) + g_0(x(x, y)) - \mathcal{I}(x, y) : y = g_1(x(x, y))\}.
\]

- To be first taken in the discontinuous viscosity sense for the relaxed semi-limits associated to problems with bounded controls (comparison holds -> uniqueness + numerical schemes / smooth solution).
Pricing equation - verification

Assume that w is a smooth solution with $w(T-, \cdot) = G$ of

$$
\hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x [w + \mathcal{J}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial^2_{xx} [w + \mathcal{J}] = 0.
$$
Assume that w is a smooth solution with $w(T-\cdot) = G$ of

$$\hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x [w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2 [w + \mathcal{I}] = 0.$$

Then $\mathcal{E}_t := V - w(\cdot, x(X, -Y)) - \mathcal{I}(x(X, -Y), Y)$ satisfies

$$d\mathcal{E} = [\mathcal{Y} - Y][\cdots]dt + (\cdots)dW] + \hat{F}[w](\cdot, \hat{X}, Y)dt$$

with $\hat{X} = x(X, -Y)$
Pricing equation - verification

Assume that \(w \) is a smooth solution with \(w(T-, \cdot) = G \) of

\[
\hat{F}[w](\cdot, \hat{y}) = -\partial_tw - \hat{\mu}(\cdot, \hat{y})\partial_x[w + I] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2\partial_{xx}[w + I] = 0.
\]

Then \(\mathcal{E}_t := V - w(\cdot, x(X, -Y)) - I(x(X, -Y), Y) \) satisfies

\[
d\mathcal{E} = [\hat{Y} - Y][(\cdots)dt + (\cdots)dW] + \hat{F}[w](\cdot, \hat{X}, Y)dt
\]

with \(\hat{X} = x(X, -Y) \)

We can use a strategy ensuring \(Y = \hat{Y} = \hat{y}(\cdot, \hat{X}) \) :
Pricing equation - verification

- Assume that w is a smooth solution with $w(T-, \cdot) = G$ of
 \[
 \hat{F}[w](\cdot, \hat{y}) = -\partial_tw - \hat{\mu}(\cdot, \hat{y})\partial_x[w + \mathcal{I}] - \frac{1}{2}\hat{\sigma}(\cdot, \hat{y})^2\partial^2_{xx}[w + \mathcal{I}] = 0.
 \]

- Then $\mathcal{E}_t := V - w(\cdot, x(X, -Y)) - \mathcal{I}(x(X, -Y), Y)$ satisfies
 \[
 d\mathcal{E} = [\hat{Y} - Y][(\cdots)dt + (\cdots)dW] + \hat{F}[w](\cdot, \hat{X}, Y)dt
 \]
 with $\hat{X} = x(X, -Y)$

- We can use a strategy ensuring $Y = \hat{Y} = \hat{y}(\cdot, \hat{X})$:
 - Make an initial jump of size $Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_0-)))$.
Pricing equation - verification

Assume that \(w \) is a smooth solution with \(w(T-, \cdot) = G \) of

\[
\hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x[w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial^2_{xx}[w + \mathcal{I}] = 0.
\]

Then \(E_t := V - w(\cdot, x(X, -Y)) - \mathcal{I}(x(X, -Y), Y) \) satisfies

\[
dE = [\hat{Y} - Y][(\cdots)dt + (\cdots)dW] + \hat{F}[w](\cdot, \hat{X}, Y)dt
\]

with \(\hat{X} = x(X, -Y) \)

We can use a strategy ensuring \(Y = \hat{Y} = \hat{y}(\cdot, \hat{X}) \):

- Make an initial jump of size \(Y_0 = x^{-1}(x, x(x, \partial_x w(0, X_0-))) \).
- Follow \((a, b)\) such that \(Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_x w(t, \hat{X}))) \).
Pricing equation - verification

Assume that w is a smooth solution with $w(T-, \cdot) = G$ of

$$\hat{F}[w](\cdot, \hat{y}) = -\partial_t w - \hat{\mu}(\cdot, \hat{y}) \partial_x [w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2 [w + \mathcal{I}] = 0.$$

Then $E_t := V - w(\cdot, x(X, -Y)) - \mathcal{I}(x(X, -Y), Y)$ satisfies

$$dE = [\hat{Y} - Y] [(\cdots) dt + (\cdots) dW] + \hat{F}[w](\cdot, \hat{X}, Y) dt$$

with $\hat{X} = x(X, -Y)$

We can use a strategy ensuring $Y = \hat{Y} = \hat{y}(\cdot, \hat{X})$:

- Make an initial jump of size $Y_0 = x^{-1}(x, x, \partial_x w(0, X_{0-})).$
- Follow (a, b) such that $Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_x w(t, \hat{X}))).$

Then

- $V_{T-} = G(x(X_{T-}, -Y_{T-})) + \mathcal{I}(x(X_{T-}, -Y_{T-}), Y_{T-}).$
Pricing equation - verification

- Assume that \(w \) is a smooth solution with \(w(T-, \cdot) = G \) of
 \[
 \hat{F}[w](\cdot, \hat{y}) = -\partial_tw - \hat{\mu}(\cdot, \hat{y})\partial_x[w + \mathcal{I}] - \frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^2 \partial_{xx}^2[w + \mathcal{I}] = 0.
 \]

- Then \(\mathcal{E}_t := V - w(\cdot, x(X, -Y)) - \mathcal{I}(x(X, -Y), Y) \) satisfies
 \[
 d\mathcal{E} = [\hat{Y} - Y] [(\cdots)dt + (\cdots)dW] + \hat{F}[w](\cdot, \hat{X}, Y)dt
 \]
 with \(\hat{X} = x(X, -Y) \)

- We can use a strategy ensuring \(Y = \hat{Y} = \hat{y}(\cdot, \hat{X}) \):
 - Make an initial jump of size \(Y_0 = x^{-1}(x, x, \partial_xw(0, X_{0-})) \).
 - Follow \((a, b)\) such that \(Y = x^{-1}(\hat{X}, x(\hat{X}, \partial_xw(t, \hat{X})) \).

- Then
 - \(V_{T-} = G(x(X_{T-}, -Y_{T-})) + \mathcal{I}(x(X_{T-}, -Y_{T-}), Y_{T-}) \).
 - Liquidate \(Y_{T-} : V_T = G(X_T) \) and \(Y_T = 0 \).
Constant impact

Model: $dX_t = \sigma(X_t) dW_t$ (between trades) and $f(X) = \lambda$.
\[dX_t = \sigma(X_t) dW_t \] (between trades) and \(f(X) = \lambda \).

In this case, \(x(x, \delta) = x + \lambda \delta, \mathcal{I}(x, \delta) = \frac{1}{2} \delta^2 \lambda, \) and the pde is

\[
-\partial_t w - \frac{1}{2} \sigma^2 (x + \lambda \partial_x w) \partial_{xx}^2 w = 0
\]

For \(\lambda = 0 \) or \(\sigma = \text{cst} \), this is the usual heat equation!!!
Constant impact

- Model: \(dX_t = \sigma(X_t)dW_t \) (between trades) and \(f(X) = \lambda \).

- In this case, \(x(x, \delta) = x + \lambda \delta \), \(\mathcal{I}(x, \delta) = \frac{1}{2} \delta^2 \lambda \), and the pde is

\[
-\partial_t w - \frac{1}{2} \sigma^2 (x + \lambda \partial_x w) \partial_{xx}^2 w = 0
\]

For \(\lambda = 0 \) or \(\sigma = \text{cst} \), this is the usual heat equation!!!

- We can use the strategy: \(Y = \partial_x w(\cdot, \hat{X}) = \partial_x w(\cdot, X - \lambda Y) \).
Thank you very much!