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Aim of this work

O Aim :
e Consider a model with price impact and liquidity cost, but in

which hedging still makes sense without being degenerate (in
any sense).

¢ Not high frequency (no bid-ask spread), but still impact on
prices. To be considered as a liquidity model.

e Here, only permanent impact.



Option pricing with illiquidity or impact in the
literature (part of)

O Equilibrium dynamics (modified price dynamics) : Sircar and
Papanicolaou 98, Schénbucher and Wilmot 00, Frey 98.

O Liquidity curve (but no impact) : Cetin, Jarrow and Protter 04,
Cetin, Soner and Touzi 09.

O llliquidity + impact : Loeper 14 (verification arguments).

O Related works : Liu and Yong 05, Almgren and Li 2013, Millot
and Abergel 2011, Guéant and Pu 2013,...
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Impact rule

O Basic rule : a small order § moves the price by
th — Xt - th + (sf‘(th),

and costs
1, 1 1
5Xt7 + 55 f‘(th) - (5(§th + §Xt)

O We just model the curve around 6 = 0. This should be
understood for a “small” order §.

Would obtain the same with
th — Xt' == th + F(Xt,,(S)

if F(x,0) =0 and J5F(x, ) = f(x) + o(9).
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Trading signal and discrete trading dynamics

O A trading signal is an 1t6 process of the form

Y = Yo+/ bsds+/ asdWs.
0 0

O Need to define the dynamics of the wealth and of the asset. As
usual, consider discrete trading and pass to the limit.

O Trade at times t]' = iT /n the quantity 6{» = Yi» — Vi .

O We assume that the stock price evolves according to

X = Xep + / o (Xs)dW,s
tn

i

between two trades (can add a drift or be multivariate without
extra complications).



Trading signal and discrete trading dynamics

O Passing to the limit n — oo, it converges in Sy to
Y = Y0+/ bsds—i—/ asdW
0 0
X =X —1—/ o(Xs)dWs +/ f(Xs)dYs +/ asof'(Xs)ds
0 0 0

V= v0+/ stxs+;/ a2f(Xs)ds,
0 0

at a speed /n, where

V = cash part + YS = “portfolio value”.
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Super-hedging problem

O Fix a claim g = (go, g1) with
e go = cash part
e g1 = # of stocks to deliver.

O Super-hedging price = minimal initial cash so that
Vr — Y1 X7 > go(X7) and Y7 = g1(X7).

(Recall that V = cash +YX)
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Natural definition

O w(0, Xp, Yo) is the min over Vg such that super-hedge for some
(a, b), starting from Yp.

O Problems :
e certainly needs an initial jump of Y at 0 to have
“Yot = 0xw(0, Xo+, Yo+ )"
e from the pde point of view, will be on a curve
Y = 0i(-, X, Y)!



Another difficulty

O Expending the dynamics leads to

Y = Yo+/ bsds—i—/ asdWs
0 0

X=X+ / (o + asf)(Xs)dWs + / (asof’ + bsf)(Xs)ds
0 0
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Another difficulty

O Expending the dynamics leads to

Y = Yo+/ bsds—i—/ asdWs
0 0

X=X+ / (o + asf)(Xs)dWs + / (asof’ + bsf)(Xs)ds
0 0

V=W +/ Ys(o + asf)(Xs)dWs —i—/ Ys(asof' + bsf)(Xs)ds
0 0

+ 1/ a2f(Xs)ds,
2 Jo

O b appears linearly and is not constrained a-priori = singular
control problem !
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Learning from the above definition

O Formally, if v = Ww(t,x,y), we can find (a, b) such that

0=d(V¥— w(- X, Y)) = bIYF(X) — (FOxi + 8,W)(-, X, Y)]dt + - -

but not better (i.e. with >). In particular, we should have

yf(X) = f(X)(?XW(taxvy) + 8}/W(t7X7y)'
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O The fact that (formally)
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1 1)
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Learning from the above definition
O The fact that (formally)
yf(X) = f(X)aXW(taXay) + ay‘;\v(tv)(?y)
implies
w(t,x,y) — I(x(x,—y),y) = w(t,x(x, —y),0) = w(t,x(x, —y))

in which

1 1)
x(x,8) = x + /0 F(x(x,5))ds and J(x, ) := /0 SF(x(x, 5))ds.

O Interpretation :
e x(x,d) : impact of a jump ¢ on Y by using the splitting rule,
e J(x,9) : corresponding impact on the portfolio value V if the
initial stock position is 0.

Split 6 in 6/n then

x+5f( ) ~ x(x, %)MX(X(X,%),%)):X(X,§)’\’>...EX(X,5)



Specification with jumps
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Adding jumps and splitting of large orders

O We now consider a trading signal of the form
Y = Yoo +/ bsds +/ ade5+/ ov(do, ds)
0 0 0
O Jumps §; at time 7; is passed on [, 7; + €] at a rate ¢; /.

O The limit dynamics when ¢ — 0 is (Ax(x,0) = x(x,9) — x)
X = X. +/’ o (Xe)dWs +/ F(X)dYE + / 2s0F'(Xs)ds
0
/ /AX s—,0)v(dd, ds)

vV = v0_+/ stxg+1/ af(Xs)ds
0 2 Jo
+ / /(YSAX(X5,6)+3(XS,5))1/(d(3,ds).
0
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Geometric dynamic principle
O With this construction, we have the relation
w(t,x(x, —y)) = w(t, x,y) = I(x(x, =y), y)-
O Geometric dynamic programming transferred from W to w.
O GDP : (i) If v> w(t,x) then 3 (a,b,v) and y € R s.t.
Vo > w(0,x(Xp,—Yp)) + I(x(Xp, — Yp), Yp),
for all 6 > t, where (X¢, Y, Vi) = (x(x,y), ¥, v+ T3(x,y)).
(ii) If v < w(t,x) then A (a,b,v), y and 0 > t s.t.
Vo > w(0,x(Xg, —Ys)) + I(x(Xp,—Yp), Yo),

with (X, Yi, Vi) = (x(x,y),y, v+ 3(x,y)).



Pricing equation
O If v = w(t,x) the GDP “implies”
dgt = th - C/W(t,X(Xt, —Yt)) - dj(X(Xt, —Yt), Yt) = 0,
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Pricing equation

O If v = w(t,x) the GDP “implies”

d&; = dVy — dw(t,x(Xe, — Yt)) — dTI(x(Xe, — Ye), Ye) =0,
where (X, Yi, Vi) = (x(x,y),y, v+ 3(x, y)).
O Key property :

de = [Y — Y][(f'F)(X)a?/2dt — o(X)dW]
+F[w](-,x(X,=Y), Y)dt

in which Y = Y iff

Y =9(-, X) :=x X, X + F(X)0w(-, X)).
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Pricing equation - viscosity sense
O By identifying the dW and dt terms, we obtain the PDE :

0= Fw](.9) = —0ew — A(-, 9)0x[w + 3] — 16(-, 7)202 [w + 7]
where

A, y) = [82 xo?](x(,y), —y) and 6(-,y) = (00xx)(x(-,¥), =),

and
P(t,x) = x1(x, x 4+ F(x)0w(t, x)).

O Terminal condition

G(x) :=inf {yx(x,y) + go(x(x,¥)) = I(x,¥) : y = g(x(x,y))}.

O To be first taken in the discontinuous viscosity sense for the
relaxed semi-limits associated to problems with bounded controls
(comparison holds-> uniqueness + numerical schemes / smooth
solution).
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O Assume that w is a smooth solution with w(T—,-) = G of
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Pricing equation - verification

O Assume that w is a smooth solution with w(T—,-) = G of

ﬁ[W](a}?) = _atW - ﬁ(>}/})8x[w + j] - %6-(757)203x[w + j] =0.
O Then & =V — w(-,x(X,—=Y)) = J3(x(X, —Y), Y) satisfies

d& = [V — Y][(---)dt + (-~ )dW] + Fw](-, X, Y)dt

with X = x(X, —Y)
O We can use a strategy ensuring Y = Y = (-, X) :

e Make an initial jump of size Yo = x~1(x,x(x, xw(0, Xo_))).

o Follow (a, b) such that ¥ = x~1(X,x(X, dew(t, X))).
O Then

o Vr_ = G(X(XT_, —YT_)) + TJ(X(XT_, —YT_), YT_).
e Liquidate Y7_ : V7 = G(X7) and Y7 =0.
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Constant impact

O Model : dX; = o(X;)dW; (between trades) and f(X) = A.
O In this case, x(x,9) = x + AJ, J(x,0) = %52)\, and the pde is
1, 2
— 0w — 50 (x + Aoxw)dg,w =0

For A = 0 or o =cst, this is the usual heat equation!!!

A

O We can use the strategy : Y = Oxw(-, X) = dyw(-, X — A\Y).



Thank you very much |
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