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BSDESs and PDEs: reminder




Semilinear parabolic PDEs

The solution u of

—Lu — f(-,u, Du'c) 0 on [0,7) x R?

w(T,) = g on R?
with £ the Dynkin operator
0 1
Lu = pYL + b(x) Du + §Tr [aal(af;)DQu}

is associated to the solution (Y, Z) of

Y; = g(X7) -I-/tTf(Xs,Ys,Zs)dS—/tTstWs
where
Xi = Xo+ [ b(X)ds+ [ o(X)dW, .
through

Vi = u(t, Xy) , Zy= Du'o(t, Xy)



Semilinear parabolic PDEs

The solution u of

—Lu — f(-,u, Du'o) 0 on [0,T) x R?

w(T,) = g on R?
with £ the Dynkin operator
_ 0 / 1 / 2
Lu = Py + b(x) ' Du + §Tr [00 (z)D u}

is associated to the solution (Y, Z) of

T T
Y, = g(Xr)+ /t f(Xs, Ys, Zs)ds — /t ZsdWs

where

t t
X, = XO—I—/Ob(XS)ds—I—/Oa(XS)dWS,

Remark: if f is independent of v and Du then

Y = ’U,(t,Xt) =k

T
g(X7) + /t F(Xs)ds | ft]



Numerical resolution: first approaches

e Ma, Protter and Yong (94), Douglas, Ma and Protter (96), Ma, Protter,
San Martin and Torres (02):
solve the PDE = (4, Du) and set (Y™, Z™) = (u, Du)(-, X™).

e Coquet, Mackevicius and Memin (98), Briand, Delyon and Memin (01),
Antonelli and Kohatsu (00):

approximate W by a discrete random walk (with values in a finite state-
space) and solve the associated discrete time BSDE.

= Curse of dimensionality !



Euler scheme approximation




The forward process X

e Fix a grid of [0,T]: m := {t; := hi, i < n} with h =T/n.
e Set g:XO

efFori:=1,...,n, set

Xt: — Xg—l + b(XZ;_l)h + J(XZ;—1)(W757: - Wt 1)



T he forward process X

e Fix a grid of [0,T]: w:={t; := hi, i < n} with h =T/n.
e Set g:XO

efFori:=1,...,n, set

Xt: — Xz;—l + b(XZ;—l)h + J(Xz;q)(wti - Wt 1)

e Error:

N|—

1
maxE | sup |X;— X[|*| <Ch2.
t<n teltitital



The BSDE (Y, Z7): Adapted backward Euler scheme

eFori=n-1,...,0, write

Y;fi ~ Y;fi_|_1 + f(XtZw Ytia th)h — Zti(Wt,H_l - Wtz) (1)

and take E [ | .7-}1} to get

Y%i ~ K i/tz 1 | Fti +f(thaytzaztz)h
4+



The BSDE (Y, Z7): Adapted backward Euler scheme

eFori=n-1,...,0, write
Y;fi ~ Y;fi_|_1 + f(XtZw Ytia th)h — Zti(WtH_l - Wtz) (2)

and take E [ | .7-}1} to get

Y;fz' ~ K i/tz 1 | Fti _I_f(XtZaYtzath)h
4+

multiply (2) by (Wt , — Wy)

%i(Wti—l—l - Wtz) ~ %i—Fl(Wti—Fl - Wtz) + f(Xtia nia Zti)(WtH_l — Wtz)h

- Zti(WtH_l — Wti)(Wti—l—l — Wtz)

and take E [ | J—",;J

0 ~ k [Ytz‘+1(Wtz‘+1 - W) | }_ti} — Zyh



The BSDE (Y, ~7): Adapted backward Euler scheme (2)

e Recall:

Y;fi ~ K [Y%H—l | ftz] + f(Xtia Ytia th)h
0 ~ E [Y;fi+1(Wti_|_1 — Wtz) | th} — thh




The BSDE (Y, ~7): Adapted backward Euler scheme (2)

e Recall:
Y;fi ~ [ [Y%H—l | ftz] + f(tiY;ffp th)h
0 ~ E [Y;fi+1(Wti+1 — Wtz) | th} — thh
e Set Y = g(X7F) and for i =n—1,...,0
Y = B[V, | Fy] 4+ F(XT Y ZD)R
where

zf, = hTE Y, Wiy, - Way) | 7



The BSDE (Y, 7): Adapted backward Euler scheme (2)

e Recall:
Y;fi ~ [ [Y%H—l | ftz] + f(tiY;ffp th)h
0 ~ E [Y;fi+1(Wti+1 - Wtz) | th} — thh
e Set Y = g(X7F) and for i =n—1,...,0
Yi = B[V, | Fy| + FXT, YT, Z5)h
where
—1
zf;, = hEY, (Whyy — W) | 7y
e Could alternatively set

v = E[Y,, | F] +E[F(XE Y, 20) | )k



Numerical implementation




Quantization

e Bally, Pages and Printems for the case f independent of Z.

e Replace X™ by a quantized version X7 taking a finite number of possible
values.

e Estimate the transition probabilities of X7.

e Use the algorithm: Y = g(X7) and for i =n—1,...,0

7 = E|Y; Z+1|Xt}+f<Xz;,?£)h



Pure Monte-Carlo approaches

e Simulate (X™, WJ, , j < N)
o Set V7 = g(X77)

e Given E an approximation of E based on the simulated data, use the
induction

s

o)
Yti T E[ 7,—|—1

Zi? = wR|TT

z—|—1(Wti—|—1 — Wtz) | Xti’]}

e Two alternatives :

1. Chevance (97), Longstaff and Schwartz (01), Gobet, Lemor and Warin
(05): non-parametric regression.

2. Lions and Regnier (01), B., Ekeland and Touzi (04), B. and Touzi (04):
Malliavin calculus approach to rewrite conditional expectations in terms of
unconditional expectations.



Approximation error




Control of the approximation error

e Say f =0, then

1

T T
Y, = g(Xr)+ /t | f(Xs, Ya, Zs)ds - /t ' ZdWs

ti+1
— Yti+1_/t- ZsdWs
implies

1



Control of the approximation error

e Say f =0, then
T T
Yi = 9(Xr)+ [ f(Xe,Ya, Zo)ds — [ ZedWs

tit+1
-~ th—/t ZsdWs

(

implies
Yy, = E[}/tz’-l—l | fti] :
Thus
max[E su Y; — Y12 > maxE|Y: .. — Y712 > maxE ||y, . — Y. |?
i<n tE[tz‘,t?+1]| RGN i<n “ i~ Y| } ~ i<n [| tiva ~ Vil }
> cmaxE | sup |V —Yi|?| = cR(Y)q2
U teltitiya]

for some ¢ > 0.



Control of the approximation error (2)

e Set

Zti L= h_lE

t;
/t T sts | ftZ]

(

then

K > K

ti+1
> [z - 27 Par
7 1

tit1 ~
Z/t |1Z¢ — th.||2dt] =R(Z) 42
i 1



Control of the approximation error (3)

e Conclusion: up to a constant ¢ > 0, the error

ti+1
> na—%ﬁ#
7 {

Err(h)? := m<axE
1n

+ K

sup Yy — Y{T|?
tet;tsy1]

is bounded from below by

R(Y)SQ aF R(Z)HQ = max [k

. sup |¥; — Yy,|°
<<mn

telt;,tiy1]

+ K

tit1 ~
> n@—%94
i ()



Control of the approximation error (3)

e Conclusion: up to a constant ¢ > 0, the error

ti+1
> na—%ﬁ#
7 {

Err(h)? := m<axE
1n

+E

2
sup Y — Y7
teltitit]

is bounded from below by

R(Y)SQ - R(Z)HQ = max[E + E

) sup Yy — V|2
1<n

telt;,tiy1]

tit1 ~
> n@—%94
i ()

e One can actually show that

Err(h)?2 =0 (R(Y) g2 + R(Z)32 + 1)



Control of the approximation error (4)

e Thus
Err(h)2 =0 (R(Y) g2+ R(Z)32 + 1)
where (formally)

R(Y)g2 = maxE[ sup |u(t, X¢) —u(t;, Xy,) |?]
s <N tefttigal Y, b Zf/; g

and

i1 _ tit1
R(Z)7 = E[>. /t | Du/o(t, X¢) —h™1E / Du'o(s, Xs) | fti] |%dt]

t = TV =

~

T

1

e The error depends on a very weak notion of regularity of (u, Du).



Regularity results




Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) g + R(Z),p = O(h) and Err(h) = O(h2)



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) g + R(Z),p = O(h) and Err(h) = O(h2)

e Corollary: wu is %—Hélder in ¢t and Lipschitz in x.



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

e Elements of proof for R(Z),.2: (case f =0, d =1, smooth coefficients)

Y, = u(t,Xs) = E[g(Xr) | Fi
Z: = Du(t,Xaa(Xt)=aﬁXou<t,Xt><84f%Xt>—la<Xt>



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

e Elements of proof for R(Z),.2: (case f =0, d =1, smooth coefficients)

Vi = u(t,Xy) =E[g(X7) | Fi]
G, G,

Z: = Du(t.X))o(X;) = —u(t. X)) (——X,) Lo(X
, u(t, X¢)o(Xy) 8Xou(’ t)((‘?XO t)” o (Xy)
9 8 4
= K |Dg(X+)—X F —X X
g( T>8Xo T | Fi faXo t) o( t)/

say:lforgimplicity



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

e Elements of proof for R(Z),.2: (case f =0, d =1, smooth coefficients)
Then,

19,
7+ = K |Dg(X+)—X e
, g( T)aXo T | Ft

is @ Martingale (E[Z; | Fs] = Zs for s <t)



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

e Elements of proof for R(Z),.2: (case f =0, d =1, smooth coefficients)
Then,

0
Zy = E|Dg(Xp)—X7 | F
| = B |DaCxn) 5 Xr | 5
is @ Martingale (E [Z; | Fs] = Zs for s < t) which implies

E [|Zt _ Ztﬂ <E [Z%H _ Z,?] Lt € [t tign]



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

e Elements of proof for R(Z),.2: (case f =0, d =1, smooth coefficients)
Then,

0
Zy = E|Dg(Xp)—X7 | F
| = B |DaCxn) 5 Xr | 5
is @ Martingale (E [Z; | Fs] = Zs for s < t) which implies
E [|Zt — Ztiﬂ <E [Z%H — ZtQ,L] , t € [t tiy1]
and

/:Hl E||Z; — Z;|?] dt < /tjiﬂ E||Z: — Zt,|°| dt < hE |2, — ZF] -

(



Semilinear PDEs

e Theorem (Ma and Zhang 02, and B. and Touzi 04): Assume all the
coefficients are Lipschitz continuous. Then,

R(Y) o+ R(Z)0 = O(h) and Err(h) = O(h2)

We thus obtain a O(h) behavior for

R(Y)g2 = maxE[ sup |u(t, Xs) —ulty, Xy,) |°]
S <<n te[tiatfH—l] Y, ~ Z?vtf -

1

and

ti41 _ tit+1
R(Z)7o = E[>. /t | Du'o(t, X) —h ™ E / Du'o(s, Xs) | F,| ||2dt]
i 1 ” 1

t = hh =
~

D

1

with the only assumption that the coefficients are Lipschitz continuous.
No ellipticity condition.



Extension 1:

Semilinear parabolic IPDEs

and systems

B. and Elie (05)




PDEs with integral term

The solution u of

—Lu — f(,u, Du'o, T[u](t,z)) = 0 on [0,T) x R*, w(T, )=g on R?
with the non local term

Tlul(t,2) = [ {ult,o+ 6(a,e)) = u(t,2)} ple) Ade)
and £ the non local Dynkin operator
Lu = %u—l—b(az)’Du—l—%Tr (00’ (z) D?u] + [E {u(t,z + B(z, ) — u(t,z) — Du(t, z)B(z, e)} A(de)
is associated to the solution (Y, Z,U) of
Yimg(Xr) + [ (XY 2 | pever@eds - [ " Zaaw,- / ) | v@ntde, ds)
where | : | T
X, = Xo+ /O B(X.)ds + /O o (X)dW, + /O t | B hitde.ds)

through
Vi=u(t,Xs) , Zy=Du'o(t,Xy), Ule) = ult,Xs— + B(Xi—,e)) —u(t, X;-)



Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

e System of x PDE’'s (m=0,...,k—1)

1
0 = u"+ b Du™+ 5Tr[ama;nD?um] + (-, u, (DU™) om)
gm = u"(T,-) .

e Define for i =0,...,k—1

flm,z,9,7v,2) = fm (:v,(---,y-l-v“’z,y-l-v“17\?J/’y+71’y+72"")’z)

1

oSet E={1,...,5— 1}, A(de) = A% §;(e) and

My = /Ot/Ee,u(de,ds) (<]



Systems of PDEs

Pardoux, Pradeilles and Rao (97), Sow and Pardoux (04).

e System of x PDE’'s (m=0,...,k—1)
1
0 = u"+ b Du™+ 5Tr[ama;nD?um] + (-, u, (DU™) om)

gm = u"(T,").

— uMi(t, X;) = Y; where

dXy = by, (Xe)dt + opr, (Xe)dWs

k—1
—dY; = F(Ms, Xe,Yi,Up, Z)dt = X 3. U(k)edt = ZedWs — [ Un(e)fi(de, at)
k=1

Yr = gu(X7)



Regularity result

e Theorem (B. and Elie 05): Assume all the coefficients are Lipschitz
continuous and that H : For each e € E, the map z € RY B(x,e) admits
a Jacobian matrix V3(x,e) such that the function

(z,6) € R x RY i a(x, &; €) i= &' (VB(x,e) + I7)¢

satisfies one of the following condition uniformly in (z,¢) € R% x R

a(z,&e) > [EPK™Y or a(z,&e) < —|¢PKL.

Then,

R(Y)go 4+ R(Z)0 = O(h) and Err(h) = O(h2)

Remark: Same result without H if the coefficients are Cbl with Lipschitz
first derivatives.



Extension 2:

Free boundary problems

B. and J.-F. Chassagneux (06)




Representation

T he solution u of
min {—Eu— f(-,u, Du'o) , u—g} = 0 on [0,7) xR*, w(T, )=g on R?
is associated to the solution (Y, Z, K) of

T T
Yi = g(Xp)+ [ f(XaYa, Zo)ds = [ ZedWs + Ky — K

T
Yi 2 g(X) , t<T, [ (Ya—g(X:))dK:s =0 and K1,

through
Yy = ’LL(t, Xt) , Lt = DU/O'(t, Xt)



Approximation scheme

e Backward “American’” scheme:
-1
Zg = h E [}/%?+1(Wti+1 - Wtz) I ftz]
Yy = B[V, | Fo| +h FXT YT, ZF)
Y] = max{g(X]), ¥} i<n-1.

with the terminal condition

Yr = g(X7).



Formulation for 27 7

e Previous approach (d=1, f =0)

Y;g = u(t,Xt) =K [g(XTt) | ft] with Tt .= iﬂf{s Z t : YS = g(Xs)}

9 9 )
Zy = Du(t, Xp)o(Xt) = —u(t, Xp) (—Xp) " Lo(X
t ( t) ( t) 9X0 ( t><9XO t) ( t)
_ED(X)6X|.7-“ (—EX)_l(X)
—_ 0
PR ox, T T Naxg '

= Problem...



Discretely reflected BSDE

e (Y, Z, K) solution of

T T
Yi = g(Xp)+ [ f(XaYa, Zo)ds — [ ZedWs + Kp — K
}/% > g(Xt) ’ temw ,

with KtH_]_ — Kti + [}/t’i—l—l_ - g(XtH_]_)]_ :

e Then (for f =0)

0 _ _
Zy =E |Dg(X7)VXpr+ ) 8—X0[Yti+1_ —g( X, ) | Fe| (VXy) Lo(Xy)
tiy1>t

e IPP in the Malliavin sens

Zt =E |g(Xp)Np+ > [YVip— —9(Xe DI NG, | Fe (VX)) o (Xy)
tiy1>t

with
t . —1 [° 1
Nt = (s—1t) /t (X)) 1V X, dW,



Regularity result and convergence rate (1)

Take the limit

t r t r t —1
2y =E |g(Xp)Nk+ [ f(©:)Nlds + | Ndes|ft] (VX1) o (Xy)

with
t 1 [° 1
Nt o= (s—t)" /t o (X,) "1V X, d W,
Theorem (Ma and Zhang 05): Assume that all the coefficients are Lip-
schitz, b and o € C}, g € Cbl’2 and o is uniformly elliptic. Then,

R(Y)go = O(h) , R(Z),0 = O(hZ) and Err(h) = O(h3)



Regularity result and convergence rate (2)

Alternative representation (written formally in the case f = 0, u smooth
and Du = Dg on {u = g}): Use the martingale property of Du(t, X¢)VX;
to get

Zy =R [Dg(X_)VX ¢ | F] (VX)) to(Xy)

Theorem (B. and Chassagneux 06): Assume that all the coefficients are
Lipschitz, g € Cbl with Lipschitz derivatives. T hen,

R(Y)go = O(h) , R(Z),0 = O(hZ) and Err(h) = O(h3)

If moreover, o € Cbl with Lipschitz derivatives and g € Cb2 with Lipschitz
first and second derivatives, then

T2 1
sup |z = Y7 [7| = O(h2) .
teltitiyal
If in addition to the previous condition X = X™ on m, then

max K
1<n

R(Y)go + R(Z)0 = O(h) and Err(h) = O(hZ) .



Extension 3:

Cauchy-Dirichlet problems

B. and S. Menozzi (07)




Representation

The solution u of

O onD:=[0,T)xO
g on 9pD = ([0, T) x 00) U ({T} x O)

—Lu — f(-,u, Du'o)

Uu

is associated to the solution (Y, Z) of
T T
Yi = g(X0)+ [ f(XaYs Ze)ds— [ ZadWs
where
r=inf{t>0 : (t,X:) ¢ [0,T) x O},
through

Vi =u(t AT, Xinr) , Zy = Du'o(t, X¢)1li<;



Approximation scheme

We approximate the first exit time 7 by

mi=inf{tenr : (t,X]) ¢ D}.

The Euler scheme is defined as previously with Y = g(X7:) and

—1
zf = W rE[YT (Wi — W) | 7
Yg = EY{,, | Fu] +h FOXE YT, 2F)



Representation in the smooth case

For ease of notations (d = 1 and f = 0): martingale property of Du(t, X+)V Xy
gives

Z Du'o(t, Xe)li<,

= E[Du(r, X7)VX:/VXi | Fi]o(Xt)li<r

If Du bounded, we can use the same technique as in the first case to bound
R(Z)T,5 !



Gradient bound on the boundary

HL: All coefficients are Lipschitz.

D1: O =N}, Of where O is a C? domain of R? with a compact boundary.
D2. For all z € 90, there is y(z) € O¢, r(x) € [L™1, L] and é§(z) € B(0,1)
such that B(y(z),r(z)) N O = {z} and

{z' e B(z,L™Y) : (&' —z,6(@))>Q—-L Y| -2z} cO.

C. The boundary satisfies a non characteristic condition outside a neighbor-
hood of C := ﬂ}f”;&kzl 00'NAOF and o is uniformly elliptic on a neighborhood
of C.

Hg: g € C12(D) and 8|l + | Dgll + [[D%g]l < L on D.

Theorem: Assume that the above conditions hold. Then, u is uniformly
Lipschitz continuous and |Z| < £ a.e. for some £ € LP for all p > 2.



Regularity under general conditions

Recall that (formally) for d =1 and f = O:

Z

Du'o(t, Xe)li<,
K [D’U,(’T, XT)VXT/VXt | ]:t] 0(t7 Xt)]-tST

Corollary: Assume that the above conditions hold. Then,

R(Y) g2 + R(Z)y2 = O(h) .



ADbstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

Err(h)7 < C(h+R(Y) g2 +R(Z)ye +E[lr — 771)
and
2 @ 2
Err(h)zpr < C (h +R(Y)s2+R(Z)p2 +E [E [§|T — 7] | fnr/\ﬂ] D
where 7 is the next time after 7 in the grid

4 =inf{tenr . 7<t}.



ADbstract error and exit time approximation

Proposition: Assume that HL and Hg hold. Then,

Err(h)3 < C(h+R(Y)g2 + R(2)y2 +E[€r — 77])

and
2
Err(h)2,x < C (h +R(Y) g2+ R(Z)yp +E [IE elr — 77| | Frpnor] D
where 7 is the next time after 7 in the grid
4 =inf{tenr . 7<t}.

Theorem: Assume that HL, D1 and C hold. Then, for e € (0,1) and each
positive random variable & € N, LP there is C* > 0 such that

2
E[gE[g 7 — 77| | f-qmﬁ} ] < Cfht—e.
In particular, for each ¢ € (0,1/2),
E[lr—7"]] < C°hl/?~¢.



Global approximation error

Theorem: Assume that HL and Hg hold. Then,

Err(h)% < Clh+R(Y)g2 + R(Z)p2e +E[§|T — 77]])
o(h) A

1
O(h27°)
and

El’l’(h)g/\Tw S C(h +??’(Y)82 _I_ R(Z)H%+E []E [§|T — 7'7T| | fT+ATW] 2])
O(h) ) ’

O(h1-¢)

1
In particular: u(0, Xg) — Y = O(h2™°) (weak error).



Remaining questions

Semilinear PDEs with quadratic driver 7

Elliptic semilinear PDEs 7

FBSDEs and quasilinear PDEs 7




