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Abstract

We propose a general framework for intra-day trading based on the control of trading
algorithms. Given a set of generic parameterized algorithms (which have to be specified by
the controller ex-ante), our aim is to optimize the dates (τi)i at which they are launched,
the length (δi)i of the trading period and the value of the parameters (Ei)i kept during the
time interval [τi, τi + δi). This provides to the financial agent a decision tool for selecting
which algorithm (and for which set of parameters and time length) should be used in the
different phases of the trading period. From the mathematical point of view, this gives
rise to a non-classical impulse control problem where not only the regime Ei but also the
period [τi, τi + δi) have to be determined by the controller at the impulse time τi. We
adapt the weak dynamic programming principle of Bouchard and Touzi (2009) to our
context to provide a characterization of the associated value function as a discontinuous
viscosity solution of a system of PDEs with appropriate boundary conditions, for which
we prove a comparison principle. We also propose a numerical scheme for the resolution
of the above system and show that it is convergent. We finally provide a simple example
of application to a problem of optimal stock trading with a non-linear market impact
function. This shows how parameters adapt to the market.
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1 Introduction

Trading algorithms are nowadays widely spread among financial agents. They are typically
used for high frequency intra-day trading purposes, e.g. for “statistical arbitrage” or for the
execution of large orders by brokers. In both cases, the use of robots is justified by the fact
that orders have to be executed very quickly, in order to make profit of “good prices”, and,
typically for brokers, by the large size of the portfolios to be handled by a limited number of
traders.

A lot of efforts have been devoted these last years to build efficient trading algorithms, taking
all possible market features into account, and in particular the so-called market impact effect.
Some of the most popular ones have been proposed by academics, see e.g. [1], [2] [3], [5] and
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[11], a lot of them are developed in research divisions of brokers or investment banks, and are
somehow kept secret as fundamental building blocks of their everyday business.
One could expect that these algorithms correspond to global optimization problems and are
run on the whole trading period without interruption. In practice, this is often not the case,
in particular among brokers.
In fact the way brokers execute large orders is typically as follows: they split the global
number of assets to be bought or sold into small pieces, called slices, and then use robots to
execute these different slices one by one. Each time a new slice is launched, the trader tunes
the parameters of the algorithm (and possibly the size of the slice) depending on the evolution
of the market’s conditions. He can even decide to use a different algorithm from one slice to
the other (which can actually also be viewed as changing the parameters of a single robot, at
least from the mathematical point of view).
The real life situation is thus the following: given a bunch of trading algorithms, the trader
decides how to slice the order (i.e. divide the global order in smaller parts), at what time
each slice is launched, and with which algorithm and values of the parameters. Moreover, he
also decides how long he should let the algorithm run. In practice, there exists a minimal
time period during which each algorithm is executed. One reason for this is simply that the
trader can not practically monitor all the algorithms that are running for different purposes
at the same time. Another one is that it makes no sense (in practice) to launch an algorithm
for less than, say, one second.
The aim of this paper is to provide a decision tool for traders given the above described
practical situation. Namely, we propose a rigorous framework for the optimal control of
trading algorithms: how does one decide optimally of the times at which algorithms are
launched, what parameters to use, for how long? Obviously, one could argue that it would
be better to discuss a global optimization problem, i.e. discuss the optimal control problem
associated to the global trading agenda. This is not the aim of this paper. Most practitioners
have their own algorithms and do not want to have the same as the others. Our approach
allows to adapt to the algorithms each trader wants to use (optimal or not), and help them
to use these algorithms in an optimal way, and in particular to tune the parameters. Exactly
like the computation of greeks serves as a reference for the hedging policy of an option,
which is then more or less followed by the trader depending on his own feeling of the market’s
conditions (and because he can in practice only discretely rebalanced his portfolio), we aim at
providing on-line values of the parameters that should be optimal in some sense and therefore
should serve as references for the trader in the way he launches the different slices.

We are therefore not interested here in the trading algorithms themselves. The aim of this
paper is not to come up with a new algorithm but to provide a rigorous decision tool for the
use of already existing trading algorithms.

From the mathematical point of view, it gives rise to a non-classical impulse control problem.
As for standard impulse control problems, see e.g. the reference book [6], one chooses the
times at which “impulses” are given (times at which an algorithm is launched) and the size
of the impulse (the value of the parameters). The novelty comes from the fact that one also
chooses a time period during which no new impulse can be given (the period during which
the algorithm runs). To the best of our knowledge, such problems have never been discussed
in the mathematical literature on optimal impulse control.
In this paper, we provide a rigorous characterization of the value function as a discontinuous
viscosity solution of a partial differential equation (PDE), together with suitable boundary
conditions. To this end, we adapt the approach of [7] who proposes a weak version of the
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dynamic programming principle. The main advantage of this weak formulation is that it
does not require any a-priori continuity of the value function. It is the first time this ap-
proach is used in the context of impulse control problems, and this requires some non-trivial
modifications of the arguments of [7].
Our PDE characterization reads as follows. When the current regime is the passive one,
i.e. no trading algorithm is running, the controller can launch one at any moment τi with
a given set of parameters Ei and for a period of length δi. This gives rise to a standard
quasi-variational inequality in the region corresponding to the passive regime. However, once
the algorithm is launched, no change in the value of the parameters can be made before the
end of the period [τi, τi + δi). This implies that the value function satisfies a linear parabolic
equation on the active region. We also provide a comparison principle for the above equations
and construct a finite difference numerical scheme, which we prove to be convergent.
The rest of the paper is organized as follows. The model is described in Section 2. In Section 3,
we provide the PDE characterization of the value function and the associated comparison
principle. The proofs of these results are given in Section 4. The numerical scheme is studied
in Section 5. In the last section, we discuss a very simple numerical example of application
to a particular model of optimal stock acquisition. It shows how the proposed framework
naturally allows a real-time adaptive control of the trading algorithm, by switching optimally
after the end of each slice given the current state of the market.

Notation: All over this paper, we shall use the following notations. Given x ∈ Rk, for k
given by the context, we denote by |x| its Euclidean norm and by Br(x) the open ball of
center x and radius r > 0. The scalar product is denoted by 〈·, ·〉. Given a set A ⊂ Rk,
we denote by ∂A its boundary. Given d ∈ N, we denote by Md the set of d-dimensional
square matrices. For M ∈ Md, M∗ is the associated transposed matrix. For a function
(t, x, y) ∈ R+ × Rd × Rk 7→ ϕ(t, x, y), we denote by Dϕ and D2ϕ its gradient and Hessian
matrix with respect to x, whenever they are well defined. The other partial derivatives will
be written by using standard notations.

2 Problem formulation

Let (Ω,F ,P) be a probability space supporting a d-dimensional Brownian motion W , d ≥ 1.
Let F := (Ft)t≥0 denote the right-continuous complete filtration generated by W , and let
T > 0 be a finite time horizon.

2.1 Control policies

We first describe how the trading algorithms are controlled, precise dynamics will be imposed
in Section 2.2 below. Note that different algorithms can be viewed as a single parameterized
one. In what follow, we therefore consider that we have only one algorithm.
A control policy of the trading algorithm is described by a non-decreasing sequence of stopping
times (τi)i≥1 and a sequence of [δ,∞)× E-valued random variables (δi, Ei)i≥1. The stopping
times τi describe the times at which an order is given to the algorithm, Ei is the value of the
parameters with which the algorithm is run and δi the length of the period (latency period)
during which it is run with the value Ei. The set E is a compact subset of Rd, which represents
the possible values of the parameters, the quantity

0 < δ < T
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denotes the minimum length of the time period during which the algorithm can be run. To
be consistent we impose that

τi + δi ≤ τi+1 and (δi > 0⇒ τi + δi ≤ T ) , i ≥ 1 .(2.1)

The first condition expresses the fact that a new order can not be given before the end of the
time period associated to the previous order. The second one means that an order should be
given only if it ends before the final time horizon T .

Remark 2.1. 1. The minimal duration constraint, δi ≥ δ with δ > 0, has been justified
from a practical point of view in the introduction. From the mathematical point of view, the
problem described in Sections 2.2 and 2.3 below would not make sense without this condition,
if no additional cost related to launching the algorithm with new parameters is introduced.
Indeed, for δ = 0, and without additional costs, the controller could, at the limit, control the
parameters continuously, and this would actually certainly be optimal. The controller will
then act, at the limit, as a trader acting continuously on the market.
2. Models with δ = 0 and with an additional cost (paid each time the algorithm is launched
with new parameters) could be discussed by following the lines of this paper. Such a cost
is actually already embedded in the general dynamics of Section 2.2, up to an additional
assumption on the function β, see Example 2.10 below. This would however require to justify
this cost, and to evaluate it in practice. Moreover, certain bounds like the one stated in
Remark 2.2 below would not be true anymore and other conditions would be required to
retrieve the estimates of Remark 2.5 below. For sake of simplicity, we therefore stick to the
case δ > 0 which corresponds more, from our point of view, to practical situations.
3. In the absence of a cost penalizing frequent changes in the parameters, it may be optimal
to choose δi = δ most of the time (depending whether δ is small or not). However, other
values of δi may also be optimal. Our algorithm provides a way to select the maximal optimal
value, the one for which the trader changes the parameters the least often (which is desirable
in practice).

As usual the value of the parameters and the size of the latency period can not be chosen in
some anticipative way, i.e. we impose that

(δi, Ei) is Fτi-measurable , i ≥ 1 .(2.2)

At time t ∈ [τi, τi + δi), the value of the parameter of the trading algorithm is denoted by νt.
For t ∈ A((τi, δi)i≥1), defined as

A((τi, δi)i≥1) := R+ \

⋃
i≥1

[τi, τi + δi)

 ,

we set νt = $, where $ ∈ Rd \E can be viewed as a cemetery point, recall that E is compact.

It follows that the value of the parameters of the trading algorithm ν can be written as

νt = $1t∈A((τi,δi)i≥1) +
∑
i≥1

Ei1t∈[τi,τi+δi) , t ∈ [0, T ] ,(2.3)

where νt = $ means that the algorithm is not running at time t.

4



In the following, we denote by S the set of adapted processes ν that can be written in the form
(2.3) for some sequence of stopping times (τi)i≥1 and of [δ,∞)× E-valued random variables
(δi, Ei)i≥1 satisfying (2.1) and (2.2).
For ease of notations, we shall now write

(τνi , δ
ν
i , Eνi )i≥1 the sequence associated to ν ∈ S,

and define, for all stopping times ϑ1 and ϑ2 satisfying ϑ1 ≤ ϑ2 P-a.s., the set of indices
corresponding to orders whose execution ends between ϑ1 and ϑ2:

Iνϑ1,ϑ2
:= {i ≥ 1 : ϑ1 < τνi + δνi ≤ ϑ2} .

Remark 2.2. Note that the constraint δνi ≥ δ for all i ≥ 1 and ν ∈ S implies that

card(Iν0,T ) ≤ card ({τνi ≤ T, i ≥ 1}) ≤ T/δ .

For ease of notations, we also set

Ē := E ∪ {$} ⊂ Rd ,

and introduce the process ∆ν
·

∆ν
t :=

∑
i≥1

[τνi + δνi − t]+1t≥τνi , t ∈ [0, T ] .

The quantity ∆ν
t denotes the remaining latency period during which no new order can be

passed to the algorithm. When ∆ν
t > 0, the algorithm is running with a value of the param-

eters νt. When ∆ν
t = 0, the algorithm is not running anymore, νt = $, and a new order can

be passed.
The following picture sums up the dynamics of the control.
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2.2 Output of the trading algorithm

Given some initial data (t, x) ∈ [0, T ] × Rd, the output of the trading algorithm associated
to some control policy ν ∈ S is defined as the strong solution Xν

t,x on [0, T ] of the stochastic
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differential equation
(2.4)

Xν
t,x(s) = x+1s≥t

∫ s

t
b(Xν

t,x(r), νr)dr +
∫ s

t
a(Xν

t,x(r), νr)dWr +
∑
i≥1

β(Xν
t,x(τνi −), Eνi , δνi )1t<τνi ≤s

 ,

where b, β : Rd × Ē × [δ, T ] → Rd and a : Md × Ē → Md are continuous functions such that
there exists K > 0 for which, for all x, x′ ∈ Rd, e, e′ ∈ Ē, δ, δ′ ∈ [δ, T ],

|ψ(x, e, δ)− ψ(x′, e, δ)|) ≤ K|x− x′|
|ψ(x, e, δ)| ≤ K(1 + |x|)

|ψ(x, e, δ)− ψ(x, e′, δ′)| ≤ K(1 + |x|)(|e− e′|+ |δ − δ′|)
for ψ = b, a, β .(2.5)

We do not differentiate here between the components that correspond to real outputs of the
algorithm (cumulated gains, cumulated volumes executed by the algorithm, etc...) and others
that simply describe the evolution of financial data or market factors (prices of the traded
assets, global traded volumes on the markets, volatilities, etc...).
The jumps on the dynamics are introduced to model the changes in the initial conditions
on the variables of interest for the trading algorithm when it is launched (e.g. volume to be
executed between τνi and τνi + δνi ), see Example 2.7 below.
Moreover, there is no loss of generality in assuming that X, W and ν have the same dimension
d. One can always reduce more general situations to this case by playing with the coefficients
b, a, β and with the choice of E. Time dependent coefficients can similarly be considered by
putting the first line of a and β equal to 0, and the first component of b equal to 1, so that
the first component of X actually coincides with the time parameter.
We refer to Section 2.4 for the description of simple examples of application which illustrate
the flexibility of the above model.

We conclude this section with two technical remarks that will be used later on.

Remark 2.3. Observe that Xν does not jump when the regime is switched to the passive
regime $.

Remark 2.4. Note that (2.5), the fact that E is bounded and Remark 2.2 imply that, for
all t ∈ [0, T ], x ∈ Rd and ν ∈ S,

E

[
sup
s∈[t,T ]

|Xν
t,x(s)|p

]
≤ CpK(1 + |x|p)(2.6)

where CpK depends only on K and p ≥ 1.

2.3 Gain function

The aim of the controller is to maximize the expected value of the gain functional

ν ∈ S 7→ Πt,x(ν) := g(Xν
t,x(T )) +

∑
i∈Iνt,T

f(Xν
t,x(τνi + δνi −), Eνi ) ,

with the usual convention
∑
∅ = 0, among the set

St,δ,e :=
{ {

ν ∈ S : νs = e for s ∈ [t, t+ δ) and ∆ν
t+δ = 0

}
if e 6= $ and δ > 0

{ν ∈ S : νt = $} otherwise
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where (δ, e) ∈ R+× Ē denotes the initial state of the remaining latency time and value of the
parameters.

Here, g and f are assumed to be continuous on Rd × Ē and to satisfy, for some γ > 0,

sup
(x,e)∈Rd×E

|f(x, e)| + |g(x)|
1 + |x|γ

<∞ , f(·, $) = 0 .(2.7)

In view of (2.6), this ensures that the quantity

J(t, x; ν) := E [Πt,x(ν)]

is well defined for all ν ∈ S and satisfies

|J(t, x; ν)| ≤ CγK (1 + |x|γ)(2.8)

where CγK depends only on K and γ.

For technical reason related to the dynamic programming principle, see [7] and the proof of
Lemma 4.1 below, we shall restrict to admissible trading strategies ν ∈ St,δ,e such that ν is
independent on Ft, see Remark 5.2 in [7]. We denote by Sat,δ,e the associated set of controls
and therefore define the value function as:

V (t, x, δ, e) := sup
ν∈Sat,δ,e

E [Πt,x(ν)] .

We refer to Section 2.4 for examples of application, and to Section 6 for a numerical illustra-
tion.

Remark 2.5. It follows from (2.8) that there exists CγK > 0 which depends only on K and
γ such that

|V (t, x, δ, e)| ≤ CγK (1 + |x|γ) for all (t, x, δ, e) ∈ [0, T ]× Rd × R+ × Ē s.t. Sat,δ,e 6= ∅ .

Note that for δ = T − t and e ∈ E, (2.1) implies that

V (t, x, T − t, e) = V(t, x, e) := E
[
g(X et,x(T )) + f(X et,x(T ), e)

]
,(2.9)

where X et,x is the solution of

X et,x(s) = x+
∫ s

t
b(X et,x(r), e)dr +

∫ s

t
a(X et,x(r), e)dWr , s ∈ [t, T ] .(2.10)

Remark 2.6. Under (2.5), the continuity assumption on f, g and (2.7), it follows from stan-
dard arguments that the auxiliary value function V is continuous, and that, for each e ∈ E,
it is a viscosity solution of

− Leϕ(t, x) = 0 on [0, T )× Rd , ϕ(T, x) = g(x) + f(x, e) on Rd ,(2.11)

where, for e ∈ Ē, and a smooth function ϕ,

Leϕ(t, x) :=
∂

∂t
ϕ(t, x) + 〈b(x, e) , Dϕ(t, x)〉 +

1
2

Tr
[
aa∗(x, e)D2ϕ(t, x)

]
.(2.12)
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2.4 Examples

Before to go on with the presentation of our general problem, let us describe simple examples
of application which illustrate the flexibility of the above model. For sake of simplicity, we
restrict here to the case of a single parameterized algorithm.

Example 2.7. As a first example, we consider the case where the aim of the controller is to
sell a number Q0 of one stock S between 0 and T > 0. We denote by Vt the global volume
instantaneously traded on the market at time t. The dynamics of (S, V ) is given by the strong
solution of the SDE

St = S0 +
∫ t

0
µS(r, Sr, Vr) dr +

∫ t

0
σS(r, Sr, Vr) dWr ,

Vt = V0 +
∫ t

0
µV (r, Sr, Vr) dr +

∫ t

0
σV (r, Sr, Vr) dWr ,

where W denotes a two dimensional standard Brownian motion, and (µS , σS , µV , σV ) are Lip-
schitz continuous. We implicitly assume here that the above SDE has non-negative solutions
whatever the initial conditions are.
A control ν ∈ S is identified to a sequence (τνi , δ

ν
i , Eνi )i≥1 ∈ S as in Section 2. Here Eνi stands

for the proportion of the remaining number of shares that have to be sold, Qντνi , which will be
traded on [τνi , τ

ν
i + δνi ). We assume that this quantity is sold uniformly on the corresponding

time interval. Namely, we sell Eνi Qντi/δ
ν
i dt on [t, t+ dt] for t ∈ [τνi , τ

ν
i + δνi ).

This means that the dynamics of the remaining number of stocks to sell is given by

Qνt = Q0 −
∑
i≥1

∫ τνi +δνi

τνi

1s≤tEνi Qντνi /δ
ν
i ds .

Clearly, E has to be contained in [0, 1]. Note that in order to ensure that the dynamics of
the system is Markovian, we need to introduce two additional processes which coincide with
Qντνi

and δνi on [τνi , τ
ν
i + δνi ]. This is done by considering the process (Q̄ν , δ̄ν) defined by the

dynamics

Q̄νt :=
∑
i≥1

(Qντνi − − Q̄
ν
τνi −)1τνi ≤t and δ̄νt :=

∑
i≥1

(δνi − δ̄ντνi −)1τνi ≤t

with the convention Q̄ν0− = δ̄ν0− = 0. This explains why jumps have been introduced in the
general dynamics (2.4). It follows that

Qνt = Q0 −
∫ t

0
q(νs, δ̄νs )Q̄νsds .

where q(e, δ) := e/δ if e 6= $ and δ > 0, q(e, δ) = 0 otherwise.
Due to the impact of the strategy on the market, the price obtained for the volume executed
under the regime Eνi is

S̃t = St − η(Eνi Qντνi /δ
ν
i , St, Vt) , t ∈ [τνi , τ

ν
i + δνi )

where η is some market impact function and is assumed to be Lipschitz continuous. It follows
that the cumulated wealth’s dynamic is

Y ν
t = 0 +

∫ t

0
S̃rq(νr, δ̄νr )Q̄νrdr .
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The remaining part QνT is instantaneously sold on the market at a price: ST − c(QνT , ST , VT ),
for some Lipschitz continuous function c.
The total gain after the final transaction is thus given by:

Y ν
T + (ST − c(QνT , ST , VT )) (QνT )+ .

The aim of the controller is to maximize the expectation of the quantity

g(Y ν
T + (ST − c(QνT , ST , VT )) (QνT )+)

for some concave function g with polynomial growth.
In this model, the process X coincides with (S, V, Y,Q, Q̄, δ̄). Only Q̄ and δ̄ have jumps.

Example 2.8. As a second example, we consider the case where the aim of the controller is
to buy a number Q0 of one stock S between 0 and T > 0. The dynamics of (S, V ) is given as
in the previous example.
Here Eνi stands for the intensity at which the stocks are bought, i.e. the algorithm buys a
number Eνi dt = νt1νt 6=$dt of stocks on [t, t + dt], t ∈ [τνi , τ

ν
i + δνi ). The dynamics of the

remaining number of stocks to be bought before T is thus given by:

Qνt = Q0 −
∫ t

0
q(νs)ds

where q is now defined as q(e) = e1e 6=$. It follows that the cumulated wealth’s dynamic is

Y ν
t = 0 +

∫ t

0
S̃rq(νr)dr = 0 +

∫ t

0
(Sr + η(νr, Sr, Vr))q(νr)dr ,

where η is a given market impact function.
If the number Q0 of shares is not liquidated at time T , the remaining part QνT is instanta-
neously bought on the market at the price ST + c(QνT , ST , VT ), for some Lipschitz continuous
function c.
The total cost after the final transaction is thus given by:

Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+ .

The aim of the controller is to minimize the expectation of the quantity

`(Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+)

for some convex function ` with polynomial growth.
A numerical application within the above framework is presented in Section 6.

Example 2.9. We now consider a similar situation as in the previous example except that
the controller has an incentive to buy the shares more or less quickly. This can be modeled
by adding a process Zν corresponding to the number of stocks sold during a trading period.
Namely,

Zνt :=
∑
i≥1

1t∈[τνi ,τ
ν
i +δνi )

∫ t

τνi

νsds =
∫ t

0
νs1νs 6=$ds−

∑
i≥1

Zντνi −1τνi ≤t .

The aim of the controller is then to minimize

E

`(Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+) + f(T, (QνT )+) +

∑
i≥1

1τνi +δνi ≤T f(τνi + δνi , Z
ν
τi+δi

)


where the dependence of f in time means that the controller prefers to buy quickly, i.e. f is
increasing in time, or take more time, i.e. f is decreasing in time.
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Example 2.10. We finally explain how to incorporate a cost paid each time the algorithm
is launched with new parameters. It suffices to consider an additional process

Cνt :=
∑
i≥1

λ1τνi ≤t,

for some λ > 0, and to consider a reward function which is non-increasing in CνT . Obviously,
one can let λ depend on other variables of interest.

3 Viscosity characterization of the value function

The aim of this section is to provide a PDE characterization of the value function V . Before
to state our main result, we need to introduce some additional notations and definitions.

In view of (2.1), (2.9) and the constraint that the latency period should be greater than δ,
the natural domain of definition of the value function V is

D :=
{

(t, x, δ, e) ∈ [0, T )× Rd × (((0,∞)× E) ∪ {(0, $)}) : δ ≤ t+ δ < T or e = $
}
,

which can be decomposed in two main regions. We call the active region, the region where
δ > 0 and e 6= $:

DE,>0 :=
{

(t, x, δ, e) ∈ [0, T )× Rd × (0,∞)× E : δ ≤ t+ δ < T
}
.(3.1)

It corresponds to the set of initial conditions where the algorithm is running and the controller
has to wait the end of the latency period before passing a new order. We call the passive
region, the region where e = $, and therefore δ = 0:

D$ := [0, T )× Rd × {(0, $)} .(3.2)

It corresponds to the set of initial conditions where the algorithm is not running and can be
launched immediately with a new set of parameters. These two regions are complemented by
the natural boundaries of the active region when δ → 0 and t+ δ → T :

DE,0 := [δ, T )× Rd × {0} × E(3.3)

DE,T :=
{

(t, x, δ, e) ∈ [0, T )× Rd × (0,∞)× E : δ ≤ t+ δ = T
}
,(3.4)

and by the time boundary:

DT := {T} × Rd × R+ × Ē .(3.5)

The closure of the natural domain of definition of the value function V is therefore

D̄ :=
{

(t, x, δ, e) ∈ [0, T ]× Rd × R+ × Ē : δ ≤ t+ δ ≤ T or e = $
}
.

As usual, we shall rely on the dynamic programming principle, see Lemma 4.1 below for a
precise statement, to deduce the behavior of the value function on each component of D̄:

V (t, x, δ, e) = sup
ν∈Sat,δ,e

E

V (ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) +
∑
i∈Iνt,ϑ

f(Xν
t,x(τνi + δνi ), Eνi )

 ,(3.6)
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for any [t, T ]-valued stopping time ϑ.

In the passive region. For (t, x, δ, e) ∈ D$, the controller can immediately launch the
trading algorithm with a new set of parameters (δ′, e′) ∈ [δ, T − t]×E. Taking ϑ = t in (3.6)
thus implies that

V (t, x, 0, $) ≥M[V ](t, x)

where
M[V ](t, x) := sup

(δ′,e′)∈[δ,T−t]×E
V (t, x+ β(x, e′, δ′), δ′, e′) ,

with the usual convention sup ∅ = −∞. The controller can also decide to wait before passing
a new order to the algorithm, i.e. choose ν = $ on some time interval [t, t+ δ′) with δ′ > 0.
In view of (3.6) applied to an arbitrarily small stopping time ϑ < t+ δ′, this implies that

−L$V (t, x, 0, $) ≥ 0 .

The dynamic programming principle (3.6) formally implies that one of the two above choices
should be optimal, i.e.

min {−L$V (t, x, 0, $) ; V (t, x, 0, $)−M[V ](t, x)} = 0 .

In the active region. For (t, x, δ, e) ∈ DE,>0, the controller can not change the parameter
of the algorithm before the end of the initial latency period δ > 0. Choosing ϑ arbitrarily
small in (3.6) thus implies that V should satisfy(

−Le +
∂

∂δ

)
V (t, x, δ, e) = 0 ,

where (t, x) 7→ LeV (t, x, δ, e) is defined as in (2.12) for (δ, e) taken as parameters.
It is naturally complemented with the boundary conditions

V (t, x, δ, e) = V (t, x, 0, $) + f(x, e) , if (t, x, δ, e) ∈ DE,0 ,

and
V (t, x, δ, e) = V(t, x, e) , if (t, x, δ, e) ∈ DE,T ,

recall (2.9).

Terminal boundary condition. As usual, the boundary condition as t ↑ T should be given
by the terminal condition:

V (t, x, δ, e) = g(x) + f(x, e) , if (t, x, δ, e) ∈ DT ,

where we recall that f(·, $) = 0 by convention.

The above discussion shows that V should solve the equation

Hϕ = 0(3.7)

on D̄, where, for a smooth function ϕ defined on D̄,

Hϕ(t, x, δ, e) :=



(
−Le + ∂

∂δ

)
ϕ(t, x, δ, e) on DE,>0 ,

ϕ(t, x, δ, e)− ϕ(t, x, 0, $)− f(x, e) on DE,0 ,
ϕ(t, x, δ, e)− V(t, x, e) on DE,T ,

min
{
− L$ϕ(t, x, δ, e) ; ϕ(t, x, δ, e) − M[ϕ](t, x)

}
on D$ ,

ϕ(t, x, δ, e)− g(x)− f(x, e) on DT .

However, since V may not be smooth, it has to be stated in terms of viscosity solutions, see
[8], in the following sense.
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Definition 3.1. We say that a lower-semicontinuous (resp. upper-semicontinuous) function
U on D̄ is a viscosity supersolution (resp. subsolution) of (3.7) on D̄ if for any function
ϕ ∈ C1,2,1,0([0, T ]× Rd × R+ × Ē) and (t0, x0, δ0, e0) ∈ D̄, which achieves a global minimum
(resp. maximum) of U − ϕ on D̄ such that (U − ϕ)(t0, x0, δ0, e0) = 0, we have

Hϕ(t0, x0, δ0, e0) ≥ 0 ( resp. Hϕ(t0, x0, δ0, e0) ≤ 0) .

If U is continuous, we say that it is a viscosity solution of (3.7) if it is a super- and a
subsolution.

In all this paper, we shall say that a function ϕ is smooth if it belongs to C1,2,1,0([0, T ]×Rd×
R+ × Ē).

As usual, showing that V is a-priori continuous is a rather difficult task. As a first step,
we shall therefore prove the super- and subsolution property only for the upper- and lower-
semicontinuous enveloppes V ∗ and V∗ of V defined as

V ∗(t, x, δ, e) := lim sup
(t′,x′,δ′,e′)∈D→(t,x,δ,e)

V (t′, x′, δ′, e′)

V∗(t, x, δ, e) := lim inf
(t′,x′,δ′,e′)∈D→(t,x,δ,e)

V (t′, x′, δ′, e′) , (t, x, δ, e) ∈ D̄ .

Theorem 3.2. The function V∗ (resp. V ∗) is a viscosity supersolution (resp. subsolution) of
(3.7) on D̄.

The following comparison result combined with Remark 2.5 insures a-posteriori that V is
continuous and that it is the unique viscosity solution of (3.7) on D̄ with polynomial growth.

Theorem 3.3. Let u and v be respectively a lower semicontinuous viscosity supersolution of
(3.7) on D̄ and a upper-semicontinuous viscosity subsolution of (3.7) on D̄. Assume that v+

and u− have polynomial growth. Then, u ≥ v on D̄.

4 Proof of the viscosity characterization

4.1 Dynamic programming

As usual, the derivation of the partial differential equation relies on the so-called dynamic
programming principle, a formal version of which is given in (3.6) above. In this section,
we provide a rigorous formulation which follows ideas introduced in [7]. Namely, we only
provide a weak formulation in terms of test functions. The main advantage of this approach
is that it does not require any regularity on the value function V itself, but only some lower-
semicontinuity of the objective function J(·; ν), see below. We refer to [7] for a general
discussion.

Lemma 4.1 (Weak Dynamic Programming Principle). Fix (t, x, δ, e) ∈ D and let {ϑν , ν ∈
Sat,δ,e} be a family of [t, T ]-valued stopping times independent of Ft. Then, we have
(4.1)

V (t, x, δ, e) ≤ sup
ν∈Sat,δ,e

E

[V ∗, g](ϑν , Xν
t,x(ϑν),∆ν

ϑν , νϑν ) +
∑
i∈Iνt,ϑν

f(Xν
t,x(τνi + δνi −), Eνi )

 ,
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where [V ∗, g](s, ·) := V ∗(s, ·)1s<T + g1s=T , and

sup
ν∈Sat,δ,e

E

ϕ(ϑν , Xν
t,x(ϑν),∆ν

ϑν , νϑν ) +
∑
i∈Iνt,ϑν

f(Xν
t,x(τνi + δνi −), Eνi )

 ≤ V (t, x, δ, e)(4.2)

for all upper semi-continuous function ϕ such that V ≥ ϕ on D̄.

As in [7], the proof of the above result relies on some lower-semicontinuity property of the
function J . Because of the latency time δ, we can however not apply their result directly and
need to adapt their arguments by exploiting the lower-semicontinuity of the map

(t, x, δ, e, ν) ∈ D̄ × S 7→ J(t, x,Pe
t,t+δ(ν))

where, for s1 ≤ s2 ∈ [0, T ],

Pe
s1,s2 : ν ∈ S 7→Pe

s1,s2(ν) := e1[0,s1) +$1[s1,s2) + ν1[s2,T ] .

Lemma 4.2. Fix (t, x, δ, e) ∈ D and ν ∈ St,δ,e. Let (tn, xn, δn, en)n≥1 be a sequence in D
such that (tn, xn, δn, en)→ (t, x, δ, e) as n→∞ and

tn ≤ t and tn + δn ≤ t+ δ for all n ≥ 1.(4.3)

Then, lim inf
n→∞

J(tn, xn; Pen
tn+δn,t+δ

(ν)) ≥ J(t, x; ν).

Proof. We only prove the result in the case where δ > 0. The case δ = 0 can be handled
similarly. In this case we have tn ≤ t < tn + δn ≤ t + δ for n large enough since tn → t
and δn → δ > 0. For ease of notations, we set X := Xν

t,x and Xn := Xνn
tn,xn where νn :=

Pen
tn+δn,t+δ

(ν). In all this proof, we let C > 0 denote a generic constant which does not
depend on n but takes value which may change from line to line.
1. We first prove that, for any fixed integer p ≥ 1:

lim
n→∞

E

[
sup
t≤s≤T

|Xn(s)−X(s)|2p
]

= 0 .(4.4)

First note that νn = ν on [t + δ, T ]. Since the size of the possible jump of X and Xn at
time t+ δ, recall (2.4), depends on νt+δ = νnt+δ, standard computations based on Burkholder-
Davis-Gundy’s inequality, Gronwall’s Lemma and the Lipschitz continuity of b, a and β, we
thus deduce that

E

[
sup

t+δ≤s≤T
|Xn(s)−X(s)|2p

]
≤ C E

[
|Xn(t+ δ−)−X(t+ δ−)|2p

]
.

Since (νn, ν) = ($, e) on [tn+δn, t+δ) and no jump occurs on this time interval, the Lipschitz
continuity of b and a implies that

E

[
sup

tn+δn≤s<t+δ
|Xn(s)−X(s)|2p

]
≤ C

(
|t+ δ − tn − δn|p + E

[
|Xn(tn + δn)−X(tn + δn)|2p

])
.

We similarly have, since (νn, ν) = (en, e) on [t, tn + δn) and (Xn, X) does not jump on this
time interval, that:

E

[
sup

t≤s≤tn+δn

|Xn(s)−X(s)|2p
]
≤ C

(
|en − e|2p + E

[
|Xn(t)− x|2p

])
.
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Finally, by the linear growth condition on b and a, the fact that νn = en on [tn, t) and that
Xn does not jump at time t,

E
[

sup
tn≤s≤t

|Xn(s)− x|2p
]
≤ C

(
|xn − x|2p + E

[
sup

tn≤s≤t
|Xn(s)− xn|2p

])
≤ C

(
|xn − x|2p + |tn − t|p

)
.

2. We now use the above estimate to conclude the proof. We first note that

(4.5) Πtn,xn(νn)−Πt,x(ν) =
(
g(Xn(T ))− g(X(T ))

)
+
( ∑
i∈Iνntn,T

f(Xn(τni + δni −), Eni )−
∑
i∈Iνt,T

f(X(τνi + δνi −), Eνi )
)
,

with (τn, δn, En) := (τν
n
, δν

n
, Eνn). In view of (4.4), we can assume that

sup
t≤s≤T

|X(s)−Xn(s)| −→ 0 P-a.s.(4.6)

after possibly passing to a subsequence. Similar estimates show that, after possibly passing
to a subsequence,

|Xn(tn + δn−)−Xn(t+ δ−)| −→ 0 P-a.s. and in Lp, p ≥ 1 .(4.7)

Since g is continuous, it follows that

lim
n→∞

g(Xn(T )) = g(X(T )) P-a.s.(4.8)

Moreover, by definition of νn, we have∑
i∈Iνntn,T

f(Xn(τni + δni −), Eni ) = f(Xn(tn + δn−), en) +
∑

i∈Iνt+δ,T

f(Xn(τνi + δνi −), Eνi ) .

It then follows from the continuity of f , (4.6) and (4.7) that

lim
n→∞

∑
i∈Iνntn,T

f(Xn(τni + δni −), Eni ) = f(X(t+ δ−), e) +
∑

i∈Iνt+δ,T

f(X(τνi + δνi −), Eνi )

=
∑
i∈Iνt,T

f(X(τνi + δνi −), Eνi ) P-a.s.(4.9)

The required result then follows from (4.8), (4.9), (2.7), and Fatou’s Lemma combined with
(4.4) and (2.6) which insure that the sequence (Πtn,xn(νn)−)n≥1 is uniformly integrable.

We now turn to the proof of the dynamic programming principle.

Proof. [Lemma 4.1] In this proof, we consider (Ω,F ,F,P) as the d-dimensional canonical
filtered space equipped with the Wiener measure and denote by ω or ω̃ a generic point. The
Brownian motion is thus defined as W (ω) = (ωt)t≥0. For ω ∈ Ω and r ≥ 0, we set ωr := ω.∧r
and Tr(ω) := ω.+r − ωr. In the following, we omit the dependence of ϑν with respect to ν
and simply write ϑ, for ease of notations.

14



1. The proof of (4.1) is standard and is based on the observation that, for all ν ∈ Sat,δ,e,

J(t, x; ν) = E

E

g(Xν
t,x(T )) +

∑
i∈Iνϑ,T

f(Xν
t,x(τνi + δνi −), Eνi ) | Fϑ

(4.10)

+ E

∑
i∈Iνt,ϑ

f(Xν
t,x(τνi + δνi −), Eνi )


where, by the flow property of Xν ,

(4.11) E

g(Xν
t,x(T )) +

∑
i∈Iνϑ,T

f(Xν
t,x(τνi + δνi ), Eνi −) | Fϑ

 (ω) = J(ϑ(ω), Xν
t,x(ϑ)(ω); ν̃ω)

with, for each ω ∈ Ω,

ν̃ω : ω̃ ∈ Ω 7→ ν̃ω(ω̃) = ν(ωϑ(ω) + Tϑ(ω)(ω̃))

which can be viewed, for each ω ∈ Ω, as a control independent of Fϑ(ω). Since the dynamic
of X ν̃ω

ϑ(ω),Xν
t,x(ϑ)(ω) depends on ν̃ω only through its path after ϑ(ω), this implies that, for each

ω ∈ Ω,

J(ϑ(ω), Xν
t,x(ϑ)(ω); ν̃ω) ≤ sup

{
J(ϑ(ω), Xν

t,x(ϑ)(ω); ν̄), ν̄ ∈ Saϑ(ω),∆ν
ϑ(ω),νϑ(ω)

}
≤ [V ∗, g](ϑ(ω), Xν

t,x(ϑ)(ω),∆ν
ϑ(ω), νϑ(ω)) ,

and the result follows from (4.10) and (4.11).
2. We now prove the second inequality.
2.a. We first show that, for any ε > 0, we can find two sequences (tn, xn, δn, en, An)n≥1 in
D ×BD and (νn)n≥1 in S such that (An)n≥1 forms a partition of D and, for each n,

νn ∈ Satn,δn,en and J(t′, x′; Pe′
t′+δ′,tn+δn

(νn)) ≥ ϕ(t′, x′, δ′, e′)− 3ε for all (t′, x′, δ′, e′) ∈ An
An ⊂ Qrn(tn, xn, δn, en) ∩D for some rn > 0,(4.12)

where we use the notation

Qr̊ (̊t, x̊, δ̊, e̊) :=
{

(t′, x′, δ′, e′) ∈ Br̊ (̊t, x̊, δ̊, e̊) : t′ ≤ t̊ , t′ + δ′ ≤ t̊+ δ̊

}
.

By definition of V ≥ ϕ, for each (̊t, x̊, δ̊, e̊) ∈ D and ε > 0, we can find ν̊ = ν̊ (̊t,̊x,̊δ,̊e),ε in S
such that

(4.13) ν̊ ∈ Sa
t̊,̊δ,̊e

and J (̊t, x̊; ν̊) ≥ V (̊t, x̊, δ̊, e̊)− ε ≥ ϕ(̊t, x̊, δ̊, e̊)− ε .

Moreover, it follows from Lemma 4.2 and the upper-semicontinuity of ϕ that we can find
r̊ = r̊(̊t,̊x,̊δ,̊e) in (0,∞) such that

J(t′, x′; Pe′

t′+δ′ ,̊t+δ̊
(̊ν)) ≥ J (̊t, x̊; ν̊)− ε and ϕ(̊t, x̊, δ̊, e̊) ≥ ϕ(t′, x′, δ′, e′)− ε(4.14)

for all (t′, x′, δ′, e′) ∈ Qr̊ (̊t, x̊, δ̊, e̊) .
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Clearly {Qr (̊t, x̊, δ̊, e̊) : (̊t, x̊, δ̊, e̊) ∈ D, 0 < r ≤ r̊(̊t,̊x,̊δ,̊e)} forms a Vitali covering of D. It then
follows from the Vitali’s covering Theorem, see e.g. Lemma 1.9 p10 in [9], that we can find a
countable sequence (tn, xn, δn, en, rn)n≥1 of elements of D×R, with 0 < rn < r̊(tn,xn,δn,en) for
all n ≥ 1, such that D ⊂ ∪n≥1Qrn(tn, xn, δn, en). We finally construct the sequence (An)n≥1

by setting A1 := Qr1(t1, x1, e1, δ1) ∩D, C0 = ∅ and

An := (Qrn(tn, xn, δn, en) ∩D)\Cn−1 , Cn−1 := Cn−2 ∪An−1 for n ≥ 2 .

The sequence (νn)n≥1 is defined by νn := ν̊(tn,xn,δn,en),ε for all n.
2.b. We are now in position to prove (4.2). Let ν be a arbitrary element of Sat,δ,e and define

ν̂ := ν1[0,ϑ) + 1[ϑ,T ]

∑
n≥1

Pνϑ
ϑ+∆ν

ϑ,tn+δn
(νn)1(ϑ,Xν

t,x(ϑ),∆ν
ϑ,νϑ)∈An .

Since ν ∈ Sat,δ,e, we have (ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) ∈ D = ∪n≥1An. Moreover, on {(ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) ∈
An}, we have ϑ+ ∆ν

ϑ ≤ tn + δn. It follows that ν̂ ∈ Sat,δ,e, and therefore

V (t, x, δ, e) ≥ J(t, x; ν̂)

= E

g(X ν̂
t,x(T )) +

∑
i∈Iν̂ϑ,T

f(X ν̂
t,x(τ ν̂i + δν̂i −), E ν̂i ) +

∑
i∈Iν̂t,ϑ

f(X ν̂
t,x(τ ν̂i + δν̂i −), E ν̂i )

 ,
where, by the flow property of X ν̂ , the fact that νn is independent of Ftn and that ϑ ≤ tn on
{(ϑ,Xν

t,x(ϑ),∆ν
ϑ, νϑ) ∈ An},

E
[
g(X ν̂

t,x(T ))
]

=
∫ ∫

g
(
X
ν̃ω(ω̃)
ϑ(ω),Xν

t,x(ϑ)(ω)(T )(ω̃)
)
dP(ω̃)dP(ω)

and

E

 ∑
i∈Iν̂ϑ,T

f(X ν̂
t,x(τ ν̂i + δν̂i −), E ν̂i )


=
∫ ∫ ∑

i∈Iν̃ω(ω̃)
ϑ(ω),T

f(X ν̃ω(ω̃)
ϑ(ω),Xν

t,x(ϑ)(ω)((τ
ν̃ω
i + δν̃ωi −) ∧ T )(ω̃), E ν̃ωi (ω̃))dP(ω̃)dP(ω)

where, for ω ∈ Ω,

ν̃ω : ω̃ ∈ Ω 7→ ν(ω)1[0,ϑ(ω)) + 1[ϑ(ω),T ]

∑
n≥1

P
νϑ(ω)
ϑ(ω)+∆ν

ϑ(ω),tn+δn
(νn(ω̃))1(ϑ(ω),Xν

t,x(ϑ)(ω),∆ν
ϑ(ω),νϑ(ω))∈An .
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Hence, (4.12) implies that

V (t, x, δ, e) ≥ E

J(ϑ,X ν̂
t,x(ϑ); ν̂) +

∑
i∈Iν̂t,ϑ

f(X ν̂
t,x(τ ν̂i + δν̂i −), E ν̂i )


= E

∑
n≥1

J(ϑ,Xν
t,x(ϑ); Pνϑ

ϑ+∆ν
ϑ,tn+δn

(νn))1(ϑ,Xν
t,x(ϑ),∆ν

ϑ,νϑ)∈An


+ E

∑
i∈Iνt,ϑ

f(Xν
t,x(τνi + δνi −), Eνi )


≥ E

ϕ(ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) +
∑
i∈Iνt,ϑ

f(Xν
t,x(τνi + δνi −), Eνi )

− 3ε.

By arbitrariness of ε > 0 and ν ∈ Sat,δ,e, this proves the required inequality.

Remark 4.3. Note that, by replacing ϕ in (4.2) by a sequence (ϕk)k≥1 of upper semi-
continuous functions satisfying

ϕk ≤ V and ϕk ↗ [V∗, g] on D,

we can deduce a stronger version of (4.2):

sup
ν∈Sat,δ,e

E

[V∗, g](ϑν , Xν
t,x(ϑν),∆ν

ϑν , νϑν ) +
∑
i∈Iνt,ϑ

f(Xν
t,x(τνi + δνi −), Eνi )

 ≤ V (t, x, δ, e) ,

where [V∗, g](s, ·) := V∗(s, ·)1s<T + g1s=T . In particular, if V is continuous, combining (4.1)
and the previous inequality leads to the classical version of the dynamic programming principle
(3.6).

4.2 Viscosity properties

Now we are in position to prove Theorem 3.2. We split the proof in different propositions.

4.2.1 Supersolution property

We start with the supersolution property in the domain D = DE,>0∪D$, recall the definitions
(3.1)-(3.2).

Proposition 4.4. The function V∗ is a viscosity supersolution of (3.7) on D.

Proof. The proof follows from standard arguments except that we use the non classical for-
mulation of the dynamic programming principle (4.2). Fix (t0, x0, δ0, e0) ∈ D and let ϕ be a
smooth function such that (t0, x0, δ0, e0) achieves a (global) minimum of V∗ − ϕ on D such
that

0 = (V∗ − ϕ)(t0, x0, δ0, e0).
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Let (tk, xk, δk, ek)k≥1 be a sequence in D such that
(4.15)

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V∗(t0, x0, δ0, e0) as k −→∞ ,

and observe that

(ϕ− V )(tk, xk, δk, ek) −→ 0 when k −→∞ .(4.16)

Case 1. We first assume that (t0, x0, δ0, e0) ∈ DE,>0, recall the definition (3.1), and that

− Le0ϕ(t0, x0, δ0, e0) +
∂

∂δ
ϕ(t0, x0, δ0, e0) =: −2ε < 0 ,(4.17)

and work towards a contradiction. Define the function ϕ̄ by

ϕ̄(t, x, δ, e) := ϕ(t, x, δ, e)− |x− x0|4 − |t− t0|2 − |δ − δ0|2 ,(4.18)

so that ϕ̄ also satisfies (4.17). By continuity of b and a, we can find r > 0 such that(
−Leϕ̄+

∂

∂δ
ϕ̄

)
(t, x, δ, e) ≤ 0 for (t, x, δ, e) ∈ B := Br(t0, x0, δ0, e0) ∩DE,>0 .(4.19)

Given k large enough so that (tk, xk, δk, ek) ∈ B, let νk be any control in Satk,δk,ek . Set

(Xk,∆k) := (Xνk
tk,xk

,∆νk) and define

θk := inf{s ≥ tk : (s,Xk(s),∆k
s , ν

k
s ) /∈ B} .

For r small enough we have ∆νk

θk
> 0 and therefore νk = ek on [tk, θk]. Using Itô’s Lemma,

(4.19) and the definition of ϕ̄, we thus obtain that

ϕ̄(tk, xk, δk, ek) ≤ E
[
ϕ̄(θk, Xk(θk),∆k

θk , ek)
]
≤ E

[
ϕ(θk, Xk(θk),∆k

θk , ν
k
θk)
]
− η

where η := inf{|x − x0|4 + |t − t0|2 + |δ − δ0|2, (t, x, δ, ek) ∈ ∂Br(t0, x0, δ0, e0), k ≥ 1} > 0,
observe that |ek − e0| < r. Since Iν

k

tk,θk
= ∅, the above inequality combined with (4.16) and

(4.18) contradict (4.2) for k large enough.
Case 2. We now assume that (t0, x0, δ0, e0) ∈ D$, recall the definition (3.2). Since E is
closed and $ /∈ E, (4.15) implies that

(δk, ek) = (0, $) for k large enough.(4.20)

We now assume that

min {−L$ϕ(t0, x0, 0, $) , ϕ(t0, x0, 0, $)−M[ϕ](t0, x0)} =: −2ε < 0 ,(4.21)

and work toward a contradiction. If

−L$ϕ(t0, x0, 0, $) = −2ε < 0 ,

we can argue as above to obtain a contradiction to (4.2). If

ϕ(t0, x0, 0, $)−M[ϕ](t0, x0) =: −2ε < 0 ,
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we can find (δ̂, ê) ∈ [δ, T − t0)× E and r > 0 such that

ϕ(t, x, 0, $)− ϕ(t, x+ β(x, ê, δ̂), δ̂, ê) ≤ −ε , for (t, x) ∈ B := Br(t0, x0) .(4.22)

Let ν̄ denote the constant control that takes the value $ on [0, T ], set X̄k := X ν̄
tk,xk

and

θk := inf{s ≥ tk : (s, X̄k(s)) /∈ B} ∧ (tk + k−1) .

Note that for k large enough, we have tk + k−1 + δ̂ ≤ T . We can then define νk ∈ Satk,0,$ by

νkt := ê1t∈[θk,θk+δ̂) +$1t/∈[θk,θk+δ̂) , t ≤ T ,

and set (Xk,∆k) := (Xνk
tk,xk

,∆νk). Using Itô’s Lemma and (4.22), we obtain that

ϕ(tk, xk, 0, $) ≤ E
[
ϕ(θk, Xk(θk),∆k

θk , ν
k
θk)− ε

]
+ C/k ,

for some C > 0 which does not depend on k. The above inequality combined with (4.16)
contradict (4.2) for k large enough.

We now turn to the proof of the boundary conditions. We refer to (3.3)-(3.4)-(3.5) for the
definitions of DE,0, DE,T and DT .

Proposition 4.5. Fix (t0, x0, δ0, e0) ∈ D̄. Then,

V∗(t0, x0, 0, e0) ≥


V∗(t0, x0, 0, $) + f(x0, e0) if (t0, x0, δ0, e0) ∈ DE,0

V(t0, x0, e0) if (t0, x0, δ0, e0) ∈ DE,T

g(x0) + f(x0, e0) if (t0, x0, δ0, e0) ∈ DT .

Proof. We only prove the first inequality. The two other ones follow from similar arguments.
Let (tk, xk, δk, ek)k≥1 be a sequence in D such that

(4.23) (tk, xk, δk, ek) −→ (t0, x0, 0, e0) and V (tk, xk, δk, ek) −→ V∗(t0, x0, 0, e0) as k −→∞ .

For each k ≥ 1, define

νk := $1[0,tk+δk) + ek1[tk+δk,T ] ∈ Satk,δk,ek ,

and set Xk := Xνk
tk,xk

. It follows from Remark 4.3 that

(4.24) V (tk, xk, δk, ek) ≥ E
[
V∗(tk + δk, X

k(tk + δk), 0, $) + f(Xk(tk + δk−), ek)
]
, k ≥ 1 .

Using standard estimates, see e.g. the proof of Lemma 4.2, one easily checks that Xk(tk +
δk−)→ x0 in Lp for all p ≥ 1, and in particular P-a.s., after possibly passing to a subsequence.
It thus follows from the lower-semicontinuity of V∗ and f that, up to a subsequence,

lim inf
k→∞

V∗(tk + δk, X
k(tk + δk), 0, $) + f(Xk(tk + δk−), ek) ≥ V∗(t0, x0, 0, $) + f(x0, e0) P-a.s.

The required result then follows from (4.23), (4.24), and the last inequality combined with
polynomial growth property of f and V , see Remark 2.5, and Fatou’s Lemma.

19



4.2.2 Subsolution property

We start with the subsolution property in the domain D = DE,>0∪D$, recall the definitions
in (3.1)-(3.2).

Proposition 4.6. The function V ∗ is a viscosity subsolution of (3.7) on D.

Proof. Fix (t0, x0, δ0, e0) ∈ D and let ϕ be a smooth function such that (t0, x0, δ0, e0) achieves
a (global) maximum of V ∗ − ϕ such that

0 = (V ∗ − ϕ)(t0, x0, δ0, e0) .

In the following, we denote by (tk, xk, δk, ek)k≥1 a sequence in D satisfying
(4.25)

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V ∗(t0, x0, δ0, e0) as k −→∞ .

Case 1. We first assume that (t0, x0, δ0, e0) ∈ DE,>0 and that

−Le0ϕ(t0, x0, δ0, e0) +
∂

∂δ
ϕ(t0, x0, δ0, e0) =: 2ε > 0 ,

and work towards a contradiction. By continuity of b and a, we can find r > 0 such that

(4.26)
(
−Leϕ+

∂

∂δ
ϕ

)
(t, x, δ, e) ≥ ε for (t, x, δ, e) ∈ B := Br(t0, x0, δ0, e0) ∩DE,>0 .

Moreover, we can always assume that (t0, x0, δ0, e0) achieves a strict local maximum, so that
after possibly changing the value of ε, we have

sup
∂pB

(V ∗ − ϕ) =: −ε < 0 ,(4.27)

where ∂pB is the parabolic boundary of B. Fix νk ∈ Stk,δk,ek and set

θk := inf{s ≥ tk : (s,Xk(s),∆k
s , ν

k
s ) /∈ B} ,

where (Xk,∆k) := (Xνk
tk,xk

,∆νk). Observe that, for r small enough, ∆k
θk
> 0 and therefore

νk = ek on [tk, θk]. Applying Itô’s Lemma to ϕ and using (4.26) and (4.27), we deduce that

ϕ(tk, xk, δk, ek) ≥ E
[
ϕ(θk, Xk(θk),∆k

θk , νθk)
]
≥ E

[
V ∗(θk, Xk(θk),∆k

θk , νθk)
]

+ ε .

Since Iνk
tk,θk

= ∅, this contradicts (4.1) for k large enough, recall (4.25) .
Case 2. We now assume that (t0, x0, δ0, e0) = (t0, x0, 0, $) ∈ D$ and

min{−L$ϕ(t0, x0, 0, $), ϕ(t0, x0, 0, $)−M[ϕ](t0, x0)} =: 2ε > 0 ,

and work towards a contradiction. By continuity of b and a, we can find r > 0 such that

(4.28) min{−L$ϕ(·, 0, $), ϕ(·, 0, $)−M[ϕ]} ≥ ε on B := Br(t0, x0) ∩ ([0, T )× Rd) .

Moreover, without loss of generality we can assume that (t0, x0) achieves a strict local maxi-
mum, so that after possibly changing the value of ε

sup
∂pB

(V ∗(·, 0, $)− ϕ(·, 0, $)) =: −ε < 0 ,(4.29)
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where ∂pB is the parabolic boundary of B. Also observe that, since E is closed and $ /∈ E,
(4.25) implies that

(δk, ek) = (0, $) for k large enough.(4.30)

Let νk ∈ Satk,0,$ = Satk,δk,ek be arbitrary, set (Xk,∆k, (τki )i≥1) := (Xνk
tk,xk

,∆νk , (τν
k

i )i≥1) and
define

θk := inf{s ≥ tk : (s,Xk(s)) /∈ B} , ϑk := inf{τki , i ≥ 1 s.t. τki ≥ tk} and ξk := θk ∧ ϑk .

Applying Itô’s Lemma to ϕ, using (4.28), (4.29), and recalling (4.30) lead to

ϕ(tk, xk, δk, ek) ≥ E
[
ϕ(ξk, Xk(ξk−), 0, $)

]
≥ E

[
ϕ(ξk, Xk(ξk),∆k

ξk , ν
k
ξk) + ε1ξk=ϑk

]
≥ E

[
V ∗(ξk, Xk(ξk),∆k

ξk , ν
k
ξk)
]

+ ε .

In view of (4.25) this leads to a contradiction with (4.1) for k large enough.

We now turn to the boundary condition δ → 0. Recall the definition of DE,0 in (3.3).

Proposition 4.7. For all (t0, x0, δ0, e0) ∈ DE,0, we have

V ∗(t0, x0, 0, e0) ≤ V ∗(t0, x0, 0, $) + f(x0, e0) .

Proof. By following similar arguments as in the second step of the proof of Proposition 4.6
above, one easily checks that, for any smooth function ϕ̄ such that (t0, x0, 0, e0) achieves a
global maximum of V ∗ − ϕ̄ satisfying (V ∗ − ϕ̄)(t0, x0, 0, e0) = 0, we have

min
{
−Le0ϕ̄(t0, x0, 0, e0) +

∂

∂δ
ϕ̄(t0, x0, 0, e0) , ϕ̄(t0, x0, 0, e0)− ϕ̄(t0, x0, 0, $)− f(x0, e0)

}
≤ 0 .

Let now ϕ be a smooth function such that (t0, x0, 0, e0) achieves a global maximum of V ∗−ϕ
satisfying (V ∗ − ϕ)(t0, x0, 0, e0) = 0, and consider the function ϕ̄ε defined as

ϕ̄ε(t, x, δ, e) := ϕ(t, x, δ, e) +
√
ε+ δ −

√
ε

for some ε > 0. Observe that (t0, x0, 0, e0) achieves a global maximum of V ∗ − ϕ̄ε. It thus
follows that either

ϕ̄ε(t0, x0, 0, e0)− ϕ̄ε(t0, x0, 0, $)− f(x0, e0) ≤ 0

or
−Le0ϕ̄ε(t0, x0, 0, e0) +

∂

∂δ
ϕ̄ε(t0, x0, 0, e0) + ε−

1
2 ≤ 0 .

Clearly, the second assertion can not hold for ε > 0 small enough. It follows that

ϕ̄ε(t0, x0, 0, e0)− ϕ̄ε(t0, x0, 0, $)− f(x0, e0) ≤ 0

for all ε > 0 small enough, which provides the required result.

We next consider the boundary conditions as t+ δ → T and t = T . Recall the definitions of
DE,T and DT in (3.4)-(3.5).
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Proposition 4.8. For all (t0, x0, δ0, e0) ∈ DE,T , we have

V ∗(t0, x0, δ0, e0) ≤ V(t0, x0, e0) .

For all (T, x0, δ0, e0) ∈ DT , we have

V ∗(T, x0, δ0, e0) ≤ g(x0) + f(x0, e) .

Proof. We only prove the first assertion, the second one using the same kind of arguments.
Let (tk, xk, δk, ek)k≥1 be a sequence in D satisfying

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V ∗(t0, x0, δ0, e0) as k −→∞ .

For k large enough, we have tk + δk > T − δ so that, for any νk ∈ Satk,δk,ek , we have νk = ek
on [tk, tk + δk) and νk = $ on [tk + δk, T ], recall (2.1). It follows that

V (tk, xk, δk, ek) = E
[
g(Xνk

tk,xk
(T )) + f(X ektk,xk(tk + δk), ek)

]
,

recall the definition of X in (2.10). Moreover, since tk + δk → t0 + δ0 = T , standard estimates
based on (2.5) and Remark 2.3 imply that (Xνk

tk,xk
(T ),X ektk,xk(tk+δk))→ (X e0t0,x0

(T ),X e0t0,x0
(t0+

δ0)) as k →∞ in Lp for all p ≥ 1. The result then follows by taking the limsup as k →∞ in
the above equality and using (2.7) as well as the dominated convergence theorem.

4.3 A comparison result

In this section, we provide the proof of Theorem 3.3. We first show that (3.7) admits a
classical strict supersolution in the following sense:

Proposition 4.9. For any integer p ≥ γ, there exists a function Λ on Rd×R+× Ē and % > 0
satisfying

(i) Λ ∈ C2,1,0(Rd × R+ × Ē),

(ii) Λ ≥ g+ + f+ + V+ ,

(iii) inf
(δ,e)∈[0,T ]×Ē

Λ(x, δ, e)/|x|p →∞ as |x| → ∞ ,

(iv) 〈b,DΛ〉 + 1
2Tr[aa∗D2Λ] ≤ %Λ and −∂Λ/∂δ + 〈b,DΛ〉 + 1

2Tr[aa∗D2Λ] ≤ %Λ on
Rd × R+ × Ē,

(v) Λ(x, 0, e)−f(x, e)−q(x) ≥ Λ(x, 0, $) ≥ Λ(x+β(x, e, δ), δ, e)+δ for all x ∈ Rd, δ ∈ [δ, T ]
and e ∈ E, where q is a continuous and (strictly) positive function on Rd.

Proof. Let ϕ be a C1(R+) function with bounded first derivative such that ϕ ≥ 0, ϕ(0) = 1
and ϕ(δ) = 0 for δ ≥ δ and let Λ be defined by:

Λ(x, δ, e) = µ (1 + |x|2p)(1 + κ1e=$) +
(
2κµ (1 + |x|2p)− δ

)
ϕ(δ)1e6=$

for some κ > 0 and µ > T such that f(x, e)+ + g(x)+ + V(t, x, e)+ ≤ µ (1 + |x|2p), recall
(2.7) and Remark 2.5. The first three assertions clearly hold for µ large enough, recall that
$ /∈ E where E is closed. As for the fourth assertion, we recall that b and a are uniformly
Lipschitz, so that the left-hand side is of order (1 + |x|2p), which is dominated by %Λ for %
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large enough. The right-hand side inequality holds for % large enough by similar arguments.
Finally, recalling (2.5), we observe that, for µ and κ large enough,

Λ(x, 0, e)− f(x, e)− Λ(x, 0, $) = κµ (1 + |x|2p)− f(x, e) ≥ µ (1 + |x|2p) ,
Λ(x, 0, $)− Λ(x+ β(x, e, δ), δ, e) = µ (1 + |x|2p)(1 + κ)− µ (1 + |x+ β(x, e, δ)|2p)

≥ µκ/2 ≥ δ

for all x ∈ Rd, δ ≤ δ ≤ T and e ∈ E, which provides the last assertion for q(x) := µ (1 +
|x|2p).

We can now provide the proof of Theorem 3.3.

Proof. [Theorem 3.3] Let u and v be as in Theorem 3.3 and let p ≥ γ be large enough so that

[v(t, x, δ, e)− u(t, x, δ, e)]+ ≤ C(1 + |x|p) on D̄(4.31)

for some C > 0. We assume that

sup
D̄

(v − u) ≥ 2η for some η > 0(4.32)

and work toward a contradiction.
1. Let % > 0 and Λ be as in Proposition 4.9 for p ≥ γ satisfying (4.31). It follows from (4.32)
that for λ ∈ (0, 1) small enough there is some (tλ, xλ, δλ, eλ) ∈ D̄ such that

max
D̄

(ṽ − w̃) = (ṽ − w̃)(tλ, xλ, δλ, eλ) ≥ η > 0 ,(4.33)

where for a map ϕ on D̄, we write ϕ̃(t, x, δ, e) for e%tϕ(t, x, δ, e), and w := (1 − λ)u + λΛ.
Observe that ũ, ṽ are super- and subsolution of

H̃ϕ = 0(4.34)

on D̄, where, for a smooth function ϕ defined on D̄,
(4.35)

H̃ϕ(t, x, δ, e) :=



(
% ∂∂t − L

e + ∂
∂δ

)
ϕ(t, x, δ, e) on DE,>0 ,

ϕ(t, x, δ, e)− ϕ(t, x, 0, $)− f̃(x, e) on DE,0 ,

ϕ(t, x, δ, e)− Ṽ(t, x, e) on DE,T ,

min
{

(% ∂∂t − L
$)ϕ(t, x, δ, e) ; ϕ(t, x, δ, e) − M[ϕ](t, x)

}
on D$ ,

ϕ(t, x, δ, e)− g̃(x)− f̃(x, e) on DT .

Also note that

(tλ, xλ, δλ, eλ) /∈ DE,T ∪DT(4.36)

since otherwise the super- and subsolution property of u and v would imply

(v − w)(tλ, xλ, δλ, eλ) ≤ λ (V(tλ, xλ, eλ) ∨ (g(xλ) + f(xλ, eλ))− Λ(tλ, xλ, δλ, eλ))

which, in view of (ii) in Proposition 4.9, would contradict (4.33).
2. For (t, x, δ, e) ∈ D̄ and n ≥ 1, we now set

Γ(t, x, y, δ, e) := ṽ(t, x, δ, e)− w̃(t, y, δ, e)
Θn(t, x, y, δ, e) := Γ(t, x, y, δ, e)− ϕn(t, x, y, δ, e) ,
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where

ϕn(t, x, y, δ, e) := n|x− y|2p + |x− xλ|2p+2 + |t− tλ|2 + |δ − δλ|2 + |e− eλ| .

By the growth assumption on v, u and the fact that Ē is compact, there is (tn, xn, yn, δn, en) ∈
D̄2, with

D̄2 := {(t, x, y, δ, e) : ((t, x, δ, e), (t, y, δ, e)) ∈ D̄ × D̄} ,

such that

max
D̄2

Θn = Θn(tn, xn, yn, δn, en) .

Since

Γ(tn, xn, yn, δn, en) ≥ Θn(tn, xn, yn, δn, en) ≥ (ṽ − w̃)(tλ, xλ, δλ, eλ) ,

it follows from the growth condition on v and u, (iii) of Proposition 4.9 and the upper-
semicontinuity of Λ that, up to a subsequence,

(tn, xn, yn, δn, en) −→ (tλ, xλ, xλ, δλ, eλ)(4.37)
ϕn(tn, xn, yn, δn, en) −→ 0(4.38)
Γ(tn, xn, yn, δn, en) −→ Γ(tλ, xλ, xλ, δλ, eλ) .(4.39)

3. It follows from (4.36) and (4.37) that, after possibly passing to a subsequence,

(tn, xn, δn, en) /∈ DE,T ∪DT for all n ≥ 1 .(4.40)

3.1. We now assume that, up to a subsequence, en 6= $ for all n ≥ 1.
If |{n : δn = 0}| = ∞, then we can assume that, up to a subsequence, δn = 0, i.e.,
(tn, xn, δn, en) ∈ DE,0 for all n ≥ 1. It then follows from the super- and subsolution property
of ũ and ṽ, and (v) of Proposition 4.9, that

ṽ(tn, xn, 0, en) ≤ ṽ(tn, xn, 0, $) + f̃(xn, en)
ũ(tn, yn, 0, en) ≥ ũ(tn, yn, 0, $) + f̃(yn, en)

Λ̃(yn, 0, en) ≥ Λ̃(yn, 0, $) + f̃(yn, en) + e%tnq(yn) ,

and therefore

(4.41) Γ(tn, xn, yn, 0, en) ≤ Γ(tn, xn, yn, 0, $) +
(
f̃(xn, en)− f̃(yn, en)

)
− λe%tnq(yn) .

Sending n→∞ and using (4.37) and (4.39) leads to

Γ(tλ, xλ, xλ, δλ, eλ) ≤ Γ(tλ, xλ, xλ, 0, $)− λe%tλq(yλ)

which, recalling that q > 0 on Rd, contradicts (4.33).
It follows from the above arguments that |{n : δn = 0}| < ∞. In this case, (tn, xn, δn, en) ∈
DE,>0 for all n ≥ 1 large enough, recall (4.40). Using the viscosity property of ũ and ṽ, (iv)
in Proposition 4.9, and standard arguments based on Ishii’s Lemma, see [8], together with
(4.37) allows to deduce that

%Γ(tn, xn, yn, δn, en) ≤ Oλ(n−1) ,
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where Oλ(n−1)→ 0 as n→∞. Since % > 0, combining the above inequality with (4.39) leads
to a contradiction to (4.33).
3.2. We now assume that, up to a subsequence, en = $, so that (tn, xn, δn, en) ∈ D$ for all
n ≥ 1. Note that we can not have

ṽ(tn, xn, 0, $)− sup
(δ,e)∈[δ,T−tn]×E

ṽ(tn, xn, δ, e) ≤ 0

along a subsequence, since otherwise the supersolution property of ũ and (v) of Proposition
4.9 would imply

Γ(tn, xn, yn, 0, $) ≤ sup
(δ,e)∈[δ,T−tn]×E

Γ(tn, xn, yn, δ, e)− λe%tnδ ,

which would contradict (4.33) for n large enough, recall (4.37), (4.39) and the fact that δ > 0.
We can thus assume that ṽ(tn, xn, 0, $) − sup(δ,e)∈[δ,T−tn]×E ṽ(tn, xn, δ, e) > 0 for n large
enough. Using again the viscosity properties of ũ and ṽ, (iv) of Proposition 4.9, standard
arguments based on Ishii’s Lemma, see [8], and (4.37) then leads

%Γ(tn, xn, yn, δn, en) ≤ Oλ(n−1) ,

where Oλ(n−1)→ 0 as n→∞. As above, this leads to a contradiction.

5 Numerical approximation

In this section, we construct a finite difference scheme to solve the PDE (3.7) numerically,
and prove the convergence of the numerical scheme.

5.1 Space discretization

Given a positive integer N , we discretize the set

T := {(t, δ) ∈ [0, T ]× R+ : δ ≤ t+ δ ≤ T}

in

TN := {(ihN ∧ T, (i+ j)hN ), i = 0, . . . , N and j = 0, . . . , N − i}

where
hN := T/N .

We next fix a positive integer M and R > 0 and approximate RdR := BR(0) ⊂ Rd by

RdMR := {−R+ khMR, k = 0, . . . , 2M}d

where
hMR := R/M .

We finally consider an increasing sequence (EL)L≥1 of finite subsets of E such that

∪L≥1EL = E .

For ease of notations, we set

D̄RL
NM :=

{
(t, x, δ, e) ∈ D̄ : (t, δ) ∈ TN , x ∈ RdMR , e ∈ EL ∪ {$}

}
.
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5.2 Finite difference approximation

From now on, we denote by xi the i-th component of a vector x ∈ Rd, and by Aij the (i, j)-
component of a matrix A ∈ Md. We use the notation li for the unit vector of Rd in the ith

coordinate direction.

We use the standard finite difference approximation, see [10] for a full description.

Space component:

∂ψ

∂xi
(t, x, δ, e) ∼


ψ(t,x+hMRli,δ,e)−ψ(t,x,δ,e)

hMR
=: ∆hMR+

xi
ψ(t, x, δ, e) if bi(x, e) ≥ 0

ψ(t,x,δ,e)−ψ(t,x−hMRli,δ,e)
hMR

=: ∆hMR−
xi

ψ(t, x, δ, e) if bi(x, e) < 0
,

∂2ψ

∂x2
i

(t, x, δ, e) ∼ ψ(t, x+ hMRli, δ, e)− 2ψ(t, x, δ, e) + ψ(t, x− hMRli, δ, e)
h2
MR

=: ∆hMR

xixi
ψ(t, x, δ, e) .

If aij(x, e) ≥ 0, i 6= j, then

∂2ψ

∂xixj
(t, x, δ, e) ∼ 2ψ(t, x, δ, e) + ψ(t, x+ hMR(li + lj), δ, e) + ψ(t, x− hMR(li + lj), δ, e)

h2
MR

−ψ(t, x+ hMRli, δ, e) + ψ(t, x− hMRli, δ, e)
2h2

MR

−ψ(t, x+ hMRlj , δ, e) + ψ(t, x− hMRlj , δ, e)
2h2

MR

=: ∆hMR+
xixj

ψ(t, x, δ, e) .

If aij(x, e) < 0, i 6= j, then

∂2ψ

∂xixj
(t, x, δ, e) ∼ − [2ψ(t, x, δ, e) + ψ(t, x+ hMR(li − lj), δ, e) + ψ(t, x− hMR(li − lj), δ, e)]

h2
MR

+
ψ(t, x+ hMRli, δ, e) + ψ(t, x− hMRli, δ, e)

2h2
MR

+
ψ(t, x+ hMRlj , δ, e) + ψ(t, x− hMRlj , δ, e)

2h2
MR

=: ∆hMR−
xixj

ψ(t, x, δ, e) .

For ease of notations we write:

∆hMR
x ψ(t, x, δ, e) :=

(
∆hMR+
xi

ψ(t, x, δ, e)1bi(x,e)≥0 + ∆hMR−
xi

ψ(t, x, δ, e)1bi(x,e)<0

)
i≤d
∈ Rd

and

∆hMR
xx ψ :=

(
∆hMR+
xixj

ψ(t, x, δ, e)1aij(x,e)≥0 + ∆hMR−
xixj

ψ(t, x, δ, e)1aij(x,e)<0

)
i,j≤d

∈Md .

Time component:

∂ψ

∂t
(t, x, δ, e) ∼ ψ(t+ hN , x, δ, e)− ψ(t, x, δ, e)

hN
=: ∆hN

t ψ(t, x, δ, e) .

Latency duration:

∂ψ

∂δ
(t, x, δ, e) ∼ ψ(t, x, δ, e)− ψ(t, x, δ − hN , e)

hN
=: ∆hN

δ ψ(t, x, δ, e) .
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5.3 Approximation scheme of (3.7) and convergence

We now define Ṽ R
NM as the solution on D̄RL

NM of:

HRLNMϕ(t, x, δ, e)1x/∈∂RdR + (ϕ(t, x, δ, e)− g(x)) 1x∈∂RdR = 0

where HRLNMϕ(t, x, δ, e) is given by

(
−LR,eNM + ∆hN

δ

)
ϕ(t, x, δ, e) on D̄RL

NM ∩DE,>0 ,

ϕ(t, x, δ, e)− ϕ(t+ hN , x, 0, $)− f(x, e) on D̄RL
NM ∩DE,0 ,

ϕ(t, x, δ, e)− V(t, x, e) on D̄RL
NM ∩DE,T ,

min
{
− L$NMϕ(t, x, δ, e) , ϕ(t, x, δ, e) − MR

LM [ϕ](t, x)
}

on D̄RL
NM ∩D$ ,

ϕ(t, x, δ, e)− g(x)− f(x, e) on D̄RL
NM ∩DT ,

(5.1)

with

LR,eMNϕ(t, x, δ, e) := ∆hN
t ϕ(t, x, δ, e) + 〈b(x, e) , ∆hMR

x ϕ(t, x, δ, e)〉 +
1
2

Tr
[
aa∗(x, e)∆hMR

xx ϕ(t, x)
]
.

MR
LM [ϕ](t, x) := max

{δ′,e′)∈([δ,T−t]∩{ihN}1≤i≤N )×EL
ϕ(t,ΠR

M (x+ β(x, e′, δ′)), δ′, e′) .

Here, ΠR
M denotes the projection operator on RdMR

ΠR
M (x) :=

(
[(−R ∨ xi ∧R)/M ]M

)
i≤d ,

with [·] denoting the integer part.
From now on, we write Ṽn for Ṽ RnLn

NnMn
where (Nn,Mn, Rn, Ln)n≥1 is a sequence of positive

integers such that
Nn,Mn, Rn, Ln ↑ ∞ as n→∞ ,

and we denote by V and V the relaxed semilimits of Ṽn:

V (t, x, δ, e) := lim sup
(ihhN , ixhMR, iδhN , e

′) ∈ D̄ → (t, x, δ, e)
n→∞

Ṽn(ihhN , ixhMR, iδhN , e
′)

V (t, x, δ, e) := lim inf
(ihhN , ixhMR, iδhN , e

′) ∈ D̄ → (t, x, δ, e)
n→∞

Ṽn(ihhN , ixhMR, iδhN , e
′) .

One easily checks that the above scheme is monotone, in the terminology of [4]. Moreover,
recalling (2.7) and (2.8), easy computations based on a induction argument also lead to the
following uniform polynomial control on V and V under the additional classical condition:

h2
MR = hN .(5.2)

Proposition 5.1. The above scheme is monotone. If the condition (5.2), then there exists a
constant C > 0, independent on N,M,L and R, such that

|V (t, x, δ, e)|+ |V (t, x, δ, e)| ≤ C(1 + |x|γ) on D̄ .

Using the fact that f(·, $) = 0 and V(T, ·) = g + f , recall (2.7) and Remark 2.6, we now
observe that, if a function ϕ satisfies

max {ϕ− V , ϕ− ϕ(·, 0, $)− f , ϕ− g − f}1e6=$ + (ϕ− g − f) 1e=$ ≥ 0 on DT ,
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then it also satisfies
ϕ− g − f ≥ 0 on DT .

Similarly, if it satisfies

min {ϕ− V , ϕ− ϕ(·, 0, $)− f , ϕ− g − f}1e6=$ + (ϕ− g − f) 1e=$ ≤ 0 on DT ,

then it also satisfies
ϕ− g − f ≤ 0 on DT .

It then follows from the arguments of [4], and the continuity of f, g and V, see Remark 2.6,
that V is a supersolution on D̄ of H∗ϕ = 0 and that V is a subsolution on D̄ of H∗ϕ = 0
where

H∗ϕ :=


HE,>0ϕ :=

(
−Le + ∂

∂δ

)
ϕ on DE,>0 ,

max {HE,>0ϕ , ϕ− ϕ(·, 0, $)− f} on DE,0 ,
max {HE,>0ϕ , ϕ− V} on DE,T ,

H$ϕ := max
{
− L$ϕ ; ϕ − M[ϕ]

}
on D$ ,

max
{
HE,>0ϕ1E +H$ϕ1{$} , ϕ− g − f

}
on DT .

(5.3)

and

H∗ϕ :=


HE,>0ϕ :=

(
−Le + ∂

∂δ

)
ϕ on DE,>0 ,

min {HE,>0ϕ , ϕ− ϕ(·, 0, $)− f} on DE,0 ,
min {HE,>0ϕ , ϕ− V} on DE,T ,

H$ϕ := min
{
− L$ϕ ; ϕ − M[ϕ]

}
on D$ ,

min
{
HE,>0ϕ1E +H$ϕ1{$} , ϕ− g − f

}
on DT .

(5.4)

In order to conclude that V = V = V on D̄, it remains to prove the following result.

Proposition 5.2. Let ψ be lower-semicontinuous function with polynomial growth. If ψ is
a viscosity supersolution (resp. subsolution) of H∗ϕ = 0 (resp. H∗ϕ = 0) on D̄, then ψ is a
viscosity supersolution (resp. subsolution) of Hϕ = 0.

Proof. We only prove the supersolution property, the subsolution property being proved by
similar arguments. Let ψ be a supersolution of H∗ϕ = 0. Let (t0, x0, δ0, e0) ∈ D̄ and let ϕ be
a smooth function such that (t0, x0, δ0, e0) achieves a (global) minimum of ψ − ϕ satisfying
(ψ − ϕ)(t0, x0, δ0, e0) = 0. If (t0, x0, δ0, e0) ∈ DE,>0 ∪ D$ then Hϕ(t0, x0, δ0, e0) ≥ 0. If
(t0, x0, δ0, e0) ∈ DE,0 ∪DT , then similar arguments as in the proof of Proposition 4.7 shows
that Hϕ(t0, x0, δ0, e0) ≥ 0 too.
It remains to study the case where (t0, x0, δ0, e0) ∈ DE,T . We claim that, the map (t, x) ∈
[0, T )× Rd → ψ(t, x, T − t, e0) is a supersolution of

max {−Le0ϕ , ϕ− V} (·, e0) ≥ 0 on [0, T )× Rd

with the terminal condition

max {ϕ− g − f, ϕ− V} (T, ·, e0) ≥ 0 on Rd .

Since V is a subsolution of the same equation, recall Remark 2.6, applying a standard com-
parison principle (recall our Lipschitz continuity and growth assumptions and see e.g. [8]),
will readily implies that ψ ≥ V.
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We conclude this proof by proving the above claim. Fix e0 ∈ E, and let (t0, x0) ∈ [0, T ]×Rd

and ϕ be smooth function such that (t0, x0) achieves a global minimum (equal to 0) of (t, x) 7→
ψ(t, x, T − t, e0)−ϕ(t, x). For n ≥ 1, we define ϕn by ϕn(t, x, δ, e) := ϕ(t, x)− n(T − t− δ)−
|t− t0|2p − |x− x0|2p − |e− e0|2p, for p ≥ 1 such that (t, x, δ, e) ∈ D̄ 7→ |ψ(t, x, δ, e)|/(1 + |x|p)
is bounded. Let (tn, xn, δn, en)n be a global minimum point of ψ − ϕn. Writing that

ψ(t0, x0, T − t0, e0)− ϕ(t0, x0) ≥ (ψ − ϕn)(tn, xn, δn, en)
= (ψ − ϕ)(tn, xn, δn, en)
+ n(T − tn − δn) + |tn − t0|2p + |xn − x0|2p + |en − e0|2p

≥ (ψ − ϕ)(tn, xn, δn, en)

one easily checks that
(5.5)
(tn, xn, en)→ (t0, x0, e0), n(T − tn − δn)→ 0 and ψ(tn, xn, δn, en)→ ψ(t0, x0, T − t0, e0) .

Note that, since e0 ∈ E, we have en 6= $ for n large enough. Moreover, the supersolution
property of ψ implies that H∗ϕn(tn, xn, δn, en) ≥ 0. Since −∂ϕn/∂t + ∂ϕn/∂δ = −∂ϕ/∂t +
2p(tn − t0)2p−1, it follows from (5.5) that, for n large enough,

−Lenϕ(tn, xn) ≥ εn if (tn, xn, δn, en) ∈ DE,>0 ,
−Lenϕ ∨ (ϕ− V) (tn, xn, en) ≥ εn if (tn, xn, δn, en) ∈ DE,T ,
−Lenϕ ∨ (ϕ− g − f) (tn, xn, en) ≥ εn if (tn, xn, δn, en) ∈ DT ,

(5.6)

where εn → 0 as n→∞. Taking the limit as n→∞ and using (5.5) then implies that

max {−Le0ϕ , ϕ− V} (t0, x0, e0) ≥ 0 if t0 < T

and
max {−Le0ϕ , ϕ− g − f , ϕ− V} (t0, x0, e0) ≥ 0 if t0 = T

which, by similar arguments as in the proof of Proposition 4.7, implies that

max {ϕ− g − f , ϕ− V} (t0, x0, e0) ≥ 0 if t0 = T .

We can now conclude by using the comparison principle of Theorem 3.3, recall Proposition
5.2, Proposition 5.1, Theorem 3.2 and Remark 2.5.

Theorem 5.3. We have:
V = V = V on D̄ .

6 Numerical illustration

As a numerical illustration, we consider the algorithm presented in Example 2.8 above.
Clearly, it is too simplistic for practical purposes. Our aim is not to demonstrate its su-
periority with respect to other well-known algorithms, but only to show how the control
adapts automatically to the market conditions each time a new slice is launched, on a simple
case where its behavior is predictable.
We consider the following set of parameters. The trading period corresponds to a period of 3
hours. The price process is assumed to follow a Black and Scholes dynamics with zero drift
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St = S0e
− 1

2
σ2t+σWt , where S0 := 13 and the annualized volatility is 25%. Adding a drift

would only change the optimal strategy in an obvious manner, depending on its sign. We
assume a deterministic evolution of the instantaneous volume traded on the market (Vt)t≤T
as given below. It corresponds to an intensity in minutes. The impact function η is given by
η(e, v) = 0.4(e/v)1.1. This coincides with plausible calibrated data. We take δ = 5 minutes.
For this numerical test, we restrict to values of the latency time in the set 5, 10, . . . , 60 minutes.
The different values of the buying rate are 50, 100, 150, . . ., 500. It correspond to numbers
of bought stocks per minute.
The final cost is given by c(Q, v) = η(Q/(0.417v)), which implicitly means that the trader has
25 seconds to finalize the operation, i.e. he must buy Q in 0.417 minutes at a rate Q/0.417.
We consider two different types of functions `: either ` is the identity, `(r) = r, or ` is of
exponential type, `(r) = e10−5r ∧ 100. The value 100 corresponds to more than four times
the cost evaluated with the exponential function r 7→ e10−5r of the operation which consists
in buying 15000 stocks with a constant rate, assuming that the market volume takes the
minimal value corresponding to the U -shaped path defined below, and for a constant stock
price equal to 26. This is an extreme scenario. However, truncating the exponential function
is needed in order to ensure that the value function is finite, since a log normal distribution
does not admit exponential moments.

We first consider the case where ` is linear. In this case, the controller is risk neutral so
that he has no incentive to buy the stock quickly because of a risk of increase of the price
(recall that here the price is a martingale). In Figure 1 and Figure 2, we compare the case
where the market volume is constant Vt = 50000, on the left, to the case where the market
volume is strongly U-shaped: Vt = 50000(1.1 − 0.9 sin(πt/T )) with T = 180 minutes. This
volume is also given per minutes. Both figures provide the optimal buying rate in terms of the
remaining time T − t and the remaining quantity to buy Qt, for St = S0. A typical path has
to be read from north-west to south-east, since Q decreases as time goes buy. As expected,
when the path of the market volume is U-shaped the optimal rate strongly decreases in the
middle of the period, when the market volume is low and the impact on the price of the stock
is high. This is compensated by a higher rate at the beginning of the period.

In Figure 5 and Figure 6, we provide the maximal value of the optimal latency time δ. Recall
that the existence of multiple optima is possible since there is no additional cost related to
the launching of a new slice, see Remark 2.1. In most cases, the maximal value is above the
minimal threshold of 5 minutes. This support our choice of considering the latency time as a
control, even in the absence of a cost associated to a change of parameters: when a latency
time of, e.g., 15 minutes is optimal, the trader can let the algorithm run for this time period
without having to launch it again every 5 minutes, and thus take care of his other positions.
In the case where the market volume is strongly U-shaped, it is smaller at the beginning
of the trading period, in comparison to the constant volume case. This is due to the fact
that the algorithm knows that the market volume is going to decrease strongly (since it is
deterministic) and that he will need to reduce the buying rate. It is small near the terminal
time because of the constraint t+ δ ≤ T . When looking at the picture backward in time, i.e.
as T − t increases, we see that the maximal value first increases and then drops down very
quickly. The first phenomena is due to the fact that the buying rate is essentially kept constant
at its maximal value near the terminal time. Then, this rate decreases as the algorithm has
more time to buy the shares. The period during which the algorithm reduces the buying rate
naturally coincides with a lower latency time.
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We next consider the case where ` is of exponential type. The optimal buying rates are
reported in Figures 3-4. Because the controller is now risk adverse, he has an incentive to
buy the stocks more quickly in order to avoid an increase of the price. This can be seen by
comparing Figures 3-4 with Figures 1-2. However, we do not observe significant changes in
the maximal optimal latency times.
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Figure 1: Buying rate - flat volume - Linear
cost

Figure 2: Buying rate - U-shaped volume - Lin-
ear cost

Figure 3: Buying rate - flat volume - Exponen-
tial cost

Figure 4: Buying rate - U-shaped volume - Ex-
ponential cost
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Figure 5: Latency period - flat volume - Linear
cost

Figure 6: Latency period - U-shaped volume -
Linear cost

Figure 7: Latency period - flat volume - Expo-
nential cost

Figure 8: Latency period - U-shaped volume -
Exponential cost
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