Weak dynamic programming principle toward viscosity solutions

Bruno Bouchard Ceremade and Crest University Paris Dauphine and ENSAE

Ann Arbor 2011

Joint works with M. Nutz and N. Touzi

ション ふゆ く 山 マ ふ し マ うくの

## **Motivation**

Provide an easy to prove Dynamic Programming Principle for stochastic optimal control problems in standard form :

$$v(t,x) := \sup_{\nu \in \mathcal{U}} F(t,x;\nu) \text{ with } F(t,x,\nu) := \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\right]$$

Weaker than the usual one, but just enough to provide the usual PDE characterization. (joint work with N. Touzi - *SIAM Journal on Control and* 

ション ふゆ く 山 マ ふ し マ うくの

Optimization, 49 (3), 2011)

### **Motivation**

Provide an easy to prove Dynamic Programming Principle for stochastic optimal control problems in standard form :

$$v(t,x) := \sup_{\nu \in \mathcal{U}} F(t,x;\nu) \text{ with } F(t,x,\nu) := \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\right]$$

Weaker than the usual one, but just enough to provide the usual PDE characterization.

(joint work with N. Touzi - SIAM Journal on Control and Optimization, 49 (3), 2011)

Extend it to optimal control problems :

- with constraints in expectation :  $\mathbb{E}\left[g(X_{t,x}^{\nu}(T))\right] \leq m$ .
- with strong state constraints :  $X_{t,x}^{\nu} \in \mathcal{O}$  on [t, T]. (joint work with M. Nutz - preprint)

#### The case without constraint

$$v(t,x) := \sup_{\nu \in \mathcal{U}} F(t,x;\nu) \text{ with } F(t,x,\nu) := \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\right]$$

Weak Dynamic Programming Principle for Viscosity Solutions, with Nizar Touzi, *SIAM Journal on Control and Optimization*, 49 (3), 2011.

Either use a measurable selection argument :  $(t,x)\mapsto 
u_arepsilon(t,x)\in \mathcal{U}$  such that

$$F(t,x;
u_{arepsilon}(t,x)) \geq v(t,x) - arepsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Either use a measurable selection argument :  $(t,x)\mapsto 
u_arepsilon(t,x)\in \mathcal{U}$  such that

$$F(t,x;
u_{arepsilon}(t,x))\geq v(t,x)-arepsilon$$

Or use the regularity of v and  $F(\cdot; v)$  to construct one :

$$F(\cdot; v_{\varepsilon}^{s, y}) \underset{lsc}{\geq} F(s, y; v_{\varepsilon}^{s, y}) - \varepsilon \ge v(s, y) - 2\varepsilon \underset{usc}{\geq} v - 3\varepsilon \text{ on } B_{s, y}$$

Either use a measurable selection argument :  $(t,x)\mapsto 
u_arepsilon(t,x)\in \mathcal{U}$  such that

$$F(t,x;
u_{arepsilon}(t,x))\geq v(t,x)-arepsilon$$

Or use the regularity of v and  $F(\cdot; v)$  to construct one :

$$F(\cdot; \nu_{\varepsilon}^{t_i, x_i}) \geq F(t_i, x_i; \nu_{\varepsilon}^{t_i, x_i}) - \varepsilon \geq v(t_i, x_i) - 2\varepsilon \geq u_{usc} v - 3\varepsilon \text{ on } B_i$$

with  $(B_i)_{i\geq 1}$  a partition of the state-space. Then, one constructs a measurable selection by setting

$$u_{arepsilon}(t,x) := \sum_{i\geq 1} 
u_{arepsilon}^{t_i,x_i} \mathbf{1}_{B_i}(t,x) \ .$$

In both cases : for  $\bar{\nu} = \nu \mathbf{1}_{[0,\theta)} + \mathbf{1}_{[\theta,T]} \nu_{\varepsilon}(\theta, X_{t,x}^{\nu}(\theta))$ 

$$\begin{split} \mathsf{v}(t,x) &\geq F(t,x;\bar{\nu}) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta))}(T)) \mid \mathcal{F}_{\theta}\right]\right] \\ &= \mathbb{E}\left[F(\theta,X_{t,x}^{\nu}(\theta);\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta)))\right] \geq \mathbb{E}\left[\mathsf{v}(\theta,X_{t,x}^{\nu}(\theta))\right] - 3\varepsilon \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In both cases : for  $\bar{\nu} = \nu \mathbf{1}_{[0,\theta)} + \mathbf{1}_{[\theta,T]} \nu_{\varepsilon}(\theta, X_{t,x}^{\nu}(\theta))$ 

$$\begin{split} \mathsf{v}(t,x) &\geq F(t,x;\bar{\nu}) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta))}(T)) \mid \mathcal{F}_{\theta}\right]\right] \\ &= \mathbb{E}\left[F(\theta,X_{t,x}^{\nu}(\theta);\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta)))\right] \geq \mathbb{E}\left[\mathsf{v}(\theta,X_{t,x}^{\nu}(\theta))\right] - 3\varepsilon \end{split}$$

Most of the time, proofs are based on a regularity argument :

$$F(\cdot; \nu_{\varepsilon}^{t_i, x_i}) \geq F(t_i, x_i; \nu_{\varepsilon}^{t_i, x_i}) - \varepsilon \geq v(t_i, x_i) - 2\varepsilon \geq v - 3\varepsilon$$

on  $B_i \ni (t_i, x_i)$ , with  $(B_i)_{i \ge 1}$  a partition of the state-space.

In both cases : for  $\bar{\nu} = \nu \mathbf{1}_{[0,\theta)} + \mathbf{1}_{[\theta,T]} \nu_{\varepsilon}(\theta, X_{t,x}^{\nu}(\theta))$ 

$$\begin{split} \mathsf{v}(t,x) &\geq F(t,x;\bar{\nu}) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta))}(T)) \mid \mathcal{F}_{\theta}\right]\right] \\ &= \mathbb{E}\left[F(\theta,X_{t,x}^{\nu}(\theta);\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta)))\right] \geq \mathbb{E}\left[\mathsf{v}(\theta,X_{t,x}^{\nu}(\theta))\right] - 3\varepsilon \end{split}$$

Most of the time, proofs are based on a regularity argument :

$$F(\cdot; \nu_{\varepsilon}^{t_i, x_i}) \geq F(t_i, x_i; \nu_{\varepsilon}^{t_i, x_i}) - \varepsilon \geq v(t_i, x_i) - 2\varepsilon \geq v - 3\varepsilon$$

on  $B_i \ni (t_i, x_i)$ , with  $(B_i)_{i \ge 1}$  a partition of the state-space.

In any case a minimum of regularity is required.

To derive a PDE characterization, typically in the viscosity solution sense.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

To derive a PDE characterization, typically in the viscosity solution sense.

Assuming v continuous, take a test function touching v from below at (t, x)

$$\varphi(t,x) = v(t,x) \geq \mathbb{E}\left[v(\theta, X_{t,x}^{\nu}(\theta))\right] \geq \mathbb{E}\left[\varphi(\theta, X_{t,x}^{\nu}(\theta))\right]$$

To derive a PDE characterization, typically in the viscosity solution sense.

Assuming v continuous, take a test function touching v from below at (t, x)

$$\varphi(t,x) = v(t,x) \geq \mathbb{E}\left[v(\theta, X_{t,x}^{\nu}(\theta))\right] \geq \mathbb{E}\left[\varphi(\theta, X_{t,x}^{\nu}(\theta))\right]$$

And the other way round for the subsolution property :

$$\varphi(t,x) = v(t,x) \leq \sup_{\nu \in \mathcal{U}} \mathbb{E}\left[v(\theta, X_{t,x}^{\nu}(\theta))\right] \leq \sup_{\nu \in \mathcal{U}} \mathbb{E}\left[\varphi(\theta, X_{t,x}^{\nu}(\theta))\right].$$

To derive a PDE characterization, typically in the viscosity solution sense.

Assuming v continuous, take a test function touching v from below at (t, x)

$$\varphi(t,x) = v(t,x) \geq \mathbb{E}\left[v(\theta, X_{t,x}^{\nu}(\theta))\right] \geq \mathbb{E}\left[\varphi(\theta, X_{t,x}^{\nu}(\theta))\right]$$

And the other way round for the subsolution property :

$$\varphi(t,x) = v(t,x) \leq \sup_{\nu \in \mathcal{U}} \mathbb{E} \left[ v(\theta, X_{t,x}^{\nu}(\theta)) \right] \leq \sup_{\nu \in \mathcal{U}} \mathbb{E} \left[ \varphi(\theta, X_{t,x}^{\nu}(\theta)) \right].$$

We never use :  $v(t,x) = \sup_{\nu \in \mathcal{U}} \mathbb{E} \left[ v(\theta, X_{t,x}^{\nu}(\theta)) \right].$ 

Only assume that  $(t, x) \mapsto F(t, x; \nu)$  is l.s.c. for  $\nu$  fixed.



Only assume that  $(t, x) \mapsto F(t, x; \nu)$  is l.s.c. for  $\nu$  fixed. For all usc function  $\varphi \leq v$ 

$$F(\cdot; 
u^{s,y}_{arepsilon}) \geq F(s,y; 
u^{s,y}_{arepsilon}) - arepsilon \geq v(s,y) - 2arepsilon \geq arphi(s,y) - 2arepsilon \geq arphi(s,y) - 2arepsilon \geq arphi(s,y) - 2arepsilon \geq arphi(s,y) - arepsilon \geq arphi(s,y) - arepsilon \geq arphi(s,y) - arepsilon \geq arphi(s,y) - arepsilon \geq arepsilon = arepsilon =$$

on  $B_{s,y}$ .

★□▶ ★@▶ ★∃▶ ★∃▶ ∃ のQQ

Only assume that  $(t, x) \mapsto F(t, x; \nu)$  is l.s.c. for  $\nu$  fixed. For all usc function  $\varphi \leq v$ 

$$F(\cdot; \nu_{\varepsilon}^{t_i, x_i}) \geq F(t_i, x_i; \nu_{\varepsilon}^{t_i, x_i}) - \varepsilon \geq v(t_i, x_i) - 2\varepsilon \geq \varphi(t_i, x_i) - 2\varepsilon \geq \varphi(t_i,$$

on  $B_i \ni (t_i, x_i)$ .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ● ●

Only assume that  $(t, x) \mapsto F(t, x; \nu)$  is l.s.c. for  $\nu$  fixed. For all usc function  $\varphi \leq v$ 

$$F(\cdot;\nu_{\varepsilon}^{t_{i},x_{i}}) \geq F(t_{i},x_{i};\nu_{\varepsilon}^{t_{i},x_{i}}) - \varepsilon \geq v(t_{i},x_{i}) - 2\varepsilon \geq \varphi(t_{i},x_{i}) - 2$$

on 
$$B_i \ni (t_i, x_i)$$
.  
One can reproduce the usual argument (but on  $\varphi$ ) :

$$\begin{split} \mathsf{v}(t,x) &\geq F(t,x;\bar{\nu}) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta))}(T)) \mid \mathcal{F}_{\theta}\right]\right] \\ &= \mathbb{E}\left[F(\theta,X_{t,x}^{\nu}(\theta);\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta)))\right] \\ &\geq \mathbb{E}\left[\varphi(\theta,X_{t,x}^{\nu}(\theta))\right] - 3\varepsilon \end{split}$$

Only assume that  $(t, x) \mapsto F(t, x; \nu)$  is l.s.c. for  $\nu$  fixed. For all usc function  $\varphi \leq v$ 

$$F(\cdot;\nu_{\varepsilon}^{t_{i},x_{i}}) \geq F(t_{i},x_{i};\nu_{\varepsilon}^{t_{i},x_{i}}) - \varepsilon \geq v(t_{i},x_{i}) - 2\varepsilon \geq \varphi(t_{i},x_{i}) - 2$$

on  $B_i \ni (t_i, x_i)$ . One can reproduce the usual argument (but on  $\varphi$ ) :

$$\begin{split} \mathsf{v}(t,x) &\geq F(t,x;\bar{\nu}) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta))}(T)) \mid \mathcal{F}_{\theta}\right]\right] \\ &= \mathbb{E}\left[F(\theta,X_{t,x}^{\nu}(\theta);\nu_{\varepsilon}(\theta,X_{t,x}^{\nu}(\theta)))\right] \\ &\geq \mathbb{E}\left[\varphi(\theta,X_{t,x}^{\nu}(\theta))\right] - 3\varepsilon \end{split}$$

ション ふゆ く 山 マ ふ し マ うくの

i.e.  $v(t,x) \geq \sup_{\nu \in \mathcal{U}} \mathbb{E} \left[ \varphi(\theta, X_{t,x}^{\nu}(\theta)) \right].$ 

### An abstract setting

• Filtration :  $\mathcal{F}_s^t := \sigma(Z_r - Z_t; t \le r \le s)$  for some càdlàg process Z with independent increments.

### An abstract setting

• Filtration :  $\mathcal{F}_s^t := \sigma(Z_r - Z_t; t \le r \le s)$  for some càdlàg process Z with independent increments.

ション ふゆ く 山 マ ふ し マ うくの

• Admissible controls :  $\mathcal{U}_t$  the subset of  $\mathcal{U}$  whose elements are predictable with respect to  $\mathbb{F}^t := (\mathcal{F}_s^t)_{s>t}$ .

### An abstract setting

- Filtration :  $\mathcal{F}_s^t := \sigma(Z_r Z_t; t \le r \le s)$  for some càdlàg process Z with independent increments.
- Admissible controls :  $\mathcal{U}_t$  the subset of  $\mathcal{U}$  whose elements are predictable with respect to  $\mathbb{F}^t := (\mathcal{F}_s^t)_{s \geq t}$ .
- Controlled process :  $\nu \in \mathcal{U} \mapsto X_{t,x}^{\nu}$  a càdlàg adapted process with values in  $\mathbb{R}^d$  (could be a separable metric space).

# Finiteness assumption : $\mathbb{E}\left[|f(X_{t,x}^{\nu}(T))|\right] < \infty$ for all $\nu \in \mathcal{U}$ .



Finiteness assumption :  $\mathbb{E}\left[|f(X_{t,x}^{\nu}(T))|\right] < \infty$  for all  $\nu \in \mathcal{U}$ .

**Structure assumption** : Let  $(t, x) \in [0, T] \times \mathbb{R}^d$ ,  $\nu \in \mathcal{U}_t$ ,  $\tau \in \mathcal{T}^t$ ,  $\Gamma \in \mathcal{F}^t_{\tau}$  and  $\bar{\nu} \in \mathcal{U}_{\|\tau\|_{L^{\infty}}}$ .

There exists a control  $\tilde{\nu} \in \mathcal{U}_t$ , denoted by  $\nu \otimes_{(\tau,\Gamma)} \bar{\nu}$ , such that

$$\begin{split} X_{t,x}^{\tilde{\nu}}(\cdot) &= X_{t,x}^{\nu}(\cdot) & \text{ on } [t, T] \times (\Omega \setminus \Gamma) \\ X_{t,x}^{\tilde{\nu}}(\cdot) &= X_{\tau,X_{t,x}^{\nu}(\tau)}^{\bar{\nu}}(\cdot) & \text{ on } [\tau, T] \times \Gamma; \\ \mathbb{E}\left[f(X_{t,x}^{\tilde{\nu}}(T)) \mid \mathcal{F}_{\tau}\right] &= F(\tau, X_{t,x}^{\nu}(\tau); \bar{\nu}) & \text{ on } \Gamma. \end{split}$$

### Easy part of the DPP

• Fix  $(t, x) \in [0, T] \times \mathbb{R}^d$ ,  $\nu \in \mathcal{U}_t$ . Let  $\{\theta^{\nu'}, \nu' \in \mathcal{U}\} \subset \mathcal{T}^t$  and let  $\varphi : [0, T] \times S \to \mathbb{R}$  be a measurable function such that  $v \leq \varphi$ . Then,

ション ふゆ く 山 マ ふ し マ うくの

$$\mathsf{F}(t,x;
u) \leq \mathbb{E}\left[arphi( heta^
u,X^
u_{t,x}( heta^
u))
ight].$$

# Easy part of the DPP

• Fix  $(t, x) \in [0, T] \times \mathbb{R}^d$ ,  $\nu \in \mathcal{U}_t$ . Let  $\{\theta^{\nu'}, \nu' \in \mathcal{U}\} \subset \mathcal{T}^t$  and let  $\varphi : [0, T] \times S \to \mathbb{R}$  be a measurable function such that  $v \leq \varphi$ . Then,

$$F(t, x; \nu) \leq \mathbb{E}\left[\varphi(\theta^{
u}, X^{
u}_{t,x}(\theta^{
u}))
ight].$$

**Corollary** :

$$\mathsf{v}(t,x) \leq \sup_{
u \in \mathcal{U}_t} \mathbb{E}\left[ arphi( heta^
u, X^
u_{t,x}( heta^
u)) 
ight]$$

Proof :

$$F(t, x; \nu) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta, X_{t, x}^{\nu}(\theta)}^{\nu}(T)) \mid \mathcal{F}_{\theta}\right]\right]$$

Proof :

$$F(t, x; \nu) = \mathbb{E}\left[\mathbb{E}\left[f(X_{\theta, X_{t,x}^{\nu}(\theta)}^{\nu}(T)) \mid \mathcal{F}_{\theta}
ight]
ight]$$

where

$$\begin{split} \mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu}(T)) \mid \mathcal{F}_{\theta}\right](\omega) &= F(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega); \nu(\omega^{\theta(\omega)}, \cdot)) \\ &\leq v(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega)) \\ &\leq \varphi(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega)) \end{split}$$

・ロト ・個ト ・モト ・モト

- 2

because  $\nu(\omega^{\theta(\omega)}, \cdot) \in \mathcal{U}_{\theta(\omega)}$ .

# "Difficult" part

#### • Assume that $F(\cdot; \nu)$ is lsc for all $\nu \in \mathcal{U}$ (on the left in time).



## "Difficult" part

• Assume that  $F(\cdot; \nu)$  is lsc for all  $\nu \in \mathcal{U}$  (on the left in time).

• Fix  $(t,x) \in [0,T] \times \mathbb{R}^d$ . Let  $\{\theta^{\nu'}, \nu' \in \mathcal{U}\} \subset \mathcal{T}^t$  and let  $\varphi : [0,T] \times S \to \mathbb{R}$  be a u.s.c. function such that  $v \ge \varphi$ . Then,

$$\mathbf{v}(t,x) \geq \sup_{
u \in \mathcal{U}_t} \mathbb{E}\left[ arphi( heta^
u, X^
u_{t,x}( heta^
u)) 
ight].$$

Fix  $\nu_{s,y} \in \mathcal{U}_s$  such that

$$F(s, y; \nu_{s,y}) \geq v(s, y) - \varepsilon$$
.



Fix  $\nu_{s,y} \in \mathcal{U}_s$  such that

$$F(s, y; \nu_{s,y}) \geq v(s, y) - \varepsilon$$
.

Fix  $B_{s,y} := (s - r_{s,y}, s] \times B(y, r_{s,y})$  such that

 $F(\cdot; \nu_{s,y}) \ge F(s, y; \nu_{s,y}) - \varepsilon \ge \varphi(s, y) - 2\varepsilon \ge \varphi \text{ on } B_{s,y}.$ 

Fix  $\nu_{s,y} \in \mathcal{U}_s$  such that

$$F(s, y; \nu_{s,y}) \geq v(s, y) - \varepsilon$$
.

Fix  $B_{s,y} := (s - r_{s,y}, s] \times B(y, r_{s,y})$  such that

$$F(\cdot; \nu_{s,y}) \ge F(s, y; \nu_{s,y}) - \varepsilon \ge \varphi(s, y) - 2\varepsilon \ge \varphi \text{ on } B_{s,y}.$$

By the Lindelöf property : we can find  $(s_i, y_i)_{i \ge 1}$  such that  $\cup_i B_{s_i, y_i} = (0, T] \times \mathbb{R}^d$ .

Fix  $\nu_{s,y} \in \mathcal{U}_s$  such that

$$F(s, y; \nu_{s,y}) \geq v(s, y) - \varepsilon$$
.

Fix  $B_{s,y} := (s - r_{s,y}, s] \times B(y, r_{s,y})$  such that

$$F(\cdot; \nu_{s,y}) \ge F(s, y; \nu_{s,y}) - \varepsilon \ge \varphi(s, y) - 2\varepsilon \ge \varphi \text{ on } B_{s,y}.$$

By the Lindelöf property : we can find  $(s_i, y_i)_{i \ge 1}$  such that  $\cup_i B_{s_i, y_i} = (0, T] \times \mathbb{R}^d$ .

Take a disjoint sub-covering  $(A_i)_i$  and set  $\Gamma_i := \{(\theta, X_{t,x}^{\nu}(\theta)) \in B_i\}, \Gamma^n := \cup_{i \leq n} \Gamma_i.$ 

Fix  $\nu_{s,y} \in \mathcal{U}_s$  such that

$$F(s, y; \nu_{s,y}) \geq v(s, y) - \varepsilon$$
.

Fix  $B_{s,y} := (s - r_{s,y}, s] \times B(y, r_{s,y})$  such that

$$F(\cdot; \nu_{s,y}) \ge F(s, y; \nu_{s,y}) - \varepsilon \ge \varphi(s, y) - 2\varepsilon \ge \varphi \text{ on } B_{s,y}.$$

By the Lindelöf property : we can find  $(s_i, y_i)_{i \ge 1}$  such that  $\cup_i B_{s_i, y_i} = (0, T] \times \mathbb{R}^d$ .

Take a disjoint sub-covering  $(A_i)_i$  and set  $\Gamma_i := \{(\theta, X_{t,x}^{\nu}(\theta)) \in B_i\}, \ \Gamma^n := \cup_{i \leq n} \Gamma_i.$ 

Set

$$\nu_n := (((\nu \otimes_{\theta, \Gamma_1} \nu_{s_1, y_1}) \otimes_{\theta, \Gamma_2} \nu_{s_2, y_2}) \otimes \cdots) \otimes_{\theta, \Gamma_n} \nu_{s_n, y_n}$$

ション ふゆ く 山 マ ふ し マ うくの

Then

$$F(t,x;\nu_n) = \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\mathbf{1}_{\Gamma^{nc}} + \sum_{i\leq n} \mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{s_i,y_i}}(T)) \mid \mathcal{F}_{\theta}\right]\mathbf{1}_{\Gamma_i}\right]$$

where, on  $\Gamma_i$  (with  $A_i \subset B_i$ ),

$$\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{s_{i},y_{i}}}(T)) \mid \mathcal{F}_{\theta}\right](\omega) = F(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega); \nu_{s_{i},y_{i}}) \\ \geq \varphi(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega)) - 3\varepsilon.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 \_ のへで
Then

$$F(t,x;\nu_n) = \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\mathbf{1}_{\Gamma^{nc}} + \sum_{i\leq n} \mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{s_i,y_i}}(T)) \mid \mathcal{F}_{\theta}\right]\mathbf{1}_{\Gamma_i}\right]$$

where, on  $\Gamma_i$  (with  $A_i \subset B_i$ ),

$$\mathbb{E}\left[f(X_{\theta,X_{t,x}^{\nu}(\theta)}^{\nu_{s_{i},y_{i}}}(T)) \mid \mathcal{F}_{\theta}\right](\omega) = F(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega); \nu_{s_{i},y_{i}}) \\ \geq \varphi(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega)) - 3\varepsilon.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pass to the limit in  $n \to \infty$  and  $\varepsilon \to 0$ .

## The weak DPP (summing up)

**Theorem** : Assume that  $F(\cdot; \nu)$  is lsc for all  $\nu \in \mathcal{U}$  (on the left in time). Let  $\varphi_{-} \leq \nu \leq \varphi_{+}$  be two smooth functions. Then

 $\sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right] \leq v(t,x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{+}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right]$ 

## The weak DPP (summing up)

**Theorem** : Assume that  $F(\cdot; \nu)$  is lsc for all  $\nu \in \mathcal{U}$  (on the left in time). Let  $\varphi_{-} \leq \nu \leq \varphi_{+}$  be two smooth functions. Then

$$\sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right] \leq v(t,x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{+}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right]$$

**Remark** : if v is locally bounded and  $\{(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu})), \nu \in U_t\}$  is bounded then

$$\sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[v_*(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right] \leq v(t,x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[v^*(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right]$$

## The weak DPP (summing up)

**Theorem** : Assume that  $F(\cdot; \nu)$  is lsc for all  $\nu \in \mathcal{U}$  (on the left in time). Let  $\varphi_{-} \leq \nu \leq \varphi_{+}$  be two smooth functions. Then

$$\sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right] \leq v(t,x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[\varphi_{+}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right]$$

**Remark** : if v is locally bounded and  $\{(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu})), \nu \in U_t\}$  is bounded then

$$\sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[v_*(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right] \leq v(t,x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E}\left[v^*(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}))\right]$$

**Remark** :  $v = v_*$  if  $F(\cdot; \nu)$  is lsc. If v is usc, then one retrieves the usual DPP.

## Other examples of application

• Set of controls depending on the state process : Bouchard, Dang and Lehall, Optimal control of trading algorithms : a general impulse control approach, to appear in *SIAM Journal on Financial Mathematics*.

• Game problem : Bayraktar and Hang, On the Multi-dimensional controller and stopper games, preprint 2010.

ション ふゆ く 山 マ ふ し マ うくの

#### The case with constraint in expectation

 $v(t,x) := \sup_{\nu \in \mathcal{U}(t,x,m)} F(t,x;\nu) \text{ with } F(t,x,\nu) := \mathbb{E}\left[f(X_{t,x}^{\nu}(T))\right]$ 

and

$$\mathcal{U}(t,x,m) := \{ \nu \in \mathcal{U}_t : G(t,x;\nu) := \mathbb{E}\left[g(X_{t,x}^{\nu}(T))\right] \leq m \}$$

Weak Dynamic Programming for Generalized State Constraints, with Marcel Nutz, preprint 2011.

(compare with Bouchard, Elie, Imbert, SIAM Journal on Control and Optimization, 48 (5), 2010. )

#### Problem reformulation towards DPP

• State space augmentation : Let  $\mathcal{M}_{t,m}$  be a set of càdlàg martingales  $M = \{M(s), s \in [t, T]\}$  with initial value M(t) = m, adapted to  $\mathbb{F}^t$ .

## Problem reformulation towards DPP

• State space augmentation : Let  $\mathcal{M}_{t,m}$  be a set of càdlàg martingales  $M = \{M(s), s \in [t, T]\}$  with initial value M(t) = m, adapted to  $\mathbb{F}^t$ .

• Martingale representation assumption : We assume that, for all  $(t, x) \in [0, T] \times \mathbb{R}^d$  and  $\nu \in \mathcal{U}_t$  :

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

 $\exists M_t^{\nu}[x] \in \mathcal{M}_{t,m} \text{ such that } M_t^{\nu}[x](T) = g(X_{t,x}^{\nu}(T)),$ with  $m := \mathbb{E} \left[ g(X_{t,x}^{\nu}(T)) \right].$ 

### Problem reformulation towards DPP

• State space augmentation : Let  $\mathcal{M}_{t,m}$  be a set of càdlàg martingales  $M = \{M(s), s \in [t, T]\}$  with initial value M(t) = m, adapted to  $\mathbb{F}^t$ .

• Martingale representation assumption : We assume that, for all  $(t, x) \in [0, T] \times \mathbb{R}^d$  and  $\nu \in \mathcal{U}_t$  :

 $\exists M_t^{\nu}[x] \in \mathcal{M}_{t,m} \text{ such that } M_t^{\nu}[x](T) = g(X_{t,x}^{\nu}(T)),$ with  $m := \mathbb{E} \left[ g(X_{t,x}^{\nu}(T)) \right].$ 

Reformulation : We set

$$\mathcal{M}_{t,x,m}^+(\nu) := \{ M \in \mathcal{M}_{t,m} : M(T) \ge g(X_{t,x}^{\nu}(T)) \}$$

We set

$$\mathcal{M}_{t,x,m}^+(\nu) := \{ M \in \mathcal{M}_{t,m} : M(T) \ge g(X_{t,x}^{\nu}(T)) \}$$
  
Lemma : Let  $(t,x) \in [0,T] \times \mathbb{R}^d$  and  $m \in \mathbb{R}$ . Then
$$\mathcal{U}(t,x,m) = \{ \nu \in \mathcal{U}_t : \mathcal{M}_{t,x,m}^+(\nu) \neq \emptyset \}.$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

We set

$$\mathcal{M}_{t,x,m}^+(\nu) := \{ M \in \mathcal{M}_{t,m} : M(T) \ge g(X_{t,x}^{\nu}(T)) \}$$
  
Lemma : Let  $(t,x) \in [0,T] \times \mathbb{R}^d$  and  $m \in \mathbb{R}$ . Then
$$\mathcal{U}(t,x,m) = \{ \nu \in \mathcal{U}_t : \mathcal{M}_{t,x,m}^+(\nu) \neq \emptyset \}.$$

Example : In a Brownian filtration, we can take

$$\mathcal{M}_{t,m} = m + \{ M^{\alpha}_{t,0}(T) := \int_t^T \alpha_s dW_s, \ \alpha \in \mathcal{A}_t \}$$

where  $\mathcal{A}_t$  is the set of predictable  $\mathbb{R}^d$ -valued processes such that  $M_{t,0}^{\alpha}$  is a  $\mathbb{F}^t$ -adapted martingale.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We set

$$\mathcal{M}_{t,x,m}^+(\nu) := \{ M \in \mathcal{M}_{t,m} : M(T) \ge g(X_{t,x}^{\nu}(T)) \}$$
  
Lemma : Let  $(t,x) \in [0,T] \times \mathbb{R}^d$  and  $m \in \mathbb{R}$ . Then
$$\mathcal{U}(t,x,m) = \{ \nu \in \mathcal{U}_t : \mathcal{M}_{t,x,m}^+(\nu) \neq \emptyset \}.$$

Example : In a Brownian filtration, we can take

$$\mathcal{M}_{t,m} = m + \{ M^{\alpha}_{t,0}(T) := \int_{t}^{T} \alpha_{s} dW_{s}, \ \alpha \in \mathcal{A}_{t} \}$$

where  $\mathcal{A}_t$  is the set of predictable  $\mathbb{R}^d$ -valued processes such that  $M_{t,0}^{\alpha}$  is a  $\mathbb{F}^t$ -adapted martingale. Then,

$$\mathcal{U}(t,x,m) = \big\{ \nu \in \mathcal{U}_t : \exists \alpha \in \mathcal{A}_t \text{ s.t. } M^{\alpha}_{t,m}(T) \ge g(X^{\nu}_{t,x}(T)) \big\}.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• In the case 
$$\mathcal{M}_{t,m} = m + \{M^{lpha}_{t,0}(\mathcal{T}) := \int_t^{\mathcal{T}} lpha_s dW_s, \ lpha \in \mathcal{A}_t\}$$
 :

$$v(t,x,m) \stackrel{!}{=} \sup_{(\nu,\alpha)\in\Theta(t,x,m)} \mathbb{E}\left[v(\theta, X^{\nu}_{t,x}(\theta), M^{\alpha}_{t,m}(\theta))\right]$$

with

$$\Theta(t,x,m) := \{(\nu,\alpha) \in \mathcal{U}_t \times \mathcal{A}_t : M^{\alpha}_{t,m}(T) \ge g(X^{\nu}_{t,x}(T))\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りのの

• In the case 
$$\mathcal{M}_{t,m} = m + \{M^{\alpha}_{t,0}(T) := \int_t^T \alpha_s dW_s, \ \alpha \in \mathcal{A}_t\}$$
:

$$v(t,x,m) \stackrel{?}{=} \sup_{(\nu,\alpha)\in\Theta(t,x,m)} \mathbb{E}\left[v(\theta, X^{\nu}_{t,x}(\theta), M^{\alpha}_{t,m}(\theta))\right]$$

with

$$\Theta(t,x,m) := \{(\nu,\alpha) \in \mathcal{U}_t \times \mathcal{A}_t : M^{\alpha}_{t,m}(T) \ge g(X^{\nu}_{t,x}(T))\}.$$

• Why could we obtain a weak formulation?

• In the case 
$$\mathcal{M}_{t,m} = m + \{M^{lpha}_{t,0}(\mathcal{T}) := \int_t^{\mathcal{T}} lpha_s dW_s, \ lpha \in \mathcal{A}_t\}$$
 :

$$v(t,x,m) \stackrel{?}{=} \sup_{(\nu,\alpha)\in\Theta(t,x,m)} \mathbb{E}\left[v(\theta, X^{\nu}_{t,x}(\theta), M^{\alpha}_{t,m}(\theta))\right]$$

with

$$\Theta(t,x,m) := \{(\nu,\alpha) \in \mathcal{U}_t \times \mathcal{A}_t : M^{\alpha}_{t,m}(T) \ge g(X^{\nu}_{t,x}(T))\}.$$

#### • Why could we obtain a weak formulation?

If  $G(\cdot; \nu)$  is u.s.c, moving a bit moves the *m* constraint to an  $m + \delta$  constraint with  $\delta > 0$  small.

• In the case 
$$\mathcal{M}_{t,m} = m + \{M^{lpha}_{t,0}(\mathcal{T}) := \int_t^{\mathcal{T}} lpha_s dW_s, \ lpha \in \mathcal{A}_t\}$$
 :

$$v(t,x,m) \stackrel{?}{=} \sup_{(\nu,\alpha)\in\Theta(t,x,m)} \mathbb{E}\left[v(\theta,X_{t,x}^{\nu}(\theta),M_{t,m}^{\alpha}(\theta))\right]$$

with

$$\Theta(t,x,m) := \{(\nu,\alpha) \in \mathcal{U}_t \times \mathcal{A}_t : M^{\alpha}_{t,m}(T) \ge g(X^{\nu}_{t,x}(T))\}.$$

#### • Why could we obtain a weak formulation?

If  $G(\cdot; \nu)$  is u.s.c, moving a bit moves the *m* constraint to an  $m + \delta$  constraint with  $\delta > 0$  small.

Guess : for all  $\delta > 0$ 

$$v(t, x, m+\delta) \geq \sup_{(\nu, \alpha) \in \Theta(t, x, m)} \mathbb{E} \left[ \varphi(\theta, X_{t, x}^{\nu}(\theta), M_{t, m}^{\alpha}(\theta)) \right].$$

#### Additional assumption

Assumption : Let  $(t, x) \in [0, T] \times \mathbb{R}^d$ ,  $\nu \in \mathcal{U}_t$ ,  $\tau \in \mathcal{T}^t$ ,  $\Gamma \in \mathcal{F}_{\tau}^t$ ,  $\bar{\nu} \in \mathcal{U}_{\parallel \tau \parallel_{L^{\infty}}}$ , and  $M \in \mathcal{M}_{t,0}$ . Then, there exists a process  $\bar{M} = \{\bar{M}(r), r \in [\tau, T]\}$  such that

$$ar{M}(\cdot)(\omega) = ig(M^{ar{
u}}_{ au(\omega)}[X^{
u}_{t,x}( au)(\omega)](\cdot)ig)(\omega) \quad ext{on} \ [ au, au] \quad \mathbb{P}- ext{a.s.}$$

and

$$M \mathbf{1}_{[t, au)} + \mathbf{1}_{[ au, au]} \Big( M \mathbf{1}_{\Omega \setminus \Gamma} + ig[ ar{M} - ar{M}( au) + M( au) ig] \mathbf{1}_{\Gamma} \Big) \in \mathcal{M}_{t,0}.$$

#### General result

**Theorem** : Assume the above holds. (i) Let  $\varphi_+ \ge v$  be a measurable function. Then

$$\mathsf{v}(t,x,m) \leq \mathbb{E}\left[ arphi_+( heta^
u,X^
u_{t,x}( heta^
u),M( heta^
u)) 
ight]$$

for some  $\nu \in \mathcal{U}(t, x, m)$  and  $M \in \mathcal{M}^+_{t,x,m}(\nu)$ .

#### General result

**Theorem** : Assume the above holds. (i) Let  $\varphi_+ \ge v$  be a measurable function. Then

$$\mathbf{v}(t,x,m) \leq \mathbb{E}\left[ arphi_+( heta^
u,X^
u_{t,x}( heta^
u),M( heta^
u)) 
ight]$$

for some  $\nu \in \mathcal{U}(t, x, m)$  and  $M \in \mathcal{M}^+_{t,x,m}(\nu)$ . (ii) Assume that  $F(\cdot; \nu)$  and  $-G(\cdot; \nu)$  are lsc for all  $\nu \in \mathcal{U}$  (on the left in time). Let  $\varphi_- \leq \nu$  be a usc function and fix  $\delta > 0$ . Then

$$\mathsf{v}(t, x, m+\delta) \geq \mathbb{E}\left[ arphi_{-}( heta^{
u}, X^{
u}_{t,x}( heta^{
u}), M( heta^{
u})) 
ight]$$

for all  $\nu \in \mathcal{U}(t, x, m)$  and  $M \in \mathcal{M}^+_{t,x,m}(\nu)$ .

## The Brownian setting

•  $\mathcal{U}$  : set of square integrable predictable processes with values in  $U \subset \mathbb{R}^d$ .

## The Brownian setting

•  $\mathcal{U}$  : set of square integrable predictable processes with values in  $U \subset \mathbb{R}^d$ .

• 
$$X_{t,x}^{\nu}$$
 solves on  $[t, T]$ 

$$dX_s = b(X_s, \nu_s)ds + \sigma(X_s, \nu_s)dW_s$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with Lipschitz conditions (can be relaxed).

### The Brownian setting

•  $\mathcal{U}$  : set of square integrable predictable processes with values in  $U \subset \mathbb{R}^d$ .

• 
$$X_{t,x}^{\nu}$$
 solves on  $[t, T]$ 

$$dX_s = b(X_s, \nu_s)ds + \sigma(X_s, \nu_s)dW_s$$

with Lipschitz conditions (can be relaxed).

• The set of martingales is given by :

$$\mathcal{M}_{t,m} = m + \{ M_{t,0}^{\alpha}(T) := \int_{t}^{T} \alpha_{s} dW_{s}, \ \alpha \in \mathcal{A}_{t} \}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

## Domain of definition

• The natural domain  $D := \{(t, x, m) : U(t, x, m) \neq \emptyset\}$  is associated to

$$w(t,x) := \inf_{\nu \in \mathcal{U}_t} E[g(X_{t,x}^{\nu}(T))],$$

through

$$int D = \big\{ (t, x, m) \in [0, T] \times \mathbb{R}^d \times \mathbb{R} : m > w(t, x), t < T \big\},$$
(w is usc if  $G(\cdot; \nu)$  is).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Domain of definition

• The natural domain  $D := \{(t, x, m) : U(t, x, m) \neq \emptyset\}$  is associated to

$$w(t,x) := \inf_{\nu \in \mathcal{U}_t} E[g(X_{t,x}^{\nu}(T))],$$

through

$$\begin{split} & \operatorname{int} D = \big\{ (t, x, m) \in [0, T] \times \mathbb{R}^d \times \mathbb{R} : \ m > w(t, x), \ t < T \big\}, \\ & (w \text{ is usc if } G(\cdot; \nu) \text{ is}). \\ & \bullet \text{ One has} \end{split}$$

$$D \subseteq \{(t, x, m) \in [0, T] \times \mathbb{R}^d \times \mathbb{R} : m \ge w_*(t, x)\} \\ = \overline{\operatorname{int} D},$$

where  $w_*$  is the lower semicontinuous envelope of v on  $[0, T] \times \mathbb{R}^d$ .

## DPP for viscosity super-solution

**Corollary** : Assume the above holds. Let  $\theta_B^{\nu,\alpha}$  be the first exist time of  $(\cdot, X_{t,x}^{\nu}, M_{t,m}^{\alpha})$  from a ball *B* around  $(t, x, m) \in \text{int}D$ . Then, for all  $\delta > 0$  and  $\theta^{\nu,\alpha} \leq \theta_B^{\nu,\alpha}$ ,

ション ふゆ く 山 マ ふ し マ うくの

$$v(t, x, m+\delta) \geq \sup_{(\nu, \alpha) \in \mathcal{U}_t \times \mathcal{A}_t} \mathbb{E} \left[ \varphi_{-}(\theta^{\nu, \alpha}, X_{t, x}^{\nu}(\theta^{\nu, \alpha}), M_{t, m}^{\alpha}(\theta^{\nu, \alpha})) \right]$$

Let  $\varphi_{-}$  be a test function for  $v_*$  at (t, x, m) Fix  $(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}, \delta_{\varepsilon}) \rightarrow (t, x, m, 0)$  such that

$$|v(t_{arepsilon}, x_{arepsilon}, m_{arepsilon} + \delta_arepsilon) - arphi_-(t_{arepsilon}, x_{arepsilon}, m_{arepsilon})| \leq arepsilon^2 o 0$$

Let 
$$\varphi_{-}$$
 be a test function for  $v_*$  at  $(t, x, m)$  Fix  
 $(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}, \delta_{\varepsilon}) \rightarrow (t, x, m, 0)$  such that  
 $|v(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon} + \delta_{\varepsilon}) - \varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon})| \leq \varepsilon^{2} \rightarrow 0$   
Set  $(\nu, \alpha) = (u, a) \in U \times \mathbb{R}^{d}$ ,  $\theta_{\varepsilon} := \theta_{B}^{u,a} \wedge (t_{\varepsilon} + \varepsilon)$ . Then,  
 $v(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon} + \delta_{\varepsilon}) \geq \mathbb{E} \left[ \varphi_{-}(\theta_{\varepsilon}, X_{t_{\varepsilon}, x_{\varepsilon}}^{u}(\theta_{\varepsilon}), M_{t_{\varepsilon}, m_{\varepsilon}}^{a}(\theta_{\varepsilon})) \right]$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Let 
$$\varphi_{-}$$
 be a test function for  $v_{*}$  at  $(t, x, m)$  Fix  
 $(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}, \delta_{\varepsilon}) \rightarrow (t, x, m, 0)$  such that  
 $|v(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon} + \delta_{\varepsilon}) - \varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon})| \leq \varepsilon^{2} \rightarrow 0$   
Set  $(\nu, \alpha) = (u, a) \in U \times \mathbb{R}^{d}$ ,  $\theta_{\varepsilon} := \theta_{B}^{u,a} \wedge (t_{\varepsilon} + \varepsilon)$ . Then,  
 $\varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}) \geq \mathbb{E} \left[ \varphi_{-}(\theta_{\varepsilon}, X_{t_{\varepsilon}, x_{\varepsilon}}^{u}(\theta_{\varepsilon}), M_{t_{\varepsilon}, m_{\varepsilon}}^{a}(\theta_{\varepsilon})) \right] - \varepsilon^{2}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let 
$$\varphi_{-}$$
 be a test function for  $v_{*}$  at  $(t, x, m)$  Fix  
 $(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}, \delta_{\varepsilon}) \rightarrow (t, x, m, 0)$  such that  
 $|v(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon} + \delta_{\varepsilon}) - \varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon})| \leq \varepsilon^{2} \rightarrow 0$   
Set  $(\nu, \alpha) = (u, a) \in U \times \mathbb{R}^{d}$ ,  $\theta_{\varepsilon} := \theta_{B}^{u, a} \wedge (t_{\varepsilon} + \varepsilon)$ . Then,  
 $\varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}) \geq \mathbb{E} \left[ \varphi_{-}(\theta_{\varepsilon}, X_{t_{\varepsilon}, x_{\varepsilon}}^{u}(\theta_{\varepsilon}), M_{t_{\varepsilon}, m_{\varepsilon}}^{a}(\theta_{\varepsilon})) \right] - \varepsilon^{2}$ 

and therefore

$$0 \geq \varepsilon^{-1} \mathbb{E}\left[\int_{t_{\varepsilon}}^{\theta_{B}^{u,a} \wedge (t_{\varepsilon} + \varepsilon)} (\partial_{t} + L_{X,M}^{u,a}) \varphi_{-}(s, X_{t_{\varepsilon},x_{\varepsilon}}^{u}(s), M_{t_{\varepsilon},m_{\varepsilon}}^{a}(s)) ds\right] - \varepsilon$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

and pass to the limit  $\varepsilon \rightarrow 0$ .

Let 
$$\varphi_{-}$$
 be a test function for  $v_*$  at  $(t, x, m)$  Fix  
 $(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}, \delta_{\varepsilon}) \rightarrow (t, x, m, 0)$  such that  
 $|v(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon} + \delta_{\varepsilon}) - \varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon})| \leq \varepsilon^{2} \rightarrow 0$   
Set  $(\nu, \alpha) = (u, a) \in U \times \mathbb{R}^{d}$ ,  $\theta_{\varepsilon} := \theta_{B}^{u,a} \wedge (t_{\varepsilon} + \varepsilon)$ . Then,  
 $\varphi_{-}(t_{\varepsilon}, x_{\varepsilon}, m_{\varepsilon}) \geq \mathbb{E} \left[ \varphi_{-}(\theta_{\varepsilon}, X_{t_{\varepsilon}, x_{\varepsilon}}^{u}(\theta_{\varepsilon}), M_{t_{\varepsilon}, m_{\varepsilon}}^{a}(\theta_{\varepsilon})) \right] - \varepsilon^{2}$ 

and therefore

$$0 \geq \varepsilon^{-1} \mathbb{E}\left[\int_{t_{\varepsilon}}^{\theta_{B}^{u,a} \wedge (t_{\varepsilon} + \varepsilon)} (\partial_{t} + L_{X,M}^{u,a}) \varphi_{-}(s, X_{t_{\varepsilon},x_{\varepsilon}}^{u}(s), M_{t_{\varepsilon},m_{\varepsilon}}^{a}(s)) ds\right] - \varepsilon$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and pass to the limit  $\varepsilon \to 0.$  [In practice use a proof by contradiction to avoid passages to the limit]

#### PDE characterization

**Theorem** : Assume the above holds. Then, (i)  $v_*$  is a viscosity super-solution on intD of

$$-\partial_t \varphi + H(\cdot, D\varphi, D^2 \varphi) = 0.$$

(ii)  $v^*$  is a viscosity sub-solution on clD of

$$-\partial_t \varphi + H_*(\cdot, D\varphi, D^2\varphi) = 0$$

where

$$H(\cdot, D\varphi, D^2\varphi) := -\sup_{(u,a)\in U imes \mathbb{R}^d} L^{u,a}_{X,M}\varphi.$$

ション ふゆ く 山 マ ふ し マ うくの

(See Bouchard, Elie and Imbert 2010 for a discussion on the boundary conditions)

#### The case with $\mathbb{P}$ – a.s. state constraint

 $v(t,x) := \sup_{\nu \in \mathcal{U}(t,x)} F(t,x;\nu) \text{ with } F(t,x,\nu) := \mathbb{E}\left[f(X_{t,x}^{\nu}(T))
ight]$ 

#### and

$$\mathcal{U}(t,x) := \{ \nu \in \mathcal{U}_t : X_{t,x}^{\nu} \in \mathcal{O} \text{ on } [t,T] \}$$

with  $\mathcal{O}$  an open subset.

Weak Dynamic Programming for Generalized State Constraints, with Marcel Nutz, preprint 2011.

# A-priori difficulty

• Can not use a (t, x) admissible control in a ball around (t, x): may exit the domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# A-priori difficulty

• Can not use a (t, x) admissible control in a ball around (t, x): may exit the domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\bullet$  Can in fact almost do this if  ${\cal O}$  is open

# A-priori difficulty

- Can not use a (t, x) admissible control in a ball around (t, x): may exit the domain.
- $\bullet$  Can in fact almost do this if  ${\cal O}$  is open : if exits, it should be with small probability.

# Approximation by constraints in expectations

• Additional dimension

$$Y^{
u}_{t,x,y}(s):=y\wedge \inf_{r\in[t,s]}d(X^{
u}_{t,x}(r)),\quad s\in[t,T],\quad y>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
## Approximation by constraints in expectations

• Additional dimension

$$Y_{t,x,y}^{\nu}(s) := y \wedge \inf_{r \in [t,s]} d(X_{t,x}^{\nu}(r)), \quad s \in [t,T], \quad y > 0.$$

By continuity, each trajectory  $\{X_{t,x}^{\nu}(r)(\omega), r \in [t, T]\}$  has strictly positive distance to  $\mathcal{O}^{c}$  whenever it is contained in  $\mathcal{O}$ :

 $\{X_{t,x}^{\nu}(r)(\omega), \, r \in [t, \mathcal{T}]\} \subseteq \mathcal{O} \quad \text{if and only if} \quad Y_{t,x,y}^{\nu}(\mathcal{T})(\omega) > 0.$ 

## Approximation by constraints in expectations

• Additional dimension

$$Y_{t,x,y}^{\nu}(s):=y\wedge \inf_{r\in[t,s]}d(X_{t,x}^{\nu}(r)),\quad s\in[t,T],\quad y>0.$$

By continuity, each trajectory  $\{X_{t,x}^{\nu}(r)(\omega), r \in [t, T]\}$  has strictly positive distance to  $\mathcal{O}^{c}$  whenever it is contained in  $\mathcal{O}$ :

 $\{X_{t,x}^{\nu}(r)(\omega), r \in [t, T]\} \subseteq \mathcal{O} \quad \text{if and only if} \quad Y_{t,x,y}^{\nu}(T)(\omega) > 0.$ 

• Equivalent control problem

$$v(t,x)=\bar{v}(t,x,y,0)$$

where

$$\bar{v}(t,x,y,m) := \sup_{\nu \in \mathcal{U}(t,x,y,m)} F(t,x;\nu)$$

with

$$\mathcal{U}(t, x, y, m) := \{ \nu \in \mathcal{U}_t : \mathbb{P} \left[ Y_{t, x, 1}^{\nu}(T) \leq 0 \right] \leq m \}.$$

• Apply the DPP to  $\bar{v}$  : for all  $(\nu, \alpha) \in \Theta(t, x, y, 0)$ 

 $\bar{v}(t,x,y,0+\delta) \geq \mathbb{E}\left[\varphi_{-}(\theta^{\nu},X_{t,x}^{\nu}(\theta^{\nu}),Y_{t,x,y}^{\nu}(\theta^{\nu}),M_{t,0}^{\alpha}(\theta^{\nu}))\right]$ 



• Apply the DPP to  $\bar{v}$ : for all  $(\nu, \alpha) \in \Theta(t, x, y, 0)$   $\bar{v}(t, x, y, 0 + \delta) \geq \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), M_{t,0}^{\alpha}(\theta^{\nu})) \right]$ If  $\bar{v}(t, x, y, 0+) = \bar{v}(t, x, y, 0)$ , then  $\bar{v}(t, x, y, 0) \geq \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), 0) \right]$ 

• Apply the DPP to 
$$\bar{v}$$
: for all  $(\nu, \alpha) \in \Theta(t, x, y, 0)$   
 $\bar{v}(t, x, y, 0 + \delta) \ge \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), M_{t,0}^{\alpha}(\theta^{\nu})) \right]$   
If  $\bar{v}(t, x, y, 0+) = \bar{v}(t, x, y, 0)$ , then  
 $\bar{v}(t, x, y, 0) \ge \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), 0) \right]$   
but  $\bar{v}(t, x, y, 0) = \bar{v}(t, x, 1, 0) = v(t, x)$ .

• Apply the DPP to 
$$\bar{v}$$
: for all  $(\nu, \alpha) \in \Theta(t, x, y, 0)$   
 $\bar{v}(t, x, y, 0 + \delta) \geq \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), M_{t,0}^{\alpha}(\theta^{\nu})) \right]$   
If  $\bar{v}(t, x, y, 0+) = \bar{v}(t, x, y, 0)$ , then  
 $\bar{v}(t, x, y, 0) \geq \mathbb{E} \left[ \varphi_{-}(\theta^{\nu}, X_{t,x}^{\nu}(\theta^{\nu}), Y_{t,x,y}^{\nu}(\theta^{\nu}), 0) \right]$   
but  $\bar{v}(t, x, y, 0) = \bar{v}(t, x, 1, 0) = v(t, x)$ .

Hence

$$v(t,x) \geq \sup_{\nu \in \mathcal{U}(t,x)} \mathbb{E}\left[\phi_{-}(\theta^{
u}, X^{
u}_{t,x}(\theta^{
u}))
ight]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for  $\phi_{-} \leq v$  usc.

# DPP in the state constraint case : sufficient condition

**Measurable selection assumption** : There exists a Lipschitz continuous mapping  $\hat{u} : \mathcal{O} \to U$  such that, for all  $(t, x) \in [0, T] \times \mathcal{O}$ , the solution  $\hat{X}_{t,x}$  of

$$\hat{X}(s) = x + \int_t^s b(\hat{X}(r), \hat{u}(\hat{X}(r))) dr + \int_t^s \sigma(\hat{X}(r), \hat{u}(\hat{X}(r))) dW_r$$

satisfies  $\hat{X}_{t,x}(s) \in \mathcal{O}$  for all  $s \in [t, T]$ ,  $\mathbb{P}$  – a.s.

# DPP in the state constraint case : sufficient condition

**Measurable selection assumption** : There exists a Lipschitz continuous mapping  $\hat{u} : \mathcal{O} \to U$  such that, for all  $(t, x) \in [0, T] \times \mathcal{O}$ , the solution  $\hat{X}_{t,x}$  of

$$\hat{X}(s) = x + \int_t^s b(\hat{X}(r), \hat{u}(\hat{X}(r))) dr + \int_t^s \sigma(\hat{X}(r), \hat{u}(\hat{X}(r))) dW_r$$

satisfies  $\hat{X}_{t,x}(s) \in \mathcal{O}$  for all  $s \in [t, T]$ ,  $\mathbb{P}$  – a.s.

**Technical assumption** : Either f is bounded or the coefficients b(x, u) and  $\sigma(x, u)$  have linear growth in x, uniformly in u.

# DPP in the state constraint case : sufficient condition

**Measurable selection assumption** : There exists a Lipschitz continuous mapping  $\hat{u} : \mathcal{O} \to U$  such that, for all  $(t, x) \in [0, T] \times \mathcal{O}$ , the solution  $\hat{X}_{t,x}$  of

$$\hat{X}(s) = x + \int_t^s b(\hat{X}(r), \hat{u}(\hat{X}(r))) dr + \int_t^s \sigma(\hat{X}(r), \hat{u}(\hat{X}(r))) dW_r$$

satisfies  $\hat{X}_{t,x}(s) \in \mathcal{O}$  for all  $s \in [t, T]$ ,  $\mathbb{P}$  – a.s.

**Technical assumption** : Either f is bounded or the coefficients b(x, u) and  $\sigma(x, u)$  have linear growth in x, uniformly in u.

**Proposition** : Under the above assumption,  $\bar{v}(t, x, y, 0+) = \bar{v}(t, x, y, 0)$ .

**Lemma** : Let B be an open neighborhood of  $(t, x) \in [0, T] \times O$  such that v(t, x) is finite.

(i) Let  $\varphi : cl B \to \mathbb{R}$  be a continuous function such that  $v \leq \varphi$  on cl B. For all  $\varepsilon > 0$ , there exists  $\nu \in \mathcal{U}(t, x)$  such that

$$v(t,x) \leq E \left[ \varphi(\tau, X_{t,x}^{\nu}(\tau)) \right] + \varepsilon,$$

where  $\tau$  is the first exit time of  $(s, X_{t,x}^{\nu}(s))_{s \ge t}$  from *B*.

**Lemma** : Let B be an open neighborhood of  $(t, x) \in [0, T] \times O$  such that v(t, x) is finite.

(i) Let  $\varphi : clB \to \mathbb{R}$  be a continuous function such that  $v \leq \varphi$  on clB. For all  $\varepsilon > 0$ , there exists  $\nu \in \mathcal{U}(t, x)$  such that

$$v(t,x) \leq E[\varphi(\tau, X_{t,x}^{\nu}(\tau))] + \varepsilon,$$

where  $\tau$  is the first exit time of  $(s, X_{t,x}^{\nu}(s))_{s \ge t}$  from B. (ii) For any  $\nu \in \mathcal{U}_t$  and any continuous function  $\varphi$  s.t.  $v \ge \varphi$  on clB

$$\mathbf{v}(t,x) \geq E\big[\varphi(\tau,X_{t,x}^{\nu}(\tau))\big],$$

where  $\tau$  is the first exit time of  $(s, X_{t,x}^{\nu}(s))_{s \ge t}$  from *B*.

• What appends if we replace  $\mathcal{O}$  by  $\mathrm{cl}\mathcal{O}$ ?



• What appends if we replace  $\mathcal{O}$  by  $\mathrm{cl}\mathcal{O}$ ? a. the easy part of the DPP still holds,



What appends if we replace O by clO?
a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

What appends if we replace O by clO?
a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

• If a comparison principle holds for the associated PDE : our result is in fact enough !

ション ふゆ く 山 マ ふ し マ うくの

What appends if we replace O by clO?
a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

• If a comparison principle holds for the associated PDE : our result is in fact enough !

ション ふゆ く 山 マ ふ し マ うくの

a. the sub-solution property still holds for  $v_{cl\mathcal{O}}^*$ ,

What appends if we replace O by clO?
a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

 $\bullet$  If a comparison principle holds for the associated PDE : our result is in fact enough !

a. the sub-solution property still holds for  $v_{clO}^*$ ,

b. by comparison  $v_{\mathcal{O}*} \geq v_{\mathrm{cl}\mathcal{O}}^*$ ,

What appends if we replace O by clO?
a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

• If a comparison principle holds for the associated PDE : our result is in fact enough !

a. the sub-solution property still holds for  $v_{cl\mathcal{O}}^*$ ,

- b. by comparison  $v_{\mathcal{O}*} \geq v_{\mathrm{cl}\mathcal{O}}^*$ ,
- c. but  $v_{cl\mathcal{O}} \geq v_{\mathcal{O}}$  by definition.

**Sufficient condition** : Comparison holds if the super-solution is of class  $\mathcal{R}(\mathcal{O})$  (for functions with polynomial growth).

**Sufficient condition** : Comparison holds if the super-solution is of class  $\mathcal{R}(\mathcal{O})$  (for functions with polynomial growth).

**Definition** : w is of class  $\mathcal{R}(\mathcal{O})$  if

1.  $\exists r > 0$ , an open neighborhood B of x in  $\mathbb{R}^d$  and a function  $\ell : \mathbb{R}_+ \to \mathbb{R}^d$  such that

$$\begin{split} \liminf_{\varepsilon \to 0} \varepsilon^{-1} |\ell(\varepsilon)| < \infty \quad \text{and} \\ y + \ell(\varepsilon) + o(\varepsilon) \in \mathcal{O} \quad \text{for all } y \in \mathrm{cl}\mathcal{O} \cap B \text{ and } \varepsilon \in (0, r). \end{split}$$

2.  $\exists \lambda : \mathbb{R}_+ \to \mathbb{R}_+$  such that

$$\begin{split} \lim_{arepsilon
ightarrow 0}\lambda(arepsilon)&=0 \quad ext{and} \ \lim_{arepsilon
ightarrow 0}wig(t+\lambda(arepsilon),x+\ell(arepsilon)ig)&=w(t,x). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

**Example** : - There exists a  $C^1$ -function  $\delta$  such that  $D\delta$  is locally Lipschitz continuous and

 $\delta > 0 \text{ on } \mathcal{O}, \quad \delta = 0 \text{ on } \partial \mathcal{O}, \quad \delta < 0 \text{ outside } cl \mathcal{O}.$ 

- There exists a locally Lipschitz continuous mapping  $\check{u} : \mathbb{R}^d \to U$ s.t. for all  $x \in \mathrm{cl}\mathcal{O} \exists$  open neighborhood B of x and  $\iota > 0$  satisfying  $\mu(z,\check{u}(z))^\top D\delta(y) \ge \iota$  and  $\sigma(y,\check{u}(y)) = 0 \forall y \in B \cap \mathrm{cl}\mathcal{O}$ ,  $z \in B$ .

**Example** : - There exists a  $C^1$ -function  $\delta$  such that  $D\delta$  is locally Lipschitz continuous and

 $\delta > 0 \text{ on } \mathcal{O}, \quad \delta = 0 \text{ on } \partial \mathcal{O}, \quad \delta < 0 \text{ outside } \mathrm{cl} \mathcal{O}.$ 

- There exists a locally Lipschitz continuous mapping  $\check{u} : \mathbb{R}^d \to U$ s.t. for all  $x \in \operatorname{cl}\mathcal{O} \exists$  open neighborhood B of x and  $\iota > 0$  satisfying

$$\mu(z,\check{u}(z))^{ op}D\delta(y)\geq\iota$$
 and  $\sigma(y,\check{u}(y))=0$   $\forall$   $y\in B\cap\mathrm{cl}\mathcal{O}$ ,  $z\in B$ .

Similar conditions from the literature : Soner (1986), Katsoulakis (1994), Ishii and Loreti (2002).