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Motivation

Provide an easy to prove Dynamic Programming Principle for
stochastic optimal control problems in standard form :

v(t, x) := sup
ν∈U

F (t, x ; ν) with F (t, x , ν) := E
[
f (X ν

t,x(T ))
]
.

Weaker than the usual one, but just enough to provide the usual
PDE characterization.
(joint work with N. Touzi - SIAM Journal on Control and
Optimization, 49 (3), 2011)

Extend it to optimal control problems :
- with constraints in expectation : E

[
g(X ν

t,x(T ))
]
≤ m.

- with strong state constraints : X ν
t,x ∈ O on [t,T ].

(joint work with M. Nutz - preprint)
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The case without constraint

v(t, x) := sup
ν∈U

F (t, x ; ν) with F (t, x , ν) := E
[
f (X ν

t,x(T ))
]

Weak Dynamic Programming Principle for Viscosity Solutions, with Nizar
Touzi, SIAM Journal on Control and Optimization, 49 (3), 2011.



Standard approach for the DPP

Either use a measurable selection argument : (t, x) 7→ νε(t, x) ∈ U
such that

F (t, x ; νε(t, x)) ≥ v(t, x)− ε

Or use the regularity of v and F (·; ν) to construct one :

F (·; νti ,xi
ε ) ≥

lsc
F (ti , xi ; ν

ti ,xi
ε )− ε ≥ v(ti , xi )− 2ε ≥

usc
v − 3ε on Bi

with (Bi )i≥1 a partition of the state-space. Then, one constructs a
measurable selection by setting

νε(t, x) :=
∑
i≥1

νti ,xi
ε 1Bi (t, x) .
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Standard approach for the DPP

In both cases : for ν̄ = ν1[0,θ) + 1[θ,T ]νε(θ,X ν
t,x(θ))

v(t, x) ≥ F (t, x ; ν̄) = E
[
E
[
f (X

νε(θ,Xνt,x (θ))

θ,Xνt,x (θ) (T )) | Fθ
]]

= E
[
F (θ,X ν

t,x(θ); νε(θ,X ν
t,x(θ)))

]
≥ E

[
v(θ,X ν

t,x(θ))
]
− 3ε

Most of the time, proofs are based on a regularity argument :

F (·; νti ,xi
ε ) ≥

lsc
F (ti , xi ; ν

ti ,xi
ε )− ε ≥ v(ti , xi )− 2ε ≥

usc
v − 3ε

on Bi 3 (ti , xi ), with (Bi )i≥1 a partition of the state-space.

In any case a minimum of regularity is required.
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DPP for what ?

To derive a PDE characterization, typically in the viscosity solution
sense.

Assuming v continuous, take a test function touching v from below
at (t, x)

ϕ(t, x) = v(t, x) ≥ E
[
v(θ,X ν

t,x(θ))
]
≥ E

[
ϕ(θ,X ν

t,x(θ))
]

And the other way round for the subsolution property :

ϕ(t, x) = v(t, x) ≤ sup
ν∈U

E
[
v(θ,X ν

t,x(θ))
]
≤ sup

ν∈U
E
[
ϕ(θ,X ν

t,x(θ))
]
.

We never use : v(t, x) = supν∈U E
[
v(θ,X ν

t,x(θ))
]
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Main idea : prove the DPP on test functions
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An abstract setting

• Filtration : F t
s := σ(Zr − Zt ; t ≤ r ≤ s) for some càdlàg process

Z with independent increments.

• Admissible controls : Ut the subset of U whose elements are
predictable with respect to Ft := (F t

s )s≥t .

• Controlled process : ν ∈ U 7→ X ν
t,x a càdlàg adapted process with

values in Rd (could be a separable metric space).
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Finiteness assumption : E
[
|f (X ν

t,x(T ))|
]
<∞ for all ν ∈ U .

Structure assumption : Let (t, x) ∈ [0,T ]× Rd , ν ∈ Ut , τ ∈ T t ,
Γ ∈ F t

τ and ν̄ ∈ U‖τ‖L∞ .

There exists a control ν̃ ∈ Ut , denoted by ν ⊗(τ,Γ) ν̄, such that

X ν̃
t,x(·) = X ν

t,x(·) on [t,T ]× (Ω \ Γ);

X ν̃
t,x(·) = X ν̄

τ,Xνt,x (τ)(·) on [τ,T ]× Γ;

E
[
f (X ν̃

t,x(T )) | Fτ
]

= F (τ,X ν
t,x(τ); ν̄) on Γ.



Finiteness assumption : E
[
|f (X ν

t,x(T ))|
]
<∞ for all ν ∈ U .

Structure assumption : Let (t, x) ∈ [0,T ]× Rd , ν ∈ Ut , τ ∈ T t ,
Γ ∈ F t

τ and ν̄ ∈ U‖τ‖L∞ .

There exists a control ν̃ ∈ Ut , denoted by ν ⊗(τ,Γ) ν̄, such that

X ν̃
t,x(·) = X ν

t,x(·) on [t,T ]× (Ω \ Γ);

X ν̃
t,x(·) = X ν̄

τ,Xνt,x (τ)(·) on [τ,T ]× Γ;

E
[
f (X ν̃

t,x(T )) | Fτ
]

= F (τ,X ν
t,x(τ); ν̄) on Γ.



Easy part of the DPP

• Fix (t, x) ∈ [0,T ]× Rd , ν ∈ Ut . Let {θν
′
, ν ′ ∈ U} ⊂ T t and let

ϕ : [0,T ]×S → R be a measurable function such that v ≤ ϕ.Then,

F (t, x ; ν) ≤ E
[
ϕ(θν ,X ν

t,x(θν))
]
.

Corollary :
v(t, x) ≤ sup

ν∈Ut

E
[
ϕ(θν ,X ν

t,x(θν))
]
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Proof :

F (t, x ; ν) = E
[
E
[
f (X ν

θ,Xνt,x (θ)(T )) | Fθ
]]

where

E
[
f (X ν

θ,Xνt,x (θ)(T )) | Fθ
]

(ω) = F (θ(ω),X ν
t,x(θ)(ω); ν(ωθ(ω), ·))

≤ v(θ(ω),X ν
t,x(θ)(ω))

≤ ϕ(θ(ω),X ν
t,x(θ)(ω))

because ν(ωθ(ω), ·) ∈ Uθ(ω).
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Proof of the difficult part
Fix νs,y ∈ Us such that

F (s, y ; νs,y ) ≥ v(s, y)− ε .

Fix Bs,y := (s − rs,y , s]× B(y , rs,y ) such that

F (·; νs,y ) ≥ F (s, y ; νs,y )− ε ≥ ϕ(s, y)− 2ε ≥ ϕ on Bs,y .

By the Lindelöf property : we can find (si , yi )i≥1 such that
∪iBsi ,yi = (0,T ]× Rd .

Take a disjoint sub-covering (Ai )i and set
Γi := {(θ,X ν

t,x(θ)) ∈ Bi}, Γn := ∪i≤nΓi .

Set

νn := (((ν ⊗θ,Γ1 νs1,y1)⊗θ,Γ2 νs2,y2)⊗ · · · )⊗θ,Γn νsn,yn
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Then

F (t, x ; νn) = E

f (X ν
t,x(T ))1Γnc +

∑
i≤n

E
[
f (X

νsi ,yi
θ,Xνt,x (θ)(T )) | Fθ

]
1Γi


where, on Γi (with Ai ⊂ Bi ),

E
[
f (X

νsi ,yi
θ,Xνt,x (θ)(T )) | Fθ

]
(ω) = F (θ(ω),X ν

t,x(θ)(ω); νsi ,yi )

≥ ϕ(θ(ω),X ν
t,x(θ)(ω))− 3ε.

Pass to the limit in n→∞ and ε→ 0.
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Pass to the limit in n→∞ and ε→ 0.



The weak DPP (summing up)

Theorem : Assume that F (·; ν) is lsc for all ν ∈ U (on the left in
time). Let ϕ− ≤ v ≤ ϕ+ be two smooth functions. Then

sup
ν∈Ut

E
[
ϕ−(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
ϕ+(θν ,X ν

t,x(θν))
]

Remark : if v is locally bounded and {(θν ,X ν
t,x(θν)), ν ∈ Ut} is

bounded then

sup
ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]

Remark : v = v∗ if F (·; ν) is lsc. If v is usc, then one retrieves the
usual DPP.



The weak DPP (summing up)

Theorem : Assume that F (·; ν) is lsc for all ν ∈ U (on the left in
time). Let ϕ− ≤ v ≤ ϕ+ be two smooth functions. Then

sup
ν∈Ut

E
[
ϕ−(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
ϕ+(θν ,X ν

t,x(θν))
]

Remark : if v is locally bounded and {(θν ,X ν
t,x(θν)), ν ∈ Ut} is

bounded then

sup
ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]

Remark : v = v∗ if F (·; ν) is lsc. If v is usc, then one retrieves the
usual DPP.



The weak DPP (summing up)

Theorem : Assume that F (·; ν) is lsc for all ν ∈ U (on the left in
time). Let ϕ− ≤ v ≤ ϕ+ be two smooth functions. Then

sup
ν∈Ut

E
[
ϕ−(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
ϕ+(θν ,X ν

t,x(θν))
]

Remark : if v is locally bounded and {(θν ,X ν
t,x(θν)), ν ∈ Ut} is

bounded then

sup
ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]
≤ v(t, x) ≤ sup

ν∈Ut

E
[
v∗(θν ,X ν

t,x(θν))
]

Remark : v = v∗ if F (·; ν) is lsc. If v is usc, then one retrieves the
usual DPP.



Other examples of application

• Set of controls depending on the state process : Bouchard, Dang
and Lehall, Optimal control of trading algorithms : a general
impulse control approach, to appear in SIAM Journal on Financial
Mathematics.

• Game problem : Bayraktar and Hang, On the Multi-dimensional
controller and stopper games, preprint 2010.



The case with constraint in expectation

v(t, x) := sup
ν∈U(t,x ,m)

F (t, x ; ν) with F (t, x , ν) := E
[
f (X ν

t,x(T ))
]

and

U(t, x ,m) := {ν ∈ Ut : G (t, x ; ν) := E
[
g(X ν

t,x(T ))
]
≤ m}

Weak Dynamic Programming for Generalized State Constraints, with
Marcel Nutz, preprint 2011.

(compare with Bouchard, Elie, Imbert, SIAM Journal on Control and
Optimization, 48 (5), 2010. )



Problem reformulation towards DPP

• State space augmentation : LetMt,m be a set of càdlàg
martingales M = {M(s), s ∈ [t,T ]} with initial value M(t) = m,
adapted to Ft .

• Martingale representation assumption : We assume that, for
all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

∃ Mν
t [x ] ∈Mt,m such that Mν

t [x ](T ) = g(X ν
t,x(T )),

with m := E
[
g(X ν

t,x(T ))
]
.

• Reformulation : We set

M+
t,x ,m(ν) := {M ∈Mt,m : M(T ) ≥ g(X ν

t,x(T ))}
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We set

M+
t,x ,m(ν) := {M ∈Mt,m : M(T ) ≥ g(X ν

t,x(T ))}

Lemma : Let (t, x) ∈ [0,T ]× Rd and m ∈ R. Then

U(t, x ,m) =
{
ν ∈ Ut : M+

t,x ,m(ν) 6= ∅
}
.

Example : In a Brownian filtration, we can take

Mt,m = m + {Mα
t,0(T ) :=

∫ T

t
αsdWs , α ∈ At}

where At is the set of predictable Rd -valued processes such that
Mα

t,0 is a Ft-adapted martingale.
Then,

U(t, x ,m) =
{
ν ∈ Ut : ∃ α ∈ At s.t. Mα

t,m(T ) ≥ g(X ν
t,x(T ))

}
.
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Heuristic DPP in the Brownian setting
• In the caseMt,m = m + {Mα

t,0(T ) :=
∫ T
t αsdWs , α ∈ At} :

v(t, x ,m)
?
= sup

(ν,α)∈Θ(t,x ,m)
E
[
v(θ,X ν

t,x(θ),Mα
t,m(θ))

]
with

Θ(t, x ,m) := {(ν, α) ∈ Ut ×At : Mα
t,m(T ) ≥ g(X ν

t,x(T ))}.

•Why could we obtain a weak formulation ?

If G (·; ν) is u.s.c, moving a bit moves the m constraint to an m + δ
constraint with δ > 0 small.

Guess : for all δ > 0

v(t, x ,m + δ) ≥ sup
(ν,α)∈Θ(t,x ,m)

E
[
ϕ(θ,X ν

t,x(θ),Mα
t,m(θ))

]
.
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Additional assumption

Assumption : Let (t, x) ∈ [0,T ]× Rd , ν ∈ Ut , τ ∈ T t , Γ ∈ F t
τ ,

ν̄ ∈ U‖τ‖L∞ , and M ∈Mt,0. Then, there exists a process
M̄ = {M̄(r), r ∈ [τ,T ]} such that

M̄(·)(ω) =
(
M ν̄
τ(ω)[X ν

t,x(τ)(ω)](·)
)
(ω) on [τ,T ] P− a.s.

and

M1[t,τ) + 1[τ,T ]

(
M1Ω\Γ +

[
M̄ − M̄(τ) + M(τ)

]
1Γ

)
∈Mt,0.



General result

Theorem : Assume the above holds.
(i) Let ϕ+ ≥ v be a measurable function. Then

v(t, x ,m) ≤ E
[
ϕ+(θν ,X ν

t,x(θν),M(θν))
]

for some ν ∈ U(t, x ,m) and M ∈M+
t,x ,m(ν).

(ii) Assume that F (·; ν) and −G (·; ν) are lsc for all ν ∈ U (on the
left in time). Let ϕ− ≤ v be a usc function and fix δ > 0. Then

v(t, x ,m + δ) ≥ E
[
ϕ−(θν ,X ν

t,x(θν),M(θν))
]

for all ν ∈ U(t, x ,m) and M ∈M+
t,x ,m(ν).
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The Brownian setting

• U : set of square integrable predictable processes with values in
U ⊂ Rd .

• X ν
t,x solves on [t,T ]

dXs = b(Xs , νs)ds + σ(Xs , νs)dWs

with Lipschitz conditions (can be relaxed).

• The set of martingales is given by :

Mt,m = m + {Mα
t,0(T ) :=

∫ T

t
αsdWs , α ∈ At}.
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The Brownian setting

• U : set of square integrable predictable processes with values in
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Domain of definition

• The natural domain D := {(t, x ,m) : U(t, x ,m) 6= ∅} is
associated to

w(t, x) := inf
ν∈Ut

E [g(X ν
t,x(T ))],

through

intD =
{

(t, x ,m) ∈ [0,T ]× Rd × R : m > w(t, x), t < T
}
,

(w is usc if G (·; ν) is).

• One has

D ⊆
{

(t, x ,m) ∈ [0,T ]× Rd × R : m ≥ w∗(t, x)
}

= intD,

where w∗ is the lower semicontinuous envelope of v on [0,T ]×Rd .
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DPP for viscosity super-solution

Corollary : Assume the above holds. Let θν,αB be the first exist time
of (·,X ν

t,x ,M
α
t,m) from a ball B around (t, x ,m) ∈ intD. Then, for

all δ > 0 and θν,α ≤ θν,αB ,

v(t, x ,m + δ) ≥ sup
(ν,α)∈Ut×At

E
[
ϕ−(θν,α,X ν

t,x(θν,α),Mα
t,m(θν,α))

]



Viscosity super-solution property derivation

Let ϕ− be a test function for v∗ at (t, x ,m) Fix
(tε, xε,mε, δε)→ (t, x ,m, 0) such that

|v(tε, xε,mε + δε)− ϕ−(tε, xε,mε)| ≤ ε2 → 0

Set (ν, α) = (u, a) ∈ U × Rd , θε := θu,a
B ∧ (tε + ε). Then,

ϕ−(tε, xε,mε) ≥ E
[
ϕ−(θε,X u

tε,xε(θε),Ma
tε,mε(θε))

]
− ε2

and therefore

0 ≥ ε−1E

[∫ θu,aB ∧(tε+ε)

tε
(∂t + Lu,a

X ,M)ϕ−(s,X u
tε,xε(s),Ma

tε,mε(s))ds

]
− ε

and pass to the limit ε→ 0.
[In practice use a proof by contradiction to avoid passages to the
limit]
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PDE characterization

Theorem : Assume the above holds. Then,
(i) v∗ is a viscosity super-solution on intD of

−∂tϕ+ H(·,Dϕ,D2ϕ) = 0.

(ii) v∗ is a viscosity sub-solution on clD of

−∂tϕ+ H∗(·,Dϕ,D2ϕ) = 0

where
H(·,Dϕ,D2ϕ) := − sup

(u,a)∈U×Rd
Lu,a

X ,Mϕ.

(See Bouchard, Elie and Imbert 2010 for a discussion on the
boundary conditions)



The case with P− a.s. state constraint

v(t, x) := sup
ν∈U(t,x)

F (t, x ; ν) with F (t, x , ν) := E
[
f (X ν

t,x(T ))
]

and

U(t, x) := {ν ∈ Ut : X ν
t,x ∈ O on [t,T ]}

with O an open subset.

Weak Dynamic Programming for Generalized State Constraints, with
Marcel Nutz, preprint 2011.



A-priori difficulty

• Can not use a (t, x) admissible control in a ball around (t, x) :
may exit the domain.

• Can in fact almost do this if O is open : if exits, it should be with
small probability.
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Approximation by constraints in expectations
• Additional dimension

Y ν
t,x ,y (s) := y ∧ inf

r∈[t,s]
d(X ν

t,x(r)), s ∈ [t,T ], y > 0.

By continuity, each trajectory {X ν
t,x(r)(ω), r ∈ [t,T ]} has strictly

positive distance to Oc whenever it is contained in O :

{X ν
t,x(r)(ω), r ∈ [t,T ]} ⊆ O if and only if Y ν

t,x ,y (T )(ω) > 0.

• Equivalent control problem

v(t, x) = v̄(t, x , y , 0)

where
v̄(t, x , y ,m) := sup

ν∈U(t,x ,y ,m)
F (t, x ; ν)

with

U(t, x , y ,m) := {ν ∈ Ut : P
[
Y ν

t,x ,1(T ) ≤ 0
]
≤ m}.
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t,x(r)(ω), r ∈ [t,T ]} ⊆ O if and only if Y ν

t,x ,y (T )(ω) > 0.

• Equivalent control problem

v(t, x) = v̄(t, x , y , 0)

where
v̄(t, x , y ,m) := sup

ν∈U(t,x ,y ,m)
F (t, x ; ν)

with

U(t, x , y ,m) := {ν ∈ Ut : P
[
Y ν

t,x ,1(T ) ≤ 0
]
≤ m}.



DPP in the state constraint case

• Apply the DPP to v̄ : for all (ν, α) ∈ Θ(t, x , y , 0)

v̄(t, x , y , 0 + δ) ≥ E
[
ϕ−(θν ,X ν

t,x(θν),Y ν
t,x ,y (θν),Mα

t,0(θν))
]

If v̄(t, x , y , 0+) = v̄(t, x , y , 0), then

v̄(t, x , y , 0) ≥ E
[
ϕ−(θν ,X ν

t,x(θν),Y ν
t,x ,y (θν), 0)

]
but v̄(t, x , y , 0) = v̄(t, x , 1, 0) = v(t, x).

Hence

v(t, x) ≥ sup
ν∈U(t,x)

E
[
φ−(θν ,X ν

t,x(θν))
]

for φ− ≤ v usc.
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DPP in the state constraint case : sufficient
condition

Measurable selection assumption : There exists a Lipschitz
continuous mapping û : O → U such that, for all
(t, x) ∈ [0,T ]×O, the solution X̂t,x of

X̂ (s) = x +

∫ s

t
b
(
X̂ (r), û(X̂ (r))

)
dr +

∫ s

t
σ
(
X̂ (r), û(X̂ (r))

)
dWr

satisfies X̂t,x(s) ∈ O for all s ∈ [t,T ], P− a.s.

Technical assumption : Either f is bounded or the coefficients
b(x , u) and σ(x , u) have linear growth in x , uniformly in u.

Proposition : Under the above assumption,
v̄(t, x , y , 0+) = v̄(t, x , y , 0).
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DPP in the state constraint case

Lemma : Let B be an open neighborhood of (t, x) ∈ [0,T ]×O
such that v(t, x) is finite.
(i) Let ϕ : clB → R be a continuous function such that v ≤ ϕ on
clB . For all ε > 0, there exists ν ∈ U(t, x) such that

v(t, x) ≤ E
[
ϕ(τ,X ν

t,x(τ))
]

+ ε,

where τ is the first exit time of (s,X ν
t,x(s))s≥t from B .

(ii) For any ν ∈ Ut and any continuous function ϕ s.t. v ≥ ϕ on clB

v(t, x) ≥ E
[
ϕ(τ,X ν

t,x(τ))
]
,

where τ is the first exit time of (s,X ν
t,x(s))s≥t from B .
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The case of closed domain

•What appends if we replace O by clO ?

a. the easy part of the DPP still holds,
b. our proof does not work for the difficult one.

• If a comparison principle holds for the associated PDE : our result
is in fact enough !

a. the sub-solution property still holds for v∗clO,
b. by comparison vO∗ ≥ v∗clO,
c. but vclO ≥ vO by definition.
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Sufficient condition for comparison

Sufficient condition : Comparison holds if the super-solution is of
class R(O) (for functions with polynomial growth).

Definition : w is of class R(O) if
1. ∃ r > 0, an open neighborhood B of x in Rd and a function
` : R+ → Rd such that

lim infε→0 ε
−1|`(ε)| <∞ and

y + `(ε) + o(ε) ∈ O for all y ∈ clO ∩ B and ε ∈ (0, r).

2. ∃ λ : R+ → R+ such that

limε→0 λ(ε) = 0 and
limε→0 w

(
t + λ(ε), x + `(ε)

)
= w(t, x).
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Sufficient condition for comparison

Example : - There exists a C 1-function δ such that Dδ is locally
Lipschitz continuous and

δ > 0 on O, δ = 0 on ∂O, δ < 0 outside clO.

- There exists a locally Lipschitz continuous mapping ǔ : Rd → U
s.t. for all x ∈ clO ∃ open neighborhood B of x and ι > 0 satisfying

µ(z , ǔ(z))>Dδ(y) ≥ ι and σ(y , ǔ(y)) = 0 ∀ y ∈ B ∩ clO , z ∈ B.

Similar conditions from the literature : Soner (1986),
Katsoulakis (1994), Ishii and Loreti (2002).
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