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Problem formulation and Motivations



Problem formulation

Provide a PDE characterization of the viability sets
At) == {(z;m): FJueds t E (2 (T)F| > mv eV

In which :

e )V is a set of admissible adverse controls

il is a set of admissible strategies

717 is an adapted R9-valued process s.t. Z:t[zﬁ]’ﬂ(t) =z

t,z

?is a given loss/utility function
e m a threshold.



Application in finance

5 ZH (0 L) here
. X;E?]’ﬁ models financial assets or factors with dynamics

depending on ¥
Yu[q9],q9

t7X7.y
e ¢ is the control of the market : parameter uncertainty (e.g.
volatility), adverse players, etc...

models a wealth process

e u[V] is the financial strategy given the past observations of ¥J.
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Application in finance

5 ZH (0 L) here
. X;E?]’ﬁ models financial assets or factors with dynamics

depending on ¥
N Yu[q9],q9

tx,, models a wealth process

e ¢ is the control of the market : parameter uncertainty (e.g.
volatility), adverse players, etc...

e u[V] is the financial strategy given the past observations of ¥J.

Robust hedging under uncertainty and related price :

inf{y : Jus.t. y U9l 19(7_) > g(X?,E?]’ﬁ(T)) vV 9}

t,x,y

O Flexible enough to embed constraints, transaction costs, market
impact, etc...



Setting for this talk
(see the papers for abstract versions)



Brownian diffusion setting



Brownian diffusion setting

O State process : Z“["lV solves (1 and o continuous, uniformly
Lipschitz in space)

S

Z(s):z+/tsu(Z(r),u[19],,19,)dr+/t o (Z(r), u[d],, 9,) AW,

O The loss function ¢ has polynomial growth and is continuous.



Brownian diffusion setting

O State process : Z“["lV solves (1 and o continuous, uniformly
Lipschitz in space)

Z(s):z+/tsu(Z(r),u[ﬁ],,ﬁ,)dr—i—/tsa(Z(r),u[ﬁ]r,ﬁ,)dW,

O The loss function ¢ has polynomial growth and is continuous.

O Controls and strategies :
e Vis the set of predictable processes with values in V c RY.

e {lis set of non-anticipating maps u:9 €V U, ie.

{w:U1(w) =jo,¢ V2(w)} C {w : u[d1](w) =(o,q u[2](w)}

where U/ is the set of predictable processes with values in
UcRY



The game problem

O The viability sets are given by
: : u[9],9
At) = {(zzm):Juecis t.E [e(zmz (T))m] >mvd eV

Compare with the formulation of games in Buckdahn and Li (08).



Geometric dynamic programming principle for
controlled loss cases

How are the properties
(z,m) € A(t) and (Z:17(6),7) € A(9)
related ?

At) = {(zzm):Juecis t.E az;{f“%r»vt] >mvd eV



Unformal derivation
O Take (z, m) € A(t) and u € 4l such that

esslgrg}E [6 (Zz[jl’ﬁ(T)) ]]-}} >m P—as.



Unformal derivation
O Take (z, m) € A(t) and u € 4l such that
. ul[v¥],¥ .
esslérg}E [6 (Zt’z (T)) ]]-"t} >m P—as.

Take care of the evolution of the worst case scenario conditional
expectation :
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r
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Unformal derivation
O Take (z, m) € A(t) and u € 4l such that
. ul[v¥],¥ .
esslérg}E [6 (Zt’z (T)) ]]-"t} >m P—as.

Take care of the evolution of the worst case scenario conditional
expectation :
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where ¢ @, 9= 191[074 + 1(,77—]?3.

Then
S? is a submartingale and S? > m for all ¥ € V,

and we can find a martingale M” such that

S% > M’ and MY = SY > m.



Unformal derivation
O Take (z, m) € A(t) and u € 4l such that

essggiE [5 (Zz[zﬁ]’ﬁ(T)) ]]—}} >m P—as.

Take care of the evolution of the worst case scenario conditional
expectation :

5}9 = essginf}E [6 (Z;.t[zﬂea,ﬁ],ﬁ@,ﬁ(T» ‘fri|7
€

where 9 @, 9 = 191[0’,] + 1(,77-]5.

Hence,

essinf E [6 (Z;"[Zﬁ@eﬁ]ﬁ@eﬁu—)) \.7'—0} — 559 > Mg P—as.
vey

and therefore there exists a martingale MV such that MY = m and

(217 (9), M) € A(B) P — as.



Unformal derivation
O Take (z, m) € A(t) and u € 4l such that

essérg}IE [6 (Zz[j]’ﬁ('l')) |]:t} >m P—as.

Take care of the evolution of the worst case scenario conditional
expectation :

5}9 = ess{ire]f}E [f (Z;t[zﬁ@r IRER (T)) |Fr}>

where 9 Dy 1§ = 191[074 + 1(,77—]5.

Hence,

essinf E [6( tu[zﬂ@@ﬂ] 1969‘919( )) \.7—"9} =S)>M) P-as.
veVy

and therefore there exists a predictable a? € A such that

(Zl.l[’l9],’l9(9)7 Mg;’;’(e)) c /\(9) P—as. , Mtofz‘l = m+/ Oédes
t

t,z



The geometric dynamic programming principle
(GDP1) : If (z,m) € A(t), then Juciland {’, ¥ eV} C A
such that

(Z2U1(0), Mg (0)) € N(O) P —as. V0 € V.

(GDP2) : If (u,a) € ¢ x A are such that
(Z29 019)), MEEN09])) € A(O[9]) P— as. ¥V 9 € V

for some family (0[], ¢ € V) of non-anticipating stopping times,
then

(z, m) € A\(¢).



The geometric dynamic programming principle
(GDP1) : If (z,m) € A(t), then Juciland {9V} C A
such that

(Z2U1(0), Mg (0)) € N(O) P —as. V0 € V.

(GDP2) : If (u,a) € ¢ x A are such that
(Z29 019)), MEEN09])) € A(O[9]) P— as. ¥V 9 € V

for some family (0[], ¢ € V) of non-anticipating stopping times,
then

(z, m) € A\(¢).

Rem : Use heavily the regularity of the constraint in expectation (¢
continuous + unif. Lipschitz coefficients). Exact statement requires
an extra relaxation, which does not alter the pde derivation. See
Bouchard, Moreau and Nutz, AAP to appear.



PDE Characterization
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O The value function is :

w(t,x,m) :=inf{y : (x,y,m) € A(t)}.



9],9 9],9 91,0
O Monotone case : Z,_fl[x]y = (tht&]’ ,Y;ﬂ:}lf

RY x R with X;Ef}]’ﬂ independent of y and £ 1 y.

) with values in

O The value function is :

w(t,x,m) :=inf{y : (x,y,m) € A(t)}.

O We have the “characterization”

y > w(t,x,m) = (z,m) € N(t) = y > w(t, x, m)



PDE characterization - “waving hands” version

O Assuming smoothness, existence of optimal strategies...

Oy = w(t, x, m) implies
yu[ﬂ],ﬂ(t+) > w(t+,Xu[19]’19(t+), Ma[ﬁ](t—f—)) for all 9.
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PDE characterization - “waving hands” version

O Assuming smoothness, existence of optimal strategies...

Oy = w(t, x, m) implies
Yu[19],19(t+) > w(t+’Xu[19]719(t+)’ Ma[ﬁ](t—f—)) for all 9.

This implies dY*["17(¢) > dao(t, X*0(¢), Mel(t)) for all ¥

Hence, for all 9,

wy (x, y,u[d], ¥¢) > Lux[%t,ﬁt,a[ﬁ]fw(t7X7 m)
oy(x,y,u[d],9¢) = ox(x,u[V]s, ¥¢)Dxw(t, x, m)
+a[9]¢Dmwo(t, x, m)

with y = w(t, x, m)



PDE characterization - “waving hands” version

|

sup (MY(',W, u, V) - ;I(7V[\7/[aw) > 0
(u,a)eN V@

where

NVw :={(u,a) € UxR?:oy(-,w,u,v) =ox(-,u,v)Dyw + aDpw}.



PDE characterization - “waving hands” version
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PDE characterization - “waving hands” version

O Supersolution property

inf  sup (,uy(-,w, u,v) — Ly Mw) >0
veV (u,a)eENVw

where

NVw :={(u,a) € UxR?:oy(-,w,u,v) =ox(-,u,v)Dyw + aDpw}.



PDE characterization - “waving hands” version

O Supersolution property

inf  sup (,uy(-,w, u,v) — Ly Mw) >0
veV (u,a)eENVw

where
NVw :={(u,a) € UxR?:oy(-,w,u,v) =ox(-,u,v)Dyw + aDpw}.
O Subsolution property

. u[v],v,a[v]
sup inf /Ly(.7w, u[v]7 v) - r <0
(u[],a[)eNT]w veV < X,M ) =

where

Mz = {loc. Lip. (u[],a[]) s.t. (u[],a[]) € N'w(-)}.



Geometric dynamic programming principle for the a.s.
constraint case

Prove that
y > w(t,x) < Y (0) > w(0, X2 ,(6))

(when X does not depend on u)

w(t,x) = infly : Juesls t. VU(T) > g(X/(T)) as. V9 € V)
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(when X does not depend on u)
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Expected loss case : play with the regularity of the constraint in
expectation form. Not possible here.



Geometric dynamic programming principle for the a.s.
constraint case

Prove that
y > w(t,x) < Y (0) > w(0, X2 ,(6))

(when X does not depend on u)

w(t,x) = infly:FJuess t. VVU(T) > g(X/(T)) as. V9 € V)

No adverse control case : measurable selection argument which
requires to have a Polish space structure. Not possible here.



Geometric dynamic programming principle for the a.s.
constraint case

Prove that
y > w(t,x) < Y (0) > w(0, X2 ,(6))

(when X does not depend on u)

w(t,x) = infly : Juesls t. VU(T) > g(X/(T)) as. V9 € V)

Main difficulty : no smoothness and no measurable selection
argument possible.



GDP1 - “Easy part”

O GDP1 Assume that y > w(t, x). Then, there exists u € { such
that
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t?Xiy



GDP1 - “Easy part”

O GDP1 Assume that y > w(t, x). Then, there exists u € { such

that
Y (0) > w.(0,X2,(0)) a.e. YO € V.

t?Xiy

This implies as before that w, is a supersolution of

Hw, = inf sup (uy(:, @, u,v) — Lxws) >0
veV yeNvem,

where

N'w, :={ueU:oy(,wsu,v)=0x(:,v)Dw.}.



GDP2 - “Difficult part”

O Assume that : w,(T,-) > g and that the operator

He = inf sup (uy(-, ¢, u,v)—Lxp)
VEVuE/\/'Vt,D

is concave in ¢ (as a function of ¢, Dy and D?y).
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satisfying
w<w+n onB.



GDP2 - “Difficult part’

O Assume that : w,(T,-) > g and that the operator

ng = inf sup (/’LY('7 ®, u, V) - E‘)/(SO)
veV ueNvep

is concave in ¢ (as a function of ¢, Dy and D?y).

Then, for each compact set B and 7 > 0, one can construct (under
Lipschitz continuity assumptions) a smooth supersolution w of

Hw >0 on [0,T)xR? and w>g on {T}xRY

satisfying
w<w+n onB.

Slight extension of the smoothing technic of Krylov : Provide a
supersolution with shaked coefficients obtained by studying a
suitable optimal control of BSDEs problem. Then integrate with a
smooth kernel as in Ishii. Need stability for the family of_ BSDEs.
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GDP2 - “Difficult part”

O Assume further that : There exist a unique solution &(x,y, p, v)
to oy(x,y,u,v) =pforall y,v,p.

Then, (under Lipschitz continuity assumptions) use a verification

ensuring that if

Y0 (0) > w(8, XD (0)) ae. VI €V,

£y
then since
wy(,w,b(-, w,ox(-,v)Dw,v),v) — Lxw >0 and w(T,-) > g,
the Markovian strategy defined by
U] = uoly gy + Lo A(ZE,  [ox (-, 9) Dxw] (-, Xy ), 9)
is such that
YO AT) > g(X0(T)) ae. VO eV.

t7X7.y



GDP2 - “Difficult part”

O GDP2 Let ¢ be a test function for w* at (t, x). Let n > 0 be
such that

Y0 (0) > w(0,X2.(0)) + 1 ae. VI eV,

t7X7y

where 0 is the first exit time from an open ball O > (¢, x). Then,
y = w(t,x).
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GDP2 - “Difficult part”

O GDP2 Let ¢ be a test function for w* at (t, x). Let n > 0 be
such that

Y0 (0) > w(0,X2.(0)) + 1 ae. VI eV,

where 0 is the first exit time from an open ball O > (¢, x). Then,
y = w(t,x).

O Indeed, let w be the smooth supersolution constructed as above
so that
w+n>w on 00.

Then,
Yesy(0) = w(0, X/, (0)) a.e. V9 €V,

t7X7y

From this, we can use the Markovian strategy based on I to reach
the target at T for all ¥ € V.
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Examples of application

O Hedging under volatility uncertainty.
O May add uncertainty on the interest rate.

O Can add jumps (with uncertainty on the intensity or the size of
the jumps).

Essentially only needs the concavity of the operator which is
related to the fact that controlling the volatility imposes the choice
of the control.
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