Stochastic target games

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae-ParisTech

SMAI Congress, May 2013

Joint works with L. Moreau (ETH-Zürich) and M. Nutz (Columbia)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem formulation and Motivations

◆□ > < 個 > < E > < E > E の < @</p>

Problem formulation

Provide a PDE characterization of the viability sets

 $\Lambda(t) := \{(z,m) : \exists u \in \mathfrak{U} \text{ s. t. } \mathbb{E} \left[\ell(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T)) | \mathcal{F}_t \right] \geq m \forall \vartheta \in \mathcal{V} \}$

In which :

- $\ensuremath{\mathcal{V}}$ is a set of admissible adverse controls
- \mathfrak{U} is a set of admissible strategies
- $Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}$ is an adapted \mathbb{R}^d -valued process s.t. $Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(t) = z$

(日) (伊) (日) (日) (日) (0) (0)

- ℓ is a given loss/utility function
- *m* a threshold.

- $\Box \ \ Z^{\mathfrak{u}[\vartheta],\vartheta}_{t,z} = (X^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times},Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times,y}) \text{ where }$
 - $X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}$ models financial assets or factors with dynamics depending on ϑ
 - $Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}$ models a wealth process
 - *θ* is the control of the market : parameter uncertainty (e.g. volatility), adverse players, etc...
 - $\mathfrak{u}[\vartheta]$ is the financial strategy given the past observations of ϑ .

- $\Box \ \ Z^{\mathfrak{u}[\vartheta],\vartheta}_{t,z} = (X^{\mathfrak{u}[\vartheta],\vartheta}_{t,x},Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,x,y}) \text{ where }$
 - $X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}$ models financial assets or factors with dynamics depending on ϑ
 - $Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}$ models a wealth process
 - *θ* is the control of the market : parameter uncertainty (e.g. volatility), adverse players, etc...
 - $\mathfrak{u}[\vartheta]$ is the financial strategy given the past observations of ϑ .

Robust partial hedging under uncertainty and related price :

$$\inf\{y: \exists \mathfrak{u} \text{ s.t. } \mathbb{E}\left[\Psi\left(Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}(T))\right)\right] \geq m \forall \vartheta\}$$

- $\Box \ \ Z^{\mathfrak{u}[\vartheta],\vartheta}_{t,z} = (X^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times},Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times,y}) \text{ where }$
 - X^{u[ϑ],ϑ}_{t,×} models financial assets or factors with dynamics depending on ϑ
 - $Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}$ models a wealth process
 - *θ* is the control of the market : parameter uncertainty (e.g. volatility), adverse players, etc...
 - $\mathfrak{u}[\vartheta]$ is the financial strategy given the past observations of ϑ .

Robust hedging under uncertainty and related price :

$$\inf\{y: \exists \mathfrak{u} \text{ s.t. } Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}(T)) \; \forall \; \vartheta\}$$

- $\Box \ \ Z^{\mathfrak{u}[\vartheta],\vartheta}_{t,z} = (X^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times},Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,\times,y}) \text{ where }$
 - X^{u[ϑ],ϑ}_{t,×} models financial assets or factors with dynamics depending on ϑ
 - $Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}$ models a wealth process
 - *θ* is the control of the market : parameter uncertainty (e.g. volatility), adverse players, etc...
 - $\mathfrak{u}[\vartheta]$ is the financial strategy given the past observations of ϑ .

Robust hedging under uncertainty and related price :

$$\inf\{y: \exists \mathfrak{u} \text{ s.t. } Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}(T)) \forall \vartheta\}$$

□ Flexible enough to embed constraints, transaction costs, market impact, etc...

Setting for this talk (see the papers for abstract versions)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Brownian diffusion setting

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Brownian diffusion setting

 \Box State process : $Z^{\mathfrak{u}[\vartheta],\vartheta}$ solves (μ and σ continuous, uniformly Lipschitz in space)

$$Z(s) = z + \int_t^s \mu(Z(r), \mathfrak{u}[\vartheta]_r, \vartheta_r) \, dr + \int_t^s \sigma(Z(r), \mathfrak{u}[\vartheta]_r, \vartheta_r) \, dW_r$$

 \Box The loss function ℓ has polynomial growth and is continuous.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Brownian diffusion setting

□ State process : $Z^{\mathfrak{u}[\vartheta],\vartheta}$ solves (μ and σ continuous, uniformly Lipschitz in space)

$$Z(s) = z + \int_t^s \mu(Z(r), \mathfrak{u}[\vartheta]_r, \vartheta_r) \, dr + \int_t^s \sigma(Z(r), \mathfrak{u}[\vartheta]_r, \vartheta_r) \, dW_r$$

 \Box The loss function ℓ has polynomial growth and is continuous.

□ Controls and strategies :

- \mathcal{V} is the set of predictable processes with values in $V \subset \mathbb{R}^d$.
- \mathfrak{U} is set of non-anticipating maps $\mathfrak{u}: \vartheta \in \mathcal{V} \mapsto \mathcal{U}$, i.e.

$$\{\omega:\vartheta_1(\omega)=_{[0,s]}\vartheta_2(\omega)\}\subset \{\omega:\mathfrak{u}[\vartheta_1](\omega)=_{[0,s]}\mathfrak{u}[\vartheta_2](\omega)\}.$$

where \mathcal{U} is the set of predictable processes with values in $U \subset \mathbb{R}^d$.

The game problem

□ **The** *viability* **sets** are given by

$$\Lambda(t) := \{(z,m) : \exists u \in \mathfrak{U} \text{ s. t. } \mathbb{E}\left[\ell(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T))|\mathcal{F}_t\right] \geq m \forall \vartheta \in \mathcal{V}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compare with the formulation of games in Buckdahn and Li (08).

Geometric dynamic programming principle for controlled loss cases

How are the properties
$$(z, m) \in \Lambda(t)$$
 and $(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta), ?) \in \Lambda(\theta)$
related ?

$$\Lambda(t) := \{(z,m) : \exists u \in \mathfrak{U} \text{ s. t. } \mathbb{E}\left[\ell(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T))|\mathcal{F}_t\right] \geq m \forall \vartheta \in \mathcal{V}\}$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

 \Box Take $(z, m) \in \Lambda(t)$ and $\mathfrak{u} \in \mathfrak{U}$ such that

$$\operatorname{ess\,inf}_{\vartheta \in \mathcal{V}} \mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T)\right) | \mathcal{F}_t\right] \geq m \ \mathbb{P}-\mathsf{a.s.}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\Box \text{ Take } (z,m) \in \Lambda(t) \text{ and } \mathfrak{u} \in \mathfrak{U} \text{ such that}$ $\operatorname{ess\,inf}_{\vartheta \in \mathcal{V}} \mathbb{E} \left[\ell \left(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \right) | \mathcal{F}_t \right] \geq m \mathbb{P} - a.s.$

Take care of the evolution of the worst case scenario conditional expectation :

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

$$\begin{split} S_{r}^{\vartheta} &:= \mathrm{ess}\inf_{\bar{\vartheta}\in\mathcal{V}} \mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta\oplus_{r}\bar{\vartheta}],\vartheta\oplus_{r}\bar{\vartheta}}(\mathcal{T})\right)|\mathcal{F}_{r}\right],\\ \text{where } \vartheta\oplus_{r}\bar{\vartheta} &= \vartheta\mathbf{1}_{[0,r]} + \mathbf{1}_{(r,\mathcal{T}]}\bar{\vartheta}. \end{split}$$

 $\Box \text{ Take } (z,m) \in \Lambda(t) \text{ and } \mathfrak{u} \in \mathfrak{U} \text{ such that}$ $\operatorname{ess\,inf}_{\vartheta \in \mathcal{V}} \mathbb{E} \left[\ell \left(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\mathcal{T}) \right) | \mathcal{F}_t \right] \geq m \ \mathbb{P} - \mathsf{a.s.}$

Take care of the evolution of the worst case scenario conditional expectation :

$$S_{r}^{\vartheta} := \operatorname{ess\,inf}_{\bar{\vartheta} \in \mathcal{V}} \mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta \oplus_{r}\bar{\vartheta}],\vartheta \oplus_{r}\bar{\vartheta}}(\mathcal{T})\right)|\mathcal{F}_{r}\right],$$
$$\vartheta \oplus_{r} \bar{\vartheta} = \vartheta \mathbf{1}_{[0,r]} + \mathbf{1}_{(r,\mathcal{T}]}\bar{\vartheta}.$$

Then

where

 S^{ϑ} is a submartingale and $S^{\vartheta}_t \ge m$ for all $\vartheta \in \mathcal{V}$, and we can find a martingale M^{ϑ} such that $S^{\vartheta} \ge M^{\vartheta}$ and $M^{\vartheta}_t = S^{\vartheta}_t \ge m$.

うして ふゆう ふほう ふほう うらつ

 $\Box \text{ Take } (z, m) \in \Lambda(t) \text{ and } \mathfrak{u} \in \mathfrak{U} \text{ such that}$ $\operatorname{ess\,inf}_{\vartheta \in \mathcal{V}} \mathbb{E} \left[\ell \left(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \right) | \mathcal{F}_t \right] \geq m \mathbb{P} - a.s.$

Take care of the evolution of the worst case scenario conditional expectation :

$$S_{r}^{\vartheta} := \operatorname{ess\,inf}_{\bar{\vartheta} \in \mathcal{V}} \mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta \oplus_{r}\bar{\vartheta}],\vartheta \oplus_{r}\bar{\vartheta}}(T)\right) | \mathcal{F}_{r}\right]$$

where $\vartheta \oplus_r \bar{\vartheta} = \vartheta \mathbf{1}_{[0,r]} + \mathbf{1}_{(r,T]} \bar{\vartheta}$.

Hence,

$$\operatorname{ess\,inf}_{\bar{\vartheta}\in\mathcal{V}}\mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta\oplus_{\theta}\bar{\vartheta}],\vartheta\oplus_{\theta}\bar{\vartheta}}(\mathcal{T})\right)|\mathcal{F}_{\theta}\right]=S_{\theta}^{\vartheta}\geq M_{\theta}^{\vartheta} \ \mathbb{P}-\mathsf{a.s.}$$

and therefore there exists a martingale M^{ϑ} such that $M_t^{\vartheta} = m$ and $(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta), M_{\theta}^{\vartheta}) \in \Lambda(\theta) \mathbb{P} - a.s.$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○ ◆ ○ ◆ ○ ◆

 $\Box \text{ Take } (z,m) \in \Lambda(t) \text{ and } \mathfrak{u} \in \mathfrak{U} \text{ such that} \\ \operatorname{ess inf}_{\vartheta \in \mathcal{V}} \mathbb{E} \left[\ell \left(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \right) | \mathcal{F}_t \right] \geq m \mathbb{P} - a.s.$

Take care of the evolution of the worst case scenario conditional expectation :

$$S_r^{\vartheta} := \operatorname{ess\,inf}_{\bar{\vartheta} \in \mathcal{V}} \mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta \oplus_r \bar{\vartheta}],\vartheta \oplus_r \bar{\vartheta}}(T)\right) | \mathcal{F}_r\right],$$

where $\vartheta \oplus_r \bar{\vartheta} = \vartheta \mathbf{1}_{[0,r]} + \mathbf{1}_{(r,T]} \bar{\vartheta}$.

Hence,

$$\operatorname*{ess\,inf}_{\bar{\vartheta}\in\mathcal{V}}\mathbb{E}\left[\ell\left(Z_{t,z}^{\mathfrak{u}[\vartheta\oplus_{\theta}\bar{\vartheta}],\vartheta\oplus_{\theta}\bar{\vartheta}}(\mathcal{T})\right)|\mathcal{F}_{\theta}\right]=S_{\theta}^{\vartheta}\geq M_{\theta}^{\vartheta} \ \mathbb{P}-\mathsf{a.s.}$$

and therefore there exists a predictable $\ lpha^artheta\in\mathcal{A}$ such that

$$(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta), M_{t,m}^{\alpha^{\vartheta}}(\theta)) \in \Lambda(\theta) \mathbb{P} - \text{a.s.} , \ M_{t,m}^{\alpha^{\vartheta}} := m + \int_{t}^{\cdot} \alpha_{s}^{\vartheta} dW_{s}$$

The geometric dynamic programming principle (GDP1) : If $(z, m) \in \Lambda(t)$, then $\exists \ \mathfrak{u} \in \mathfrak{U}$ and $\{\alpha^{\vartheta}, \vartheta \in \mathcal{V}\} \subset \mathcal{A}$ such that

$$(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(heta), M_{t,m}^{lpha^{artheta}}(heta)) \in \Lambda(heta) \ \mathbb{P}- ext{a.s.} \ orall \ artheta \in \mathcal{V}.$$

(GDP2) : If $(\mathfrak{u},\mathfrak{a})\in\mathfrak{U}\times\mathfrak{A}$ are such that

 $(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta[\vartheta]), M_{t,m}^{\mathfrak{a}[\vartheta]}(\theta[\vartheta])) \in \Lambda(\theta[\vartheta]) \mathbb{P} - \mathsf{a.s.} \; \forall \; \vartheta \in \mathcal{V}$

for some family ($\theta[\vartheta], \vartheta \in \mathcal{V})$ of non-anticipating stopping times, then

 $(z,m)\in \Lambda(t).$

The geometric dynamic programming principle (GDP1) : If $(z, m) \in \Lambda(t)$, then $\exists \ \mathfrak{u} \in \mathfrak{U}$ and $\{\alpha^{\vartheta}, \vartheta \in \mathcal{V}\} \subset \mathcal{A}$ such that

$$(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta), M_{t,m}^{\alpha^{\vartheta}}(\theta)) \in \Lambda(\theta) \mathbb{P}-\mathsf{a.s.} \ \forall \ \vartheta \in \mathcal{V}.$$

(GDP2): If $(\mathfrak{u},\mathfrak{a})\in\mathfrak{U}\times\mathfrak{A}$ are such that

 $(Z_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(\theta[\vartheta]), M_{t,m}^{\mathfrak{a}[\vartheta]}(\theta[\vartheta])) \in \Lambda(\theta[\vartheta]) \mathbb{P} - \mathsf{a.s.} \; \forall \; \vartheta \in \mathcal{V}$

for some family ($\theta[\vartheta], \vartheta \in \mathcal{V})$ of non-anticipating stopping times, then

 $(z,m) \in \Lambda(t).$

Rem : Use heavily the regularity of the constraint in expectation (ℓ continuous + unif. Lipschitz coefficients). Exact statement requires an extra relaxation, which does not alter the pde derivation. See Bouchard, Moreau and Nutz, AAP to appear, $\Box \rightarrow \langle \sigma \rangle \rightarrow \langle \sigma \rangle$

PDE Characterization

◆□ > < 個 > < E > < E > E の < @</p>

$$\label{eq:monotone} \begin{split} & \Box \quad \text{Monotone case}: \ Z_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta} = (X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta},Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}) \text{ with values in } \\ & \mathbb{R}^d \times \mathbb{R} \text{ with } X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta} \text{ independent of } y \text{ and } \ell \uparrow y. \end{split}$$

 $\begin{array}{l} \square \quad \text{Monotone case}: \ Z_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta} = (X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}, Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}) \text{ with values in } \\ \mathbb{R}^d \times \mathbb{R} \text{ with } X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta} \text{ independent of } y \text{ and } \ell \uparrow y. \end{array}$

□ The value function is :

 $\varpi(t,x,m) := \inf\{y : (x,y,m) \in \Lambda(t)\}.$

 $\begin{array}{l} \square \quad \text{Monotone case}: \ Z_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta} = (X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta}, Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}) \text{ with values in } \\ \mathbb{R}^d \times \mathbb{R} \text{ with } X_{t,x}^{\mathfrak{u}[\vartheta],\vartheta} \text{ independent of } y \text{ and } \ell \uparrow y. \end{array}$

□ The value function is :

$$\varpi(t, x, m) := \inf\{y : (x, y, m) \in \Lambda(t)\}.$$

□ We have the "characterization"

$$y > \varpi(t, x, m) \Rightarrow (z, m) \in \Lambda(t) \Rightarrow y \ge \varpi(t, x, m)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

うして ふゆう ふほう ふほう うらつ

□ Assuming smoothness, existence of optimal strategies...

 $\Box \ y = \varpi(t, x, m) \text{ implies}$ $Y^{\mathfrak{u}[\vartheta], \vartheta}(t+) \geq \varpi(t+, X^{\mathfrak{u}[\vartheta], \vartheta}(t+), M^{\mathfrak{a}[\vartheta]}(t+)) \text{ for all } \vartheta.$

□ Assuming smoothness, existence of optimal strategies...

$$\Box \ y = \varpi(t, x, m) \text{ implies} \\ Y^{\mathfrak{u}[\vartheta], \vartheta}(t+) \geq \varpi(t+, X^{\mathfrak{u}[\vartheta], \vartheta}(t+), M^{\mathfrak{a}[\vartheta]}(t+)) \text{ for all } \vartheta.$$

This implies $dY^{\mathfrak{u}[\vartheta],\vartheta}(t) \ge d\varpi(t, X^{\mathfrak{u}[\vartheta],\vartheta}(t), M^{\mathfrak{a}[\vartheta]}(t))$ for all ϑ

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

□ Assuming smoothness, existence of optimal strategies...

$$\Box \ y = \varpi(t, x, m) \text{ implies} Y^{\mathfrak{u}[\vartheta], \vartheta}(t+) \geq \varpi(t+, X^{\mathfrak{u}[\vartheta], \vartheta}(t+), M^{\mathfrak{a}[\vartheta]}(t+)) \text{ for all } \vartheta.$$

This implies $dY^{\mathfrak{u}[\vartheta],\vartheta}(t) \ge d\varpi(t, X^{\mathfrak{u}[\vartheta],\vartheta}(t), M^{\mathfrak{a}[\vartheta]}(t))$ for all ϑ

Hence, for all ϑ ,

$$\begin{split} \mu_{Y}(x, y, \mathfrak{u}[\vartheta]_{t}, \vartheta_{t}) &\geq \mathcal{L}_{X,M}^{\mathfrak{u}[\vartheta]_{t}, \vartheta_{t}, \mathfrak{a}[\vartheta]_{t}} \varpi(t, x, m) \\ \sigma_{Y}(x, y, \mathfrak{u}[\vartheta]_{t}, \vartheta_{t}) &= \sigma_{X}(x, \mathfrak{u}[\vartheta]_{t}, \vartheta_{t}) D_{x} \varpi(t, x, m) \\ &+ \mathfrak{a}[\vartheta]_{t} D_{m} \varpi(t, x, m) \end{split}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

with $y = \varpi(t, x, m)$

$$\sup_{(u,a)\in\mathcal{N}^{v}\varpi}\left(\mu_{Y}(\cdot,\varpi,u,v)-\mathcal{L}_{X,M}^{u,v,a}\varpi\right)\geq0$$

where

 $\mathcal{N}^{\mathbf{v}}\varpi := \{(u, \mathbf{a}) \in U \times \mathbb{R}^d : \sigma_{\mathbf{Y}}(\cdot, \varpi, u, \mathbf{v}) = \sigma_{\mathbf{X}}(\cdot, u, \mathbf{v}) D_{\mathbf{x}}\varpi + \mathbf{a}D_{\mathbf{m}}\varpi\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\inf_{\boldsymbol{v}\in V}\sup_{(\boldsymbol{u},\boldsymbol{a})\in\mathcal{N}^{\boldsymbol{v}}\varpi}\left(\mu_{Y}(\cdot,\varpi,\boldsymbol{u},\boldsymbol{v})-\mathcal{L}_{X,M}^{\boldsymbol{u},\boldsymbol{v},\boldsymbol{a}}\varpi\right)\geq0$$

where

 $\mathcal{N}^{\mathbf{v}}\varpi := \{(u, \mathbf{a}) \in U \times \mathbb{R}^d : \sigma_{\mathbf{Y}}(\cdot, \varpi, u, \mathbf{v}) = \sigma_{\mathbf{X}}(\cdot, u, \mathbf{v}) D_{\mathbf{x}}\varpi + \mathbf{a}D_{\mathbf{m}}\varpi\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

□ Supersolution property

$$\inf_{\mathbf{v}\in V}\sup_{(u,\mathbf{a})\in\mathcal{N}^{\mathbf{v}}\varpi}\left(\mu_{Y}(\cdot,\varpi,u,\mathbf{v})-\mathcal{L}_{X,M}^{u,\mathbf{v},\mathbf{a}}\varpi\right)\geq 0$$

where

 $\mathcal{N}^{\mathbf{v}}\varpi := \{(u, \mathbf{a}) \in U \times \mathbb{R}^{d} : \sigma_{\mathbf{Y}}(\cdot, \varpi, u, \mathbf{v}) = \sigma_{\mathbf{X}}(\cdot, u, \mathbf{v}) D_{\mathbf{x}}\varpi + \mathbf{a}D_{\mathbf{m}}\varpi\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

□ Supersolution property

$$\inf_{\mathbf{v}\in V}\sup_{(u,\mathbf{a})\in\mathcal{N}^{\mathbf{v}}\varpi}\left(\mu_{\mathbf{Y}}(\cdot,\varpi,u,\mathbf{v})-\mathcal{L}_{\mathbf{X},M}^{u,v,\mathbf{a}}\varpi\right)\geq 0$$

where

$$\mathcal{N}^{\mathbf{v}} \varpi := \{ (u, \mathbf{a}) \in U \times \mathbb{R}^{d} : \sigma_{\mathbf{Y}}(\cdot, \varpi, u, \mathbf{v}) = \sigma_{\mathbf{X}}(\cdot, u, \mathbf{v}) D_{\mathbf{x}} \varpi + \mathbf{a} D_{m} \varpi \}.$$

□ Subsolution property

$$\sup_{(u[\cdot],a[\cdot])\in\mathcal{N}^{[\cdot]}\varpi}\inf_{v\in V}\left(\mu_{Y}(\cdot,\varpi,u[v],v)-\mathcal{L}_{X,M}^{u[v],v,a[v]}\varpi\right)\leq 0$$

where

$$\mathcal{N}^{[\cdot]} arpi := \{ \mathsf{loc. Lip. } (u[\cdot], a[\cdot]) \mathsf{ s.t. } (u[\cdot], a[\cdot]) \in \mathcal{N}^{\cdot} arpi(\cdot) \}.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\begin{array}{l} \text{Prove that} \\ y \geq \varpi(t,x) \Leftrightarrow Y_{t,x,y}^{\mathfrak{u}[\vartheta],\vartheta}(\theta) \geq \varpi(\theta,X_{t,x}^\vartheta(\theta)) \end{array}$

(when X does not depend on \mathfrak{u})

 $\varpi(t,x) := \inf\{y : \exists \ \mathfrak{u} \in \mathfrak{U} \text{ s. t. } Y_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\vartheta}(T)) \text{ a.s. } \forall \ \vartheta \in \mathcal{V}\}$

ション ふゆ く 山 マ ふ し マ うくの

 $\begin{array}{l} \text{Prove that} \\ y \geq \varpi(t,x) \Leftrightarrow Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,x,y}(\theta) \geq \varpi(\theta,X^\vartheta_{t,x}(\theta)) \end{array}$

(when X does not depend on \mathfrak{u})

 $\varpi(t,x) := \inf\{y : \exists \ \mathfrak{u} \in \mathfrak{U} \text{ s. t. } Y_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\vartheta}(T)) \text{ a.s. } \forall \ \vartheta \in \mathcal{V}\}$

(日) (伊) (日) (日) (日) (0) (0)

Expected loss case : play with the regularity of the constraint in expectation form. Not possible here.

 $\begin{array}{l} \text{Prove that} \\ y \geq \varpi(t,x) \Leftrightarrow Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,x,y}(\theta) \geq \varpi(\theta,X^\vartheta_{t,x}(\theta)) \end{array}$

(when X does not depend on \mathfrak{u})

 $\varpi(t,x) := \inf\{y : \exists \ \mathfrak{u} \in \mathfrak{U} \text{ s. t. } Y_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^{\vartheta}(T)) \text{ a.s. } \forall \ \vartheta \in \mathcal{V}\}$

No adverse control case : measurable selection argument which requires to have a Polish space structure. Not possible here.

 $\begin{array}{l} \text{Prove that} \\ y \geq \varpi(t,x) \Leftrightarrow Y^{\mathfrak{u}[\vartheta],\vartheta}_{t,x,y}(\theta) \geq \varpi(\theta,X^\vartheta_{t,x}(\theta)) \end{array}$

(when X does not depend on \mathfrak{u})

 $\varpi(t,x) := \inf\{y : \exists \ \mathfrak{u} \in \mathfrak{U} \ \mathsf{s. t. } \ Y_{t,z}^{\mathfrak{u}[\vartheta],\vartheta}(T) \geq g(X_{t,x}^\vartheta(T)) \ \mathsf{a.s.} \ \forall \ \vartheta \in \mathcal{V}\}$

Main difficulty : no smoothness and no measurable selection argument possible.

GDP1 - "Easy part"

 \Box GDP1 Assume that $y > \varpi(t, x)$. Then, there exists $\mathfrak{u} \in \mathfrak{U}$ such that

$$Y_{t,x,y}^{\mathfrak{u},artheta}(heta)\geq arpi_*(heta,X_{t,x}^{artheta}(heta)) ext{ a.e. } orall artheta\in\mathcal{V}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?
GDP1 - "Easy part"

 \Box GDP1 Assume that $y > \varpi(t, x)$. Then, there exists $\mathfrak{u} \in \mathfrak{U}$ such that

$$Y_{t,x,y}^{\mathfrak{u},artheta}(heta)\geq arpi_*(heta,X_{t,x}^artheta(heta)) ext{ a.e. } orall \, artheta\in\mathcal{V}.$$

This implies as before that ϖ_{\ast} is a supersolution of

$$H\varpi_* := \inf_{v \in V} \sup_{u \in \mathcal{N}^v \varpi_*} (\mu_Y(\cdot, \varpi_*, u, v) - \mathcal{L}^v_X \varpi_*) \ge 0$$

where

$$\mathcal{N}^{\mathbf{v}}\varpi_* := \{ u \in U : \sigma_{\mathbf{Y}}(\cdot, \varpi_*, u, v) = \sigma_{\mathbf{X}}(\cdot, v)D\varpi_* \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \square Assume that : $\varpi_*({\mathcal T},\cdot)\geq g$ and that the operator

$$H\varphi := \inf_{\mathbf{v}\in V} \sup_{u\in\mathcal{N}^{\mathbf{v}}\varphi} (\mu_{\mathbf{Y}}(\cdot,\varphi,u,\mathbf{v}) - \mathcal{L}_{\mathbf{X}}^{\mathbf{v}}\varphi)$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

is concave in φ (as a function of φ , $D\varphi$ and $D^2\varphi$).

 \square Assume that : $\varpi_*({\mathcal T},\cdot)\geq g$ and that the operator

$$H\varphi := \inf_{\mathbf{v}\in V} \sup_{u\in\mathcal{N}^{\mathbf{v}}\varphi} (\mu_{\mathbf{Y}}(\cdot,\varphi,u,\mathbf{v}) - \mathcal{L}_{\mathbf{X}}^{\mathbf{v}}\varphi)$$

is concave in φ (as a function of φ , $D\varphi$ and $D^2\varphi$).

Then, for each compact set *B* and $\eta > 0$, one can construct (under Lipschitz continuity assumptions) a smooth supersolution *w* of

$$Hw \ge 0$$
 on $[0, T) \times \mathbb{R}^d$ and $w \ge g$ on $\{T\} \times \mathbb{R}^d$

satisfying

$$w \leq \varpi + \eta$$
 on B .

 \Box Assume that : $arpi_*(\mathcal{T},\cdot)\geq g$ and that the operator

$$H\varphi := \inf_{\mathbf{v}\in V} \sup_{u\in\mathcal{N}^{\mathbf{v}}\varphi} (\mu_{\mathbf{Y}}(\cdot,\varphi,u,\mathbf{v}) - \mathcal{L}_{\mathbf{X}}^{\mathbf{v}}\varphi)$$

is concave in φ (as a function of φ , $D\varphi$ and $D^2\varphi$).

Then, for each compact set B and $\eta > 0$, one can construct (under Lipschitz continuity assumptions) a smooth supersolution w of

$$\mathit{Hw} \geq 0$$
 on $[0, T) imes \mathbb{R}^d$ and $\mathit{w} \geq \mathit{g}$ on $\{T\} imes \mathbb{R}^d$

satisfying

$$w \leq \varpi + \eta$$
 on B .

Slight extension of the smoothing technic of Krylov : Provide a supersolution with shaked coefficients obtained by studying a suitable optimal control of BSDEs problem. Then integrate with a smooth kernel as in Ishii. Need stability for the family of BSDEs.

□ Assume further that : There exist a unique solution $\hat{u}(x, y, \rho, v)$ to $\sigma_Y(x, y, u, v) = \rho$ for all y, v, ρ .

□ Assume further that : There exist a unique solution $\hat{u}(x, y, \rho, v)$ to $\sigma_Y(x, y, u, v) = \rho$ for all y, v, ρ .

Then, (under Lipschitz continuity assumptions) use a verification ensuring that if

$$Y^{\mathfrak{u}_o,artheta}_{t,x,y}(heta)\geq w(heta,X^{artheta}_{t,x}(heta)) \;\; ext{ a.e. } orall \; artheta\in\mathcal{V},$$

□ Assume further that : There exist a unique solution $\hat{u}(x, y, \rho, v)$ to $\sigma_Y(x, y, u, v) = \rho$ for all y, v, ρ .

Then, (under Lipschitz continuity assumptions) use a verification ensuring that if

$$Y^{\mathfrak{u}_{o},\vartheta}_{t,x,y}(\theta)\geq w(\theta,X^{\vartheta}_{t,x}(\theta)) \ \, \textit{a.e.} \ \, \forall \ \, \vartheta\in\mathcal{V},$$

then since

$$\mu_{Y}(\cdot, w, \hat{u}(\cdot, w, \sigma_{X}(\cdot, v)Dw, v), v) - \mathcal{L}_{X}^{v}w \geq 0 \text{ and } w(T, \cdot) \geq g,$$

□ Assume further that : There exist a unique solution $\hat{u}(x, y, \rho, v)$ to $\sigma_Y(x, y, u, v) = \rho$ for all y, v, ρ .

Then, (under Lipschitz continuity assumptions) use a verification ensuring that if

$$Y^{\mathfrak{u}_{o},\vartheta}_{t,x,y}(\theta)\geq w(\theta,X^{\vartheta}_{t,x}(\theta)) \ \, \textit{a.e.} \ \, \forall \ \, \vartheta\in\mathcal{V},$$

then since

$$\mu_{Y}(\cdot, w, \hat{u}(\cdot, w, \sigma_{X}(\cdot, v)Dw, v), v) - \mathcal{L}_{X}^{v}w \geq 0 \text{ and } w(T, \cdot) \geq g,$$

the Markovian strategy defined by

$$\bar{\mathfrak{u}}[\vartheta] := \mathfrak{u}_{o} \mathbf{1}_{[t,\theta)} + \mathbf{1}_{[\theta,T]} \hat{u}(Z_{t,x,y}^{\bar{\mathfrak{u}},\vartheta}, [\sigma_{X}(\cdot,\vartheta)D_{X}w](\cdot,X_{t,x}^{\vartheta}),\vartheta)$$

□ Assume further that : There exist a unique solution $\hat{u}(x, y, \rho, v)$ to $\sigma_Y(x, y, u, v) = \rho$ for all y, v, ρ .

Then, (under Lipschitz continuity assumptions) use a verification ensuring that if

$$Y^{\mathfrak{u}_{o},\vartheta}_{t,x,y}(\theta)\geq w(\theta,X^{\vartheta}_{t,x}(\theta)) \ \, \textit{a.e.} \ \, \forall \ \, \vartheta\in\mathcal{V},$$

then since

$$\mu_{Y}(\cdot, w, \hat{u}(\cdot, w, \sigma_{X}(\cdot, v)Dw, v), v) - \mathcal{L}_{X}^{v}w \geq 0 \text{ and } w(T, \cdot) \geq g,$$

the Markovian strategy defined by

$$\bar{\mathfrak{u}}[\vartheta] := \mathfrak{u}_o \mathbf{1}_{[t,\theta)} + \mathbf{1}_{[\theta,T]} \hat{u}(Z_{t,x,y}^{\bar{\mathfrak{u}},\vartheta}, [\sigma_X(\cdot,\vartheta)D_Xw](\cdot,X_{t,x}^\vartheta),\vartheta)$$

is such that

$$Y_{t,x,y}^{\overline{\mathfrak{u}},artheta}(\mathcal{T})\geq g(X_{t,x}^{artheta}(\mathcal{T})) \;\; \textit{a.e.} \; \forall \; artheta\in\mathcal{V}.$$

□ **GDP2** Let ϕ be a test function for ϖ^* at (t, x). Let $\eta > 0$ be such that

$$Y^{\mathfrak{u}_{o},\vartheta}_{t,x,y}(\theta)\geq \varpi(\theta,X^{\vartheta}_{t,x}(\theta))+\eta \ \, \textit{a.e.} \ \, \forall \ \, \vartheta\in\mathcal{V},$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

where θ is the first exit time from an open ball $\mathcal{O} \ni (t, x)$. Then, $y \ge \varpi(t, x)$.

□ **GDP2** Let ϕ be a test function for ϖ^* at (t, x). Let $\eta > 0$ be such that

$$Y^{\mathfrak{u}_{\mathfrak{o}},\vartheta}_{t,x,y}(\theta) \geq \varpi(\theta, X^{\vartheta}_{t,x}(\theta)) + \eta \ \, \textit{a.e.} \ \, \forall \ \, \vartheta \in \mathcal{V},$$

where θ is the first exit time from an open ball $\mathcal{O} \ni (t, x)$. Then, $y \ge \varpi(t, x)$.

 $\hfill\square$ Indeed, let w be the smooth supersolution constructed as above so that

$$\varpi + \eta \geq w$$
 on $\partial \mathcal{O}$.

□ **GDP2** Let ϕ be a test function for ϖ^* at (t, x). Let $\eta > 0$ be such that

$$Y^{\mathfrak{u}_{\mathfrak{o}},\vartheta}_{t,\mathsf{x},\mathsf{y}}(\theta) \geq \varpi(\theta,X^{\vartheta}_{t,\mathsf{x}}(\theta)) + \eta \;\; \mathsf{a.e.} \; \forall \; \vartheta \in \mathcal{V},$$

where θ is the first exit time from an open ball $\mathcal{O} \ni (t, x)$. Then, $y \ge \varpi(t, x)$.

 $\hfill\square$ Indeed, let w be the smooth supersolution constructed as above so that

$$\varpi + \eta \geq w$$
 on $\partial \mathcal{O}$.

Then,

$$Y^{\mathfrak{u}_{o},\vartheta}_{t,x,y}(\theta)\geq w(\theta,X^{\vartheta}_{t,x}(\theta)) \ \, \textit{a.e.} \ \, \forall \ \, \vartheta\in\mathcal{V}.$$

From this, we can use the Markovian strategy based on \hat{u} to reach the target at T for all $\vartheta \in \mathcal{V}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\hfill\square$ Hedging under volatility uncertainty.

- $\hfill\square$ Hedging under volatility uncertainty.
- $\hfill\square$ May add uncertainty on the interest rate.

□ Hedging under volatility uncertainty.

 $\hfill\square$ May add uncertainty on the interest rate.

 \Box Can add jumps (with uncertainty on the intensity or the size of the jumps).

□ Hedging under volatility uncertainty.

□ May add uncertainty on the interest rate.

 \Box Can add jumps (with uncertainty on the intensity or the size of the jumps).

Essentially only needs the concavity of the operator which is related to the fact that controlling the volatility imposes the choice of the control.

References

□ B., L. Moreau and M. Nutz. *Stochastic Target Games with Controlled Loss*, AAP, to appear.

□ B. and M. Nutz. Dynamic programming for a class of stochastic target games - Application to hedging under model uncertainty, in preparation.

H.M. Soner and N. Touzi. Dynamic programming for stochastic target problems and geometric flows, JEMS, 4, 201-236, 2002.
B., R. Elie and N. Touzi. Stochastic Target problems with controlled loss, SIAM SICON, 48 (5), 3123-3150, 2009.
L. Moreau. Stochastic target problems with controlled loss in a jump diffusion model, SIAM SICON, 49, 2577-2607, 2011.

うして ふゆう ふほう ふほう うらつ