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Motivation

O Given (2, F), a family P of probability measures and S = (S;):<7 a
d-dimensional process for stock prices.

O Give necessary and sufficient conditions for No-Arbitrage in terms of
Martingale Measures.

O Show existence of minimal super-hedging strategy.

O Provide a dual formulation for super-hedging prices.



Classical Framework

O Only one reference measure P = {P,} which fixes the null sets.
O No-Arbitrage NA(P,) : Y7 >0 Py-a.s. = Y7 =0 Py-ass.

O NA(P,)e Q(P,) :={Q ~ P, : Sis a Q-mart.} # ().

O Completeness < |Q(P,)| = 1.

O There exists a minimal super-hedging strategy.

O Super-hedging price of f is sup{Eq|[f], Q@ € Q(P,)}.
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O The family P is made of (possibly) singular measures P which fix the
polar sets : A C A" with P[A] =0V P € P, ie. A=0 P-gs.

= it stands for model uncertainty.

Example : all Dirac masses on Q = (R¥)"= Model free point of view.
O A huge related literature : see below.

O Questions :

- What is the good notion of arbitrage?

- Which duality do we look for?
- What minimal conditions can we afford ?
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- [ finite.
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Dual formulation and super-hedging price

m(f) = inf{xeR:I(H,h)eH xR st.x+(H+S)r +hg>Ff-qs.}
= supEq[f]
Q

O On which set do we take the maximum sup{Egq[f], Q €77}
- Martingales measures on (2, F)
- Linear functionals on L(P) generated by sup{Ep[| - |], P € P} (Nutz

2013).
- A family of mart. measures O with the same polar sets : Q ~ P.



The one period case

(©2, F) a measurable price. AS a random variable. P a convex set of
measures on (£, F). No option for static hedging.
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O No-Arbitrage condition : Condition NA(P) holds if for all H € H
HAS >0 P-gs. implies HAS =0 P-gs.
O Martingale measures :
Q={Q < P: Qis a martingale measure}.

O First Fundamental Theorem : The following are equivalent :
(i) NA(P) holds.

(ii) For all P € P there exists @ € Q such that P <« Q.

(ii’) P and Q have the same polar sets.

Rem : These are the usual equivalent conditions when P = {P,}.
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Finite dimensional separation on R :

Step 1 : Assume d =1 and that Ep[AS] > 0.
NA(P) implies that 3 P’ < P s.t. Ep/[AS] < 0.
Do a convex combination to find P < Q <« P + P’.

Step 2 : For d > 1. Show that

0 € ri{ ER[AS]: P < R < P, ER[|AS]] < oo}.

If not : 0 < yAS = 0=yAS.

And reduce the dimension by one until the case d = 1 is reached.
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O Theorem : Let NA(P) hold and let f be a random variable. Then

sup Eq[f] = n(f) :=inf{x: IH € R? s.t. x + HAS > f P-q.s.}.
Qe

Moreover, m(f) > —oo and 3 H s.t. w(f) + HAS > f P-q.s.

O Existence of the cheapest super-hedging strategy holds by the
argument in Kabanov and Stricker's Teacher’s Note (even with finitely
many options and T periods). One has the closure property for the
‘P-q.s.-convergence. Not true with infinitely many options in general.

O Again, one can not use the usual separation argument based on the
closedness of the set of super-hedgeable claims. We do neither have
compactness on Q (role plaid by the power option in Acciaio et al. 2013).



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, < Pst. Eg|AS] =0 and Eg[f] — 0.



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < o < yAS + zf.



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. Thisimplies 0 < a <yAS+zf. lfz=—-1:f < —a+yAS



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < a < yAS +zf. If z€ {0,1} : 0 < yAS + HAS



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, < Pst. Eg|AS] =0 and Eg[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < o < yAS + zf.

Step 2 : Correct the approximating martingale measures



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER,, [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < o < yAS + zf.

Step 2 : Correct the approximating martingale measures
1. Choose R, << P s.t. Eg,[AS] -0 and Eg,[f] — 0.



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < o < yAS + zf.

Step 2 : Correct the approximating martingale measures
1. Choose R, << P s.t. Eg,[AS] -0 and Eg,[f] — 0.
2. One has 0 € ri{ ER[AS] : P < R << P, Eg[|AS| + |f]] < oo}



Step 1 : Construct approximating martingale measures
Assume 7(f) = 0 and show that

IR, K P s.t. ER" [AS] — 0 and ER"[f] — 0.

1. If not : 0 ¢ cl{ER[(AS,f)] : R << P, Eg[|AS| + |f]] < o0}
2. This implies 0 < o < yAS + zf.

Step 2 : Correct the approximating martingale measures

1. Choose R, << P s.t. Eg,[AS] -0 and Eg,[f] — 0.

2. One has 0 € ri{ ER[AS] : P < R << P, Eg[|AS| + |f]] < oo}
3. We can correct in R, = (1 =Ap)Rn + AaR) st

Ex [AS]=0 and Eg [f] 0= ().



The multiperiod case with options for static hedging

Q={Q <« P: Qisamart. measure and Eg[g'] =0 for i =1,... [I|}.

Theorem : The following are equivalent :

(i) NA(P) holds.
(ii) For all P € P there exists Q € Q such that P <« Q.
(i’) P and Q have the same polar sets.

Theorem : Let NA(P) hold and let f : Q — R be upper semianalytic.
Then,

m(f) :=inf{x e R: J(H, h) € HxRI s.t. x4(H » S)r+hg > f P-qs.}
admits existence and satisfies

7(f) = sup Egl[f] € (—o0, 0]
QeQ
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Strategy of proof and Assumptions

O One argue on one step models and then try to glue the steps
together. This requires some measurable selection arguments.

This is feasible under the assumptions :

- Q= Q] with Q; a Polish space.
- F¢ is the universal completion of B(Q}). F = Fr.
- (St)e<T are Borel, possibly not adapted.

-P={P=Po®--®@Pr_1: P(w) € Pe(w)}.
- The w — P¢(w) have analytic graphs.

- Options for static hedging are assumed Borel.
- Claims to super-hedge are upper-semianalytic.
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Second Fundamental Theorem

O As in the dominated setting it follows from the super-hedging theorem.

Theorem : Let NA(P) hold and let f : Q — R be upper semianalytic.
The following are equivalent :

(i) f is replicable, i.e. w(f) + (H * S)T = f P-q.s.
(i) @ — Eglf] is constant (and finite) on Q.
(i) VPePIQeQst. Pk Q and Eg[f] = n(f).

Moreover, the market is complete (for Borel claims) if and only if Q is a
singleton.



Application to Optional Decomposition

O Theorem : Let NA(P) hold and let V be an adapted process such
that V; is upper semianalytic and in L}(Q)V Q € Q.

The following are equivalent :

- V is a supermartingale under each Q € Q.

- There exist a predictable H and an adapted increasing process K with
Ko = 0 such that

Vt: V0+(H'S)t*Kt P-q.S.7 tG{O,l,,T}

Rem : The decomposition can not be obtained by hand as for continuous
processes, but we have discrete time (measurable selection).
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Connection to Martingale Inequalities

O Take Q1 =RY, P be generated by all Dirac Mass and let S be the
canonical process.

O Then, NA(P) holds for the universal completion of the raw filtration.

O One can apply the super-hedging theorem :
Assume that

Ep[f(S1,---,57)] <0 for all martingale measure P on Q7.

Then, there exists universally measurable maps Hy, ..., Hr such that

-
=

f(xi, - ,x7) < Hep1(xo, - xe)(xer1 — xe) Vx € (RY)THL
t

Il
o

Compare with Acciaio, Beiglbdck, Penkner and Schachermayer (2013).



