Arbitrage and Duality in Nondominated Discrete-Time Models

B. Bouchard

Ceremade - Univ. Paris-Dauphine, and, Crest - Ensae-ParisTech

Frontiers in Financial Mathematics, Dublin, June 2013

Joint work M. Nutz (Columbia)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Box Given (Ω, \mathcal{F}) , a family \mathcal{P} of probability measures and $S = (S_t)_{t \leq T}$ a *d*-dimensional process for stock prices.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box Given (Ω, \mathcal{F}) , a family \mathcal{P} of probability measures and $S = (S_t)_{t \leq T}$ a *d*-dimensional process for stock prices.

□ Give necessary and sufficient conditions for No-Arbitrage in terms of Martingale Measures.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \Box Given (Ω, \mathcal{F}) , a family \mathcal{P} of probability measures and $S = (S_t)_{t \leq T}$ a *d*-dimensional process for stock prices.

□ Give necessary and sufficient conditions for No-Arbitrage in terms of Martingale Measures.

ション ふゆ アメリア メリア しょうくしゃ

 \Box Show existence of minimal super-hedging strategy.

 \Box Given (Ω, \mathcal{F}) , a family \mathcal{P} of probability measures and $S = (S_t)_{t \leq T}$ a *d*-dimensional process for stock prices.

□ Give necessary and sufficient conditions for No-Arbitrage in terms of Martingale Measures.

ション ふゆ アメリア メリア しょうくしゃ

□ Show existence of minimal super-hedging strategy.

 \Box Provide a dual formulation for super-hedging prices.

Classical Framework

- \Box Only one reference measure $\mathcal{P} = \{P_o\}$ which fixes the null sets.
- □ No-Arbitrage NA(P_o) : $Y_T \ge 0$ P_o -a.s. \Rightarrow $Y_T = 0$ P_o -a.s.
- $\Box \mathsf{NA}(P_o) \Leftrightarrow \mathcal{Q}(P_o) := \{Q \sim P_o : S \text{ is a } Q \text{-mart.}\} \neq \emptyset.$
- \Box Completeness $\Leftrightarrow |\mathcal{Q}(P_o)| = 1.$
- □ There exists a minimal super-hedging strategy.
- □ Super-hedging price of f is sup{ $\mathbb{E}_Q[f]$, $Q \in Q(P_o)$ }.

The non-dominated case

□ The family \mathcal{P} is made of (possibly) singular measures P which fix the polar sets : $A \subset A'$ with $P[A'] = 0 \forall P \in \mathcal{P}$, i.e. $A = \emptyset \mathcal{P}$ -q.s.

 \Rightarrow it stands for model uncertainty.

Example : all Dirac masses on $\Omega = (\mathbb{R}^d)^T \Rightarrow$ Model free point of view.

ション ふゆ アメリア メリア しょうくしゃ

The non-dominated case

□ The family \mathcal{P} is made of (possibly) singular measures P which fix the polar sets : $A \subset A'$ with $P[A'] = 0 \forall P \in \mathcal{P}$, i.e. $A = \emptyset \mathcal{P}$ -q.s.

 \Rightarrow it stands for model uncertainty.

Example : all Dirac masses on $\Omega = (\mathbb{R}^d)^T \Rightarrow$ Model free point of view.

ション ふゆ アメリア メリア しょうくしゃ

 \Box A huge related literature : see below.

The non-dominated case

□ The family \mathcal{P} is made of (possibly) singular measures P which fix the polar sets : $A \subset A'$ with $P[A'] = 0 \forall P \in \mathcal{P}$, i.e. $A = \emptyset \mathcal{P}$ -q.s.

 \Rightarrow it stands for model uncertainty.

Example : all Dirac masses on $\Omega = (\mathbb{R}^d)^T \Rightarrow$ Model free point of view.

ション ふゆ く 山 マ ふ し マ うくの

 \Box A huge related literature : see below.

 $\hfill\square$ Questions :

- What is the good notion of arbitrage?
- Which duality do we look for?
- What minimal conditions can we afford?

□ Different possibilities :

• $Y_T \ge 0 \mathcal{P}$ -q.s. and $P[Y_T > 0] > 0 \forall P \in \mathcal{P}$ is impossible. One has to be lucky whatever the true model is.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

□ Different possibilities :

• $Y_T \ge 0 \mathcal{P}$ -q.s. and $P[Y_T > 0] > 0 \forall P \in \mathcal{P}$ is impossible. One has to be lucky whatever the true model is.

• $Y_T \ge 0$ \mathcal{P} -q.s. and $P[Y_T > 0] > 0$ for some $P \in \mathcal{P}$ is impossible. One has to be lucky on the model as well.(e.g. Departs and Martini 04 for \mathcal{P} generated by Dirac Mass)

ション ふゆ アメリア メリア しょうめん

□ Different possibilities :

• $Y_T \ge 0 \mathcal{P}$ -q.s. and $P[Y_T > 0] > 0 \forall P \in \mathcal{P}$ is impossible. One has to be lucky whatever the true model is.

• $Y_T \ge 0$ \mathcal{P} -q.s. and $P[Y_T > 0] > 0$ for some $P \in \mathcal{P}$ is impossible. One has to be lucky on the model as well.(e.g. Departs and Martini 04 for \mathcal{P} generated by Dirac Mass)

ション ふゆ アメリア メリア しょうめん

• $Y_T(\omega) > 0$ for all ω is impossible (Acciaio, Beiglböck, Penkner and Schachermayer 2013).

□ Different possibilities :

• $Y_T \ge 0 \mathcal{P}$ -q.s. and $P[Y_T > 0] > 0 \forall P \in \mathcal{P}$ is impossible. One has to be lucky whatever the true model is.

• $Y_T \ge 0 \mathcal{P}$ -q.s. and $P[Y_T > 0] > 0$ for some $P \in \mathcal{P}$ is impossible. One has to be lucky on the model as well. (e.g. Deparis and Martini 04 for \mathcal{P} generated by Dirac Mass)

• $Y_T(\omega) > 0$ for all ω is impossible (Acciaio, Beiglböck, Penkner and Schachermayer 2013).

ション ふゆ アメリア メリア しょうめん

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

□ If not assumed, there are different possibilities :

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

□ If not assumed, there are different possibilities : - $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

ション ふゆ アメリア メリア しょうめん

 $\hfill\square$ If not assumed, there are different possibilities :

- $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).
- \exists a family \mathcal{Q} with the same polar sets : $\mathcal{Q} \sim \mathcal{P}$.

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

 $\hfill\square$ If not assumed, there are different possibilities :

- $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).
- \exists a family \mathcal{Q} with the same polar sets : $\mathcal{Q} \sim \mathcal{P}$.

 $\hfill\square$ One can ask to be consistent with the prices of some options :

ション ふゆ アメリア メリア しょうめん

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

 $\hfill\square$ If not assumed, there are different possibilities :

- $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).

- \exists a family \mathcal{Q} with the same polar sets : $\mathcal{Q} \sim \mathcal{P}$.

One can ask to be consistent with the prices of some options :
All calls : Embedding point of view of Hobson, Obloj, Cox,..., and Mass Transport approach.

ション ふゆ アメリア メリア しょうめん

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

 $\hfill\square$ If not assumed, there are different possibilities :

- $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).
- \exists a family \mathcal{Q} with the same polar sets : $\mathcal{Q} \sim \mathcal{P}$.

 $\hfill\square$ One can ask to be consistent with the prices of some options :

- All calls : Embedding point of view of Hobson, Obloj, Cox,..., and Mass Transport approach.

- I infinite + a power option (or suitable calls) : Acciaio et al. 2013.

 $\hfill\square$ Most of the time assumed, or $\mathcal P$ is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon, Touzi, Tan, Dolynski, Soner, etc...

- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï, Nutz, Neufeld, Kupper, Peng, etc..

 $\hfill\square$ If not assumed, there are different possibilities :

- $\exists Q \text{ on } (\Omega, \mathcal{F})$ (e.g. Acciaio et al. 2013).
- \exists a family Q with the same polar sets : $Q \sim P$.

 $\hfill\square$ One can ask to be consistent with the prices of some options :

- All calls : Embedding point of view of Hobson, Obloj, Cox,..., and Mass Transport approach.

- I infinite + a power option (or suitable calls) : Acciaio et al. 2013.
- / finite.

$$\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \text{ -q.s.} \right\}$$
$$= \sup_Q \mathbb{E}_Q[f]$$

$$\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \text{ -q.s.} \right\}$$
$$= \sup_Q \mathbb{E}_Q[f]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

 \Box On which set do we take the maximum sup{ $\mathbb{E}_Q[f], Q \in ??$ }

$$\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \text{ -q.s.} \right\}$$
$$= \sup_Q \mathbb{E}_Q[f]$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

 $\ \Box \$ On which set do we take the maximum $\sup\{\mathbb{E}_Q[f], \ Q\in ??\}$

- Martingales measures on (Ω, \mathcal{F})

$$\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \text{ -q.s.} \right\}$$
$$= \sup_Q \mathbb{E}_Q[f]$$

ション ふゆ アメリア メリア しょうめん

 \Box On which set do we take the maximum sup{ $\mathbb{E}_Q[f], Q \in ??$ }

- Martingales measures on (Ω, \mathcal{F})

- Linear functionals on $L^1(\mathcal{P})$ generated by sup $\{\mathbb{E}_P[|\cdot|], P \in \mathcal{P}\}$ (Nutz 2013).

$$\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \text{ -q.s.} \right\}$$
$$= \sup_Q \mathbb{E}_Q[f]$$

ション ふゆ アメリア メリア しょうめん

- \Box On which set do we take the maximum sup{ $\mathbb{E}_Q[f], Q \in ??$ }
- Martingales measures on (Ω, \mathcal{F})
- Linear functionals on $L^1(\mathcal{P})$ generated by sup $\{\mathbb{E}_P[|\cdot|], P \in \mathcal{P}\}$ (Nutz 2013).
- A family of mart. measures $\mathcal Q$ with the same polar sets : $\mathcal Q\sim \mathcal P.$

The one period case

 (Ω, \mathcal{F}) a measurable price. ΔS a random variable. \mathcal{P} a convex set of measures on (Ω, \mathcal{F}) . No option for static hedging.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

First Fundamental Theorem

□ No-Arbitrage condition : Condition $NA(\mathcal{P})$ holds if for all $H \in \mathcal{H}$

 $H\Delta S \ge 0$ \mathcal{P} -q.s. implies $H\Delta S = 0$ \mathcal{P} -q.s.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

First Fundamental Theorem

□ No-Arbitrage condition : Condition $NA(\mathcal{P})$ holds if for all $H \in \mathcal{H}$

 $H\Delta S \ge 0$ \mathcal{P} -q.s. implies $H\Delta S = 0$ \mathcal{P} -q.s.

□ Martingale measures :

 $Q = \{Q \ll P : Q \text{ is a martingale measure}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First Fundamental Theorem

□ No-Arbitrage condition : Condition $NA(\mathcal{P})$ holds if for all $H \in \mathcal{H}$

 $H\Delta S \ge 0$ \mathcal{P} -q.s. implies $H\Delta S = 0$ \mathcal{P} -q.s.

Martingale measures :

 $\mathcal{Q} = \{ Q \lll \mathcal{P} : Q \text{ is a martingale measure} \}.$

□ First Fundamental Theorem : The following are equivalent : (i) $NA(\mathcal{P})$ holds. (ii) For all $P \in \mathcal{P}$ there exists $Q \in \mathcal{Q}$ such that $P \ll Q$. (ii') \mathcal{P} and \mathcal{Q} have the same polar sets.

Rem : These are the usual equivalent conditions when $\mathcal{P} = \{P_o\}$.

ション ふゆ アメリア メリア しょうめん

□ Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

ション ふゆ アメリア メリア しょうめん

□ Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d :

ション ふゆ アメリア メリア しょうめん

 \square Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d : Step 1 : Assume d = 1 and that $\mathbb{E}_P[\Delta S] > 0$.

うして ふゆう ふほう ふほう うらつ

□ Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d : Step 1 : Assume d = 1 and that $\mathbb{E}_P[\Delta S] > 0$. $NA(\mathcal{P})$ implies that $\exists P' \ll \mathcal{P} \text{ s.t. } \mathbb{E}_{P'}[\Delta S] < 0$.
□ One can not use the usual separation argument based on the closedness of the set of super-hedgeable claims. Could show closedness in $L^1(\mathcal{P})$ (generated by sup{ $\mathbb{E}_P[|\cdot|], P \in \mathcal{P}$ }) but would have to work with $(L^1(\mathcal{P}))^*$ (Nutz 2013 and talk of M. Kupper).

ション ふゆ アメリア メリア しょうめん

 \square Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d : Step 1 : Assume d = 1 and that $\mathbb{E}_P[\Delta S] > 0$. $NA(\mathcal{P})$ implies that $\exists P' \ll \mathcal{P}$ s.t. $\mathbb{E}_{P'}[\Delta S] < 0$. Do a convex combination to find $P \ll Q \ll P + P'$. □ One can not use the usual separation argument based on the closedness of the set of super-hedgeable claims. Could show closedness in $L^1(\mathcal{P})$ (generated by sup{ $\mathbb{E}_P[|\cdot|], P \in \mathcal{P}$ }) but would have to work with $(L^1(\mathcal{P}))^*$ (Nutz 2013 and talk of M. Kupper).

(日) (伊) (日) (日) (日) (0) (0)

 Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d : Step 1 : Assume d = 1 and that $\mathbb{E}_P[\Delta S] > 0$. $NA(\mathcal{P})$ implies that $\exists P' \ll \mathcal{P}$ s.t. $\mathbb{E}_{P'}[\Delta S] < 0$. Do a convex combination to find $P \ll Q \ll P + P'$.

Step 2 : For d > 1. Show that $0 \in ri\{E_R[\Delta S] : P \ll R \ll \mathcal{P}, E_R[|\Delta S|] < \infty\}.$ □ One can not use the usual separation argument based on the closedness of the set of super-hedgeable claims. Could show closedness in $L^1(\mathcal{P})$ (generated by sup{ $\mathbb{E}_P[|\cdot|], P \in \mathcal{P}$ }) but would have to work with $(L^1(\mathcal{P}))^*$ (Nutz 2013 and talk of M. Kupper).

Our approach is close to Dalang, Morton and Willinger (90) and Rasonyi (09).

Finite dimensional separation on \mathbb{R}^d : Step 1 : Assume d = 1 and that $\mathbb{E}_P[\Delta S] > 0$. $NA(\mathcal{P})$ implies that $\exists P' \ll \mathcal{P}$ s.t. $\mathbb{E}_{P'}[\Delta S] < 0$. Do a convex combination to find $P \ll Q \ll P + P'$.

Step 2 : For d > 1. Show that $0 \in ri\{E_R[\Delta S] : P \ll R \ll \mathcal{P}, E_R[|\Delta S|] < \infty\}.$ If not $: 0 \leq y\Delta S \Rightarrow 0 = y\Delta S.$ And reduce the dimension by one until the case d = 1 is reached.

Super-hedging Theorem

 \Box Theorem : Let $NA(\mathcal{P})$ hold and let f be a random variable. Then

 $\sup_{Q\in\mathcal{Q}}E_Q[f]=\pi(f):=\inf\left\{x:\ \exists\ H\in\mathbb{R}^d\ \text{s.t.}\ x+H\Delta S\geq f\ \mathcal{P}\text{-q.s.}\right\}.$

Moreover, $\pi(f) > -\infty$ and $\exists H \text{ s.t. } \pi(f) + H\Delta S \ge f \mathcal{P}\text{-q.s.}$

Super-hedging Theorem

 \Box Theorem : Let $NA(\mathcal{P})$ hold and let f be a random variable. Then

 $\sup_{Q\in\mathcal{Q}}E_Q[f]=\pi(f):=\inf\left\{x:\ \exists\ H\in\mathbb{R}^d\ \text{s.t.}\ x+H\Delta S\geq f\ \mathcal{P}\text{-q.s.}\right\}.$

Moreover, $\pi(f) > -\infty$ and $\exists H \text{ s.t. } \pi(f) + H\Delta S \ge f \mathcal{P}\text{-q.s.}$

 \Box Existence of the cheapest super-hedging strategy holds by the argument in Kabanov and Stricker's *Teacher's Note* (even with finitely many options and *T* periods). One has the closure property for the \mathcal{P} -q.s.-convergence. Not true with infinitely many options in general.

Super-hedging Theorem

 \Box Theorem : Let $NA(\mathcal{P})$ hold and let f be a random variable. Then

 $\sup_{Q\in\mathcal{Q}}E_Q[f]=\pi(f):=\inf\left\{x:\ \exists\ H\in\mathbb{R}^d\ \text{s.t.}\ x+H\Delta S\geq f\ \mathcal{P}\text{-q.s.}\right\}.$

Moreover, $\pi(f) > -\infty$ and $\exists H \text{ s.t. } \pi(f) + H\Delta S \ge f \mathcal{P}\text{-q.s.}$

 \Box Existence of the cheapest super-hedging strategy holds by the argument in Kabanov and Stricker's *Teacher's Note* (even with finitely many options and *T* periods). One has the closure property for the \mathcal{P} -q.s.-convergence. Not true with infinitely many options in general.

 \Box Again, one can not use the usual separation argument based on the closedness of the set of super-hedgeable claims. We do neither have compactness on Q (role plaid by the *power option* in Acciaio et al. 2013).

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $\exists R_n \ll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$.

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$. If $z = -1 : f \le -\alpha + y\Delta S$

$$\exists R_n \ll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

ション ふゆ アメリア メリア しょうめん

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$. If $z \in \{0, 1\} : 0 < y\Delta S + H\Delta S$

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$.

Step 2 : Correct the approximating martingale measures

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$.

Step 2 : Correct the approximating martingale measures 1. Choose $R_n \ll \mathcal{P}$ s.t. $E_{R_n}[\Delta S] \to 0$ and $E_{R_n}[f] \to 0$.

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

うして ふゆう ふほう ふほう うらつ

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$.

Step 2 : Correct the approximating martingale measures 1. Choose $R_n \ll \mathcal{P}$ s.t. $E_{R_n}[\Delta S] \to 0$ and $E_{R_n}[f] \to 0$. 2. One has $0 \in ri\{E_R[\Delta S] : P \ll R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$.

$$\exists R_n \lll \mathcal{P} \text{ s.t. } E_{R_n}[\Delta S] \to 0 \text{ and } E_{R_n}[f] \to 0.$$

1. If not : $0 \notin cl\{E_R[(\Delta S, f)] : R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$ 2. This implies $0 < \alpha \le y\Delta S + zf$.

Step 2 : Correct the approximating martingale measures 1. Choose $R_n \ll \mathcal{P}$ s.t. $E_{R_n}[\Delta S] \rightarrow 0$ and $E_{R_n}[f] \rightarrow 0$. 2. One has $0 \in ri\{E_R[\Delta S] : P \ll R \ll \mathcal{P}, E_R[|\Delta S| + |f|] < \infty\}$. 3. We can correct in $\tilde{R}_n = (1 - \lambda_n)R_n + \lambda_n R'_n$ s.t.

$$E_{ ilde{R}_{m{n}}}[\Delta S]=0 \quad ext{and} \quad E_{ ilde{R}_{m{n}}}[f] o 0=\pi(f).$$

うして ふゆう ふほう ふほう うらつ

The multiperiod case with options for static hedging

 $\mathcal{Q} = \{ Q \ll \mathcal{P} : Q \text{ is a mart. measure and } E_Q[g^i] = 0 \text{ for } i = 1, \dots, |I| \}.$

Theorem : The following are equivalent : (i) $NA(\mathcal{P})$ holds. (ii) For all $P \in \mathcal{P}$ there exists $Q \in \mathcal{Q}$ such that $P \ll Q$. (ii') \mathcal{P} and \mathcal{Q} have the same polar sets.

Theorem : Let $NA(\mathcal{P})$ hold and let $f : \Omega \to \mathbb{R}$ be upper semianalytic. Then,

 $\pi(f) := \inf \left\{ x \in \mathbb{R} : \exists (H, h) \in \mathcal{H} \times \mathbb{R}^{|I|} \text{ s.t. } x + (H \bullet S)_T + hg \ge f \ \mathcal{P}\text{-q.s.} \right\}$

admits existence and satisfies

$$\pi(f) = \sup_{Q \in \mathcal{Q}} E_Q[f] \in (-\infty, \infty]$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box One argue on one step models and then try to *glue* the steps together. This requires some measurable selection arguments.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \Box One argue on one step models and then try to *glue* the steps together. This requires some measurable selection arguments.

うして ふゆう ふほう ふほう うらつ

 \Box One argue on one step models and then try to *glue* the steps together. This requires some measurable selection arguments.

- $\Omega = \Omega_1^T$ with Ω_1 a Polish space.
- \mathcal{F}_t is the universal completion of $\mathcal{B}(\Omega_1^t)$. $\mathcal{F} = \mathcal{F}_T$.
- $(S_t)_{t \leq T}$ are Borel, possibly not adapted.

うして ふゆう ふほう ふほう うらつ

 \Box One argue on one step models and then try to *glue* the steps together. This requires some measurable selection arguments.

- $\Omega = \Omega_1^T$ with Ω_1 a Polish space.
- \mathcal{F}_t is the universal completion of $\mathcal{B}(\Omega_1^t)$. $\mathcal{F} = \mathcal{F}_T$.
- $(S_t)_{t \leq T}$ are Borel, possibly not adapted.
- $-\mathcal{P} = \{P = P_0 \otimes \cdots \otimes P_{T-1} : P_t(\omega) \in \mathcal{P}_t(\omega)\}.$
- The $\omega \mapsto \mathcal{P}_t(\omega)$ have analytic graphs.

ション ふゆ く 山 マ チャット しょうくしゃ

 \Box One argue on one step models and then try to *glue* the steps together. This requires some measurable selection arguments.

- $\Omega = \Omega_1^T$ with Ω_1 a Polish space.
- \mathcal{F}_t is the universal completion of $\mathcal{B}(\Omega_1^t)$. $\mathcal{F} = \mathcal{F}_T$.
- $(S_t)_{t \leq T}$ are Borel, possibly not adapted.
- $-\mathcal{P} = \{ P = P_0 \otimes \cdots \otimes P_{T-1} : P_t(\omega) \in \mathcal{P}_t(\omega) \}.$
- The $\omega \mapsto \mathcal{P}_t(\omega)$ have analytic graphs.
- Options for static hedging are assumed Borel.
- Claims to super-hedge are upper-semianalytic.

Second Fundamental Theorem

 $\hfill\square$ As in the dominated setting it follows from the super-hedging theorem.

◆□ > < 個 > < E > < E > E 9 < 0</p>

Second Fundamental Theorem

□ As in the dominated setting it follows from the super-hedging theorem.

Theorem : Let $NA(\mathcal{P})$ hold and let $f : \Omega \to \mathbb{R}$ be upper semianalytic. The following are equivalent :

(i)
$$f$$
 is replicable, i.e. $\pi(f) + (H \cdot S)_T = f \mathcal{P}$ -q.s.
(ii) $Q \mapsto E_Q[f]$ is constant (and finite) on \mathcal{Q} .
(ii) $\forall P \in \mathcal{P} \exists Q \in \mathcal{Q}$ s.t. $P \ll Q$ and $E_Q[f] = \pi(f)$.

Moreover, the market is complete (for Borel claims) if and only if Q is a singleton.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Application to Optional Decomposition

□ Theorem : Let $NA(\mathcal{P})$ hold and let V be an adapted process such that V_t is upper semianalytic and in $L^1(Q) \forall Q \in Q$. The following are equivalent :

- V is a supermartingale under each $Q \in Q$.
- There exist a predictable H and an adapted increasing process K with $K_0=0$ such that

$$V_t = V_0 + (H \bullet S)_t - K_t \quad \mathcal{P}\text{-q.s.}, \quad t \in \{0, 1, \dots, T\}.$$

Rem : The decomposition can not be obtained by hand as for continuous processes, but we have discrete time (measurable selection).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Connection to Martingale Inequalities

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \Box Take $\Omega_1 = \mathbb{R}^d$, \mathcal{P} be generated by all Dirac Mass and let S be the canonical process.

Connection to Martingale Inequalities

 \Box Take $\Omega_1 = \mathbb{R}^d$, \mathcal{P} be generated by all Dirac Mass and let S be the canonical process.

 \Box Then, $NA(\mathcal{P})$ holds for the universal completion of the raw filtration.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Connection to Martingale Inequalities

 \Box Take $\Omega_1 = \mathbb{R}^d$, \mathcal{P} be generated by all Dirac Mass and let S be the canonical process.

 \Box Then, $NA(\mathcal{P})$ holds for the universal completion of the raw filtration.

 $\hfill\square$ One can apply the super-hedging theorem : Assume that

 $\mathbb{E}_{P}[f(S_{1}, \cdots, S_{T})] \leq 0$ for all martingale measure P on Ω_{T} .

Then, there exists universally measurable maps H_1, \ldots, H_T such that

$$f(x_1, \cdots, x_T) \leq \sum_{t=0}^{T-1} H_{t+1}(x_0, \ldots, x_t)(x_{t+1} - x_t) \ \forall x \in (\mathbb{R}^d)^{T+1}.$$

Compare with Acciaio, Beiglböck, Penkner and Schachermayer (2013).