Optimal consumption in discrete time financial models with industrial investment opportunities and non-linear returns^{*}

B. Bouchard^{\dagger}

LPMA, University Paris 6

and

Crest, Ensae.

*Joint work with H. Pham

[†]http://felix.proba.jussieu.fr/pageperso/bouchard/bouchard.htm

- Kabanov and Kijima, A consumption-investment problem with production possibilities, preprint 2003.
- Two possibilities :
- 1. Usual investment in a financial market
- 2. Industrial investment : Increase the capital of a company which yields
- a concave return
- Maximize expected utility of consumption in a complete Brownian diffusion model

• Complete market.

- Complete market.
- Strong condition on the (deterministic) return.

- Complete market.
- Strong condition on the (deterministic) return.
- Use a particular no-bankruptcy constraint which implies a separation principle :
- 1. First optimize among the industrial investment policies
- 2. Then find the associated optimal financial investment policy.

• Build up a general model in incomplete market with (possibly) proportional transaction costs

- Build up a general model in incomplete market with (possibly) proportional transaction costs
- Look at the no-arbitrage conditions and closure property of the set of wealth processes.

- Build up a general model in incomplete market with (possibly) proportional transaction costs
- Look at the no-arbitrage conditions and closure property of the set of wealth processes.
- Apply this to optimal consumption problems.

- Build up a general model in incomplete market with (possibly) proportional transaction costs
- Look at the no-arbitrage conditions and closure property of the set of wealth processes.
- Apply this to optimal consumption problems.
- As a first step : restricted to discrete time models.

Model and notations

- $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{T}})$, \mathcal{F}_0 trivial, $\mathcal{F}_T = \mathcal{F}, \mathbb{T} = \{0, \dots, T\}$.
- *d* Financial assets (bonds, stocks, currencies,...)
- N "Industrial" assets (industrial tools physical assets used for production purposes)

Model and notations

- $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{T}})$, \mathcal{F}_0 trivial, $\mathcal{F}_T = \mathcal{F}, \mathbb{T} = \{0, \dots, T\}$.
- *d* Financial assets (bonds, stocks, currencies,...)
- N "Industrial" assets (industrial tools physical assets used for production purposes)
- Initial wealth $x = (x^F, x^I) \in \mathbb{R}^d \times \mathbb{R}^N_+$

Here $x^i = \#$ of units of the asset *i* hold

- Notation : For $x \in \mathbb{R}^{d+N}$, we write $x = (x^F, x^I) \in \mathbb{R}^d \times \mathbb{R}^N$.
- $\Rightarrow x^F = \text{initial endowment in Financial assets,}$

 x^{I} = initial endowment in Industrial assets.

The financial strategies

• Financial strategy : $\xi \in L^0(\mathbb{R}^{d+N}; \mathbb{F})$, $\xi_s^i = (\xi_s^F, \xi_s^I)^i =$ number of units of asset *i* bought at time *s*.

• $\sum_{\tau=0}^{s} \xi_{\tau}$: cumulated number of units of asset bought between 0 and s.

• $I(\xi)_s = \sum_{\tau=0}^{s} \xi_{\tau}^{I}$: cumulated number of units of industrial assets bought between 0 and s.

• $x^{I} + I(\xi)_{s} \in L^{0}(\mathbb{R}^{N}_{+})$: number of units of industrial assets held at s(can not short-sale machine tools or plants)

The financial strategies

• Induces a random return $R_{s+1}(x^I + I(\xi)_s)$ at time s+1, taking values in $\mathbb{R}^{d+N} := \mathbb{R}^d \times \{0_N\}.$

ex : asset 1= euro, asset 2= dollar and the others are stocks $\Rightarrow R_{s+1}^i = 0$ for i > 2.

The wealth process

• Intial endowment : $x \in \mathbb{R}^d \times \mathbb{R}^N_+$.

•
$$V_t = x + \sum_{s=0}^{t} \xi_s + \sum_{s=0}^{t-1} R_{s+1}(x^I + I(\xi)_s)$$
 takes values in \mathbb{R}^{d+N} .

• V_t^i : position in asset *i* (in units) at time *t*.

1. Case without frictions

- $S = (S^F, S^I)$: assets.
- ξ_t is self-financed if $\xi_t \cdot S_t := \sum_{i=1}^{d+N} \xi_t^i S_t^i = 0.$
- If we allow to throw out money : ξ_t is self-financed if it belongs a.s. to

$$-K_t(\omega) := \left\{ \xi \in \mathbb{R}^{d+N} : \xi \cdot S_t(\omega) \leq 0 \right\}$$

- 2. Case with proportional costs
- $S = (S^F, S^I)$: assets
- λ^{ij} : proportional cost paid in units of asset *i* for a transaction from *i* to *j*.
- ξ_t is self-financed if it belongs a.s. to

$$\left\{\xi \in \mathbb{R}^{d+N} : \exists a^{ij} \ge 0, \sum_{j=1}^{d+N} a^{ji} - (1+\lambda_t^{ij}(\omega))a^{ij} = S_t^i(\omega) \xi^i\right\}.$$

 $\Rightarrow a^{ij} \ge 0$ amount transferred from *i* to *j*, $a^{ji} \ge 0$ amount transferred from *j* to *i*.

 $\Rightarrow S_t^i \xi^i$ net amount transferred from the other accounts to *i*.

2. Case with proportional costs (2)

- $S = (S^F, S^I)$: assets
- λ^{ij} : proportional cost paid in units of asset *i* for a transaction from *i* to *j*.
- If we allow to throw out money : ξ_t is self-financed if it belongs a.s. to

$$-K_t(\omega) := \left\{ \xi \in \mathbb{R}^{d+N} : \exists a^{ij} \ge 0, \sum_{j=1}^{d+N} a^{ji} - (1+\lambda_t^{ij}(\omega))a^{ij} \ge S_t^i(\omega) \xi^i \right\}$$

3. General modelization

- $K_t(\omega)$: polyhedral, closed and convex cone such that $\mathbb{R}^{d+N}_+ \setminus \{0\} \subset$ Int (K_t) a.s.
- $\xi = (\xi_t)_{t \in \mathbb{T}}$ is a self-financed strategy if $\xi_t \in -K_t$ a.s. for each t.
- $-\underline{K}_t := \{(\xi^F, 0) \in -K_t\}$, i.e. transaction only on the financial assets.

The wealth process (to sum up)

- $K_t(\omega)$: polyhedral, closed and convex cone such that $\mathbb{R}^{d+N}_+ \setminus \{0\} \subset$ Int (K_t) a.s.
- Admissibility :

$$\xi_s \in L^0(-K_s; \mathcal{F}_s)$$
 and $x^I + I(\xi)_s = x^I + \sum_{\tau=0}^s \xi_\tau^I \in L^0(\mathbb{R}^N_+; \mathcal{F}_s)$

• Wealth process (in units) : $V_t = x + \sum_{s=0}^t \xi_s + \sum_{s=0}^{t-1} R_{s+1}(x^I + I(\xi)_s)$

 \bullet For each t

(R1) $R_t(0) = 0$ and R_t is continuous.

Assumption on R

• For each t

(R1) $R_t(0) = 0$ and R_t is continuous. (R2) If $\lambda \in [0, 1]$ and $(\alpha, \beta) \in (L^0(\mathbb{R}^N_+))^2$, then

 $\lambda R_t(\alpha) + (1-\lambda)R_t(\beta) - R_t(\lambda \alpha + (1-\lambda)\beta) \in -\underline{K}_t := \{(x^F, 0) \in -K_t\}$

• (R2) : means R_t is "concave". Indeed,

$$\lambda R_t(\alpha) + (1 - \lambda) R_t(\beta) = R_t \left(\lambda \alpha + (1 - \lambda)\beta\right) + \underbrace{\xi_t}_{\in -\underline{K}_t}$$

Assumption on R

 \bullet For each t

(R1) $R_t(0) = 0$ and R_t is continuous.

(R2) If $\lambda \in [0,1]$ and $(\alpha,\beta) \in (L^0(\mathbb{R}^N_+))^2$, then

 $\lambda R_t(\alpha) + (1-\lambda)R_t(\beta) - R_t(\lambda \alpha + (1-\lambda)\beta) \in -\underline{K}_t := \{(x^F, 0) \in -K_t\}$

(R3) R_t is bounded from below by an affine (random) map.

- (R3) : In dimension 1 $\Leftrightarrow R'_t(\infty) > -\infty \ a.s.$
- Remark : No monotonicity assumption, need not to be non-negative.

Attainable wealth : $A_t(x; K, R)$

•
$$A_t(x; K, R) = \left\{ V_t^{x,\xi} = x + \sum_{s=0}^t \xi_s + \sum_{s=0}^{t-1} R_{s+1}(x^I + I(\xi)_s), \ \xi \text{ admissible} \right\}$$

• Under (R2), $A_t(x; K, R)$ is convex.

Remind (R2) : If $\lambda \in [0,1]$ and $(\alpha,\beta) \in (L^0(\mathbb{R}^N_+))^2$, then

$$\lambda R_{s+1}(\alpha) + (1-\lambda)R_{s+1}(\beta) = R_{s+1}(\lambda\alpha + (1-\lambda)\beta) + \underbrace{\xi_{s+1}}_{\in -\underline{K}_{s+1}}$$

Attainable wealth : $A_t(x; K, R)$

•
$$A_t(x; K, R) = \left\{ V_t^{x,\xi} = x + \sum_{s=0}^t \xi_s + \sum_{s=0}^{t-1} R_{s+1}(x^I + I(\xi)_s), \ \xi \text{ admissible} \right\}$$

• A_t is non-linear with respect to $x : A_t(x; K, R) \neq x + A_t(0; K, R)$

We only have $A_t(x; K, R) = x^F + A_t((0, x^I); K, R)$

• $V \in K_t \Leftrightarrow V - V = 0$ with $-V \in -K_t$ (admissible exchange).

 \Rightarrow up to a transfer can transform all the positions in non-negative ones.

• $V \in K_t \Leftrightarrow V - V = 0$ with $-V \in -K_t$ (admissible exchange).

 \Rightarrow up to a transfer can transform all the positions in non-negative ones.

 \Rightarrow K_t is the "solvency region" at time t.

• $V \in K_t \Leftrightarrow V - V = 0$ with $-V \in -K_t$ (admissible exchange).

 \Rightarrow up to a transfer can transform all the positions in non-negative ones.

 \Rightarrow K_t is the "solvency region" at time t.

• $V \in K_t^o := K_t \cap (-K_t) \Leftrightarrow$ can reach 0 from V and V from 0.

• $V \in K_t \Leftrightarrow V - V = 0$ with $-V \in -K_t$ (admissible exchange).

 \Rightarrow up to a transfer can transform all the positions in non-negative ones.

 \Rightarrow K_t is the "solvency region" at time t.

• $V \in K_t^o := K_t \cap (-K_t) \Leftrightarrow$ can reach 0 from V and V from 0.

 $\Rightarrow K_t^o$ is the set of holdings which are equivalent to 0.

The robust No-arbitrage condition (S04, KSR01)

1. Weak no-arbitrage property

$$NA^{w}(K) : A_{T}(0;K) \cap L^{0}(\mathbb{R}^{d}_{+};\mathcal{F}_{T}) = \{0\}.$$

The robust No-arbitrage condition (S04, KSR01)

1. Weak no-arbitrage property

$$NA^{w}(K) : A_{T}(0;K) \cap L^{0}(\mathbb{R}^{d}_{+};\mathcal{F}_{T}) = \{0\}.$$

The robust No-arbitrage condition (S04, KSR01)

1. Weak no-arbitrage property

$$NA^{w}(K) : A_{T}(0;K) \cap L^{0}(\mathbb{R}^{d}_{+};\mathcal{F}_{T}) = \{0\}.$$

2. \tilde{K} dominates K if : $\underbrace{K_t}_{\text{solvable}} \setminus \underbrace{K_t^o}_{\text{equivalent to 0}} \subset \text{ri}(\underbrace{\tilde{K}_t}_{\text{bigger solvency region}})$. 3. Robust no-arbitrage property

 $NA^{r}(K)$: $NA^{w}(\tilde{K})$ holds for some \tilde{K} which dominates K.

 \Rightarrow No arbitrage even in a model with slightly lower transaction costs.

- Under $NA^{r}(K)$, $A_{T}(0; K)$ is closed.
- Important property : Under $NA^r(K)$

$$\xi_t \in -K_t \text{ and } \sum_{t=0}^T \xi_t = 0 \implies \xi_t \in K_t^o$$

• The closure property is a consequence of this property.

No-arbitrage condition : The general case

1. Weak no-arbitrage property :

$$NA^{w}(K,R) : A_{T}(0;K,R) \cap L^{0}(\mathbb{R}^{d+N}_{+}) = \{0\}$$

2. Set $\underline{K} = \{(x^F, 0) \in K\}$. (\tilde{K}, \tilde{R}) dominates (K, R) if

(D1)
$$\underline{K}_t \setminus \underline{K}_t^o \subset \operatorname{ri}(\underline{\tilde{K}}_t)$$
 and $K_t \subset \overline{\tilde{K}}_t$
(D2) $\tilde{R}_t(0) \in \underline{K}_t$ and $\tilde{R}_t(\alpha) - R_t(\alpha) \in \operatorname{ri}(\underline{K}_t)$, $\alpha \in \mathbb{R}^N_+ \setminus \{0\}$.

(D1) : Slight reduction of transaction costs for the exchanges involving only Financial assets.

(D2) : Slight increase of the return of Industrial assets.

No-arbitrage condition : The general case

1. Weak no-arbitrage property :

$$NA^{w}(K,R) : A_{T}(0;K,R) \cap L^{0}(\mathbb{R}^{d+N}_{+}) = \{0\}$$

2. Set $\underline{K} = \{(x^F, 0) \in K\}$. (\tilde{K}, \tilde{R}) dominates (K, R) if

(D1)
$$\underline{K}_t \setminus \underline{K}_t^o \subset \operatorname{ri}(\underline{\tilde{K}}_t)$$
 and $K_t \subset \overline{\tilde{K}}_t$
(D2) $\tilde{R}_t(0) \in \underline{K}_t$ and $\tilde{R}_t(\alpha) - R_t(\alpha) \in \operatorname{ri}(\underline{K}_t)$, $\alpha \in \mathbb{R}^N_+ \setminus \{0\}$.

3. Robust no-arbitrage property

 $NA^{r}(K,R)$: $\exists (\tilde{K},\tilde{R})$ which dominates (K,R) such that $NA^{w}(\tilde{K},\tilde{R})$ holds

No-arbitrage condition : The general case

• Under $NA^r(K, R)$

$$\xi_t \in -K_t \text{ and } \sum_{t=0}^T \xi_t + \sum_{t=0}^{T-1} R_{t+1}(I(\xi)_t) = 0 \implies \xi_t \in \underline{K}_t^o \ (= \underline{K}_t \cap -\underline{K}_t) \ .$$

 \Rightarrow Under $NA^r(K, R)$: $A_T(x; K, R)$ is closed $\forall x$.

Dual formulation for $A_T(x; K, R)$

- $(\underline{K}_t)^*(\omega) := \{ y \in \mathbb{R}^{d+N} : x \cdot y \ge 0 \quad \forall x \in \underline{K}_t(\omega) \}.$
- Let $\mathcal{Z}(K, \mathbb{Q})$ be the set of $Z = (Z^F, Z^I) \in L^{\infty}(\operatorname{Int}(\mathbb{R}^{d+N}_+))$ such that $(\mathbb{E}^{\mathbb{Q}}[Z^F \mid \mathcal{F}_t], 0_N) \in \operatorname{ri}((\underline{K}_t)^*).$
- Under $NA^r(K, R)$, for all $\mathbb{Q} \sim \mathbb{P}$ there is $Z \in \mathcal{Z}(K, \mathbb{Q})$ such that

$$a(x; Z, \mathbb{Q}) := \sup_{g \in A_T(x; K, R) \cap L^1(\mathbb{Q})} \mathbb{E}^{\mathbb{Q}}[Z \cdot g] < \infty$$
Dual formulation for $A_T(x; K, R)$

• Dual formulation for $A_T(x; K, R) \cap L^1(\mathbb{Q})$:

 $g \in A_T(x; K, R) \cap L^1(\mathbb{Q}) \iff \mathbb{E}^{\mathbb{Q}}[Z \cdot g] \leq a(x; Z, \mathbb{Q}) \quad \forall Z \in \mathcal{Z}(K, \mathbb{Q}).$

• Can drop the integrability condition on g if it is uniformly bounded from below for the natural partial order induced by K_T .

Remark on $\mathcal{Z}(K, \mathbb{Q})$: **The case** N = 0

• In the case with no transaction costs :

$$K_t(\omega) = \{ x \in \mathbb{R}^d : x \cdot S_t(\omega) \ge 0 \}$$
$$K_t^*(\omega) = \{ \lambda S_t(\omega), \ \lambda \in \mathbb{R}_+ \}$$

- $Z_t := \mathbb{E}[Z \mid \mathcal{F}_t] \in ri(K_t^*)$ implies $Z_t = H_t S_t$ which is a \mathbb{P} -martingale.
- If we take S^1 as a numeraire and set $(\hat{H}, \hat{S}) = (HS^1, S/S^1)$ then \hat{H} is a martingale as well as $\hat{H}\hat{S}$.

•
$$\widehat{S}$$
 is a martingale under $\mathbb{Q} = (\widehat{H}_T / \mathbb{E} \left[\widehat{H}_T \right]) \cdot \mathbb{P}$.

Additional remarks on the separating measures

• In general, there is **no** Z in $\mathcal{Z}(K,\mathbb{Q})$ such that

$$a(0; Z, \mathbb{Q}) := \sup_{g \in A_T(0; K, R) \cap L^1(\mathbb{Q})} \mathbb{E}^{\mathbb{Q}}[Z \cdot g] \leq 0$$

• In particular, NA^r does not imply the absence of arbitrage opportunity in the "tangent" model :

$$\lim_{\varepsilon \to 0} \sum_{t=0}^{T} \varepsilon \xi_t / \varepsilon + \sum_{t=0}^{T-1} R_{t+1} (\varepsilon I(\xi)_t) / \varepsilon \quad " = " \quad \sum_{t=0}^{T} \xi_t + \sum_{t=0}^{T-1} R'_{t+1} (0) I(\xi)_t$$

• However, under NA^r , for all $g \in A_T(0; K, R)$ there is \mathbb{Q}^g and Z^g in $\mathcal{Z}(K, \mathbb{Q}^g)$ such that $\mathbb{E}^{\mathbb{Q}^g}[Z^g \cdot g] \leq 0$.

Admissible consumption plans

•
$$C_T(x; K, R) := \left\{ (c_t)_{t \leq T} \in L^0(\mathbb{R}^d_+; \mathbb{F}) : \left(\sum_{t \leq T} c_t, \mathbf{0}_N \right) \in A_T(x; K, R) \right\}$$

• Under NA^r : $C_T(x; K, R)$ is closed (and convex).

Utility maximization problem

$$\mathsf{Max} \ \mathbb{E}\left[\sum_{t \leq T} U_t(c_t)\right] \to u(x)$$

over $C_T^U(x; K, R) = \{ c \in C_T(x; K, R) : \mathbb{E}[(\sum_{t \leq T} U_t(c_t))^-] < \infty \}.$

Assumptions on U_t

- Concave, non-decreasing for the natural partial order on \mathbb{R}^d , and $cl(dom(U_t)) = \mathbb{R}^d_+$
- Non-smooth Inada's conditions : The Fenchel transform

 $\tilde{U}_t(y) = \sup_{x \in \mathbb{R}^d_+} U_t(x) - x \cdot y$ satisfies $\operatorname{int}(\mathbb{R}^d_+) \subset \operatorname{dom}(\tilde{U}_t).$

• Need not to be smooth.

Additional assumptions on U_t

• Asymptotic elasticity condition

$$\limsup_{\ell(y)\to 0} \left(\sup_{q\in -\partial \tilde{U}_t(y)} q \cdot y \right) / \tilde{U}_t(y) < \infty$$
 (1)

where $\partial \tilde{U}_t(y)$ denotes the subgradient of \tilde{U}_t at y in the sense of convex analysis and

$$\ell(y) := \inf_{x \in \mathbb{R}^d_+, \|x\|=1} x \cdot y.$$

See KS (99) and compare with DPT (02) and BTZ (04).

Additional assumptions on U_t

• For each $t \in \mathbb{T}$, one of the above conditions hold :

($\tilde{U}1$) there is $e_t \in int(\mathbb{R}^d_+)$ such that $V_t : r \in \mathbb{R}_+ \mapsto \tilde{U}_t(re_t)$ is strictly convex and $\lim_{r \to +\infty} V'_t(r) = 0$.

(\tilde{U} 2) $\tilde{U}_t^n(y) = \sup_{x \in \mathbb{R}^d_+, \|x\| \le n} U_t(x) - x \cdot y$ is uniformly bounded from below in $y \in \mathbb{R}^d_+$ and $n \ge M_t$.

Abstract duality

• Problem reduction

$$u_1(x^1) := u(x^1, 0_{d-1+N}), x^1 \in \mathbb{R}_+,$$

• Dual variables

$$\mathcal{D}(y^{1}) = \left\{ (Y,\alpha) \in L^{1}(\Omega \times \mathbb{T}, \mathbb{R}^{d}_{+}) \times \mathbb{R}_{+} : \forall x^{1} \in \mathbb{R}_{+}, \forall c \in \mathcal{C}_{T}((x^{1}, 0); K, R) \\ \mathbb{E}\left[\sum_{t \in \mathbb{T}} Y_{t} \cdot c_{t} - y^{1}x^{1} \right] \leq \alpha, \right\}, \quad y^{1} \in \mathbb{R}_{+}$$

• Dual problem

$$\tilde{u}_1(y^1) = \inf_{(Y,\alpha)\in\mathcal{D}(y^1)} \mathbb{E}\left[\sum_{t\in\mathbb{T}} \tilde{U}_t(Y_t) + \alpha\right], \quad y^1\in\mathbb{R}_+.$$

Abstract duality

$$\widetilde{u}_{1}(y^{1}) = \sup_{\substack{x^{1} \in \mathbb{R}_{+} \\ y^{1} \in \mathbb{R}_{+}}} \left[u_{1}(x^{1}) - x^{1}y^{1} \right], \quad y^{1} \in \mathbb{R}_{+} \\
u_{1}(x^{1}) = \inf_{\substack{y^{1} \in \mathbb{R}_{+}}} \left[\widetilde{u}_{1}(x^{1}) - x^{1}y^{1} \right], \quad x^{1} \in \mathbb{R}_{+}.$$

Existence result

• If there is an initial wealth $x \in int(K_0)$ such that $u(x) < \infty$, then

(i) $u(x) < \infty$ for all $x \in \mathbb{R}^d \times \mathbb{R}^N_+$

(ii) for all $x \in \mathbb{R}^d \times \mathbb{R}^N_+$ such that $\mathcal{C}^U_T(x; K, R) \neq \emptyset$, there is some $c^* \in \mathcal{C}^U_T(x; K, R)$ for which

$$u(x) = \mathbb{E}\left[\sum_{t \in \mathbb{T}} U_t(c_t^*)\right]$$

• Proof : adaptation of the direct argument of Kramkov et Schachermayer AAP 13(4) 2003 to this multivariate setting.

Final comment

• We used the NA^r condition, i.e.

There is (\tilde{K}, \tilde{R}) such that

(D1) $\underline{K}_t \setminus \underline{K}_t^o \subset \operatorname{ri}(\underline{\tilde{K}}_t)$ and $K_t \subset \overline{\tilde{K}}_t$ (D2) $\overline{\tilde{R}}_t(0) \in \underline{K}_t$ and $\overline{\tilde{R}}_t(\alpha) - R_t(\alpha) \in \operatorname{ri}(\underline{K}_t)$, $\alpha \in \mathbb{R}^N_+ \setminus \{0\}$ for which $NA^w(\tilde{K}, \tilde{R})$ holds.

Final comment

 \bullet Under the additional conditions on R

(i) $R_t \in \underline{K}_t$ (ii) $R_t(\alpha) \in ri(\underline{K}_t)$ for $\alpha \neq 0$ (iii) R_t bounded

all the results holds if there is some \tilde{K} satisfying

(D1)
$$\underline{K}_t \setminus \underline{K}_t^o \subset \operatorname{ri}(\underline{\tilde{K}}_t)$$
 and $K_t \subset \overline{\tilde{K}}_t$

such that $NA^w(\tilde{K}, R)$ holds.