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Motivation

• Kabanov and Kijima, A consumption-investment problem with pro-

duction possibilities, preprint 2003.

• Two possibilities :

1. Usual investment in a �nancial market

2. Industrial investment : Increase the capital of a company which yields

a concave return

• Maximize expected utility of consumption in a complete Brownian

di�usion model



Motivation

• Complete market.

• Strong condition on the (deterministic) return.

• Use a particular no-bankruptcy constraint which implies a separation

principle :

1. First optimize among the industrial investment policies

2. Then �nd the associated optimal �nancial investment policy.
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Model and notations

• (Ω,F , P, F = (Ft)t∈T), F0 trivial, FT = F, T = {0, . . . , T}.

• d Financial assets (bonds, stocks, currencies,...)

• N "Industrial" assets (industrial tools - physical assets used for pro-

duction purposes)

• Initial wealth x = (xF , xI) ∈ Rd × RN
+

Here xi = # of units of the asset i hold

• Notation : For x ∈ Rd+N , we write x = (xF , xI) ∈ Rd × RN .

⇒ xF = initial endowment in Financial assets,

⇒ xI = initial endowment in Industrial assets.
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The �nancial strategies

• Financial strategy : ξ ∈ L0(Rd+N ;F), ξi
s = (ξF

s , ξI
s)

i= number of units

of asset i bought at time s.

•
s∑

τ=0

ξτ : cumulated number of units of asset bought between 0 and s.

• I(ξ)s =
s∑

τ=0

ξI
τ : cumulated number of units of industrial assets bought

between 0 and s.

• xI + I(ξ)s ∈ L0(RN
+) : number of units of industrial assets held at s

(can not short-sale machine tools or plants)



The �nancial strategies

• Induces a random return Rs+1(x
I +I(ξ)s) at time s+1, taking values

in Rd+N := Rd × {0N}.

ex : asset 1= euro, asset 2= dollar and the others are stocks

⇒ Ri
s+1 = 0 for i > 2.



The wealth process

• Intial endowment : x ∈ Rd × RN
+.

• Vt = x +
t∑

s=0

ξs +
t−1∑
s=0

Rs+1(x
I + I(ξ)s) takes values in Rd+N .

• V i
t : position in asset i (in units) at time t.



Admissible exchanges ξ ∈ L0(F)

1. Case without frictions

• S = (SF , SI) : assets.

• ξt is self-�nanced if ξt · St :=
d+N∑
i=1

ξi
t Si

t = 0.

• If we allow to throw out money : ξt is self-�nanced if it belongs a.s.

to

−Kt(ω) :=
{
ξ ∈ Rd+N : ξ · St(ω) ≤ 0

}
.



Admissible exchanges ξ ∈ L0(F)

2. Case with proportional costs

• S = (SF , SI) : assets

• λij : proportional cost paid in units of asset i for a transaction from

i to j.

• ξt is self-�nanced if it belongs a.s. toξ ∈ Rd+N : ∃aij ≥ 0,
d+N∑
j=1

aji − (1 + λ
ij
t (ω))aij = Si

t(ω) ξi

 .

⇒ aij ≥ 0 amount transferred from i to j, aji ≥ 0 amount transferred

from j to i.

⇒ Si
t ξi net amount transferred from the other accounts to i.



Admissible exchanges ξ ∈ L0(F)

2. Case with proportional costs (2)

• S = (SF , SI) : assets

• λij : proportional cost paid in units of asset i for a transaction from

i to j.

• If we allow to throw out money : ξt is self-�nanced if it belongs a.s.

to

−Kt(ω) :=

ξ ∈ Rd+N : ∃aij ≥ 0,
d+N∑
j=1

aji − (1 + λ
ij
t (ω))aij ≥ Si

t(ω) ξi

 .



Admissible exchanges ξ ∈ L0(F)

3. General modelization

• Kt(ω) : polyhedral, closed and convex cone such that Rd+N
+ \ {0} ⊂

Int(Kt) a.s.

• ξ = (ξt)t∈T is a self-�nanced strategy if ξt ∈ −Kt a.s. for each t.

• −Kt := {(ξF ,0) ∈ −Kt}, i.e. transaction only on the �nancial assets.



The wealth process (to sum up)

• Kt(ω) : polyhedral, closed and convex cone such that Rd+N
+ \ {0} ⊂

Int(Kt) a.s.

• Admissibility :

ξs ∈ L0(−Ks;Fs) and xI + I(ξ)s = xI +
s∑

τ=0

ξI
τ ∈ L0(RN

+;Fs)

•Wealth process (in units) : Vt = x +
t∑

s=0

ξs +
t−1∑
s=0

Rs+1(x
I + I(ξ)s)



Assumption on R

• For each t

(R1) Rt(0) = 0 and Rt is continuous.

(R2) If λ ∈ [0,1] and (α, β) ∈ (L0(RN
+))2, then

λRt(α) + (1− λ)Rt(β)−Rt (λα + (1− λ)β) ∈ −Kt := {(xF ,0) ∈ −Kt}

(R3) Rt is bounded from below by an a�ne (random) map.
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Assumption on R

• For each t

(R1) Rt(0) = 0 and Rt is continuous.

(R2) If λ ∈ [0,1] and (α, β) ∈ (L0(RN
+))2, then

λRt(α) + (1− λ)Rt(β)−Rt (λα + (1− λ)β) ∈ −Kt := {(xF ,0) ∈ −Kt}

(R3) Rt is bounded from below by an a�ne (random) map.

• (R3) : In dimension 1 ⇔ R′t(∞) > −∞ a.s.

• Remark : No monotonicity assumption, need not to be non-negative.



Attainable wealth : At(x;K, R)

• At(x;K, R) =

V
x,ξ
t = x +

t∑
s=0

ξs +
t−1∑
s=0

Rs+1(x
I + I(ξ)s), ξ admissible


• Under (R2), At(x;K, R) is convex.

Remind (R2) : If λ ∈ [0,1] and (α, β) ∈ (L0(RN
+))2, then

λRs+1(α) + (1− λ)Rs+1(β) = Rs+1 (λα + (1− λ)β) + ξs+1︸ ︷︷ ︸
∈−Ks+1



Attainable wealth : At(x;K, R)

• At(x;K, R) =

V
x,ξ
t = x +

t∑
s=0

ξs +
t−1∑
s=0

Rs+1(x
I + I(ξ)s), ξ admissible


• At is non-linear with respect to x : At(x;K, R) 6= x + At(0;K, R)

We only have At(x;K, R) = xF + At((0, xI);K, R)



Remarks on Kt = −(−Kt)

• V ∈ Kt ⇔ V − V = 0 with −V ∈ −Kt (admissible exchange).

⇒ up to a transfer can transform all the positions in non-negative ones.
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No-arbitrage condition : The pure �nancial case N = 0

The robust No-arbitrage condition (S04, KSR01)

1. Weak no-arbitrage property

NAw(K) : AT (0;K) ∩ L0(Rd
+;FT ) = {0} .
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3. Robust no-arbitrage property

NAr(K) : NAw(K̃) holds for some K̃ which dominates K .

⇒ No arbitrage even in a model with slightly lower transaction costs.



No-arbitrage condition : The pure �nancial case N = 0

• Under NAr(K), AT (0;K) is closed.

• Important property : Under NAr(K)

ξt ∈ −Kt and
T∑

t=0

ξt = 0 ⇒ ξt ∈ Ko
t

• The closure property is a consequence of this property.



No-arbitrage condition : The general case

1. Weak no-arbitrage property :

NAw(K, R) : AT (0;K, R) ∩ L0(Rd+N
+ ) = {0}

2. Set K = {(xF ,0) ∈ K}. (K̃, R̃) dominates (K, R) if

(D1) Kt \Ko
t ⊂ ri(K̃t) and Kt ⊂ K̃t

(D2) R̃t(0) ∈ Kt and R̃t(α)−Rt(α) ∈ ri(Kt) , α ∈ RN
+ \ {0} .

(D1) : Slight reduction of transaction costs for the exchanges involving

only Financial assets.

(D2) : Slight increase of the return of Industrial assets.
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2. Set K = {(xF ,0) ∈ K}. (K̃, R̃) dominates (K, R) if

(D1) Kt \Ko
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3. Robust no-arbitrage property

NAr(K, R) : ∃ (K̃, R̃) which dominates (K, R) such that NAw(K̃, R̃) holds.



No-arbitrage condition : The general case

• Under NAr(K, R)

ξt ∈ −Kt and
T∑

t=0

ξt +
T−1∑
t=0

Rt+1(I(ξ)t) = 0 ⇒ ξt ∈ Ko
t (= Kt ∩ −Kt) .

⇒ Under NAr(K, R) : AT (x;K, R) is closed ∀ x.



Dual formulation for AT (x;K, R)

• (Kt)∗(ω) := {y ∈ Rd+N : x · y ≥ 0 ∀ x ∈ Kt(ω)}.

• Let Z(K, Q) be the set of Z = (ZF , ZI) ∈ L∞(Int(Rd+N
+ )) such that

(EQ
[
ZF | Ft

]
,0N) ∈ ri((Kt)∗).

• Under NAr(K, R), for all Q ∼ P there is Z ∈ Z(K, Q) such that

a(x;Z, Q) := sup
g∈AT (x;K,R)∩L1(Q)

EQ[Z · g] < ∞



Dual formulation for AT (x;K, R)

• Dual formulation for AT (x;K, R) ∩ L1(Q) :

g ∈ AT (x;K, R) ∩ L1(Q) ⇐⇒ EQ[Z · g] ≤ a(x;Z, Q) ∀ Z ∈ Z(K, Q) .

• Can drop the integrability condition on g if it is uniformly bounded

from below for the natural partial order induced by KT .



Remark on Z(K, Q) : The case N = 0

• In the case with no transaction costs :

Kt(ω) = {x ∈ Rd : x · St(ω) ≥ 0}

K∗
t (ω) = {λSt(ω), λ ∈ R+}

• Zt := E [Z | Ft] ∈ ri(K∗
t ) implies Zt = HtSt which is a P-martingale.

• If we take S1 as a numeraire and set (Ĥ, Ŝ) = (HS1, S/S1) then Ĥ is

a martingale as well as ĤŜ.

• Ŝ is a martingale under Q = (ĤT/E
[
ĤT

]
) · P.



Additional remarks on the separating measures

• In general, there is no Z in Z(K, Q) such that

a(0;Z, Q) := sup
g∈AT (0;K,R)∩L1(Q)

EQ[Z · g] ≤ 0

• In particular, NAr does not imply the absence of arbitrage opportunity

in the �tangent� model :

lim
ε→0

T∑
t=0

εξt/ε +
T−1∑
t=0

Rt+1(εI(ξ)t)/ε ” = ”
T∑

t=0

ξt +
T−1∑
t=0

R′t+1(0)I(ξ)t

• However, under NAr, for all g ∈ AT (0;K, R) there is Qg and Zg in

Z(K, Qg) such that EQg
[Zg · g] ≤ 0.



Admissible consumption plans

• CT (x;K, R) :=

(ct)t≤T ∈ L0(Rd
+;F) :

 ∑
t≤T

ct,0N

 ∈ AT (x;K, R)


• Under NAr : CT (x;K, R) is closed (and convex).

Utility maximization problem

Max E

 ∑
t≤T

Ut(ct)

 → u(x)

over CU
T (x;K, R) = {c ∈ CT (x;K, R) : E[(

∑
t≤T

Ut(ct))
−] < ∞}.



Assumptions on Ut

• Concave, non-decreasing for the natural partial order on Rd, and

cl (dom(Ut)) = Rd
+

• Non-smooth Inada's conditions : The Fenchel transform

Ũt(y) = sup
x∈Rd

+
Ut(x)− x · y satis�es int(Rd

+) ⊂ dom(Ũt).

• Need not to be smooth.



Additional assumptions on Ut

• Asymptotic elasticity condition

lim sup
`(y)→0

 sup
q∈−∂Ũt(y)

q · y

 /Ũt(y) < ∞ (1)

where ∂Ũt(y) denotes the subgradient of Ũt at y in the sense of convex

analysis and

`(y) := inf
x∈Rd

+ , ‖x‖=1
x · y .

See KS (99) and compare with DPT (02) and BTZ (04).



Additional assumptions on Ut

• For each t ∈ T, one of the above conditions hold :

(Ũ1) there is et ∈ int(Rd
+) such that Vt : r ∈ R+ 7→ Ũt(ret) is strictly

convex and lim
r→+∞

V ′
t (r) = 0.

or

(Ũ2) Ũn
t (y) = sup

x∈Rd
+, ‖x‖≤n

Ut(x) − x · y is uniformly bounded from

below in y ∈ Rd
+ and n ≥ Mt.



Abstract duality

• Problem reduction

u1(x
1) := u(x1,0d−1+N), x1 ∈ R+ ,

• Dual variables

D(y1) =
{
(Y, α) ∈ L1(Ω× T, Rd

+)× R+ : ∀x1 ∈ R+, ∀c ∈ CT ((x1,0);K, R)

E

∑
t∈T

Yt · ct − y1x1

 ≤ α,

 , y1 ∈ R+

• Dual problem

ũ1(y
1) = inf

(Y,α)∈D(y1)
E

∑
t∈T

Ũt(Yt) + α

 , y1 ∈ R+ .



Abstract duality

ũ1(y
1) = sup

x1∈R+

[
u1(x

1)− x1y1
]
, y1 ∈ R+

u1(x
1) = inf

y1∈R+

[
ũ1(x

1)− x1y1
]
, x1 ∈ R+ .



Existence result

• If there is an initial wealth x ∈ int(K0) such that u(x) < ∞, then

(i) u(x) < ∞ for all x ∈ Rd × RN
+

(ii) for all x ∈ Rd × RN
+ such that CU

T (x;K, R) 6= ∅, there is some c∗ ∈

CU
T (x;K, R) for which

u(x) = E

∑
t∈T

Ut(c
∗
t )

 .

• Proof : adaptation of the direct argument of Kramkov et Schacher-

mayer AAP 13(4) 2003 to this multivariate setting.



Final comment

•We used the NAr condition, i.e.

There is (K̃, R̃) such that

(D1) Kt \Ko
t ⊂ ri(K̃t) and Kt ⊂ K̃t

(D2) R̃t(0) ∈ Kt and R̃t(α)−Rt(α) ∈ ri(Kt) , α ∈ RN
+ \ {0}

for which NAw(K̃, R̃) holds.



Final comment

• Under the additional conditions on R

(i) Rt ∈ Kt

(ii) Rt(α) ∈ ri(Kt) for α 6= 0

(iii) Rt bounded

all the results holds if there is some K̃ satisfying

(D1) Kt \Ko
t ⊂ ri(K̃t) and Kt ⊂ K̃t

such that NAw(K̃, R) holds.


