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Motivation

e Kabanov and Kijima, A consumption-investment problem with pro-

duction possibilities, preprint 2003.

e TwoO possibilities :
1. Usual investment in a financial market
2. Industrial investment : Increase the capital of a company which yields

a concave return

e Maximize expected utility of consumption in a complete Brownian

diffusion model
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e Complete market.

e Strong condition on the (deterministic) return.

e Use a particular no-bankruptcy constraint which implies a separation

principle :

1. First optimize among the industrial investment policies

2. Then find the associated optimal financial investment policy.
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Aim of this paper

e Build up a general model in incomplete market with (possibly) pro-

portional transaction costs

e LOook at the no-arbitrage conditions and closure property of the set

of wealth processes.

e Apply this to optimal consumption problems.

e As a first step : restricted to discrete time models.
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o (U, F,P,F = (F)er), Fo trivial, Fr =F, T=1{0,...,T}.

e d Financial assets (bonds, stocks, currencies,...)
e V "Industrial" assets (industrial tools - physical assets used for pro-
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Model and notations
o (,F,PF = (]—“t)teqr), Fo trivial, Fr=F, T={0,...,T}.

e d Financial assets (bonds, stocks, currencies,...)
e V "Industrial" assets (industrial tools - physical assets used for pro-

duction purposes)

e Initial wealth z = (2, z') € RY x RY

Here 2! = # of units of the asset i hold

e Notation : For z € RITN  we write z = (', z!) e R? x RV,

" — initial endowment in Financial assets,

»!I = initial endowment in Industrial assets.



T he financial strategies

e Financial strategy : ¢ € LO(RITN;F), ¢ = (¢L, ¢1)'= number of units

of asset ¢ bought at time s.

° Z &+ . cumulated number of units of asset bought between 0 and s.

S
e [(&)s = Z §£ . cumulated number of units of industrial assets bought
7=0
between 0 and s.

ozl +1(¢)s € LO(RQ\_’) . number of units of industrial assets held at s

(can not short-sale machine tools or plants)



T he financial strategies

e Induces a random return RS_I_l(a:I—I—I(f)S) at time s+ 1, taking values

in RATN . =R% x {0y}

ex . asset 1= euro, asset 2= dollar and the others are stocks

:>R7;+1=Oforz‘>2.



The wealth process

e Intial endowment : z € RY x Rﬂ\f.

t t—1
eVi=a+ Y &+ Y Roii(a! +1(€)s) takes values in RIFN,
s=0 s=0

e V! : position in asset i (in units) at time t¢.



Admissible exchanges ¢ € LO(F)

1. Case without frictions

o S = (St sl) : assets.
d+N
e ¢ is self-financed if & S := ) & S} =0.
i—=1
e If we allow to throw out money : & is self-financed if it belongs a.s.

to

CKi(w) = {geRd+N : §-St(w)§0}.



Admissible exchanges ¢ € LO(F)

2. Case with proportional costs

o S = (St sl) : assets

e \Y : proportional cost paid in units of asset ¢ for a transaction from
i to j.

o & is self-financed if it belongs a.s. to

g d+N g g . .
{5 c RN 3 >0, Y @ — (142N (w))a¥ = Si(w) g’b} .
j=1

= a% > 0 amount transferred from i to j, a/* > 0 amount transferred

from 5 to s.

= S! ¢ net amount transferred from the other accounts to i.



Admissible exchanges ¢ € LO(F)

2. Case with proportional costs (2)

o S = (St sl) : assets

e \YJ : proportional cost paid in units of asset ¢ for a transaction from

i to 7.

e If we allow to throw out money : & is self-financed if it belongs a.s.

to

5 d+N g S |
—Ki(w) = {geRd+N : 3aY >0, Y &' (1 4+ )\ (w))a¥ > Si(w) g@} .
j=1



Admissible exchanges ¢ € LO(F)

3. General modelization

e Ki(w) : polyhedral, closed and convex cone such that Rfer \ {0} C
Int(K:) a.s.

o { = (&t)4eT IS a self-financed strategy if § € —K; a.s. for each t.

o —K; := {(¢¥,0) € —K;}, i.e. transaction only on the financial assets.



The wealth process (to sum up)

e Ki(w) : polyhedral, closed and convex cone such that R‘f‘N \ {0} C
Int(K;) a.s.

e Admissibility :
S
s € LO(_KS; Fs) and z! + I(§)s = x! + Z §£ € LO(RN; Fs)
7=0
t—1

t
e Wealth process (in units) : Vi=az+ > &+ Y Rypq(z! +1(€)s)
s=0 s=0
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ARi(0) + (1 - MR(8) = R (ha+ (1= NB) + &
e—Ky



Assumption on R

e For each t
(R1) R;(0) =0 and R; is continuous.
(R2) If A€ [0,1] and (o, 8) € (LO(RI))?, then

ARi(e) + (1 = MRi(B) — Rt (Aa+ (1 - N)B) € —K;:={(z",0) € —Ki}

(R3) R; is bounded from below by an affine (random) map.
e (R3) : In dimension 1 < Rj(c0) > —o0 a.s.

e Remark : No monotonicity assumption, need not to be non-negative.




Attainable wealth : A;(z; K, R)

t t—1
e Ai(x; K,R) = {Vf’5 =x+ Z Es + Z RS_|_1(CBI + I1(&)s), & admissible}
s=0 s=0

e Under (R2), Ai(x; K, R) is convex.

Remind (R2) : If A € [0,1] and (e, 8) € (LP(RY))?, then

AR;41(a) + (1 = AN)Rs41(8) = Rg-1 (Qa+ (1 = A)B) + &4
E_Ks—kl



Attainable wealth : A;(z; K, R)

t t—1
e Ai(x; K,R) = {Vf’g =x+ Z Es + Z RS_|_1(:1:I + I1(&)s), & admissible}
s=0 s=0

e A; is non-linear with respect to =z : Ai(z; K, R) #= x + A;(0; K, R)

We only have A;(z; K, R) = ¥ + A;((0,2!); K, R)
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Remarks on K; = —(—K})

o VeEK; < V-V =0with -V € —K; (admissible exchange).

= up to a transfer can transform all the positions in non-negative ones.

= K; is the “'solvency region’ at time t.

oV ec K?:=KiN(—K;) & can reach O from V and V from O.

= K7 is the set of holdings which are equivalent to O.



No-arbitrage condition : The pure financial case N =0

The robust No-arbitrage condition (S04, KSRO01)

1. Weak no-arbitrage property

NAY(K) : Ap0;K)nLORYL; Fr) = {0}.
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No-arbitrage condition : The pure financial case N =0

The robust No-arbitrage condition (S04, KSRO01)

1. Weak no-arbitrage property

NAY(K) : Ap0;K)nLORYL; Fr) = {0}.

2. K dominates K if : K; \ K7 C ri( Ky ) .
solvable equivalent to O bigger solvency region

3. Robust no-arbitrage property

NAT(K) : NAY(K) holds for some K which dominates K .

= NoO arbitrage even in a model with slightly lower transaction costs.



No-arbitrage condition : The pure financial case N =0
e Under NA"(K), Ap(0; K) is closed.

e Important property : Under NA"(K)

T
& € — Ky and th = 0 = thKtO
t=0

e [ he closure property is a consequence of this property.



No-arbitrage condition : The general case

1. Weak no-arbitrage property :

NAY(K,R) : Ap(0; K,R)n LO(RTTY) = {0}

2. Set K = {(«f",0) € K}. (K, R) dominates (K, R) if
(D1) K:\ K¢ C ri(Ks) and K; C Ky

(DQ) Rt(O) e K;y and Rt(()é) — Rt(Oé) c I’i(Kt) , € RJ_\II \ {O} .

(D1) : Slight reduction of transaction costs for the exchanges involving

only Financial assets.

(D2) : Slight increase of the return of Industrial assets.



No-arbitrage condition : The general case

1. Weak no-arbitrage property :

NAY(K,R) : Ap(0; K,R)n LO(RTTY) = {0}

2. Set K = {(«f",0) € K}. (K, R) dominates (K, R) if

(D1) K:\ K¢ C ri(Ks) and K; C Ky

(DQ) Rt(O) e K;y and Rt(()é) — Rt(Oé) c I’i(Kt) , € RJ_\II \ {O} .

3. Robust no-arbitrage property

NA"(K,R) : 3(K,R) which dominates (K, R) such that NAY(K, R) hold



No-arbitrage condition : The general case

e Under NA"(K,R)

T T-1
&e—Kiand ) &+ ) Rp1(I()) =0 = GeKf (=KinN—Ky).
t=0 t=0

= Under NA"(K,R) : Ap(x; K,R) is closed V =z.



Dual formulation for Ap(z; K, R)
o (Ki)*(w) :={yeRITN . z.4y>0 Ve Ki(w)}

e Let Z(K,Q) be the set of Z = (z1',71) € LOO(Int(Ri+N)) such that
BQ|ZF | 7| ,0n) € ri((E)").
e Under NA"(K,R), for all Q ~ P there is Z € Z(K,Q) such that

a(z; Z,Q) = sup EQ[Z . ¢] < o0
geAr(z; K,R)NLI(Q)



Dual formulation for Ap(z; K, R)
e Dual formulation for Ap(z; K, R) N L1(Q) :

g€ Ap(z; K,R)NLY(Q) <= EL[Z ¢l <a(z;Z,Q) VZ € Z(K,Q) .

e Can drop the integrability condition on g if it is uniformly bounded

from below for the natural partial order induced by K.



Remark on Z(K,Q) : The case N =0

e In the case with no transaction costs :

Ki(w) {zeR? : -8 (w) >0}

Ki (w)

o Z; ;=K [Z | F¢] € ri(K}) implies Z; = HyS; which is a P-martingale.

o If we take S1 as a numeraire and set (A,5) = (HS1,S/51) then A is

a martingale as well as HS.

e S is a martingale under Q = (Hr/E [ﬁT]) . P.



Additional remarks on the separating measures

e In general, there is no Z in Z(K,Q) such that

a(0;2,Q) = sup EQ[Z - g] <O
g€AT(0;K,R)NL(Q)
e In particular, NA" does not imply the absence of arbitrage opportunity

in the *tangent” model :
T T

T 1 T—1
lim Yoebi/e+ DY Rgpa(el(©)p)/e " =" D &+ >, Ry 1(0)I(&):
t=0 =0 =0

t t=0 t

e However, under NA", for all g € Ap(0; K,R) there is Q9 and Z9 in
Z(K,Q9) such that E®/[29.4] < O.



Admissible consumption plans

OCT(a?;K, R) L= {(Ct)tST S LO(Rd ;F) : (Z Ct,ON) c AT(a?;K, R)}

t<T

e Under NA" : Cp(x; K, R) is closed (and convex).

Utility maximization problem

Max [E Z Ut(Ct)

t<T

— u(zx)

over C¥(z; K,R) = {c € Cp(x; K,R) : E[(Y_ Uier))”] < oo}
t<T



Assumptions on U;

e Concave, non-decreasing for the natural partial order on IRid, and

cl (dom(Up)) = R%

e Non-smooth Inada’s conditions : The Fenchel transform

Ui(y) = sup g U(z) —z-y  satisfies  int(R%) c dom(Ty).
mER_l_ +

e Need not to be smooth.



Additional assumptions on U;

e Asymptotic elasticity condition

Iimsup( sup q-y) JUi(y) < oo (1)
{(y)—0 \qe-aU(y)

where 0U;(y) denotes the subgradient of U; at y in the sense of convex

analysis and

(y) = inf x -y

xERi , [|x]|=1

See KS (99) and compare with DPT (02) and BTZ (04).



Additional assumptions on U;

e For each t € T, one of the above conditions hold :
(U1) there is e; € int(Ri) such that V; : » € Ry — Ug(rep) is strictly

convex and lim V/(r) = 0.
r——+400

or

(U2) U'(y) = supxeRi, Izl <n Ui(z) — = -y is uniformly bounded from

below in y € RY and n > M.



Abstract duality

e Problem reduction

ui(z!) = u(z’, 04 14n), ' €Ry,

e Dual variables

D(yl) = {(Y, a) € LY(Q2 x T,R%) x Ry :Vz! € Ry, Ve € Cp((z',0); K, R)

E Z}Q'Ct_ylwl <Ck,}, yléR—I—
teT
e Dual problem
~ 1 . s 1
u1(y") = inf E Us(Yt) +af, y~ €R4 .
(V,a)eD (1) %:r i




Abstract duality

i1(y") = sup |ur(el) —zlyt|, v eRy
$1€R+ i i
ui(zl) = inf :ﬁl(xl) — :clyl: .zt e Ry .




EXxistence result
e If there is an initial wealth = € int(Kg) such that u(z) < oo, then

(i) u(z) < oo for all z € RY x RJ_\IZ

(ii) for all z € R? x RY such that C%(x; K, R) # 0, there is some ¢* €
CY(x; K, R) for which

uw(z) = E |} Uc)

teT

e Proof : adaptation of the direct argument of Kramkov et Schacher-

mayer AAP 13(4) 2003 to this multivariate setting.



Final comment
e \We used the NA" condition, i.e.

There is (K, R) such that

(D1) K:\ K? C ri(K:) and K; C Ky

(D2) Ri(0) € K¢ and Ri(a) — R(a) € ri(Ky) , o€ RY\ {0}

for which NAY(K, R) holds.



Final comment

e Under the additional conditions on R

(i) Ry € Ky
(i) Re(a) € ri(Ky) for a# 0
(iii) Ry bounded

all the results holds if there is some K satisfying

(D1) K;\ K{? C ri(Ks) and K; C Ky

such that NAY(K, R) holds.



