
Computation of Expected Shortfall by fast detection of worst

scenarios

Bruno Bouchard∗, Adil Reghai†, Benjamin Virrion‡,§

November 9, 2020

Abstract

We consider multi-step algorithms for the computation of the historical expected shortfall. At each
step of the algorithms, we use Monte Carlo simulations to reduce the number of historical scenarios
that potentially belong to the set of worst-case scenarios. We show how this can be optimized by
either solving a simple deterministic dynamic programming algorithm, or in an adaptive way by using
a stochastic dynamic programming procedure under a given prior. We prove Lp-error bounds and
numerical tests are performed.

Keywords: Expected Shortfall, ranking and selection, sequential design, Bayesian filter.

1 Introduction

The Basel Minimum Capital Requirements for Market Risk [4] has brought two main changes in the way
that investment banks need to compute their capital requirements. Expected Shortfall (ES) replaces Value
at Risk (VaR) as the main risk indicator for the computation of capital requirements. The advantages of
ES over VaR have been brought forward in Artzner et al. [2], and Expected Shortfall is now considered
by most researchers and practitioners as superior to VaR as a risk measure, because it respects the sub-
additivity axiom, see [1, 2, 24]. The second main change is that the number of required daily computations
of ES has been multiplied by a factor of up to 90. Where banks used to need to compute one VaR per
day, they now need to compute up to three ES per liquidity horizon and risk class, as well as three ES
per liquidity horizon for all risk classes combined. The above has triggered several works on the fast
computation of ES.

Mathematically, if V is a random variable modeling the level of loss1 of a portfolio that will be known at
a future time, the expected shortfall of level α ∈ (0, 1) is defined by

ESα :=
1

α

∫ α

0

VaRγ(V)dγ, (1)

where VaRγ is the Value at Risk at level γ, i.e.

VaRγ (V) := max {x ∈ R : P[V ≥ x] > γ}. (2)

Nearly all of the literature concentrates on studying the ESα by using parametric, non-parametric or semi-
parametric approaches to approximate the distribution of V based on historical data. See in particular
[9, 11, 12, 15, 16, 19, 20, 22, 25, 26, 27, 28] as well as the recent paper [21] and the references therein.

∗CEREMADE, CNRS, Université Paris Dauphine, PSL University.
†Natixis.
‡Natixis and CEREMADE, CNRS, Université Paris Dauphine, PSL University.
§The authors would like to thank Nicolas Baradel for helping with the code, Rida Mahi and Mathieu Bernardo from the

Natixis Quantitative Research Teams for providing the first results and ideas on the Fast Detection Algorithm, and finally
William Leduc for providing all the necessary data to obtain the different book parameters.

1All over this paper, we measure the performances in terms of losses. A positive number is a loss, a negative number is
a gain.

1

Another approach consists in using the fact that V is the risk neutral value of a book, and therefore of
the form E[P |S] in which S is a random variable associated to market parameters and P represents the
future (discounted) payoffs of the book. This suggests using a nested Monte Carlo approach: simulate a
set of values in the distribution of S (outer scenarios), and, for each simulation of S, compute a Monte
Carlo estimator of E[P |S] by using simulations in the conditional distribution (inner scenarios). This is
for instance the approach of [8, 13].
The regulatory document of Basel [4] also takes this latter approach and furthermore describes precisely
how ns = 253 scenarios of market parameters s = (si)i≤ns are to be deterministically generated. In this
context, S is simply uniformly distributed in the sequence s (and, since V is defined by a pricing formula
E[P |S] that is fully described by the value of S, there is no room for approximating the law of V based
on historical data). If we define the loss impacts (µi)i≤ns of the book,

µi :=
(
E[P |S = si]− E[P |S = s0]

)
, i = 1 . . . , ns,

in which s0 is the current value of the market parameters, the ES of the regulatory document of Basel [4]
is thus defined as the average over the nw = 6 worst-case impacts

ES =
1

nw

nw∑
i=1

µi, (3)

where, for ease of notations, we assume that

µ1 ≥ µ2 ≥ · · · ≥ µns−1 ≥ µns . (4)

Methods that are in line with the above have also been studied, in particular in [17, 23] in which the
authors define a distance on the space of scenarios induced by the distance between their risk fac-
tors. Starting with the original outer-level scenarios (called “prediction points”), they determine “design
points” that are included in their convex hull. Inner-level paths are simulated in order to evaluate the
portfolio value at the design points. These values are then used to establish a metamodel of the portfolio
price with respect to the risk factors, and this metamodel is then used to select among the prediction
points those that are most likely to be part of the worst scenarios set. They are then added to the design
points, and evaluated by using inner-level simulations, after which the metamodel is updated.
These methods are very smart but neglect one important point for practitioners: the cost of launching
a pricer is high, as it typically entails instanciating thousands of objects at initialization, as well as
volatility surface calibrations and sometimes even graphical interfaces. Furthermore, these pricers usually
do not have the flexibility to add dynamically, at each inner-level pricing, new paths to a given scenario.
Therefore, we do not allow ourselves to adapt our strategies at such a level of granularity.
Instead, we will consider strategies that only entail L-levels of sets of simulations, where L is typically
quite low (say 2 to 4), so as not to pay too many times the overhead of launching the pricer and/or
calibrating the required volatility surfaces. We also do not use any concept of distance between scenarios
induced by their risk factors. Although this enables [17] and [23] to obtain better empirical convergence
rates, we see at least one problem with this approach: at the scale of a bank, the space of risk factors is
both of a very high dimension (a few thousands) and with a very complex geometry (the payoffs of the
portfolio’s derivative products are usually non-convex, and path-dependent), so that it is very difficult to
establish a model describing the proximity of scenarios in a robust way.

We thus study relatively simple procedures that also have the advantage of allowing us to establish
non-asymptotic bounds on the Lp-error of our estimators, in the spirit of the simplest ranking by mean
approach, see e.g. [3, 5, 6, 14]. They consist in using a first set of simulated paths to provide a crude
estimation of the impact factors µi. These first estimators are ranked to select the q1 < ns outer-level
scenarios with the highest estimated impact values. Then, only the impact values of these q1 pre-selected
scenarios are estimated again by using the previous estimators together with a new set of simulated
paths. Among these new estimators we select the scenarios with the q2 < q1 highest estimated impact
factors. And so on. After L ≥ 2 steps, L being small in practice, we just keep the mean of the six highest
estimated impacts.
The rationale behind this is that a first crude estimation should be sufficient to rule out a large part
of the scenarios from being amongst the 6 worst-case scenarios candidates, because the corresponding

2

values should be far enough. While the number of candidates reduces, one can expect that the differences
between the corresponding impacts diminish as well and that more Monte Carlo simulations are needed
to differentiate them. Under an indifference zone hypothesis, similar to the one used in the above
mentioned paper, and a sub-gamma distribution assumption, the convergence is exponential in the number
of simulations used at the different steps and of order 1/2 in the total number of simulations. See
Proposition 2.2 and Corollary 2.3 below.

The optimal number of additional paths that should be used at each step to minimize the strong estimation
error, given a maximal computational cost, can be determined by dynamic programming, which can be
done off-line, see Section 2.4. In theory, this requires the a priori knowledge of the means and covariances
of our estimators, which are obviously not known in practice. However, one can easily define a version
based on a robust specification of the error. One can also take advantage of the different simulation
sets to improve our prior on the true hidden parameters. This leads to a natural adaptative algorithm,
see Section 3, for which convergence is also proved, see Proposition 3.3. Estimating the optimal policy
associated to this adaptative algorithm is costly but can be done off-line by using a neural network
approximation combined with a backward dynamic programming induction. We explain how this can be
done in Section 3.3 (further details are in Appendix B).

The rest of the paper is organized as follows. Section 2 is dedicated to the most naive deterministic
algorithm. In particular, Section 2.5 gives a very easy to use two levels algorithm for the case where
the impacts decrease linearly in the scenarios’ rank order. The adaptative version of the algorithm is
presented in Section 3. Finally, we perform first numerical tests in Section 4.

2 Algorithm with a deterministic effort allocation

In this section, we describe the simplest version of the algorithm. It uses a pre-defined deterministic
number of simulations. We establish a strong Lp-error bound and discuss several ways of choosing the
optimal strategy for minimizing this error.

2.1 The algorithm

From now on, we assume that E[P |S = s0] is known perfectly and set it to 0 for ease of notations. As
explained above, the algorithm relies on the idea of selecting progressively the scenarios that will be
used for the computation of the Expected Shortfall. Namely, let P|s := (P|si)i≤ns be a ns-dimensional
random variable such that each P|si has the law of P given S = si. We first simulate independent copies
(P 1
j , . . . , P

ns
j)j≥1 of P|s and compute the Monte Carlo estimators of E[P |S = si], i ≤ ns:

µ̂i1 :=
1

N1

N1∑
j=1

P ij for i ≤ ns,

for some N1 ≥ 1. Among these random variables, we then select the ones that are the most likely to
coincide with the worst scenarios s1, . . . , snw , for some 1 ≤ nw < ns. To do this, one considers the

(random) permutation m1 on [[1, ns]] such that the components of
(
µ̂
m1(i)
1

)
i≤ns

are in decreasing order:

 µ̂
m1(1)
1 ≥ µ̂m1(2)

1 ≥ . . . ≥ µ̂m1(ns)
1 ,

m1(i) < m1(i′) if µ̂
m1(i)
1 = µ̂

m1(i′)
1 for 1 ≤ i < i′ ≤ ns,

and only keep the indexes (m1(`))`≤q1 of the corresponding q1 ≥ nw highest values, i.e. the indexes
belonging to

I1 := I0 ∩m1([[1, q1]]) in which I0 := [[1, ns]].

We then iterate the above procedure on the scenarios in I1 and so on. Namely, we fix L ≥ 1 different
thresholds (q`)`=0,...,L−1 such that

nw =: qL−1≤ · · ·≤q0 := ns. (5)

3

Assuming that I`−1 is given, for some 1 ≤ `− 1 ≤ L− 1, we compute the estimators2

µ̂i` :=
1

N`

N∑̀
j=1

P ij for i ≤ ns, (6)

for some N` ≥ N`−1. If ` ≤ L− 1, we consider the (random) permutation m` : [[1, q`−1]] 7→ I`−1 such that
the components of

(
µ̂i`
)
i∈I`−1

are in decreasing order µ̂
m`(1)
` ≥ µ̂m`(2)

` ≥ . . . ≥ µ̂m`(q`−1)
` ,

m`(i) < m`(i
′) if µ̂

m`(i)
` = µ̂

m`(i
′)

` for 1 ≤ i < i′ ≤ ns,
(7)

and only keep the elements in
I` := I`−1 ∩m`([[1, q`]])

for the next step. If ` = L, we just compute the final estimator of the ES given by

ÊS :=
1

nw

nw∑
i=1

µ̂
mL−1(i)
L =

1

nw

∑
i∈IL−1

µ̂iL.

Note that only the L − 1-first steps are used to select the worst scenarios, the step L is a pure Monte
Carlo step. Again, the general idea is to reduce little by little the number of scenarios that are candidates
to being amongst the nw worst-case scenarios. As the number of candidates diminishes, one increases
the number of simulated paths so as to reduce the variance of our Monte Carlo estimators and be able
to differentiate between potentially closer true values of the associated conditional expectations.

Remark 2.1. Note that, given j, we do not assume that the P ij , i ≤ ns, are independent. The simulations

associated to different scenarios are in general not independent. Moreover, the µ̂i`, ` ≤ L, use the same
simulated paths, only the number of used simulations changes. Both permit to reduce the computational
cost, by allowing the use of the same simulations of the underlying processes across scenarios and steps.

2.2 General a-priori bound on the Lp error

In this section, we first provide a general Lp estimate of the error. A more tractable formulation will be
provided in Corollary 2.3 under an additional sub-gamma distribution assumption.

From now on, we assume that P|s ∈ Lp for all p ≥ 1, and we use the notations3

q := (q0, q1, . . . , qL) , N = (N0, N1, . . . , NL)

δq` := q`−1 − q` and δN` := N` −N`−1, for 1 ≤ ` ≤ L, (8)

δµ̂i` :=

∑N`
j=N`−1+1 P

i
j

δN`
=
N`µ̂

i
` −N`−1µ̂

i
`−1

δN`
, for 1 ≤ i ≤ ns, (9)

with the convention 0/0 = 0.

Proposition 2.2. For all p ≥ 1,

E
[∣∣∣ES− ÊS

∣∣∣p] 1
p

≤
L−1∑
`=1

(δq`)
1
p max

(i,k)∈[[1,nw]]×[[q`+1,ns]]
(µi − µk)P[µ̂k` > µ̂i`]

1
p

+
1

nw

δNL
NL

max
1≤i1<···<inw≤ns

 nw∑
j=1

E
[∣∣∣δµ̂ijL − µij ∣∣∣p] 1

p

 (10)

+
1

nw

NL−1

NL

ns∑
i=1

E
[∣∣µ̂iL−1 − µi

∣∣p] 1
p

.

2Note from the considerations below that only the elements (µ̂i`)i∈I`−1
are needed in practice, the others are only

defined here because they will be used in our proofs.
3The element qL and N0 are defined for notational convenience, they never appear in our algorithm. To fix ideas, they

can be set to qL = nw and N0 = 0 all over this paper.

4

Before providing the proof of this general estimate, let us make some comments. The last two terms in
(10) are natural as they are due to the Monte Carlo error made on the estimation of the various conditional
expectations that can enter, after the (L−1)-levels selection procedure, in the estimation of ES. Note that
it corresponds to the estimation errors using the cumulated number of Monte Carlo simulations NL−1 of
step L−1 and the number NL−NL−1 of simulations used only for the last step. In practice, these numbers
should be sufficiently large. The first term involves the quantities max(i,k)∈[[1,nw]]×[[q`+1,ns]](µ

i−µk)P[µ̂k` >

µ̂i`]
1
p with ` = 1, . . . , L− 1. Each term corresponds to the situation in which an element i ∈ [[1, nw]] gets

out of the set of selected indexes I` exactly at the `-th step. In the worst-case situation, it is replaced by
an element of index k larger than q` and this can happen only if µ̂k` > µ̂i`. The probability of this event
is controlled by the number of Monte Carlo simulations N` used at the step ` but also by the distance
between the two scenarios. More specifically, for ` small, one expects that P[µ̂k` > µ̂i`] is small because
the law of P|sk is concentrated far away from where the law of P|si is. This quantity potentially increases
with `, as we reduce the number of selected indexes. This should be compensated by an increase in the
number of used Monte Carlo simulations. Otherwise stated, we expect to balance the various terms of
(10) by considering a suitable increasing sequence (N`)`≤L.
Obviously, (10) implies that the algorithm converges as N` →∞ for all ` ≤ L, see Proposition 3.3 below
for a proof in a more general framework.

Proof of Proposition 2.2. We split the error into a permutation and a Monte Carlo error:

E
[∣∣∣ES− ÊS

∣∣∣p] 1
p

≤E

∣∣∣∣∣∣ 1

nw

∑
i≤nw

µi − µmL−1(i)

∣∣∣∣∣∣
p

1
p

+ E

∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̂
mL−1(i)
L − µmL−1(i)

∣∣∣∣∣∣
p

1
p

. (11)

Let us first look at the second term which corresponds to a Monte Carlo error. We have

E

∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̂
mL−1(i)
L − µmL−1(i)

∣∣∣∣∣∣
p

1
p

≤NL−1

NL

1

nw
E

∣∣∣∣∣∣
∑
i≤nw

µ̂
mL−1(i)
L−1 − µmL−1(i)

∣∣∣∣∣∣
p

1
p

+
NL −NL−1

NL

1

nw
E

∣∣∣∣∣∣
∑
i≤nw

∑NL
j=NL−1+1 P̂

mL−1(i)
j

NL −NL−1
− µmL−1(i)

∣∣∣∣∣∣
p

1
p

in which

E

∣∣∣∣∣∣
∑
i≤nw

µ̂
mL−1(i)
L−1 − µmL−1(i)

∣∣∣∣∣∣
p

1
p

≤
∑
i≤ns

E
[∣∣µ̂iL−1 − µi

∣∣p] 1
p

,

and

E

∣∣∣∣∣∣
∑
i≤nw

∑NL
j=NL−1+1 P̂

mL−1(i)
j

NL −NL−1
− µmL−1(i)

∣∣∣∣∣∣
p

1
p

= E

E
∣∣∣∣∣∣
∑
i≤nw

δµ̂
mL−1(i)
L − µmL−1(i)

∣∣∣∣∣∣
p∣∣∣∣∣∣mL−1


1
p

≤

 max
1≤i1<...<inw≤ns

E

∣∣∣∣∣∣
nw∑
j=1

δµ̂
ij
L − µ

ij

∣∣∣∣∣∣
p

1
p

≤ max
1≤i1<...<inw≤ns

nw∑
j=1

E
[∣∣∣δµ̂ijL − µij ∣∣∣p] 1

p

.

To discuss the first term in the right-hand side of (11), the permutation error, let us first define Sq[A] as
the collection of the q smallest elements of a set A ⊂ N. If i ∈ [[1, nw]] ∩ I`−1 \ I`, then i ∈ Sq` [I`−1] \ I`
and therefore there exists ki ∈ R` := I` \Sq` [I`−1]. Thus, on the set {{i1, . . . , iJ} = (I`−1 \I`)∩ [[1, nw]]},
one can define k`(i1) := maxR` and k`(ij+1) := max{k < k`(ij) : k ∈ R`} for j + 1 ≤ J . Note that

{i ∈ I`−1 \ I`} ⊂ {µ̂k`(i)
` > µ̂i`} and |R`| ≤ q`−1 − q`, (12)

5

since R` ⊂ I`−1 \ Sq` [I`−1] and |I`−1| = q`−1. Let Aq,q′ denote the collection of subsets A of [[q + 1, ns]]
such that |A| = q′. Then, it follows from (4), Hölder’s inequality and (12) that

E

∣∣∣∣∣∣ 1

nw

∑
i≤nw

µi − µmL−1(i)

∣∣∣∣∣∣
p

1
p

≤ 1

nw

∑
i≤nw

L−1∑
`=1

E
[∣∣∣(µi − µk`(i))1{i∈I`−1\I`}

∣∣∣p] 1
p

≤ max
i≤nw

L−1∑
`=1

E
[∣∣∣(µi − µk`(i))1{i∈I`−1\I`}

∣∣∣p] 1
p

≤ max
i≤nw

L−1∑
`=1

(
max

A⊂Aq`,δq`

∑
k∈A

E
[∣∣(µi − µk)

∣∣p 1{i∈I`−1\I`,k`(i)=k}

]) 1
p

≤
L−1∑
`=1

(δq`)
1
p max

(i,k)∈[[1,nw]]×[[q`+1,ns]]
(µi − µk)P[µ̂k` > µ̂i`]

1
p .

2.3 Error bound for Sub-Gamma distributions

To illustrate how the general error bound of Proposition 2.2 can be used in practice to choose the sequence
(q`, N`)`, we now consider the case where the components of P|s have sub-gamma distributions, and apply
Bernstein’s inequality in (10), see e.g. [7, Chapter 2]. This requires the following assumption.

Assumption 1. There exists c ∈ R+ such that the random variables Z[i, k] := (P|si − µi)− (P|sk − µk),
i, k ≤ ns, satisfy Bernstein’s condition :

E [|Z[i, k]|p] ≤ p! cp−2

2
E
[
Z[i, k]2

]
, i, k ≤ ns, for all p ≥ 3.

From now on, we shall assume that the constant c is known. It can usually be estimated in practice.

Corollary 2.3. Assume that Assumption 1 holds. Then, for all p ≥ 1,

E
[∣∣∣ES− ÊS

∣∣∣p] 1
p

≤Fp(q,N) (13)

in which

Fp(q,N) :=

L−1∑
`=1

(δq`)
1
p max

(i,k)∈[[1,nw]]×[[q`+1,ns]]
(µi − µk)e

− N`(µ
i−µk)2

2p(σ2
ik

+c(µi−µk))

+
1

nw

δNL
NL

max
1≤i1<...<inw≤ns

nw∑
j=1

(
Cp,σ

pσpij

(δNL)
p
2

+ Cp,c
pcp

(δNL)p

) 1
p

(14)

+
1

nw

NL−1

NL

ns∑
i=1

(
Cp,σ

pσpi
(NL−1)

p
2

+ Cp,c
pcp

(NL−1)p

) 1
p

with {
σ2
ik := Var[P|si − P|sk] and σ2

i := Var[P|si], i, k ≤ ns
Cp,σ := 2p−1Γ

(
p
2

)
and Cp,c := 4pΓ (p)

(15)

where Γ is the Gamma function defined by

Γ (y) =

∫ +∞

0

xy−1e−xdx, y > 0.

6

The upper-bound of Corollary 2.3 has two advantages over Proposition 2.2. First, the dependence on
(q`, N`)`≥0 is more explicit. It depends on unknown quantities, but we can estimate (at least rough)
confidence intervals for them, see e.g. Section 2.4 below. Second, as we will see in the next section, it
allows one to define a tractable deterministic optimal control problem satisfying a dynamic programming
principle, or even simple heuristics (see Section 2.5), to select an appropriate sequence (q`, N`)`≥0.

Proof of Corollary 2.3. The first term in (14) is an upper-bound for the first term in the right-hand side
of (10), see [7, Theorem 2.1]. As for the two other terms in (10), we use the usual argument, for i ≤ ns,

E
[∣∣δµ̂iL − µi∣∣p] =

∫ ∞
0

pxp−1P[|δµ̂iL − µi| ≥ x]dx

and

E
[∣∣µ̂iL−1 − µi

∣∣p] =

∫ ∞
0

pxp−1P[|µ̂iL−1 − µi| ≥ x]dx,

and then appeal to [7, Theorem 2.1] again to deduce that

E
[∣∣δµ̂iL − µi∣∣p] ≤∫ ∞

0

pxp−1e
− δNLx

2

2(σ2
i

+cx) dx

≤
∫ ∞

0

pxp−1e
− δNLx

2

4σ2
i 1

{x≤
σ2
i
c }
dx+

∫ ∞
0

pxp−1e−
δNLx

4c 1
{x>

σ2
i
c }
dx

≤ p(σ
2
i)

p
2

(δNL)
p
2

∫ ∞
0

yp−1e−
y2

4 dy +
pcp

(δNL)p

∫ ∞
0

yp−1e−
y
4 dy,

≤ pσpi
(δNL)

p
2

2p−1Γ
(p

2

)
+

pcp

(δNL)p
4pΓ(p),

and

E
[∣∣µ̂iL−1 − µi

∣∣p] ≤∫ ∞
0

pxp−1e
−
NL−1x

2

2(σ2
i

+cx) dx

≤
∫ ∞

0

pxp−1e
−
NL−1x

2

4σ2
i 1

{x≤
σ2
i
c }
dx+

∫ ∞
0

pxp−1e−
NL−1x

4c 1
{x>

σ2
i
c }
dx

≤ p(σ2
i)

p
2

(NL−1)
p
2

∫ ∞
0

yp−1e−
y2

4 dy +
pcp

(NL−1)p

∫ ∞
0

yp−1e−
y
4 dy,

≤ pσpi
(NL−1)

p
2

2p−1Γ
(p

2

)
+

pcp

(NL−1)p
4pΓ (p) .

Remark 2.4. If the (µ̂i`)i≤ns and (δµ̂i`)i≤ns are Gaussian, which is the case asymptotically, then the
bound of Corollary 2.3 remains valid with c = 0. This fact will be used later on for simplifying our
numerical algorithms.

2.4 Optimal a-priori allocation by deterministic dynamic programming based
on fixed a-priori bounds

Given N := (N`)0≤`≤L and q = (q`)0≤`≤L−1, the total computation cost is

C(q,N) :=

L−1∑
`=0

q`(N`+1 −N`)

with the convention N0 := 0. Let N denote the collection of non-decreasing sequences N := (N`)0≤`≤L
with values in N such that N0 = 0, and let Q denote the collections of non-increasing sequences4 q =

4We write (q`)0≤`≤L for convenience although qL will never play any role.

7

(q`)0≤`≤L with values in [[nw, ns]] satisfying (5). In this section, we fix a total effort K > 0 and recall
how Fp(q,N), as defined in (14), can be minimized over the collection A of sequences (N, q) ∈ N × Q
satisfying C(N, q) ≤ K by using a standard dynamic programming approach.

Given (q̄, N̄) ∈ Q×N and 0 ≤`≤L− 1, we write

Fp(`, q̄, N̄) :=
1

nw

δN̄L
N̄L

max
1≤i1<...<inw≤ns

nw∑
j=1

(
Cp,σ

pσpij

(δN̄L)
p
2

+ Cp,c
pcp

(δN̄L)p

) 1
p

+
1

nw

N̄L−1

N̄L

ns∑
i=1

(
Cp,σ

pσpi
(N̄L−1)

p
2

+ Cp,c
pcp

(N̄L−1)p

) 1
p

+ 1{`<L−1}

L−1∑
`′=`+1

fp(q̄`′ , q̄`′−1, N̄`′),

(16)

where

fp(q̄`′ , q̄`′−1, N̄`′) := (δq̄`′)
1
p max

(i,k)∈[[1,nw]]×[[q̄`′+1,ns]]
(µi − µk)e

−
N̄
`′ (µ

i−µk)2

2p(σ2
ik

+c(µi−µk)) ,

and define

F̂p(`, q̄, N̄) = min
(q̄′,N̄ ′)∈A(`,q̄,N̄)

Fp(`, q̄
′, N̄ ′)

where5

A(`, q̄, N̄) := {(q̄′, N̄ ′) ∈ Q×N : (q̄′l, N̄
′
l)0≤l≤` = (q̄l, N̄l)0≤l≤` and C(q̄′, N̄ ′) ≤ K} , ` ≥ 0.

Then, the dynamic programming principle implies that

F̂p(`, q̄, N̄) = min
(q̄′,N̄ ′)∈A(`,q̄,N̄)

[
F̂p(`+ 1, q̄′, N̄ ′) + fp(q̄

′
`+1, q̄`, N̄

′
`+1)

]
, for 0 ≤ ` < L− 1.

This reduces the search for an optimal selection of (N̄ , q̄) to L− 1 one-step optimization problems, which
is much simpler to solve than the optimization problem associated to the left-hand side of (13).

In practice, the exact values of (µi, σ2
i)i≤ns and (σ2

ik)i,k≤ns are not known. However, one can consider
robust versions of the above. For instance, if we know that there exists some (δq, δq)q≤ns and σ2 such
that  0 ≤ δq ≤ µi − µk ≤ δq, (i, k) ∈ [[1, nw]]× [[q + 1, ns]]

σ2
i ∨ σ2

k ∨ σ2
ik ≤ σ2, (i, k) ∈ [[1, nw]]× [[nw + 1, ns]],

(17)

then one can similarly minimize the upper-bound of Fp defined as

δN̄L
N̄L

(
Cp,σ

pσp

(δN̄L)
p
2

+ Cp,c
pcp

(δN̄L)p

)
+
ns
nw

N̄L−1

N̄L

(
Cp,σ

pσp

(N̄L−1)
p
2

+ Cp,c
pcp

(N̄L−1)p

)

+ 1{`<L−1}

L−1∑
`′=`

f̃p(q̄`′ , q̄`′−1, N̄`′),

with

f̃p(q̄`′ , q̄`′−1, N̄`′) := (δq̄`′)
1
p max
δq
`′
≤δ≤δq

`′

δe
−

N̄
`′ δ

2

2p(σ2+cδ) .

This corresponds to a worst case scenario, when only the a priori bounds (δq, δq)q≤ns and σ2 are known.
In the above, one can also impose that q takes values in a given subset of Q of Q. In this case, we will
only need to know (δq, δq)q∈Q̄.

We refer to Section 4 below for numerical tests that show that such an algorithm seems to perform pretty
well. Note that the optimization can be done off-line.

5In the following, we only write A(0) for ` = 0 as it does not depend on (q̄, N̄).

8

2.5 Simplified 2-levels algorithm for a linear indifference zone’s size

Inspired by [3, 5, 6, 14], we assume here that we know the value of a constant δ0 > 0 such that the
impacts of the nw worst scenarios have values that are separated by at least (k − nw)δ0 from the k-th
worst scenario, for k > nw:

µnw − µk ≥ (k − nw) δ0, ∀ k ∈ [[nw + 1, ns]]. (18)

To illustrate this, we plot on Figures 1-4 the curves k 7→ |µnw −µk| for different formerly used test books
of Natixis. We see that they are more flat on the interval [100, 120], so that a rather conservative value
would be the minimum (over the different books) of (µ100−µ120)/20. Another choice in practice could be
to take the ratio (µnw − µ100)/(100− nw) which amounts to considering only the first part of the curve,
and neglecting points that are anyway far from the worst scenarios.

Figure 1: k 7→ |µnw − µk| for Book #1 Figure 2: k 7→ |µnw − µk| for Book #2

Figure 3: k 7→ |µnw − µk| for Book #3 Figure 4: k 7→ |µnw − µk| for Book #4

We now consider a simplified version of the algorithm of Section 2.1 where we only do one intermediate
“fast pricing” (meaning N1 rather small) and one final “full pricing” (meaning N2 large). In theory, this
corresponds to L = 3 with q2 = nw, δN3 = 0 and δN2 → ∞. As δN2 → ∞, the second and third terms
in (14) vanish, as well as the component of the first term corresponding to ` = 2. We therefore neglect
them. In practice, we only take N2 large enough (and given) from the point of view of the bank, and
minimize over (q1, N1) the remaining term in (14):

F∞1 (q1) := (ns − q1)
1
p max

(i,k)∈[[1,nw]]×[[q1+1,ns]]
(µi − µk)e

− N1(µi−µk)2

2p(σ2+c(µi−µk)) ,

9

in which σ̄ is estimated to be as in (17), under the computation cost constraint

C (N1, q1) = q1(N2 −N1) + nsN1 ≤ K

for some given maximal cost K ∈ N∗.
For N1 (or K) large enough, the condition (18) leads to minimizing over q1 ∈ [[nw, ns]] ∩ [1,K/N2] the
upper-bound

hp0(q1) := (ns − q1)
1
p × (q1 + 1− nw)δ0 exp

(
− (K − q1N2) (q1 + 1− nw)2δ2

0

2p(ns−q1)
(
σ2 + c (q1 + 1− nw) δ0

)) . (19)

The optimal q∗1 can then be found easily by performing a one-dimensional numerical minimization. Upon
replacing ns−q1 by ns in the denominator of the exponential term, which provides a further upper-
bound, the optimum can even be computed explicitly, see Appendix A. This provides a very easy to use
algorithm.
Considering the case p = 1, let us now perform first numerical tests to see if the proxy based on h1

0

is far from F∞1 . We use the parameters of Tables 1 and 2 below and µi = −iδ0, i ≤ ns, where δ0 :=
(µnw − µ100)/(100− nw) for the µis of Figure 6. In particular, we take c = 0, see Remark 2.4.
In Figure 5, the two increasing curves show the optimum q∗1 (right axis) as found when applying the
deterministic dynamic programming algorithm (dashed line) of Section 2.4 associated to the real sample
book curve of Figure 6, and the heuristic (solid line) based on (19). The two decreasing curves show the
corresponding F∞1 (q∗1) (left axis) found when applying the deterministic dynamic programming algorithm
(dotted line) and the heuristic (dashdot line). We see that the heuristic and the real minimizer are
extremely close. The noise in the lines associated to the dynamic programming algorithm are due to grid
effects.

Figure 5: q∗1 vs K for the distribution of Figure 6

δ0 2 766

c 0

σ̄
√

2(1− ρ)× 2 200 000

ρ 0.6

ns 253

nw 6

Table 1: Sample Book Parameters

10

K 107

N2 105

Table 2: Computing Power

Figure 6: Sample book distribution : i 7→ µi for i ≤ ns

3 Adaptative algorithm

Although the true value θ◦ = (µ◦,Σ◦) of the vector of means and of the covariance matrix of P|s are
unknown, we can set on it a prior distribution, e.g. based on previous Monte Carlo experiments, rather
than just working on robust bounds as in the end of Section 2.4. Since the estimation of ES uses Monte
Carlo simulations of P|s, the knowledge of these quantities can be improved along the different steps ` of
our estimation procedure. This suggests an adaptative algorithm for the optimization of the numerical
effort allocation, in which we learn progressively the true value of these parameters, or part of them.
From now on, we therefore view the true value of the parameters as a random variable θ̃ := (µ̃, Σ̃) on
which a prior law ν0 is set. At each step `, new Monte Carlo simulations will allow us to update this
prior, and our strategy for the next steps accordingly.

3.1 Error bounds and convergence for predictable strategies

Let us first adapt the proof of Proposition 2.2 and Corollary 2.3 to the case where controls are not
deterministic but stochastic processes. Given a stochastic process α with values in Q × N , we set
(qα, Nα) := α where qα and Nα are respectively Q and N -valued. We then define µ̂α = (µ̂α`)`≤L,
(Iα` ,m

α
`)`≤L as in Section 2.1 except that we see µ̂α` as a qα` -dimensional random variables with entries

given by (µ̂α,i`)i∈Iα` . We use the same convention for δµ̂α` , recall (9). We say that α is admissible if it is

predictable with respect to (Fα`)`≤L in which Fα0 is trivial and Fα` = Fα`−1 ∨ σ(P ij , (i, j) ∈ Iα` × [[1, Nα
`]]).

We call Aad the collection of such processes. Then, one defines

ÊS
α

:=
1

nw

nw∑
i=1

µ̂
α,mαL−1(i)

L , α ∈ Aad.

The true value of the expected shortfall is now also written as a random variable

ẼS :=
1

nw

nw∑
i=1

µ̃m̃(i),

in which m̃ is the random permutation such that µ̃m̃(1) ≥ µ̃m̃(2) ≥ . . . ≥ µ̃m̃(ns),

m̃(i) < m̃(i′) if µ̃m̃(i) = µ̃m̃(i′) for 1 ≤ i < i′ ≤ ns.

11

We letM be a collection of laws on Rns ×Sns , where Sns denotes the collection of covariance matrices of
size ns. Given ν ∈ M, we denote by Eν the expectation operator given that θ̃ admits the law ν. When
ν is a Dirac mass, we retrieve the situation of Section 2 (up to re-ordering in a deterministic way the
components of µ).
We first provide a natural extension of Proposition 2.2.

Proposition 3.1. For all p ≥ 1, ν ∈M, and α ∈ Aad,

Eν
[∣∣∣ẼS− ÊS

α
∣∣∣p] 1

p

≤ 1

nw
Eν
∣∣∣∣∣∣

∑
i∈IαL−1

µ̂α,iL − µ̃
i

∣∣∣∣∣∣
p

1
p

(20)

+

L−1∑
`=1

Eν
[
δqα` max

(i,k)∈m̃α`−1([[1,nw]]×[[qα` +1,qα`−1]])
(µ̃i − µ̃k)pPν [µ̂α,k` > µ̂α,i` |F

α
`−1 ∨ σ(θ̃)]

] 1
p

,

with the convention max∅ = 0 and in which m̃α`−1 is defined as m̃ but on the subset Iα`−1 instead of
Iα0 = [[1, ns]].

Proof. We proceed as in the proof of Proposition 2.2 to obtain that

Eν
[∣∣∣ẼS− ÊS

α
∣∣∣p] 1

p

≤Eν
∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̂
α,mαL−1(i)

L − µ̃mαL−1(i)

∣∣∣∣∣∣
p

1
p

+ Eν
∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̃m̃(i) − µ̃mαL−1(i)

∣∣∣∣∣∣
p

1
p

,

where

Eν
∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̂
α,mαL−1(i)

L − µ̃mαL−1(i)

∣∣∣∣∣∣
p

1
p

=
1

nw
Eν
∣∣∣∣∣∣

∑
i∈IαL−1

µ̂α,iL − µ̃
i

∣∣∣∣∣∣
p

1
p

.

We define kα` as k` in the proof of Proposition 2.2 for the strategy α, with R` replaced by Rα` :=
Iα` \ m̃(Sqα` [m̃−1(I`−1)]). Then,

Eν
∣∣∣∣∣∣ 1

nw

∑
i≤nw

µ̃m̃(i) − µ̃mαL−1(i)

∣∣∣∣∣∣
p

1
p

≤ Eν
∣∣∣∣∣∣ 1

nw

∑
i≤nw

L−1∑
`=1

(µ̃m̃(i) − µ̃kα` (m̃(i)))1{m̃(i)∈Iα`−1\I
α
` }

∣∣∣∣∣∣
p

1
p

≤ 1

nw

L−1∑
`=1

∑
i≤nw

Eν
[∣∣∣(µ̃m̃(i) − µ̃kα` (m̃(i)))

∣∣∣p 1{m̃(i)∈Iα`−1\I
α
` }

] 1
p

≤ 1

nw

L−1∑
`=1

∑
i≤nw

Eν
 ∑
k∈m̃α`−1([[qα` +1,qα`−1]])

Eν
[∣∣∣(µ̃m̃(i) − µ̃k)

∣∣∣p 1{m̃(i)∈Iα`−1\I
α
` ,k

α
` (m̃(i))=k}|Fα`−1 ∨ σ(θ̃)

] 1
p

≤
L−1∑
`=1

Eν
[
δqα` max

(i,k)∈m̃α`−1([[1,nw]]×[[qα` +1,qα`−1]])
(µ̃i − µ̃k)pPν [µ̂α,k` > µ̂α,i` |F

α
`−1 ∨ σ(θ̃)]

] 1
p

.

Remark 3.2. Note that, when α is deterministic and ν is concentrated on a Dirac, the right-hand side
of (20) is bounded from above by

1

nw

δNα
L

Nα
L

max
1≤ii<...<inw≤ns

nw∑
j=1

Eν
[∣∣∣δµ̂α,ijL − µ̃ij

∣∣∣p] 1
p

+
1

nw

Nα
L−1

Nα
L

ns∑
i=1

Eν
[∣∣∣µ̂α,iL−1 − µ̃

i
∣∣∣p] 1

p

+

ns∑
i=1

L−1∑
`=1

(δqα`)
1
p Eν

[
max

(i,k)∈m̃[[1,nw]]×[[qα` +1,ns]]
(µ̃i − µ̃k)pPν [µ̂α,k` > µ̂α,i` |F

α
`−1 ∨ σ(θ̃)]

] 1
p

,

12

which coincides with the bound of Proposition 2.2

The above guarantees the convergence of the algorithm.

Proposition 3.3. Let (Kn)n≥1 ⊂ N∗ be a sequence converging to infinity and let (αn)n≥1 be a sequence
in Aad such that C(qα

n

, Nαn) ≤ Kn for each n ≥ 1. Assume further that min1≤`≤LN
αn

` → ∞ a.s. Let
ν be concentrated on the Dirac mass on θ◦. Then,

Eν
[∣∣∣∣ẼS− ÊS

αn
∣∣∣∣p]→ 0 as n→∞.

Proof. It suffices to use the fact that, for some Cp > 0,

Eν
[∣∣∣µ̂αn,i` − µ̃i

∣∣∣p] ≤ CpEν [δNαn

`

Nαn
`

Eν
[∣∣∣δµ̂αn,i` − µi◦

∣∣∣p |Fαn`−1

]]
+ CpEν

[
Nαn

`−1

Nαn
`

∣∣∣µ̂αn,i`−1 − µ
i
◦

∣∣∣p] ,
in which

δNαn

`

Nαn
`

Eν
[∣∣∣δµ̂αn,i` − µi◦

∣∣∣p |Fαn`−1

]
→ 0, ν◦ − a.s.,

for all ` > 1 and i ≤ ns. By induction, this implies that

Eν
[∣∣∣µ̂αn,i` − µ̃i

∣∣∣p] = Eν
[∣∣∣µ̂αn,i` − µi◦

∣∣∣p]→ 0

for all ` ≤ L and i ≤ ns. Moreover, for some C > 0,

Eν
[
(µ̃i − µ̃k)pPν [µ̂α

n,k
` > µ̂α

n,i
` |Fα`−1 ∨ σ(θ̃)]

]
≤ C1{µi◦−µk◦>0}

Eν [|µ̂α
n,i
` − µ̂α

n,k
` − (µi◦ − µk◦)|]

µi◦ − µk◦
→ 0

for all i < k and ` ≤ L− 1.

Using the fact that a control α ∈ Aad is predictable, one can then proceed as in the proof of Corollary
2.3 to derive a more tractable upper-bound. It appeals to the following version of Assumption 1.

Assumption 2. There exists c > 0 such that, for all ν ∈M,

Eν
[
|Z[i, k]|p |σ(θ̃)

]
≤ p! cp−2

2
Eν
[
Z[i, k]2|σ(θ̃)

]
ν − a.s., for all i, k ≤ ns, p ≥ 3.

Corollary 3.4. Let Assumption 2 holds. Then, for all p ≥ 1, α ∈ Aad and ν ∈M,

Eν
[∣∣∣ẼS− ÊS

α
∣∣∣p] 1

p

≤Fad
p (α, ν)

in which

Fad
p (α, ν) :=

1

nw
Eν
∣∣∣∣∣∣

∑
i∈IαL−1

µ̂α,iL − µ̃
i

∣∣∣∣∣∣
p

1
p

+

L−1∑
`=1

Eν
[
fad
p (`, α, θ̃)

] 1
p

where

fad
p (`, α, θ̃) := δqα` max

(i,k)∈m̃α`−1([[1,nw]]×[[qα` +1,qα`−1]])
(µ̃i − µ̃k)p

(
e
− δNα` (ρα` [i,k])2

2(σ̃2
ik

+cρα
`

[i,k])1{ρα` [i,k]≥0} + 1{ρα` [i,k]<0}

)
(21)

with

ρα` [i, k] := µ̃i − µ̃k +
Nα
`−1

δNα
`

(µ̂α,i`−1 − µ̂
α,k
`−1) for ` ≥ 1 and i, k ≤ ns.

13

Proof. We use Bernstein’s inequality, see [7, Theorem 2.1], conditionally to Fα`−1 ∨ σ(θ̃), to deduce that

Pν [µ̂α,k` > µ̂α,i` |F
α
`−1 ∨ σ(θ̃)]

= Pν [δµ̂α,k` − µ̃k − (δµ̂α,i` − µ̃
i) >

Nα
`−1

δNα
`

(µ̂α,i`−1 − µ̂
α,k
`−1)− (µ̃k − µ̃i)|Fα`−1 ∨ σ(θ̃)]

≤ e
− δNα` (ρα` [i,k])2

2(σ̃2
ik

+cρα
`

[i,k])1{ρα` [i,k]≥0} + 1{ρα` [i,k]<0}.

3.2 A generic progressive learning algorithm

Let us now describe how the result of Corollary 3.4 can be turned into a (stochastic) dynamic programming
algorithm, in the spirit of Section 2.4, that can be implemented in practice.

By Jensen’s inequality, the upper-bound of Corollary 3.4 can be rewritten as

Eν
[∣∣∣ẼS− ÊS

α
∣∣∣p] ≤ Fad

p (0, α, ν)p (22)

where

Fad
p (0, α, ν) := Eν

∣∣∣∣∣∣ 1

nw

∑
i∈IαL−1

µ̂α,iL − µ̃
i

∣∣∣∣∣∣
p

+

L−1∑
`=1

fad
p (`, α, θ̃)

 ,
to which we can associate the optimal control problem6

F̂ad
p (`, α, ν) = ess inf

α′∈Aad(`,α)
Fad
p (`, α′, ν) for 0 ≤ ` ≤ L− 1, ν ∈M and α ∈ Aad,

where
Aad(`, α) := {α′ = (q′, N ′) ∈ Aad : (α′l)0≤l≤` = (αl)0≤l≤` and C(q′, N ′) ≤ K}

and

Fad
p (`, α′, ν) := Eν


∣∣∣∣∣∣∣

1

nw

∑
i∈Iα′L−1

µ̂α
′,i
L − µ̃i

∣∣∣∣∣∣∣
p

+ 1{`<L−1}

L−1∑
l=`+1

fad
p (l, α′, θ̃)

∣∣∣∣∣ Fα′`
 .

It admits a dynamic programming principle that involves a Bayesian update of the prior law on θ̃ at each
step of the algorithm, see e.g. [10].
Let us first observe that, from step ` on, our bound only involves the components of θ̃ associated to the
indexes in Iα` . We therefore set

θ̃α` = (µ̃α` , Σ̃
α
`) := T Iα`

Iα`−1
(θ̃α`−1), ` ≥ 1, with θ̃α0 := θ̃

where, for two subsets A′ ⊂ A ⊂ [[1, ns]] and (µ,Σ) = ((µi)i∈A, (Σ
ij)i,j∈A), we define

T A
′

A (µ,Σ) = ((µi)i∈A′ , (Σ
ij)i,j∈A′).

This means that the update of the prior can be restricted to a reduced number of components of θ̃. This
explains why we will concentrate on minimizing this upper-bound rather than directly the left-hand side
of (22), which would lead to a very high-dimensional optimal control problem, at each step `. This way,
we expect to reduce very significantly the computation cost of the corresponding “optimal” strategy.

In order to make the updating rule explicit, we use the following assumption.

6Only the conditional law given Fα` of the components of θ̃ corresponding to indexes in Iα` play a role in the definition

of F̂ad
p (`, α, ν) and Fad

p (`, α, ν) below. To avoid introducing new complex notations, we shall indifferently take ν or only the
conditional law of the corresponding components as an argument, depending on the context.

14

Assumption 3. Given ν0 ∈M, there exists a measure m, such that, for all α ∈ Aad and 1 ≤ ` ≤ L, the
law of Iα` := (P ij , (i, j) ∈ Iα`−1× [[Nα

`−1 +1, Nα
`]]) given Fα`−1∨σ(θ̃) admits ν0-a.s. the density gα` (·, θ̃α`−1) :=

g(·, Iα`−1, N
α
`−1, N

α
` , θ̃

α
`−1) with respect to m, in which g is a bounded measurable map7, that is continuous

in its first argument, uniformly in the other ones. Moreover, for all α ∈ Aad and ` ≤ L, the law of θ̃
given Fα` belongs to M ν0-a.s.

Under this assumption, we can compute the law να,`−1
` of θ̃α`−1 = T α`−1(θ̃) given Fα` in terms of its

counterpart να`−1 given Fα`−1, in which T α`−1 := T Iα`−1

Iα`−2
◦ · · · ◦ T Iα1

Iα0
. It is given by

να,`−1
` = U 1

2 (`, α, να`−1)

with να0 = ν and

U 1
2 (`, α, να`−1)(A) :=

∫
Dα`−1

gα` (Iα` , θ)1{θ∈A}ν
α
`−1(dθ)∫

Dα`−1
gα` (Iα` , θ)ν

α
`−1(dθ)

(23)

for a Borel set A of Dα`−1 := T α`−1(Rns × Sns). From this, one can deduce the law να` of θ̃α` = T α` (θ̃) given
Fα` , in the form

να` = U(`, α, να`−1),

by simply integrating on the components corresponding to indexes that are not in Iα` (meaning that U
is explicit in terms of U 1

2).

We are now in position to state our dynamic programming principle, see e.g. [10]. Again, note that the
law of fad

p (`+1, α′, θ̃) given Fα′` depends on θ̃ only through θ̃α
′

` . For ease of notations, we identify all
measures to an element of M (even if it supported by a space smaller than Rns × Sns).

Proposition 3.5. Let Assumption 3 hold. Then, for all α ∈ Aad, 0 ≤ ` ≤ L− 2 and ν ∈M,

F̂ad
p (`, α, ν) = ess inf

α′∈Aad(`,α)
Eν [F̂ad

p (`+ 1, α′,U(`+ 1, α′, ν)) + fad
p (`+ 1, α′, θ̃)|Fα`].

In principle, this dynamic programming algorithm allows one to estimate numerically the optimal policy
α? in a feed-back form, off-line. Importantly, solving this problem given an initial prior ν0 is very different
from first estimating the parameter θ̃ and then solving the control problem as if θ̃ was given. In the first
case, we take into account the risk due to the uncertainly on the true value of θ̃, not in the second one.

Remark 3.6. In practice, the algorithm requires estimating and manipulating the law of a high-dimensional
parameter, at least at the first steps. But the above can be modified by changing the filtration (Fα`)`≤L in
(F̄α`)`≤L with F̄α` = σ(1`≥ταP

i
j , (i, j) ∈ Iα` × [[1, Nα

`]]) with τα := inf{l ≤ L : qαl ≤ ρ} for some ρ > 0. In
this case, no additional information is considered up to step τα, the update of the prior only takes place
from step τα on and it only concerns θ̃ατα whose dimension is controlled by ρ. As for the first steps of the
algorithm, namely before τρ, one can replace fad

p by a robust version in the spirit of Section 2.4.

Remark 3.7. The algorithm also requires knowing the conditional density gα` . Although, P|s can be
simulated, its conditional density is not known in general. However, one can use a proxy and/or again
modify the flow of information to reduce to a more explicit situation. Let us consider the situation
in which (Fα`)`≤L is replaced by (F̄α`)`≤L with F̄α` = F̄α`−1 ∨ σ(δµ̂α,i` , i ∈ Iα`) and F̄α0 is trivial. Then,

conditionally to F̄α`−1∨σ(θ̃α`−1),
√
δNα

` (Σ̃α`)−1 (δµ̂α` − µ̃α`) is asymptotically Gaussian as δNα
` increases to

infinity. In practice, we can do as if
√
δNα

` (Σ̃α`)−1 (δµ̂α` − µ̃α`) was actually following a standard Gaussian

distribution, conditionally to θ̃α` and Fα`−1, which provides an explicit formula for the conditional density

ḡα` of δµ̂α` given θ̃α`−1 and Fα`−1, to be plugged into (23). Namely, the updating procedure takes the form

να` = Ǔ(`, α, να`−1)

where Ǔ is explicit.

7As for measurability, we identify Iα`−1 to the element of Rns with i-th entry given by 1{i∈Iα
`−1
}.

15

Then, if the initial prior ν0 is such that (µ̃, Σ̃) is a Normal-inverse-Wishart distribution, all the posterior
distribution να` , ` ≤ L, are such that (µ̃, Σ̃) remains in the class of Normal-inverse-Wishart distributions

with parameters that can computed explicitly from our simulations. Namely, if, given F̄α` , Σ̃ has the dis-

tribution8 W−1
iα`

(Σα`) and µ̃ has the distribution N (mα` , Σ̃/k
α
`) given Σ̃, then the coefficients corresponding

to the law given F̄α`+1 are
iα`+1 = iα` + δNα

`+1, k
α
`+1 = kα` + δNα

`+1, m
α
`+1 = 1

κα` +δNα`+1

[
κα` T

Iα`+1

Iα`
(mα`) + δNα

`+1δµ̂
α
`+1

]
Σα`+1 = T Iα`+1

Iα`
(Σα`) +

∑Nα`+1

j=Nα` +1(T α`+1(Pj)− δµ̂α`+1)(T α`+1(Pj)− δµ̂α`+1)>

+
κα` δN

α
`+1

κα` +δNα`+1
(T Iα`+1

Iα`
(mα`)− δµ̂α`+1)(T Iα`+1

Iα`
(mα`)− δµ̂α`+1)>,

(24)

see e.g. [18, Section 9]. Later on, we shall write the corresponding law as NW−1(pα`+1) with

pα`+1 := (mα`+1, k
α
`+1, i

α
`+1,Σ

α
`+1).

Remark 3.8. Deviating from conjugate distributions, one could think of using a MCMC step to estimate
the posterior distribution. In order to combine this (in practice) with a dynamic programming algorithm
would however require an additional projection on a finite dimensional space of reasonable dimension. In
the context of Remark 3.7, the maximal dimension of the space is already of the order of (253)2. Using
a non parametric approach would certainly increase this number significantly, leading to high additional
numerical costs.

3.3 Example of numerical implementation using neural networks

In this section, we aim at solving the version of the dynamic programming equation of Proposition
3.5, using an initial Normal-inverse-Wishart prior and the approximate updating procedure suggested in
Remark 3.7:

F̌ad
p (`, α, ν) = ess inf

α′∈Aad(`,α)
Eν [F̌ad

p (`+ 1, α′, Ǔ(`+ 1, α′, ν)) + fad
p (`+ 1, α′, θ̃)|F̄α`],

with Ǔ as in Remark 3.7 and

F̌ad
p (L− 1, α, ν) := Eν


∣∣∣∣∣∣∣

1

nw

∑
i∈Iα′L−1

µ̂α
′,i
L − µ̃i

∣∣∣∣∣∣∣
p ∣∣∣∣∣ F̄αL−1

 .
It would be tempting to use a standard grid-based approximation. However, to turn this problem in a
Markovian one, one needs to let the value function at step ` depend on qα` , Nα

` , Cα` , µ̂α` and pα` , where

Cα` is the running cost of strategy α up to level `, defined for ` 6= 0 by Cα` =
∑`−1
l=0 q

α
l δN

α
l+1 and Cα0 = 0.

The dimension is then 1 + 1 + 1 + qα` + (1 + qα` + 1 + (qα`)2). Even for qα` = 20, the corresponding space is
already much too big to construct a reasonable grid on it. We therefore suggest using a neural network
approximation. Let us consider a family of bounded continuous functions {φx, x ∈ X}, X being a compact
subset of RdX for some dX ≥ 1, such that, for all q, δq ≤ ns and N, δN ≥ 1,

φ·(δq, δN, q,N,C, ·) : (x, µ, p) ∈ X× Rq × R3+q+q2

7→ φx(δq, δN, q,N,C, µ, p) ∈ R is continuous.

We then fix a family {αk}k≤k̄ of deterministic paths of A(0) and simulate independent copies {θ̃j}j≤j̄
of θ̃ according to ν0, a Normal-inverse-Wishart distribution NW−1(p0). For each j, we consider an
i.i.d. sequence (P j,1j′ , . . . , P

j,ns
j′)j′≥1 in the law N (µ̃j , Σ̃j) with θ̃j =: (µ̃j , Σ̃j). We take these sequences

independent and independent of θ̃. For each k and j, we denote by (µ̂k,j`)`≤L, (p̃k,j`)`≤L and (Ik,j`)`≤L

the paths (µ̂α
k

`)`≤L, (pα
k

`)`≤L and (Iα
k

`)`≤L associated to the j-th sequence (P j,1j′ , . . . , P
j,ns
j′)j′≥1 and the

8Hereafter W−1
i (Σ) stands for the Inverse-Wishart distribution with degree of freedom i and scale matrix Σ, while

N (m,Σ) is the Gaussian distribution with mean m and covariance matrix Σ.

16

control αk. Similarly, we write fad,k,j
p (`, ·) to denote the function fad

p (`, ·) defined as in (21) but in terms

of Ik,j`−1 in place of Iα`−1. Given an integer r ≥ 1, we first compute x̌L−1 as the argmin over x ∈ X of

k̄∑
k=1

j̄∑
j=1

∣∣∣∣∣∣∣E
νk,jL−1

L−1


∣∣∣∣∣∣∣

1

nw

∑
i∈Ik,jL−1

(µ̂k,jL)i − µ̃i

∣∣∣∣∣∣∣
p− φx(0, δNαk

L , qα
k

L−1, N
αk

L−1, C
αk

L−1, µ̂
k,j
L−1, p

k,j
L−1)

∣∣∣∣∣∣∣
r

in which Eν
k,j
L−1

L−1 means that the expectation is taken only over µ̃ according to the law νk,jL−1, i.e.NW−1(pk,jL−1),

and (·)i means that we take the i-th component of the vector in the brackets. Then, for any α ∈ Aad, we
set

φ̌L−1(qαL−1, N
α
L−1, C

α
L−1, ·) := min

(0,δN)∈A(L−1,α)
φx̌L−1

(0, δN, qαL−1, N
α
L−1, C

α
L−1, ·),

where
A(L− 1, α) := {(δq, δN) ∈ {0} × N : CαL−1 + nwδN ≤ K}.

Given φ̌`+1 for some ` ≤ L− 2, we then compute a minimizer x̌` ∈ X of

k̄∑
k=1

j̄∑
j=1

∣∣∣∣Eνk,j`` [
φ̌`+1(qα

k

`+1, N
αk

`+1, C
αk

`+1, µ̂
k
`+1, p

k
`+1) + fad,k,j

p (`+ 1, αk, θ̃)
]

− φx(δqα
k

`+1, δN
αk

`+1, q
αk

` , Nαk

` , Cα
k

` , µ̂k,j` , pk,j`)

∣∣∣∣r,
where Eν

k,j
`

` means that the expectation is computed over (µ̂α
k

`+1, p
αk

`+1, θ̃, m̃
αk

`) given (µ̂k` , p
k
`) = (µ̂k,j` , pk,j`)

and using the prior νk,j` on θ̃ associated to p
k,j
` . Then, we set

φ̌`(q
α
` , N

α
` , C

α
` , ·) := min

(δq,δN)∈A(`,α)
φx̌`(δq, δN, q

α
` , N

α
` , C

α
` , ·),

where

A(`, α) := {(δq, δN) ∈ [[0, qα` − nw]]× N : Cα` + (qα` − δq)δN ≤ K}, ` < L− 2,

A(L− 2, α) := {(δq, δN) ∈ {qα` − nw} × N : CαL−1 + (qαL−2 − δq)δN ≤ K},

and so on until obtaining φ0(ns, 0, 0, 0, p0). By continuity of φ·(·) and compactness of X and A(`, α) for
α given, the minimum is achieved in the above, possibly not unique, and one can choose a measurable
map a?` such that

a?` (q
α
` , N

α
` , C

α
` , ·) ∈ arg min

(δq,δN)∈A(`,α)
φx̌N` (δq, δN, qα` , N

α
` , C

α
` , ·)

for all α ∈ Aad. Then, given the parameter p0 of our initial prior ν0, our estimator of the optimal policy
is given by α? = (q?, N?) defined by induction by

(δq?1 , δN
?
1) = a?0(ns, 0, 0, 0, p0) and (δq?`+1, δN

?
`+1) = a?` (q

?
` , N

?
` , C

?
` , µ̂

α?

` , pα
?

`) for 0 < ` < L.

Note that the above algorithm for the estimation of the optimal control only requires off-line simulations
according to the initial prior ν0. It is certainly costly but does not require to evaluate the real financial
book, can be trained on a proxy, and can be done off-line. Furthermore, it can be combined with the
approach of Remark 3.6 to reduce the computation time. In order to prepare for the use of a different
initial prior, one can also slightly adapt the above algorithm by considering different initial values of p0

(e.g. drawn from another distribution around p0), so as to estimate φ̌0 not only at the point p0. When
applied to the real book, the update of the prior according to (24) leads to an additional cost that is
negligible with respect to the simulation of the book. It leads to the computation of new priors associated
to the financial book at hand, that can be used for a new estimation of the optimal policy or simply as
a new initial prior for the next computation of the ES.
An example of a simple practical implementation is detailed in Appendix B, while numerical tests are
performed in Section 4.

17

4 Numerical Experiments

This section is dedicated to numerical tests of the different algorithms presented in the previous sections.
The settings of the experiments are as follows. We first choose a Normal-inverse-Wishart prior distribution
ν0 with parameters p0 := (m0, k0, i0,Σ0). The vector m0 is represented on Figure 6 with9 mi0 = µi, i ≤ ns,
and Σ0 = (i0 − ns − 1)Σ where Σ has entries{

Σii = 4.84× 1012 if i = j

Σij = ρ× 4.84× 1012 if i 6= j,
(25)

with ρ = 0.6 or ρ = 0 depending on the experiments below. As for k0 and i0, they are chosen equal to
300, meaning that we have a low confidence in our prior. The computing power is K = 107.

We apply the four different algorithms on 5 000 runs (i.e. 5 000 independent implementations of each
algorithm). For each run, we

• first simulate a value for the real scenarios and covariance matrices
(
µ̃, Σ̃

)
∼ NW−1(p0),

• apply each of the four algorithms, with P|s ∼ N
(
µ̃, Σ̃

)
,

• for each algorithm, we measure the relative error ÊS−ẼS

ẼS
and the error ÊS − ẼS, where ẼS =

1
nw

∑nw
i=1 µ̃

m̃(i).

The four algorithms that we compare are:

• A Uniform Pricing Algorithm: All the scenarios are priced with K/ns Monte Carlo simulations, and

the estimator ÊS is the average of the nw = 6 worst scenarios. This is the most naive method, with
only one step and where all scenarios are priced with an equal number of Monte Carlo simulations.
It serves as a benchmark.

• The Heuristic Algorithm: We use the 2-levels strategy described in Section 2.5 with the book
sample parameters of Table 1 and the computation parameters of Table 2. We do not evaluate the
constant c of Assumption 1 but simply set it to 0, see Remark 2.4. The optimal strategy is given
by (q0, q1, N1, N2) = (253, 68, 17 297, 100 000).

• The Deterministic Algorithm: We run the deterministic algorithm of Section 2.4 optimized with
µ = m0 as the values of the scenarios, Σ with ρ = 0.6 as the covariance matrix and L = 4. Note that
using the real mean parameter as an entry for optimization is quite favorable for this algorithm,
although the “true” parameter of each run will actually deviate from this mean value. This gives
us the strategy (q0, q1, q2, q3, N0, N1, N2, N3, N4) = (253, 35, 10, 6, 0, 6 000, 44 000, 44 000, 1 235 666),
which we apply to each run.

• The Adaptative Algorithm: We do the training part of the adaptative algorithm using our prior
p0 := (m0, k0, i0,Σ0), with ρ = 0.6, as parameters and L = 4. We use a very simple one hidden-layer
neural network. It could certainly be improved by using a more sophisticated multi-layers neural
network, but this version will be enough for our discussion. Details on the implementation are given
in the Appendix B. Once this is done, we apply the optimal adaptative strategy on each run.

4.1 Positively correlated scenarios ρ = 0.6

In this first experiment, the simulated runs use the values ρ = 0.6 and i0 = k0 = 300.

9Recall that the curve of Figure 6 corresponds to the values taken by a real (former) test book of Natixis according to
different economic scenarios. It is a realistic distribution in practice. The only difference with a fully industrial implementa-
tion is in the way noise is created around the mean values. Note also that Σ̃ is random, so that conditional heteroscedasticity
is present. Moreover, the marginal laws of the components of P|s are Student, thus having heavy tails. See Section 4.3
below for a case where the conditional laws are themselves heavy-tailed.

18

To get an idea of how much noise is added to the average scenario values in our simulations, we plot in
Figure 7 the prior value mi0 for each scenario of index i ≤ ns (this is the line) and the first 20 µ̃ij out of
the 5 000 runs for each scenario (these are the points).

Figure 7: True value of µ◦ and simulations of µ̃

For the adaptative algorithm, the three mostly used strategies are:

• (q0, q1, q2, q3, N1, N2, N3, N4) = (253, 40, 25, 6, 8 399, 97 995, 172 504, 577 252)

• (q0, q1, q2, q3, N1, N2, N3, N4) = (253, 40, 30, 6, 8 399, 99 733, 148 560, 608 040)

• (q0, q1, q2, q3, N1, N2, N3, N4) = (253, 40, 30, 6, 8 399, 75 033, 123 860, 748 007)

Compared to the deterministic algorithm, we see that the adaptative one uses much less Monte Carlo
simulations at the final steps and focuses more on the intermediate steps to select the worst scenarios. The
deterministic algorithm is also more aggressive in the choice of q1 and q2. This can be easily explained by
the fact that the latter believes that the real distribution is not far from the solid curve on Figure 7 (up to
standard deviation) while the adaptative one only knows a much more diffuse distribution corresponding
to the cloud of points of Figure 7 since his level of uncertainty is quite high for our choice i0 = k0 = 300.

On Figures 8-11, we plot the histograms of the relative errors. We see that the distribution is tightest for
the deterministic algorithm, followed quite closely by the adaptative algorithm. Both of them perform
very well. As expected, the uniform algorithm is very poor. Note that the heuristic algorithm already
very significantly improves the uniform algorithm, although it does not reach the precision of the two
most sophisticated algorithms (without surprise). Because of the huge uncertainty mentioned above,
the adaptative algorithm is rather conservative while the deterministic algorithm makes full profit of
essentially knowing the correct distribution, and performs better. We will see in our second experiment
that things will change when we will deviate from the parameters used for optimizing the deterministic
algorithm (by simply passing from ρ = 0.6 to ρ = 0 in the simulated runs).

19

Figure 8: Relative Error for Adapta-
tive Algorithm

Figure 9: Relative Error for Deter-
minist Algorithm

Figure 10: Relative Error for Heuris-
tic Algorithm

Figure 11: Relative Error for Uni-
form Algorithm

In Table 3, we provide the L1 and relative errors (with standard deviations), the L2 error and the number
of correct selections, that is the number of runs for which a given algorithm has chosen the correct worst 6
scenarios. In terms of L1 or L2 error, the relative performance of the algorithms is as above. However, if
we look at the number of correct selections, we see that the adaptive algorithm performs better than the
other 3 algorithms. Again, by comparing the strategies of the deterministic and the adaptive algorithms,
we see that those of the adaptative algorithm are more conservative on the ranking and filtering part
versus the final pricing as it puts relatively more Monte Carlo simulations to detect the correct scenarios
and relatively less for their estimation.

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 1 891 20.4 0.623 0.00886 2377 4247

Det. Alg. 1 411 16.1 0.465 0.00693 1813 3499

Heur. Alg. 4 562 50.2 1.49 0.0234 5779 4054

Unif. Alg. 7 269 81.6 2.38 0.0348 9279 3500

Table 3: Errors for ρ = 0.6

In Figures 12, we plot the function x 7→ P[X > 5000− x] where X is the absolute error of the algorithm
on a run.

20

Figure 12: Tail Distribution of the errors. First top lines: Uniform and Heuristic algorithms, respectively.
Solid line: Adaptative algorithm. Dotted line: Deterministic algorithm.

In Figure 13, we provide, for the first 4 runs, the values and real ranks of the 6 worst scenarios selected by
each algorithm. The numbers displayed are the true ranks of the selected scenarios given by µ̃ and their
y-coordinate is the value obtained when running the algorithm. “Real” is the real values as sampled.

Figure 13: Worst Scenarios Ranks and Values

4.2 Uncorrelated scenarios ρ = 0

We now do the numerical test with ρ = 0 as the true correlation. The deterministic and adaptative
algorithm are still trained with ρ = 0.6, but P|s is simulated using ρ = 0.

On Figures 14-17, we show the histograms of the relative errors. We see that the distribution of the
relative errors is now tightest for the adaptative algorithm, followed by the deterministic algorithm, then
by the heuristic and the uniform algorithms. Furthermore, we see that the distribution corresponding to
the deterministic algorithm is significantly biased to the left. This is actually true for all algorithms, but
at a less significant level. This suggests that we now have a large part of the error that does not come
from the final pricing error, but from errors in the selection of scenarios.

21

Figure 14: Relative Error for Adap-
tative Algorithm

Figure 15: Relative Error for Deter-
minist Algorithm

Figure 16: Relative Error for Heuris-
tic Algorithm

Figure 17: Relative Error for Uni-
form Algorithm

In Table 4, we provide the L1 and relative errors (with standard deviations), the L2 error and the number
of correct selections for the 4 algorithms. For all algorithms, compared to the case ρ = 0.6, we see that
we have simultaneously a lower number of correct selections of scenarios (which we could expect to
increase the errors) and a lower L1 error. This surprising result is explained by the fact that lowering the
correlation has two effects. The filtering and ranking part of the algorithm becomes harder, as can be
seen from Corollary 2.3. This explains why the number of correct selections becomes lower. However, we
compute at the end an average over the nw worst scenarios and the error on this average is lower when
the pricings are uncorrelated compared to the case where they exhibit a positive correlation.

The adaptative algorithm has now simultaneously the lowest L1 and L2 errors, as well as the highest
number of correct selections. We see that it is especially good in L2 error, so we expect it to present a
very low number of large errors. As, by construction, it has been trained to detect misspecifications of
the parameters, it now has a clear advantage on the deterministic algorithm which does not see it. This
results in an improvement of almost 20% of the L2 error.

Following the above reasoning, we understand that, compared to the previous experiment, the final pricing
error now plays a smaller role and the ranking and selection error a bigger role, which explains why the
histogram of the errors for the determinist algorithm is strongly biased to the left, as it now incorrectly
selects scenarios more often.

22

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 1 083 11.8 0.27 0.00294 1 366 3 930

Det. Alg. 1 175 17.5 0.293 0.00448 1 705 3 202

Heur. Alg. 2 547 28.33 0.628 0.00700 3 240 3 753

Unif. Alg. 4 062 44.7 1.00 0.0111 5 147 3 102

Table 4: Errors for ρ = 0

In Figures 18, we plot the function x 7→ P[X > 5000− x] where X is the absolute error of the algorithm
on a run. As was suggested by the L2 errors of Table 4, we see that the tail distribution of errors is lowest
for the adaptative algorithm, followed by the deterministic algorithm (for big errors), and then by the
heuristic and uniform algorithms.

Figure 18: Tail Distribution of the errors. First top lines: Uniform and Heuristic algorithms, respectively.
Solid line: Adaptative algorithm. Dotted line: Determinist algorithm

4.3 Heavy-tailed conditional distributions

In this last section, we consider a situation where the law of P|s is conditionally heavy-tailed (not only
marginally as was previously the case). Namely, we use the same procedure as in Sections 4.1 and 4.2
except that P|s is now drawn out of a multivariate Student distribution, with location (mean) µ̃, scale

matrix Σ̃ and df ∈ {3, 5} degrees of freedom.

The Tables 5-8 below lead essentially to the same conclusions as in the above experiments. This can
probably be explained by the fact that the law of large numbers operates sufficiently for our estimators to
be close to Gaussian, see Remark 3.7. One may simply observe that the outperformance of the adaptative
algorithm is increased in the absence of correlation (ρ = 0).

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 3 225 35.2 1.07 0.0248 4 076 3 649

Det. Alg. 2 654 30.1 0.881 0.02 3 403 2 761

Heur. Alg. 7 890 85.2 2.61 0.0602 9 928 3 401

Unif. Alg. 12 883 136 4.31 0.0975 16 088 2 678

Table 5: Errors for ρ = 0.6, df = 3

23

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 1 998 22.0 0.493 0.00857 2 534 3 296

Det. Alg. 2 542 37.2 0.636 0.0109 3 660 2 293

Heur. Alg. 4 506 48.8 1.11 0.0191 5 677 2 952

Unif. Alg. 7 092 77.3 1.75 0.0297 8 955 2 199

Table 6: Errors for ρ = 0, df = 3

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 2 400 26.2 0.787 0.0184 3 033 3 965

Det. Alg. 1 889 20.8 0.633 0.0143 2 397 3 238

Heur. Alg. 6 049 65.5 2.01 0.0463 7 618 3 762

Unif. Alg. 9 354 102 3.05 0.0716 11 790 3 141

Table 7: Errors for ρ = 0.6, df = 5

Algorithm L1 Err. L1 Err. Std Rel. Err. (%) Rel. Err. Std (%) L2 Err. Correct Selections

Ad. Alg. 1 450 15.9 0.358 0.00623 1 833 3 637

Det. Alg. 1 719 24.6 0.429 0.0075 2 443 2 727

Heur. Alg. 3 289 35.4 0.811 0.0141 4 134 3 399

Unif. Alg. 5 279 57.9 1.30 0.0224 6 679 2 722

Table 8: Errors for ρ = 0, df = 5

5 Conclusion

We propose in this paper different versions of a general algorithm for the computation of the expected
shortfall based on given historical scenarios. All are multi-steps and use Monte Carlo simulations to
reduce the number of historical scenarios that potentially belong to the set of worst-case scenarios. We
provide explicit error bounds and we test them on simulated data deviating from the true values of the
historical impacts used for computing the associated optimal strategies. The first version is a very easy
to implement 2-steps procedure that already provides relatively small errors on our numerical tests. A
four step deterministic dynamic programming algorithm performs very well when real datas are not far
from the parameters used in the optimization procedure. It seems even to be quite robust, as shown by
our numerical tests, in the case where the true correlation parameter is not the one used for computing
the optimal policy. Finally, we propose an adaptative version that aims at learning the true value of the
parameters at the different steps. Our first numerical tests suggest that it is more conservative than the
deterministic one, but probably more robust to parameters misspecifications, as expected. The version we
use is built on a very simple one hidden layer neural network and can certainly be considerably improved
for industrial purposes.

References

[1] Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall. Journal of Banking &
Finance, 26(7):1487–1503, 2002.

24

[2] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

[3] Raghu Raj Bahadur and Herbert Robbins. The problem of the greater mean. The Annals of
Mathematical Statistics, pages 469–487, 1950.

[4] Basel Committee on Banking Supervision. Minimum capital requirements for market risk. 2016.

[5] Robert E Bechhofer. A single-sample multiple decision procedure for ranking means of normal
populations with known variances. The Annals of Mathematical Statistics, pages 16–39, 1954.

[6] Robert E Bechhofer, Charles W Dunnett, and Milton Sobel. A tow-sample multiple decision pro-
cedure for ranking means of normal populations with a common unknown variance. Biometrika,
41(1-2):170–176, 1954.

[7] Bernard Bercu, Bernard Delyon, and Emmanuel Rio. Concentration inequalities for sums and mar-
tingales. Springer, 2015.

[8] Mark Broadie, Yiping Du, and Ciamac C Moallemi. Efficient risk estimation via nested sequential
simulation. Management Science, 57(6):1172–1194, 2011.

[9] Simon A Broda, Jochen Krause, and Marc S Paolella. Approximating expected shortfall for heavy-
tailed distributions. Econometrics and statistics, 8:184–203, 2018.

[10] David Easley and Nicholas M Kiefer. Controlling a stochastic process with unknown parameters.
Econometrica: Journal of the Econometric Society, pages 1045–1064, 1988.

[11] Robert J Elliott and Hong Miao. Var and expected shortfall: a non-normal regime switching frame-
work. Quantitative Finance, 9(6):747–755, 2009.

[12] Christian Francq and Jean-Michel Zaköıan. Multi-level conditional var estimation in dynamic models.
In Modeling Dependence in Econometrics, pages 3–19. Springer, 2014.

[13] Michael B Gordy and Sandeep Juneja. Nested simulation in portfolio risk measurement. Management
Science, 56(10):1833–1848, 2010.

[14] Shanti S Gupta and S Panchapakesan. Sequential ranking and selection procedures. Handbook of
sequential analysis, pages 363–380, 1991.

[15] Lennart Hoogerheide and Herman K van Dijk. Bayesian forecasting of value at risk and expected
shortfall using adaptive importance sampling. International Journal of Forecasting, 26(2):231–247,
2010.

[16] Jochen Krause and Marc S Paolella. A fast, accurate method for value-at-risk and expected shortfall.
Econometrics, 2(2):98–122, 2014.

[17] Ming Liu and Jeremy Staum. Stochastic kriging for efficient nested simulation of expected shortfall.
Journal of Risk, 12(3):3, 2010.

[18] Kevin P Murphy. Conjugate bayesian analysis of the gaussian distribution.
cs.ubc.ca/∼murphyk/Papers/bayesGauss.pdf.

[19] Saralees Nadarajah, Bo Zhang, and Stephen Chan. Estimation methods for expected shortfall.
Quantitative Finance, 14(2):271–291, 2014.

[20] Luis Ortiz-Gracia and Cornelis W Oosterlee. Efficient var and expected shortfall computations
for nonlinear portfolios within the delta-gamma approach. Applied Mathematics and Computation,
244:16–31, 2014.

[21] Andrew J. Patton, Johanna F. Ziegel and Rui Chen. Dynamic semiparametric models for expected
shortfall (and value-at-risk), Journal of econometrics, 211:2, 388–413, 2019

[22] Franco Peracchi and Andrei V Tanase. On estimating the conditional expected shortfall. Applied
Stochastic Models in Business and Industry, 24(5):471–493, 2008.

25

[23] Jimmy Risk and Michael Ludkovski. Sequential design and spatial modeling for portfolio tail risk
measurement. SIAM Journal on Financial Mathematics, 9(4):1137–1174, 2018.

[24] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss distributions.
Journal of banking & finance, 26(7):1443–1471, 2002.

[25] Jules Sadefo Kamdem. Value-at-risk and expected shortfall for linear portfolios with elliptically
distributed risk factors. International Journal of Theoretical and Applied Finance, 8(05):537–551,
2005.

[26] Jean-Guy Simonato. The performance of johnson distributions for computingvalue at risk and
expected shortfall. The Journal of Derivatives, 19(1):7–24, 2011.

[27] Keming Yu, A Allay, Shanchao Yang, and D Hand. Kernel quantile-based estimation of expected
shortfall. 2010.

[28] Meng-Lan Yueh and Mark CW Wong. Analytical var and expected shortfall for quadratic portfolios.
The Journal of Derivatives, 17(3):33–44, 2010.

26

A Proxy of the optimal strategy for the heuristic (19)

In the case p = 1, (19) can even be further simplified by using the upper-bound

h̃1
0(q1) ≤ max{h̃1(q1); h̃2(q1)} (26)

where

h̃1(q1) := ns (q1 + 1− nw) δ0 exp

(
− (K − q1N2) (q1 + 1− nw)δ0

4nsc

)
h̃2(q1) := ns (ns − nw) δ0 exp

(
− (K − q1N2) ((q1 + 1− nw)δ0)2

4nsσ
2

)
.

The right-hand side of (26) is now tractable for minimization. Given,



∆ := (K − (nw − 1)N2)2 − 32nsN2c
δ0

B := σ̄2

cδ0
+ nw − 1

q2,∗
1 := max

(
nw−1

3
+ 2K

3N2
, nw

)
q1,1,∗
1 := max

(
3(nw−1)

4
+ K−

√
∆

4N2
, nw

)
q1,2,∗
1 := max

(
3(nw−1)

4
+ K+

√
∆

4N2
, nw

)
(27)

the optimal policy qh1 is defined by the following table10:

Cond. on B Cond. ∆ Cond. q2,∗
1 Cond. q1,1,∗

1 Cond. q1,2,∗
1 Choice of qh1

≥ ns qh1 := q2,∗
1

≤ nw > 0 qh1 := argmin
q1∈{nw,q1,2,∗

1 }
h1

0(q1)

≤ nw ≤ 0 qh1 := nw

nw < · < ns > 0 ≤ B ≤ B ≤ B qh1 := argmin
q1∈{q2,∗

1 ,B}
h1

0(q1)

nw < · < ns > 0 ≤ B ≤ B ≥ B qh1 := argmin
q1∈{q2,∗

1 ,q1,2,∗
1 }

h1
0(q1)

nw < · < ns > 0 ≤ B ≥ B ≥ B qh1 := argmin
q1∈{q2,∗

1 ,B,q1,2,∗
1 }

h1
0(q1)

nw < · < ns > 0 ≥ B ≤ B ≤ B qh1 := B

nw < · < ns > 0 ≥ B ≥ B qh1 := argmin
q1∈{B,q1,2,∗

1 }
h1

0(q1)

nw < · < ns ≤ 0 ≤ B qh1 := argmin
q1∈{q2,∗

1 ,B}
h1

0(q1)

nw < · < ns ≤ 0 ≥ B qh1 := B

Table 9: Optimal qh1 for h̃1
0.

For simplicity, let us consider the case c = 0, see Remark 2.4.

On Figure 19, the square is q1,2,∗
1 = 52.41, the circle is q2,∗

1 = 68.33 and the cross is the real optimum
q∗1 = 71 of h1

0, for the parameters of Tables 1 and 2. We see that we actually almost reach the correct
minimum. It corresponds (up to rounding) to N1,∗

1 = 23723, N2,∗
1 = 17148, N∗1 = 15934.

10We optimize here over real positive numbers.

27

Figure 19: Square: h1
0(q1,2,∗

1). Circle: h1
0(q2,∗

1). Cross: h1
0(q∗1).

Using the same set of parameters, we plot on Figure 20 the two functions h1
0 and h̃1. Although these two

functions have values of different orders of magnitude, their shapes are quite close, which explains why
we manage to obtain a relatively good approximation for the minimizer.

Figure 20: Solid line : h1
0. Dashed line : h̃1.

B Precise implementation of the neural network algorithm

In this Appendix, we describe in more details how the neural network approximation of the optimal policy
of the adaptative algorithm is constructed. All the parameters values are given in Tables 10, 11 and 12
below.

B.1 Initialization

• In practice, the neural network input’s size depends on the window size q. Therefore, we need to
train different neural networks for each window size. In order to get enough points to train each of

28

these neural networks, we have chosen the grid

qg = [6, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 253]

of possible values for q.

• We simulate independent copies {θ̃j}j≤j bar = {(µ̃j , Σ̃j)}j≤j bar of θ̃, where j bar is given in Table

12. For each 1 ≤ j ≤ j bar, Σ̃j is an inverse-Wishart of parameters i0,Σ0, and µ̃j is a Gaussian
random vector of mean m0 and covariance matrix Σ̃j/k0. The parameters i0, k0 and Σ0 are defined
in Table 12 and (25), while mi0 = µi, i ≤ ns, with the µi’s of Figure 6.

B.2 Strategy Generation

To generate the deterministic strategies (αk)k≤k bar, where k bar is given in Table 12, we proceed as
follows.

• For each 1 ≤ k ≤k bar, we simulate L + 1 uniform random variables (Un)
L
n=0 between 0 and 1.

We sort them in increasing order
(
Us(n)

)L
n=0

and define a cost K` := K(Us(`) − Us(`−1)) when
1 ≤ ` ≤ L− 1, and KL = K(Us(0) + 1−Us(L−1)). The idea is that we select L+ 1 points randomly
on a cercle of total length K: we choose one of these points, and starting from it, the computational
power that we will use at each level 1 ≤ ` ≤ L− 1 is the length of the arc between the previous and
the next point. For the last step, we take K times the length between the points L − 1 and 0, so
as to put, in average, twice more computational power on this last step.

• Once we have the computational cost for each step, we can choose the q` for each strategy, so that
we can deduce δN`+1:= K`/q`. For ` = 0, we choose q index0 = 18, where 18 is the number of
terms in the grid qg, which therefore gives q0 = qg[q index0] = ns. For ` = L − 1, we choose
q indexL−1 = 0, that is, qL−1 = nw. For 1 ≤ ` ≤ L − 2, we choose q index` as a random integer
between [L − `, q index`−1 − 1]. The choice of q` is then q` = qg[q index`]. We check that the
sequence (N`)1≤`≤L is non-decreasing. If this is the case, we keep it, if not, we reject it and do
another run.

B.3 Forward Pass

The next step is to generate all prices and execute for each k and each j the strategy k.

• For 1 ≤ j ≤ j bar, 1 ≤ k ≤ k bar and 1 ≤ ` ≤ L, we simulate δNk
` Gaussian variables(

P j,1j′ , . . . , P
j,ns
j′

)Nk`
j′=Nk`−1

of mean µ̃j and covariance matrix Σ̃j (independently across j and k).

• We then update µ̂k,j` , mk,j` , ik,j` , kk,j` ,Σk,j` accordingly, recall (24).

• Updating Σk,j` from level ` − 1 to level ` can use a lot of memory. Indeed,
∑Nα`+1

j=Nα` +1(T α`+1(Pj) −
δµ̂α`+1)(T α`+1(Pj) − δµ̂α`+1)> consists in δNα

`+1 × |q`+1|2 terms, which can quickly exceed memory
limits. Therefore, we do the sum with only N memory new pricings opt terms at a time, see Table
12 below.

B.4 Computation of f precompute, running costs and admissible sets

• In order to speed up the computation time, we now precompute several values that will be used many
times afterwards. First, we compute f precompute(`, k, j) as fad

1 (`, ·) at the point corresponding
to (k, j) except that, in the definition of fad

1 (`, ·), we replace the random permutation m̃ by its
estimation from the previous step, µ̃ by its average under the posterior distribution at `+ 1, and σ̃
by its estimation at step `+ 1.

• We compute running cost(`, k) := Cα
k

` of each k at step `.

29

• We restrict the set of possible actions at step `, given that we have followed the strategy k so far,
to admissible sets(`, k) defined as the collection of {(δqk′`+1, δN

k′

`+1), k′ ≤ k bar}, such that

qk` + δqk
′

`+1 ∈ qg, Nk′

`+1 > Nk
` , running cost(`, k) + qk` δN

k′

`+1 ≤ max
1≤k′′≤k̄

running cost(`+ 1, k′′).

The last condition avoids inducing a strategy with a running cost that is not present in our data
set, when doing the one step optimization.

B.5 Computation of the final expectations

We first pre-compute the quantities

Eν
k,j
L

L


∣∣∣∣∣∣∣

1

nw

∑
i∈Ik,jL−1

(µ̂k,jL)i − µ̃i

∣∣∣∣∣∣∣


by Monte Carlo using Ne simulations. As the simulation of an inverse-Wishart random variable is
significantly slower than the simulation of a Gaussian random variable, we only simulate 1 inverse-Wishart
for Np Gaussians. The values of Ne and Np are given by N mu tildes simulated and N wishart proportion

of Table 12. The estimation is called expectationk,jL .

B.6 Training of the neural network at level L

• We use a neural network with one inner layer with 256 neurons and 1 output layer with 1 neuron
to fit (expectationk,jL)j≤j bar,k≤k bar. The neurons of the inner layer consist of the composition of
the softplus function with an affine transformation of the inputs.

• We initialize the neural network parameters using a Xavier initialization. We then train the neural
network by selecting a random new batch every N batch change proportion. This random new
batch is composed of the samples indexed by 1 ≤ ma(j) ≤ j batch and strategies indexed by
1 ≤ mb(k) ≤ k batch, where ma and mb are uniform random permutations of [[1, j bar]] and [[1, k bar]].
For each batch, the algorithm used for the training is the standard gradient descent of Tensorflow.
We do N Iter training steps in total. The learning rate used is given in Table 11. In order to bring
the input values of the parameters close to 0 and 1, we renormalize them according to the values
in Table 10.

B.7 Computation of the expectations at level L− 1

We now estimate

Eν
k,j
L−1

L−1

[
φ̌L(qα

k

L , Nαk

L , Cα
k

L , µ̂kL, p
k
L)
]

where φ̌L is the fit of (expectationk,jL)j≤j bar,k≤k bar from the previous step. The most cpu demanding
part is no more the simulation of the inverse-Wisharts, but the updates of the parameters of the inverse-
Wishart. Therefore, we simulate as many Gaussian random variables as inverse-Wishart random variables,
with Ne given by N mu tildes simulated non final level of Table 12.
For our computations, we need to update Σk,jL−1 to the corresponding posterior parameter according to
(24). This can however lead to an enormous amount of multiplications and additions. Therefore, instead
of updating the whole matrix, we only update the diagonal terms according to (24) and estimate non

diagonal terms by keeping the correlation terms equal to the ones of Σk,jL−1. This enables us to approxi-

mately gain a factor of qkL in speed in this critical step.

B.8 Training of the neural network at level L− 1

• To fit the expectation of the previous step, we use a neural network with the same structure as in
level L, with the same cost function.

30

• The initialization, choice of batches, and training of the neural network are the same as for the level
L. The number of iteration, learning rate, and renormalization constants are given in Tables 10, 12
and 11.

• We take j batch = min (j batch size, j bar) and k batch = min (k batch size, k bar), where j batch size
and k batch size are defined in Table 12.

B.9 Computation of the expectations at levels 0 ≤ ` ≤ L− 2

• The expectations at step ` are computed by Monte Carlo after replacing the value function at step
`+ 1 by its neural network approximation, and fad

1 (`, ·) by f precompute(`, ·).

• We simulate as many Gaussian random variables as inverse-Wishart random variables, with Ne
given by N mu tildes simulated non final level of Table 12.

• We not not fully update Σk,j` to the corresponding posterior parameter but proceed as in level L−1.

B.10 Training of neural networks at levels 0 ≤ ` ≤ L− 2

• We now have to optimize over qk` ∈ qg. Therefore, we must now train up to |qg| different neural
networks (with different inputs’ sizes). In practice, we only train neural networks indexed by
q ∈ (qk`)1≤k≤k bar ⊂ qg, that is, for all the choices of q that are obtained by at least one strategy at
level `.

• We must also choose a δN that should be added as an entry of the neural network before optimizing.
Furthermore, to help the neural networks converge, we decided to add f precompute(`, j, k) as an
input.

• The loss function and the structure of the neural network is as above, and we still use Xavier
initialization, and bring the inputs of the neural networks to reasonable values close to 0 and 1 by
renormalizing them using the constants of Table 10.

• Compared to levels L and L − 1, the choice of batches is slightly different. Indeed, to train a
neural network associated to q ∈ qg, we only use strategies such that qk` = q. To do so, we first
define Sq = {k ∈ [[1, k bar]] : qk` = q}. We then define k batch = min (k batch size, |Sq|) and
j batch = min (j batch size, j bar). We then proceed nearly identically as for levels L and L − 1.
We select a new batch every N batch change proportion, composed of indices 1 ≤ ma(j) ≤ j batch,
1 ≤ mb(k) ≤ k batch, where ma and mb are uniform random permutations of [[1, j bar]] and Sq. For
each batch, the algorithm used for the training is again the standard gradient descent of Tensorflow.

• Compared to levels L and L − 1, we found that making the neural networks converge was much
harder. In particular, the learning rate had to be really fine tuned. In order to automatize the
process, for each q, we proceed as follows. We do not intanciate one, but
number of neural networks for learning rate test neural networks. For each of these neural net-
works, we do N Iter learning rate test training steps, but use different learning rates for each. For
the first neural network, we use base learning rate as the learning rate, for the second,
base learning rate/10, and for the k-th, base learning rate/10k−1. For each of these neural net-
works, we store at each iteration step the log error. Once the N Iter learning rate test training
steps have been done for each of these neural networks, we keep the neural network instance that
has the lowest average log error. If it is the k-th neural network, we then train it again for N Iter
training steps, using as learning rate base learning rate/10k.

B.11 Parallelization

In practice, we parallelize the forward pass according to the strategy indices k. We run thread batch size
processes in parallel, where thread batch size is defined in Table 12.

At a given level `, the computation of expectationk,j` can be parallelized according to the sample indices
j. In practice, we run number of threads for level expectations number of processes in parallel, where
number of threads for level expectations is defined in Table 12.

31

For a given level, the training of each neural network corresponding to a given q ∈ qg can be done
independently. Therefore, at a given level, we multiprocessed our code in order to train all the neural
networks in parallel.

B.12 Normalization constants, implementation parameters, and learning rates

Level q m Σ N running cost f precompute

1 6 106 1012 104 107 105

2 6 106 1012 104 107 105

3 6 106 1012 104 105 106

4 6 106 1011 104 105 106

Table 10: Inputs’ renormalization constants by Level

Level q base learning rate Level q base learning rate

1 6 10−9 2 6 10−9

1 10 10−9 2 10 10−9

1 15 10−9 2 15 10−9

1 20 10−9 2 20 10−9

1 25 10−9 2 25 10−9

1 30 10−9 2 30 10−9

1 35 10−9 2 35 10−9

1 40 10−9 2 40 10−9

1 45 10−9 2 45 10−9

1 50 10−9 2 50 10−9

1 60 10−9 2 60 10−9

1 70 10−9 2 70 10−9

1 80 10−9 2 80 10−9

1 90 10−9 2 90 10−9

1 100 10−9 2 100 10−9

1 150 10−9 2 150 10−9

1 200 10−10 2 200 10−10

1 253 10−10 2 253 10−10

3 6 10−7 4 6 10−7

Table 11: Neural network base learning rates

32

Parameter Value

j batch size 4

k batch size 4

N batch change proportion 1 000

N iter show proportion 100

smaller learning rate proportion 10

N Iter smaller learning rate 10 000

L 4

n s 253

n w 6

k bar 200

j bar 40

i 0 300

k 0 300

Σ0 (300− 253− 1)Σ

N wishart proportion 1 000

N mu tildes simulated 1 000 000

thread batch size 4

number of threads for level expectations 4

thread batch size for level expectations 4

p 1

r 2

c 0

N Iter 1 000 000

N Iter learning rate test 100 000

number of neural networks for learning rate test 4

K 10 000 000

N mu tildes simulated non final level 1 000

N memory new pricings opt 100

Table 12: Implementation parameters

33

