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Part 1

Motivation

1 Backward SDEs: definition and existence

For a complete introduction to BSDEs, see the lecture notes |25, 5| and the

book [20].

Probability space: (£, F,P), W a d-dimensional Brownian motion, F =
(Fs, 0 < s <T) the filtration generated by W.

Process spaces:

DN —

- S% adapted continuous processes Y such that ||Y g2 == E[sup 7 [Y]]2 <

Q.
- L% predictable processes Z such that HZHL% = E[fOT |Zt|2dt]% < 00.



BSDE: Given £ in L? and f: Q x [0,T] x R* x R™? find (Y, Z) € S* x L,
such that

T T
Y, =¢ +/ fs(Ys, Zs)ds — / Z AW, t <T, P— as.
t t
[t means that the process Y has the dynamics

dY, = — f,(Ys,, Z,)ds + Z,dW, with Yy = €.



Martingale representation #1: In the case f =0,

T T
Y, =¢ +/ fs(Ys, Zs)ds — / Z AW, t <T, P— as.
/ /

can hold only if
Y, =E[$ | A,

and Z is uniquely given by the martingale representation theorem

T t
¢=E+ [ ZdW., ie BRI =B+ [ ZaW.

= the component Z is here to ensure that the process Y is adapted. Unlike
deterministic ODEs, we can not simply revert time as the filtration goes in

one direction.



Martingale representation #2: If f(w,y,2) = plw) + a(w)y + S(w)z,

then
T T
Yt — €+ / (,03 - OéSYs - BsZs>dS — / ZSdWS
. . t
— ¢+ [ praxias— [ zaw;
t t
with |
Wo=w — / B.ds a Brownian motion under Q.
0
so that

t T T s T S
€f0 ozsdsYt _ efo ozsdsg 4+ / efo ozrdrpsds . / efo oarerSdWSﬁ
t t
and (with A = elo wASE( [ BedW))
B T T s T
Y, = EQ[e)i astsg +/ el iy ds | F] = E[Aré +/ Agpyds |FIA
t t

Z is again uniquely given by the martingale representation theorem under Q7.
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General existence result: Assume that there exists K such that
[f(y,2) = f(y, ) < K(ly = o] + |z = 2]) dt x dP,
and that f(0) € L3, then the BSDE admits a unique solution.

Existence is obtained by a contraction argument (like for SDEs): Given (Y, Z),
let (Y', Z") be defined by

T T
}/;/ — g +/ f8<}{97 Zs>d8 — / Z;dWS,
t t

and set (Y', Z") = ®(Y, Z). The map @ is contracting on a suitable weighted

version of 82 x L%.

Existence can hold under weaker conditions, see |5] for a survey.
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2 Examples of application

2.1 Hedging in finance

Stock price: dS; = Syudt + SiodWy,

Weath process: Let m be the amount invested in the stock, then the wealth

Y evolves according to

dY; = %dst + Tt<Y2 — Wt)dt = {7Tt<,LLt — Tt> + ?"tY;} dt —+ WtOtth.
t

Hedging: In order to hedge the claim & at T', we need to find 7 such that
YT = fj 1.€.

T T
Y, zg—/ {Z\s +1.Y,}ds —/ Z,dW,,
t t

after setting Z :=wo and A .= (u—r)/o.

12



Different interest rates for borrowing and lending:

T T
Y, = £ — / {Ws,us +ri (Y, —m) T =Y, — 7TS>_} ds — / 740 dWs.
t

Tb T
_ e /{ JSY Z)t — S(JSYS—ZS)_}CZS—/ Z.dW,.
Og ¢

[t 1s no more linear...

13



2.2 Optimal control problem and stochastic maximum principle

Maximization problem:

J(v) = [XT /f utdt]

in which X" is the solution of the one dimensional sde
dX; = b( X/, v)dt + o(X])dW,;
with v in the set U of predictable processes with values in R.
Associated Hamiltonian:
H(x, u,p, q) = blz,u)p + o(x)q + f(z,u).
Adjoint BSDE equation

T T
B = 0,g(Xy) + / O, (X, P O)ds — / O.dWW,
t t

where

¢[<x7 p7 Q> = Sup H('x? u? p7 Q>'

uelR

14
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Maximum principle: Assume that
z— g(z) and = — H(z, P, Qy) = supH(z,u, P, Q;) are P — a.s. concave.
ueR

Assume further that v satisfies

AN

H<X77ﬁ7'7p7'7©7'> — ﬁ<XTap77@T>
al‘H(XTJ ﬁT? pT? QT) — 8137:[<X7'7 p’]‘) QT>

for all stopping times 7. and that (X, P, Q) solves the adjoint equation (2.1).

Then, an optimal control is given by .

Remark:

- 0 can also depend on the control, but the formulation is more complex.

- See |5| for exponential utility maximization problems that can be treated
differently and lead to quadratic BSDEs.
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2.3 Risk measures representation

See Peng [3%| for a complete treatment.

Definition A non-linear F-expectation is an operator € : L? — R such that
o X' > X implies £[X'] > £[X'] with equality if and only if X' = X.
o &lc] =cforceR.
e Forcach X € L? and t < T, there exists n;* € L?(F;) such that £[X14] =
EM14] for all A € F;. We write &[X] for n;*.

Remark: 7% is uniquely defined. It corresponds to the notion of conditional

expectation, in this non-linear framework.

16



Let us now consider the solution (Y, Z) of

T T
Y, :g+/ fS(YS,ZS)ds—/ ZdW,, t <T,
t t

and call the Y component &/ [¢].

Theorem If f satisfies the Lipschitz and integrability conditions given in the
above existence result, then £/ is a non-linear F-expectation. Conversely, let
€ be a non-linear F-expectation such that for all X, X’ € L?

EIX + X < E[X]+EMXT  (with fu(y, 2) = pl2])

and
X +X=&X]+ X if X' € L*(F).

Then, there exists a random driver f (which does not depend on y) such that

=&

17



2.4 Semi-linear PDEs

Consider the solution X of the sde
X ==z +/ bs(Xs)ds +/ 0s(Xs)dW,
0 0

in which b and o are determinist, Lipschitz in space, and continuous in time.

Assume that v is a smooth solution of
0=Lv+ f(-,v,0,v0) on [0,T) x R, with v(T,:) =g
for some continuous g with polynomial growth, and where
Lv = v + bO,v + %a%ﬁxv.

Then,

Y =v(,X), Z:=0v(,X)o(X)

)

solves

T T
Y = g0+ [ RV Z)ds— [z
18



Indeed, by It6’s Lemma,

T T
g(Xr) = ”U(t,Xt>—|—/ Ev(s,Xs)der/ 0,v(s, Xg)os(Xs)dWy
/ '

= v(t, Xy) — | [o(Xs,0(s, Xy), Opv(s, Xs)os(X))ds
¥ : Ye A
T
+/ Orv(s, Xs)os(Xs) dW.
t VO
Zs

[n general, no smooth solution exists but Y = v(-, X') where v is the unique

viscosity solution of the corresponding PDE (see Crandall, Ishii & Lions |21]

for the definition of viscosity solutions).

In particular, solving the BSDE or the PDE is equivalent.

19



3 Extentions (in the Markovian case from now on)

3.1 BSDEs with jumps and IPDEs
Consider the solution (X,Y, Z,U) € S* x S? x L% x L3 of

{Xt — Xo+ [[0(X)dr + [Lo(X,)dW, + [I [ B(X,_, eJi(de, dr) ,
Yi = g(Xp)+ [ f(©,)dr — [ Z.dW, — [ [ U,(e)a(de, dr)

where © := (X, Y,I', Z) with I := [, p(e)U(e)A(de), and
e b o, [, f, g Lipschitz in (z,y,~, z) uniformly in e € E.

e 11 Poisson measure on F = R’ with compensator v(de, dt) = \(de)dt and
uw=pu—v.p:. E+— R"is bounded.

e L3 P ® B(F) measurable maps U : Q x [0,T] x E — R such that

Wi = [ [ [ |Us<e>|2x<de>dsf < o0

20



[t v solves

—Lou(t,z) — f(t,z,v(t,x),o(t, x)0v(t, x), Z|v]|(t, x

N—"
N—

where

Lou(t,x) = Ow(t,x)+ Ov(t, x)b(x) + = Z oo’

zgl

+ /E{v(t, r+ B(x,e)) —v(t,z) — du(t,x)B(x,e)} MNde) ,
Thol(t, 2) = / {o(t,z + Blz, ) — vlt, 1)} ple) Ade)

then

Y =v(,x), Z=0v(,X)o(-,X)and U =v(-, X_ + B(X_,-)) —v(-, X_).

21



3.2 BSDEs with jumps and systems of PDEs

[dea coming from Pardoux, Pradeilles & Rao [37].

System of kK PDE’s (i =0,...,xk—1)

1
0 = Ow; + b;0,v; + §TF[U¢U¢T3§$U¢] + fz'('; v, aﬂﬂi)

g = Ui<T7 )

Define fort =0,...,k — 1

(it = fi|t,z (... h2 nol
fi,t,z,y,v,2) f<,%( Y+ YT,y

?

Set E={1,...,5—1}, A(de) = X351 6i(e) and

M, = / /eu (de,ds) modulo k.

22
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Then, the corresponding BSDE is:
dXt = bMt(Xt)dt -+ O-Mt<Xt)th

Kk—1
—dYy = [(My,t,X,,Y,, Ty, Zy)dt — XY Tidt — Z,dW, — / U,(e)mi(de, dt)
k=1 E

Yr = gu(Xr)
with p(k)' = A1y, ie IF = U(k).
Indeed, it corresponds to
0 = (1) + bidyv(-, 1) + %Tr[cna;@ixv(-, )]+ f (- 0(,3),0p0(-, )i, Z[v(-, 4)])

where

~

f(-,?}, '7I[U< Z)D —

fi<'7 ( a 73}<'7 Z) + ,U<°7£r_ 1) B U('v Zla U('a Z)ay(a Z) + /U<'7E;|_ 1) B U(', 7’27 . ')7 )
v(-,i—1) i v(-,i+1)

Remark: We obtain such systems in the case of option pricing with possible
default.
23



3.3 BSDEs in a domain

Consider the system:

t t
X; = X0+/ b(XS)der/ o(Xs)dW,
0 0

Y, = g(T,XT>—l—/ fS(XS,YS,ZS)ds—/ 7, dW,,
tN\T t

AT
where

To=inf{t >0: X; ¢ O}y AT,
for some open set O.

Then, it corresponds to the Dirichlet problem:

—Lv— f(-,v,0,v0) =0 on |0,T) x O
v=g on ([0,T)x00)UJ{T} x O).

Remark: Barrier options in finance.

24



3.4 Reflected BSDEs

Consider the system:

t t
X, = X+ / b(X,)ds + / o(X,)dW,
! T ’ T
th — g<XT) +/ f8<X37Y;aZS>dS _/ ZSdWS ""KT T Kt
t t
Y; > g<Xt)7

where K is non-decreasing adapted continuous and
T
/ Y: — g(Xy)]dK; = 0.
0

Then, it corresponds to the obstacle problem:
min{—Lv — f(-,v,0,v0),v — g} =0 on[0,T) x R?
v=yg on{T} xR
Remark: American options in finance.

25



Part 11

Discrete time approximation

See [3] for a survey.

1 A backward Euler type scheme

From now on, we set 7" = 1 and consider

t t
X; = X0+/ b(Xs)der/ o(Xs)dWs |
0 0

1 1
Vi = g0+ [ FOX Y Z0ds— [ Zaw.
t t
with b, o, f, g Lipschitz.

We construct a discrete time approximation on a grid = := {t; :=i/n, i <n}
of [0, T] (with tyg = 0 and ¢, = T'). The mesh is || = n"".

26



1.1 Construction of the scheme

[t is based on the simple approximation

tit1 tiv1
Vi, = Y, + f (X, Ys, Z)ds — / ZdW,
t

1
17 i

2

1 - tit1
}/tz'—i—l T ﬁf (th'a }/tz'a th) - / thWt
t

7

where

. tit1
Zti = TLEti [/ tht] ~ ’nEti [Y252'+1(Wti+1 — Wti>]7
ti

so that

1 —
3/;5. ~ Eti D/%z'—i-l] + Ef (ti 3/;51’7 th)
Zt- =~ nEti [}/;52.+1<Wtz-+1 o WtZ)]

The discrete time approximation is based on forcing equality in the above.

27



We define (Y, Z") by

X -V 1 T X% 5T
Ytz' = ]Etz' [Yti—i—l] -+ 5f<th7 Yti’ th>
Zy = nEtz‘[YZH(Wt - Wtz’)])

1+1
where 7; = g(X7 ), and X7 is the Euler scheme of X.

We want to control

Err® ;= maxE
[

up 1Y~ V5[

6 <t<tji1

1
+/ E (|2 - Z7P] di
0

in which Z, = ZZ on |t;, tir1).

Remark: One needs to solve the first equation in 72. One could alternatively

set

T ~ 1 T X7 —TT
Yti — Eti [Y ] + EEQ [f(XtZ7 YtH_l? ZQ)]?

T
Lit1

without changing the nature of the convergence.

28



1.2 Important quantities and first error bound

By construction

tit1
Zti = nEtZ[/ ZSdS]
-L-.

1

is the best L?-approximation of Z by a step-constant process, and thus

1 1
/E[\Zt—ZﬂQ] dt > R(Z) ;:/ E [|Z — Z:|?] dt.
0 0

On the other hand, if f =0, then Y}, = E, |Y}] so that (Y;.); also provides the

best L2-approximation and we expect that

sup |Y; — 72|2

Li<t<tii1

2 R(Y) = maxE

7

sup |V — Y 2

Li<t<tii1

max K
7

Not surprisingly the error should depend on the regularity of (Y, Z)...
Theorem: There exists C' > 0 such that

Err? < C(|n] +R(Y) +R(Z))

29



Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]

7

_ . tiv1
Y =Y, +tin—t)f(Z;) - / ZTdW, .
t
eSetoY =Y —-Y" 04 =27— 7" By Itd’'s Lemma,

1 [li+1
K [|5Y;5‘2} -+ 5[ E [|5ZS|2] ds = E [‘5%i+1|2]

+ /t T EY(f(Z,) - F(Z0)] ds

30



Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]

7

_ . tiv1
Y =Y, +tin—t)f(Z;) - / ZTdW, .
t
eSetoY =Y —-Y" 04 =27— 7" By Itd’'s Lemma,

1 [li+1
K [|5Y;5‘2} -+ 5[ E [|5ZS|2] ds = E [‘5%i+1|2]

+ /t T EY(f(Z,) - F(Z0)] ds

e Then, using |0y(f(z) — f(2))] < %|5y 4 %a|f(z) — f(&)],

1 lit1 C tit1
E [|6Y;|] +§/ E[|6Z,* ds < E[|6Y,, ,|"] +—/ E [|6Y;]] ds
t t

! Q

tit1 _ _ .
+ Oé/ E[|ZS_th’2+|th_th‘2} ds
t

31



Since

. tit1
Zti = nEtz[/ ZSCZS]
t.

]

. tiv1
7, = nE, [V, (Wi, — W,)] = nlk, | / Z7ds),
t.

7

we deduce from Jensen’s inequality that

tit1 L - tit1 tit1
/ E[|Z, - Z, '] ds < / n/ E[|Z, — Z]|’] drds
t t l

tiv1
< / E[|Z, — Z|7] ds
t

l

tiv1
_ / E [|62,]%) ds
t

32



Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]
— . tit1
th — Yti—i—l —+ (Ifzqu — t)f (th) — / Z;TdWS .
t
eSet Y =Y —Y" 04 =7 —Z" By Ito's Lemma,

1 [li+1
K [|5YH2} + §/t E [|5Z8|2] ds = K U(S}/%z—l—l|2]

' / T E[0Y(f(2) - F(Z0)] ds
e Then, using |0y(f(z) — f(2))] < %|5y + %a|f(z) — f(Z))7,

1 tit1 C tit1
E [|6Y;]"] +§/ E[|0Z,*] ds < E[|6Ys,,,]7] +E/ E [|0Y,]%] ds
t t

1

tit1 _ _ .
+ a/ E ||Zs — Zi,|* +|Zy, — Z, |
t N _J/

tcg |8‘rZS|277 |

33
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Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]

7

_ . tiv1
Y =Y, +tin—t)f(Z;) - / ZTdW, .
t
eSet Y =Y —Y" 04 =7 —Z" By Ito's Lemma,
) 1 [li+1 ) )
B0V +5 [ E[6ZF)ds = E[16%..[°
tit1 .
; / E [6Y,((Zs) — £(Z))] ds
t

e for = % — « > 0, and with the help of Gronwall’s lemma.

ti
E [|6Yy,]?] +n/ E (|62 ds < e“ME [|6Y;, 7] +@/ "E 12— Z,,*] ds
t

t; i

tit1

34



Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]

. tit1
Y7 =Y, + (Hl—t)f(Zti)—/t ZTdW, .

eSet Y =Y —Y" 04 =7 —Z" By Ito's Lemma,
1 [li+1
B0V +5 [ E[6ZF]ds = E[6%,."
t tit1
v [ EBY((Z) - 1(Z) ds

e By the discrete Gronwall’s lemma,

H—l Z+1
maXE 10Y;,)? +Z/ 1027 ds<CZ/ [1Zs — Z4,|?] ds

39



Proof. (case f(X,Y,Z) = f(Z))

e Continuous backward Euler scheme on [t;, ;1]

7

_ . tit1
Y =Y, +tin—t)f(Z;) - /t ZTdW, .

eSet Y =Y —Y" 04 =7 —Z" By Ito's Lemma,
tit1

1
K [|5Y;5‘2} -+ 5/ E [|5ZS|2] ds = E [‘5%i+1|2]

+ /t T EY(f(Z,) - F(Z0)] ds

e Finally, as above,

tit1 . tiv1 . tit1 L
/ E[|Z —Z,[]ds < / E[|Z, — Z,|"] ds + / E[|Zs— Z|?] ds
t t; t;

7 7

tit1 i tit1 —_
< / E [|6Z,)7] ds + / E[|Z, — Z|?] ds.
t ti

i

1
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We have “shown’” that
Theorem: There exists C' > 0 such that

Err? < O (7] + R(Y) +R(Z))

in which

R(Y) = maxE

1

sup Y, — V3 |°

1 <t<t;41

1 . L tit1
RQO::AEU&—ZﬁthmZW:%M[ Z.ds).

]

[t remains to study the modulus of regularity R(Y") and R(Z)...

37



1.3 Modulus of regularity of Y

This is the easy part.... Standard estimates (Gronwall + BDG inequalities)
lead to Y; = wv(t, X3) in which v is 1/2-Holder in time and Lipschitz in X.
Then,

Y = YiP <O (|t — sl + X = X,F).

Hence,

R(Y) =max[E

(4

sup |Y; — V3|7

1, <t<t;41

< maxC(t;11 —t;) = C|m|.

Theorem: There exists C' > 0 such that

Err? < C(|n] +RY) +R(Z)) < C(|n| +R(2)).

38



1.4 Modulus of regularity of Z

This is the difficult part... We use the representation of Z in terms of Malliavin
derivatives. The initial proof is due to Ma & Zhang [35].

e Assume that the coefficients are smooth enough. Then, (Y;, Z;) admits a
Malliavin derivative for all ¢ < T and (DY, DsZ) solves

T T
D.Y, = Vg(XT)DSXT+/ Vil ©, )Ds@rdfr—/ D.Z.dW,
t (X, Y 2Z) t
e Since

t t
Y;:Yb—/ f(@r)dwr/ Z,dW,
0 0

we have (A as on slide 10)

- T
Zy= DYy = E |ArVg(X7)Ds X7 +/ AV f(©,)Ds Xidr | ]:t] A
! /

B T
= E |ArVg(X7) VX7 + / AV f(0,) VX, dr | th] (VX)) o(X)A
_ t

39



Another way to put this: Y = o(-, X) and Z = 9,v(-, X)o(X) with v
solving

—Lv — f(-,v,0v0) = 0.

Then, u := 0,v solves a semi-linear equation of the form
—Lu— f(-,u,duo) = 0.

By looking at this equation, we obtain that (u(-, X)VX, d,u(-, X)o(X)) =
(Zo Y X)VX, 0,u(-, X)o(X))) solves a linear BSDE whose solution is given
by the above (for an appropriate process A).

40



e Then, Z; = (V; — ay)n; where
T
V, = E [ATVg(XT)VXT+/ NV f(0,)VX,dr | F
0
m o= (VX)) o(X A
/

oy = / NV, f(6,)VX,dr

0

e There exists o € L% such that
i
Vi = Vot / 5, dW,
0

and thus

n—1

lit1 i+1
Z/ E [V - V;|]dt<0 / / 16]%] dsat

1=0
_C|7T|.

The additional terms behave in \W\% in any SP...
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Hence,

1
0

Theorem: There exists C' > 0 such that

Err? < C(|n] +R(Y) +R(2)) < C|x|.
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1.5 Strong convergence speed (conclusion)

Theorem:(B. & Touzi |1 1], and Zhang|39]|)) There exists C' > 0 such that
Err < C’\ﬂ%.

This is the convergence speed in the linear case, it can not be improved.
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1.6 Weak convergence speed

Under additional regularity assumptions, Gobet and Labart |29] obtain expan-

sions of the form

Y, = Y[ = 0p(t, X;)(X; — X7) + O(|7|) + O (|1 X — XT?)
Zy—Z; = 9, [0.0(t, Xp)o]" (X, — X])+ O(|x]) + O (|1 X, — X] ) .

where (X7, Y/ ):<1 is the continuous version of the Euler scheme.

In particular, this implies that

Yo — Vi = Yo — Vi = O(|]).

Moreover, when the grid is uniform, this allows to deduce from the weak
convergence of the process /n(X — X7) that the process /n(X — X7, Y —
Y™ Z —Z") weakly converges too.
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2 BSDEs with jumps

In the presence of jumps, the discrete time approximation is essentially the

Salne.

We consider the BSDE

Xt:X0+/tb(X)dT+/ dW+//5 -, e)a(de, dr)
Y, = g(X)) + /f dr—/ZdW // 7i(de, dr)

where © := (XY, Z) with " := [, p(e
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2.1 Approximation scheme

Step-constant driver

X1 =y | T X7 [/ 5T fit - tit1 o

Yti — Yti—l—l + Ef (thﬁ Ytz'7 Ftlﬁ Ztl) o / Zt th o / / Ut M(d@, dt) ’
t t; E

Best L3, approximation of Z™ and I'" = [, U™ (e)p(e)A(de) by Fi-meas. pro-

Cesses

=<0

tit1 .
7" — nE,| / Z7ds] = nE, [V (Wi, — W]
t

1+1
l

. tit1 _
[y, = nEtl[/ [ids] = nE Yy, /Ep(e)ﬁ(de, (ti, tiv1])]-
t

1

Discrete scheme: Y =E, [Y7T I+ 1f (XZT, Y, ,FW 77T)

Z

1 1
+/ E[|Z — Z, )" dt+/ E [, — T, %] dt
0 0

46

We want to control

sup |Y; =Y |?

B<t<ti

Err? ;= maxE
(]




2.2 Error analysis

We find the same initial error bound in terms of the modulus of regularity of
Y and Z, + an additional term related to I'.

But Y =v(-,X) and U(e) = v(-, X_ + B(X_,e)) —v(-, X_) so that U (and

therefore I') can be analyzed as Y.

The analysis of Z can be done by using the same martingale arguments as

above but it requires and additional invertibility condition on the flow X.

Assumption : For each e € E, the map x € R? — §(z, ¢) admits a Jacobian
matrix V3(x, e) such that the function

(2,6) e R x R — alx, & e) = (VB(x,e) + 15)E
satisfies one of the following condition uniformly in (x, &) € R? x R?

a(z,&e) > [EPK™ or a(z,&e) < —[¢PKT
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Proposition:(B. & Elie |7]) Under the above condition, there exists C' > (
such that

ol et
/ E[|Z— Z,|*] dt < C |n].
0 7t

=

Theorem:(B. & Elie |7]) Under the above condition, there exists C' > 0 such
that

Err < C \ﬂ%
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3 Reflected BSDEs

3.1 Approximation scheme

We want to approximate the solution (Y, Z, K) of

i = 9(X1)+/
t
Y; > h(X;) , O

1 1

F(Xo, Y, Z2)ds — / 7AW, + K, — K, |
t

<t

<1

with K continuous, increasing, such that Ky = 0 and

/ (Y~ (X)), = 0.

References:

- f =0 : Clément, Lamberton and Protter |20

- f independent of Z : Bally, Pages and Printemps (|1],...), B. and Touzi |1 1].
- f depends on Z : Ma and Zhang |30].
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Approximation scheme

7 = nE, [Y

]

V= BV e XYL Z)

Yt:j(t17Xt7§7}~/Z/T)7

]

7

<Wt'+1 o Wtz>i|

-
it

with the terminal condition

v

?tn = g(X7) .
where for R ={r;, 0<j <k} Dm

T(t,z,y) = y+[h() =y Lpeppory - (Gay) €[0,T] x R
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3.2 Regularity of Z : Ma and Zhang approach

Representation of the Z: The same ideas as above (but more delicate)

combined with an integration by parts argument lead to

T T
Zy = By|g(X7)NEL + / f(©,)Nlds + / N!dK|]
t t
where
Nt = (r—t)! / (X)X, (VX)) Lo(X,).
t

Theorem: (Ma and Zhang [30]) If o is uniformly elliptic, o, b € C}} and h
e Cf, then R(Z) < ‘ﬂ"% [f | = 7, then

E [max\Y}l. — 72|2 ] + max E

1<n 1<n

sup |V, =V, [

tit1
teltitiv1]

+1127 =213, < Clnlz .

. » . 1
Remark : Requires stronger conditions and converges only in |7|# (instead of

7]3).
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3.3 Regularity of Z : Discretely reflected case

To try to improve the above, one first considers the discretely reflected
BSDE

~ 5 Tj+1 - Tj+1 -

R R RN —/t ZRaw,
Y;%:j(t,Xt,fﬁfR) on each [rj,ri], j<kK—1.

with V! = ¢(X7) and ©% = (X, Y%, Z%).

Proposition: Let 7; be the next reflection time after r;. There is a version

of Z% such that for each j <k — 1 and t € [rj,7;11):

ZF = B |Vg(Xr)Ar VXl ) +Vh(XT].)(AVX)Tj1{Tj<T}} AL

LR | / VL O AV X )ds | A7 (VX)) o(X,)

This works as in the non-reflected case... because the reflection is performed

only at fixed discrete times (do the same as above on each time interval).
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Main idea to conclude: Assume h = g is C} and f = 0. For simplicity:
A= (VX)) lo(Xy) =1 (never true unless X = Xo+ W...).

Zr =V} =K, [Vh(X;)VX,]

1s a martingale, thus, with 7; s.t. ti, =rj,

n—1 tit1 » .- tit1 . o
S| [ iz 2] - [ E W -]
1=0 i '

t

DD (gAY
jZO ]{ZZij
=[x {E [V — V)
K—2 )
) 2 +12
+Y (V= VIEP])
j=1
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where, by the Lipschitz continuity of VA,

vj+1

E V7P = VGl
Tj+1 Tj+1

<E|n,, V2, - Vi

Tj+1 Tj+1

D :77Tj+1‘Erj+1[Vh(XTj>vXTj o Vh< T+1>VXTJ+1]H
. 1
E10(7j1 — Tj)z}

IA

so that
ZE[\M VIHE| < VRE [i(ne — )]

e Similarly, if Vh € C? we apply [t6’s lemma to obtain

E (V2,12 = VIR < Efilra — )

le

so that

K—2
SRV VIR < Efitr - ).
=1
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Theorem:(B. & Chassagneux |7|) If Hy : h € C}, then

n—l tit1
ZE[/ |Z§R—Z?f\2dt] < C+/E|n| .
1=0 U

t

I[fHy: h € C% and o € C}, then

n—l tiv1
ZE[/ |Z§R—Z§)§\2dt] < C|n|.
1=0 i

t
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3.4 Convergence speed : Discretely reflected case

Theorem:(B. & Chassagneux |7]) Let Hy hold. Then,

—T R vl r . : :
max || [V, —Y,*|+ sup [V, =Y |2 < C(x? [7]2 + |7]4)
i=n—1 te(titiy1]

and

12" = 2%y < C(82 |m]2 + []3)

Theorem: (B. & Chassagneux |7|) Let Hy hold. Then,

— — 1
wax || V7 =Y+ swp [V~ Y e < Cln?

sn—1 te(titiv1]

and

12" = 2%y < C(s2 |n]2 + [x]2)

Remark: can do better when X™ = X on .
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3.5 Convergence speed : Continuously reflected case

Theorem:(B. & Chassagneux |7]) Take 8 = w. Let Hj hold. Then,

max || [V, = Y|+ suwp [V —Yl < Cra(n),

mas
rsn—1 te(titiz]

with a(r) = |7T|Zlf under Hy and «a(m) = W% under Ho.

Moreover, under Hj,
17" = Z)lyy, < Culnlt,
If Hy holds and X™ = X on 7, then

- 1
17"~ Zlls, < C Il

I
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4 BSDEs in a domain

4.1 Approximation scheme

We consider

t t
X; = X0+/ b(Xs)der/ o(Xs)dW,
0 0

Y, = g(X,)+ / £ X, Y, Zo)ds — / Z,dW,,
tAT t

AT

where

To=inf{t >0: X; ¢ O} AT,

for some open set O.

o8



We approximate the first exit time 7 by
Tm=inf{ten : X7 O}N1.
The Euler scheme is defined as previously with Y% = ¢(X7) and

77 = nE Y[

1 tz'—l—l

(Wt - Wt)]
v v 1 s v v
}/;f‘ — Eti[}/tﬂ_l] + E f<XtZ‘7 Y;Z ) Ztl)

1+1

]

For Lipschitz continuous coeflicients, we get a similar error term -+ the exit

time approximation error:

Err < C ‘\ﬂ"% +R(Y) +R(Z) +Err(1 — 77)

previous terms
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4.2 Regularity of (Y, 2)

We can not follow the Malliavin derivative approach anymore because X is

not Malliavin differentiable in general...

However, one can follow the PDE approach (say f = 0): d,v(-, X)VX is a
martingale, which can be read from the pde, and therefore
Zt = 8xv(t,Xt)Vthth(VXt)_la(Xt)
= E0.v(1, X;) VX1« (VX)) to( X))
# E4[0,9(X-) VXL (VX)) o( X))
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4.2 Regularity of (Y, 2)

We can not follow the Malliavin derivative approach anymore because X is

not Malliavin differentiable in general...

However, one can follow the PDE approach (say f = 0): d,v(-, X)VX is a

martingale, which can be read from the pde, and therefore

Zt = 8xv(t,Xt)Vthth(VXt)_la(Xt)
= E0.v(1, X;) VX1« (VX)) to( X))

If 0,v bounded, we can use the same martingale techniques as in the case

O = R? to bound R(Z) (and Z as well, leading to a bound on R(Y)) !
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Assume from now on that:
e All coefficients are Lipschitz.
e O =, O" where O is C? with a compact boundary.
e Exterior sphere condition + interior truncated cone condition.

e The boundary satisfies a non characteristic condition outside a neighbor-
hood of C = ﬂ?;ékzl 00" N OO and o is uniformly elliptic on a neigh-
borhood of C.

o g € C*0) and [|0xg]| + [|05,9] < L on O
Proposition: (B. & Menozzi [10]) Let v be such that Y = v(-, X). Then, v

is uniformly Lipschitz in space and %—Hblder in time.

Corollary: Assume that the above conditions hold. Then,

R(Y) +R(Z) = O(|n]?) .
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4.3 Study of the exit time approximation error term (strong)

We have (on 77 < 1)

Yi—Yr=g9(X%)—g(X;) — / f(--+)ds +/ ZdW.
Thus, because of the Ito integral,

E[|YE —Yal’] = O(E[l9(X5) — g(Xo)[)] +E[¢]77 — 7))
+ OEElr"—7l)) .

This leads to Err(r — 77) = O. (E |77 — 7'|]%_€).

Theorem: (B. & Menozzi |10], B., Geiss & Gobet |9])

E (7™ —7]] < O(|x]2).
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By combining everything together...

Theorem: (B. & Menozzi [10])

Er < C(n2+R(Y)+R(Z)+  En(r—77) ) <Clat.

1
o)

N2

1 1
gradient bound : |7T|? O <E[§‘7-7T—7-H?

64



4.4 Study of the exit time approximation error term (weak)

We now stop at 7 A 77

TNTT

Ve = Yonoe = Eonpelg(X3) = 906~ Eopre | f(--+)as]

ATT

™NTT

— Ol w) + Byl | Fluw.g, Dy, Dig)(--)ds

TNATT
Yis

- Bl e,

ATT

which leads to

E [|Yyer = Yonre!] = Ollwl) + O (E [ Eoprlél™ — 7 ])
= O, (|7T|1_€) .
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By combining everything together...

Theorem: (B. & Menozzi [10])

DO —
DO —

tit1
maxE | sup (Y= V7 Pleons| B Y0 [ 120 Z P
b teltitip] i
< O(r]2+RY) +R(Z) + Err( — 7) )

1 1
gradient bound : |7T|§ O(E[ E a7 [ﬁ‘TW—T‘]Q ]):O€(|7T|?_€)

< Crnlz= .

In particular, |Yy — Y| < C(|x|279).

Remark: Should be able to get rid of the €, at least if g € C? and f is bounded.
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5 Irregular terminal condition

This is the case where ¢ is not Lipschitz, possibly discontinuous. Based on
carlier works of S. Geiss, it was first treated by Gobet & Makhlouf [31] (see
also Gobet, Geiss & Geiss |25]).

Main idea: The important quantity is

Via
o Ellg(X) — Edg(X)]]
1 1—1)° |

We say that g € Lo, 0 < a < 1, if the above is finite and ¢g(X;) € L?* (if

X1 = W, this corresponds to a Besov space).

When g € Lo,
E[‘ang@v Xt)‘z] < C‘/t,l/<1 o t>2

This is obtained under smoothness /uniform ellipticity conditions by estimating

the second order derivative (representation - integration by parts).
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Because Z is essentially d,v(-, X)) (up to nice behaving terms), not surpris-

ingly:

/ 12, ~ Zi) dt < O +Z/ZH 1 — S)E[02,0(s, X,)[ds)

1.e.

Z-l—l ‘/S
/ [th Zt| ] dt < C ‘71" -+ Z/ Z_|_1 — S _’;>2d8).
If one takes t; =1 — (1 — i/n)ﬁ, with 8 < «, then

H—l Vs | ti+1 tis] — S - Vi1
t ds = 1 — b5 (g
Z/ S Z/ TS T A e

i (1 —t)=F
B tiv1 — 1
o Csl;-p <1 . ti)l_ﬁ
<o~
= %%



ey )

Conclusion: Fort; =1 — (1 —i/n)?, with § < «, we retrieve
1
0

If one takes a uniform grid, then one only has:

1
/ E[|Z — Z,] dt < C )"
0

Example: If g is a-Holder with polynomial growth then ¢(X;) € Lo,. If
g(x) = 1,5, and X; = Wy, then g(X;) € L,
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6 Additional references

More can be done, here are (some) additional contributions:
e Doubly reflected BSDEs: Chassagneux |15].

e Multi-dimensional BSDEs with oblique reflection : Chassagneux, Elie &
Kharroubi |15].

e Quadratic BSDEs: Chassagneux & Richou [19)].
e Coupled FBSDESs: Delarue & Menozzi 21|, Bender & Zhang |1].

e Second order BSDEs: Fahim, Touzi & Warrin [27]
Touzi [3].

see also B., Elie &

)

e Linear multi-step or Runge-Kutta type schemes: Chassagneux |16], and

Chassagneux & Crisan [17].
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Part 111

Computation of conditional expectations

1 Motivation

The typical numerical scheme is of the form

X~ X -/ 1 T AN T
Yti — Etz’ [Yti_H] + Ef<XtZ7 Ytﬁ ZQ)
ZZ — nEti [?ZJrl(WtHl — Wtz’)]7

where 7; = g(X]).

To compute this quantities, one needs to be able to estimate efficiently the

different conditional expectations.
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2 Generalities

In practice, we approximate

Y = 9(X1>

i/tzr — E[ tit1 | Xﬂ} + f<XzZT7}/t7T77ﬂ;)
by

Y7 o= g(X”)

= B[V, | X0 4 LAY 2

7t = E y;rﬂ(ww - W) | X7]

where E [Y” | X”} and F [}AQZTH(WQH — W) | X”} are estimators of E [ o X”}
and E |:}/;Z'+1(Wti+1 o Wtz) | Xg::|

2



Theorem (B. & Touzi [11],...)

HY” Vi < nC, max Eip(E,n)

0<]<n 1

with

EplBm) = BV, | X7 | —E V7 | X7

HIE V7 Wy = W) | XT| =B [V7, (W, = Wi) | X7 s

1+1 i+1

Remark :

1- At best SM(EA, n) ~ N2 if computed by pure Monte-Carlo.

2- ||V, — YT ||lme ~ n~1/2 hence to get Hf@? — Y/ |wr ~ n~1/% we need to take
at least N = n? if the global error is of order n=t +nN-2.

3



3 Integration by parts technique

See B., Ekeland & Touzi [6|, B. & Warin |12|, Crisan, Manolarakis & Touzi
23],

3.1 Conditional expectation representation in the Gaussian case

Set v(Wy,) = YT (we omit the dependence of v on the time variable).

Reduction of the problem :

E [5w<Wti>U<Wt'+1>]

E lo(W E 5, (11)]

|Wtzzw]:

z'—l—l)

d,, Dirac mass at w.

4



e Integration by parts argument (f5 = density N(0,6)):
E[éw(wti>v<wti+1>]

| [, ) o 9y

[ [ 1 [ @+ T = (ot y>] Ful) i1 (9)ddy

//1{x>w}v (z+y) [tf Y ] fi,(@) ftrn -t (y)dady

i liq1—

WtH—l

Wz' Wti
= [1{Wt¢2w}v (W) ( t; -t )}

5



Alternative formulation :

E [v(W,

1)

Monte-Carlo estimator :

Ev(Wy,,,) | Wy, =w] =

i-l—l)

‘thz’w]: —

Wi, Wi, (=W,
= [1{%2“}}@ (Wii.1) ( T )}
W
E 1{Wtz’2w} t; ]
E|0uw (Wti;];f Wy, (w)

(WY, N copies of W
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Variance estimation

D[ —

(€) (€) 1
Var Wti—i—l B Wtz‘ _ (tix1 — ;)2 _ n%
tiv1 —t; tiv1 — 1t
leading to
(€) (€) O\ 12 1
Var 1 Z Ly 0 Y ( () ) W, Wi = Ws o
N < {WtZ —w} i1 ti tit1 — i Nz

7



3.2 Variance Reduction in the Gaussian Case: Control variate

W, WtH—l Wi,

[ [va+y [Ttm ]ﬁ()f o (y)dady

//”U’ <CE' + y) fti(x)f(tiﬂ—ti)(y) — U/ (CE | y) fti<x)f(ti+1—ti)<y>dxdy

0

We can then replace 1{Wti2w} by (I{Wtizw} — c(w)):

_Wt

E {(1{Wtz‘2w} — cw >> (WtZ“) ( ti tzi—tz‘

)]

]E[’U( ’Wt—w}:

z—l—l)

E | (L, 20y — o))

8



3.3 Variance Reduction in the Gaussian case : Localization
Take ¢ smooth in L*(R) with (0) = 1
B0 (W) v(We,,, )]
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This shows that

One can then try to minimize an indicator of the variance

. L o
90€L2({1£1)1,I;(0)1/RE [1{Wt¢2w} [Fo (Wi, —w) — G’ (W, — w) } dw

with

= (Wti—l-l) (I/Ztl — Wi — Wti>

G =w (Wtz‘+1)

tiv1 — ti
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Calculus of Variation : ¢ is optimal iif for all smooth ¢ with ¢(0) = 0 and
compact support, and € > 0

/RE [1{”%2“} [Fo (W, —w) — Go' (W, — w)ﬂ

< [ E [Ljy o) (0 %0 (W, = w) = Gl 26/) (W, — )]

2
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Sending € — 0

0 = [ B[t 20} (P (W, =) = G (W, — w)
(ng (Wti T w) _ G¢/ (Wti o w))] dw

—&| [ (Fow) - 64/ W) (Fo) - 6 ) ]
Fubini + change of variable y = W} (w) — w

—E| [ o) (o) - 6% 1) d

integration by parts
= [ o) (BIF) e ) -EI6) ¢ @) dy
= E[Fey) -E[G ¢ (y) =0
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Optimal Localizing Function : ¢(y) = e with
772 _ [F2:| /E |:G2

|
Blow,)’ (5 - et
E v (W,,.)’]

For ¢(y) = e we have ¢'(y) = —Hp(y)
Wt Wt

E {1{Wti2w}v (Wi.y) {80 (Wi, — w) ( i %) — ' (W, — ’w)H

Wt Wt

B L2yt (W) {2 Wi =) (5 =i +9)

where

E

Wi — Wi\’
( tit1 tz)] :\/ﬁNﬁ

tz—l—l tz



3.4 Full numerical scheme (f indep. of Z for simplicity)

1

We consider N copies (X”( >, o X”m) of XT.
L . )
Initialization : Forall 5 : Y7 =g <X1 )
Backward induction : Fori=n—1,...,1, we set, for all 5
A [ _ ) 1 5) )
:E|:}/Ifl+1|XZ:Xth:|+ﬁf<thj7}/;Z])
where

" () op (D) () (4)

(<N ti— 1_ ti—1

0 x(0) 7()
Z 1Xn( )<X7T Sh<> (¢<Xti_1 o th_j1>)

(<N ti—1—=""t—1

N

E{ |X”_X7T}:
i1

(up to an additional truncation given by a-priori bounds).

Remark: Only needs O(N In N) operations (first sort the simulations) and not
NZ.
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In dimension d, we can do the same by performing d integration by parts. If
f depends on Z, the corresponding conditional expectation is computed simi-

larly:.

Theorem (B. & Touzi |11])

V7 Yl < nC, max &,(E,n)

0<j<n-—1
If we choose " = p(y/nz). Then,
max  &;,(E,n) < Cnir N~

1<j<n—1
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Global error :

~ 1 nir
max V7 = Vil < Cp (072 + 05
0<i<n v N2

e n7 : discretization error

e 1 . number of regression estimations

o« N 7% - convergence rate of the regression estimator in terms of the number
of simulations V.

d : :
e n¥ : "variance" of the regression operator.

d
- N ~ n3ptz,

DN —

For an L? error of order of n™
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3.5 The general case

e The conditional expectations can be written similarly by using a Mallia-
vian calculus integration by parts argument. The terms corresponding to
the S" are now Skorohod integrals that can be decomposed into Ité and
Lebesgue integrals. See B., Ekeland & Touzi |6]. The analysis of the error
is the same. See B. & Touzi |11].

e The sums in the estimators can be computed efficiently by using the

equivalent of a sorting method in dimension d. Its complexity is of or-
der O(N(In N)4=DV1)  See B. & Warin [12].

e An alternative formulation with reduced complexity in the computation
of the Malliavin weights is given in Crisan, Manolarakis & Touzi [23]. Tt
consists in neglecting a (neglectable) term whose computation complexity

is not neglectable.
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3.6 Importantly

e The localization by the ¢ functions is crucial in practice.

e Variance reduction by control variate is also important. One can re-
place Y™ by Y™ — Y such that the conditional expectations of f/tm and
37752. (Wi — W,,) are explicit.

e Truncation is also crucial: a-priori bounds for Y and Z are often easy

to compute (recall the conditional expectation expression for Z obtained

above).
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4 Non-parametric regression approach

[nitiated by Carriére |11 and Longstaff & Schwartz [31| in the context of

American option pricing (made first rigorous by Clément, Lamberton & Prot-

ter [20]).

General idea: replace ED%ZJX;Z] by an estimator of its projection on the

space generated by (¥, (X[))m<y for some deterministic “basis functions”

(¢m>m§M

Given simulations (£U), Xg(j))jSN of (§, X}), we set
EA[f‘Xt _ XZ;(J)] - Z @ti,mwm(XZZ(J))
m=1
where (&, 1 )m<y minimizes
N M
STIED =S ann(XT )P
j=1 m=1

over (Quy)m<nr € RM.
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4.1 Full numerical scheme (f indep. of Z for simplicity)

1

We consider N copies (X”( >, o X”m) of XT.
L o) 0)
Initialization : Forall 5 : Y7 =g <X1 )

Backward induction (for the explicit scheme): Fori=n—1,...,1, we set, for
all 7 :

7(7) nB RV 1 T o\ T 7(7)
Y, T =E [Ytiﬂ —i_Ef(Xti’}/ti—l—l) | Xi :th‘]]

7
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4.2 Choice of the basis functions

Ideally, one should use a first element ¢, ; that is supposed to be close to the
real conditional expectation and then complete the basis so that it is orthogonal

for the law of X[ (or a proxy).

Very often, people use polynomials. The choice is very difficult in practice in

“high” dimension.... and the induced error difficult to quantify.

It turns out to be more stable to use local polynomials: e.g. piecewise lin-
ear maps on a space partition. When the size of the partition vanishes, we
are certain that convergence holds (and we can quantify it, think at v being
Lipschitz).

This partition should be consistent with the law of Xi". It can be constructed
in an adaptative way: simulate copies of X7, then built up a partition so that
each part contains approximately the same number of points. This can be

done efficiently by sorting like methods, see |12].
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4.3 Error analysis

The precise error analysis du to estimating the coeflicients of the regression

has been performed in Gobet, Lemore & Warin |33].

The expression of the error takes half a page... see the paper.
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4.4 The multistep forward dynamic programming scheme

The MDP scheme consists in replacing

Y. —Et [YZ+1]‘|‘ f(XZTaYmZ ) Zﬁ: nEti[YtH(Wt _Wt@'ﬂa

1+1

by
7T 1 v 7T
Ytl' = th + — n Z f t/{:’ tk—i—l’ tk>]

Zti = nEt [{g XW _I_ Z f tka_tkHaZ;{;)}(WtHl o Wtz)]
k 1+1

In terms of discrete time approximation, it is equivalent to the forward version

of our scheme, the convergence is not impacted as |7| — 0.

However, it is shown in Gobet & Turkedjiev |32| that it provides a better
control on the conditional expectations estimation error : this procedure avoids

the propagation of the error estimation along the backward algorithm.
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4.5 Parallelized algorithm

A version of the algorithm that can be parallelized on GPU has been proposed
in Gobet et al. [30]:

e Fix hyper-cubes (Hy)r<k.

e For each k, simulate N path of X™ on [t;, 1] starting from an iid drawn

point in H; according to a conditional logistic distribution.

e Backward induction: For each j = n — 1,...,0, use the MDP scheme
to compute 7; given that X™ € Hj by using the simulated path of X7
on [t;, 1] starting from Hj, and the knowledge of the estimated functional

form of (7;;>i<j§n'

Each hyper-cube can be treated in parallel at each backward step.
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5 Quality test

5.1 The case of American options

For American options, the algorithm becomes:

Initialization : For all j - Yfr(j) =g (X{T(j))

Backward induction: For i =n —1,...,1, we set, for all 7
Yt?(ﬁ _ max{g(Xg(j)),EA’ [Ytgl | XZT- _ Xg(j)}}

Because of the max operator, one can expect that the estimator is upper-
biased 370”(1) > Y X where YY" is the price of the Bermudean option with

discrete exercise times.
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Alternatively, one can use:
Initialization : For all j - YfT(j) =g (Xf(j)> and 7U) =T
Backward induction: For i =n —1,...,1, we set, for all 7
o Case 1: If g(Xg(j)) < Blg(XT) | X[ = Xg(j)] then 7U) ¢ 70,
o Case 2. If g(X7") > Elg(X7) | X7 = X7"] then 70) « ;.
This provides an estimate of the optimal stopping policy on the different path.

Then, one computes
1 o )
Y w\J
Yy o= M;L(J(X%(j))

Because 7 is suboptimal, one expects that }70” <Y%

Quality test: Y should be less but close to YOW(D.
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5.2 Mean L?-discrete trajectory error

This was proposed by Bender & Steiner |3 in the context of the non-parametric
approach.
[t consists in computing:

~ ) 1 () ) Al .y -
Zmax| Zym _Ytz' J _5f<th’j ’Ytz’ j ’th’j ) — Z <Wt(z+)1 _Wt(z])>|2'

k<n

By the law Of large number, it converges to

Err}, := maxE[| Z A —f<X;:., YL ZT) = Z5(Wa,,, — WP,

k<7’L Z+1

If the above is computed with the true coefficients corresponding to the projec-
tion on the basis (V¢ ;m)m<nr, then Erry provides, up to an additional O(||)
term, an upper-bound of the error due to replacing the true conditional ex-
pectations by the corresponding projections.

In practice, one estimates the coeflicients with a bunch of simulations, and

then use independent simulations to compute the above error criteria.
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6 More...

One can also use more “deterministic” techniques:

e The quantization approach: Bally, Pagés & Printems |2|, Bronstein, Pages
& Portes |13].

e The cubature approach: Crisan & Manolarakis |22].
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