Duality for almost-sure hedging with price impact

B. Bouchard

CEREMADE, Dauphine-PSL University

Based on works with G. Loeper (Monash Univ.), M. Soner (ETH Zürich) and Y. Zou (ex Dauphine-PSL) + more recent developments with P. Cardialaguët (Dauphine-PSL) and X. Tan (Dauphine-PSL)
Problem formulation and motivation
Motivation

Construct market models with permanent price impact (possibly with resilience effect) in which hedging is possible:

- Buying pushes up the price, selling pushes it down.
- We pay an illiquidity cost.
- Solve the “running after the delta” effect.
- Avoid hidden transaction costs (fixed or proportional).
- Not at the level of high-frequency level \rightarrow mesoscopic model.

We will focus on the case of covered options:

- The “premium” is paid at 0 in cash plus delta (number of stocks) asked by the trader.
- The trader delivers at T cash and stocks (evaluated at their current price).

\Rightarrow Avoids jumps at 0 and T, and therefore important impacts on the stock price.
Motivation

Construct market models with permanent price impact (possibly with resilience effect) in which hedging is possible:

• Buying pushes up the price, selling pushes it down.
• We pay an illiquidity cost.
• Solve the “running after the delta” effect.
• Avoid hidden transaction costs (fixed or proportional).
• Not at the level of high-frequency level \rightarrow mesoscopic model.

We will focus on the case of covered options:

• The “premium” is paid at 0 in cash plus delta (number of stocks) asked by the trader.
• The trader delivers at T cash and stocks (evaluated at their current price).

\Rightarrow Avoids jumps at 0 and T, and therefore important impacts on the stock price.
Example
Linear impact rule and covered options: buying Δ_t stocks leads to
- a permanent price move of $X_{t-} \rightarrow X_t = X_{t-} + f_t(X_{t-}) \Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t-} + X_t)$.
Example

Linear impact rule and covered options: buying Δ_t stocks leads to
- a permanent price move of $X_{t-} \to X_t = X_{t-} + f_t(X_{t-})\Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t-} + X_t)$.

When no trading, the stock evolves according to

$$dX_t = \sigma_t^\circ(X_t)dW_t.$$
Example

Linear impact rule and covered options: buying Δ_t stocks leads to

- a permanent price move of $X_{t-} \to X_t = X_{t-} + f_t(X_{t-})\Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t-} + X_t)$.

When no trading, the stock evolves according to

$$dX_t = \sigma_t^\circ(X_t)dW_t.$$

Consider rebalancing at times t_i^n:

$$X^n = X_0 + \int_0^t \sigma^\circ(X^n_t)dW_t + \sum_{i=1}^n 1_{[t^n_i, T]} f(X^n_{t^n_i-})\Delta^n_{t_i},$$

$$Y^n := \sum_{i=0}^{n-1} 1_{[t^n_i, t^n_{i+1}]} \left(\int_0^t g_t dX_t^n + \int_0^t b_t dt \right), \quad \Delta^n_{t_i} = Y^n_{t_i} - Y^n_{t_i-1},$$

$$V^n = V_0 + \sum_{i=1}^n 1_{[t^n_i, T]} \frac{1}{2}(\Delta^n_{t_i})^2 f(X^n_{t^n_i-}) + \int_0^T Y^n_{t-} dX^n_t,$$

where

$$V^n = \text{cash part} + Y^n X^n = \text{"portfolio value"}.$$
Example

Linear impact rule and covered options : buying Δ_t stocks leads to

- a permanent price move of $X_{t^-} \rightarrow X_t = X_{t^-} + f_t(X_{t^-})\Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t^-} + X_t)$.

When no trading, the stock evolves according to

$$dX_t = \sigma^\circ_t(X_t)\,dW_t.$$

⇒ Let $t_{i+1}^n - t_i^n \rightarrow 0$:

$$X = x \wedge 0 + \int_0^{t_i^n} \sigma^\circ_t(X_t)\,dW_t + \int_0^{t_i^n} f_t(X_t)\,dY_t + \int_0^{t_i^n} g_t(f'_t \sigma^\circ_t)(X_t)\,dt$$

$$Y = y + \int_0^{t_i^n} g_t\,dX_t + \int_0^{t_i^n} b_t\,dt$$

$$V = V_0 + \int_0^{t_i^n} \frac{1}{2} g_t^2 f_t(X_t)\,dt + \int_0^{t_i^n} Y_t\,dX_t.$$
Example

Linear impact rule and covered options: buying Δ_t stocks leads to

- a permanent price move of $X_{t-} \to X_t = X_{t-} + f_t(X_{t-})\Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t-} + X_t)$.

When no trading, the stock evolves according to

$$dX_t = \sigma_t(X_t) dW_t.$$

⇒ Let $t_{i+1}^n - t_i^n \to 0$:

$$X = x^{\wedge 0} + \int_0^t \frac{\sigma_t(X_t)}{1 - f_t(X_t)g_t} dW_t + \int_0^t (\cdots) dt$$

$$Y = y + \int_0^t g_t dX_t + \int_0^t b_t dt$$

$$V = V_0 + \int_0^t \frac{1}{2} g_t^2 f_t(X_t) dt + \int_0^t Y_t dX_t.$$
Example

Linear impact rule and covered options: buying Δ_t stocks leads to

- a permanent price move of $X_{t-} \to X_t = X_{t-} + f_t(X_{t-})\Delta_t$,
- an average buying cost of $\frac{1}{2}(X_{t-} + X_t)$.

When no trading, the stock evolves according to

$$dX_t = \sigma_t^o(X_t)dW_t.$$

⇒ Let $t_{i+1}^n - t_i^n \to 0$:

$$X = x_\wedge 0 + \int_0^{\cdot} \frac{\sigma_t^o(X_t)}{1 - f_t(X_t)g_t}dW_t + \int_0^{\cdot} (\cdots)dt$$

$$Y = y + \int_0^{\cdot} g_t dX_t + \int_0^{\cdot} b_t dt$$

$$V = V_0 + \int_0^{\cdot} \frac{1}{2} g_t^2 f_t(X_t) dt + \int_0^{\cdot} Y_t dX_t.$$

Note that trading impacts the whole dynamics through the flow of the SDE. It will also impact the claim $\Xi(X)$.
Example

Linear impact rule and resilience

\[X = X_0 + \int_0^\cdot \sigma_s^\circ(X_s)dW_s + R \]

\[R = R_0 + \int_0^\cdot f_s(X_s)dY_s + \int_0^\cdot (g_s(f_s\sigma_s^\circ)(X_s) - \rho R_s)ds \]

\[Y = y + \int_0^\cdot g_t dX_t + \int_0^\cdot b_t dt \]

\[V = V_0 + \int_0^\cdot Y_t dX_t + \int_0^\cdot \frac{1}{2} g_t^2 f_t(X_t)dt. \]
Example

Linear impact rule and resilience

\[X = X_0 + \int_0^\cdot \sigma_s^\circ(X_s) dW_s + R \]

\[R = R_0 + \int_0^\cdot f_s(X_s) dY_s + \int_0^\cdot (g_s(f_s'\sigma_s^\circ)(X_s) - \rho R_s) ds \]

\[Y = y + \int_0^\cdot g_t dX_t + \int_0^\cdot b_t dt \]

\[V = V_0 + \int_0^\cdot Y_t dX_t + \int_0^\cdot \frac{1}{2} g_t^2 f_t(X_t) dt. \]

For covered options, resilience does not play any role... we omit it.
Abstract hedging of covered options

Given \(x \in C([0, T]) \), find \(y \in \mathbb{R} \) and \((g, \mathcal{B}) \in \mathcal{A}_2 \times \mathcal{B}_2 \) such that (after a change of measure)

\[
X = x \wedge 0 + \int_0^\cdot \sigma_t(X, g_t) dW_t \\
Y = y + \int_0^\cdot g_t dX_t + \mathcal{B} \\
V = V_0 + \int_0^\cdot Y_t dX_t + \int_0^\cdot F_t(X, g_t) dt, \quad V_T = \Xi(X)
\]

(possibly weak formulation)
Abstract hedging of covered options

Given $x \in C([0, T])$, find $y \in \mathbb{R}$ and $(g, \mathcal{B}) \in A_2 \times B_2$ such that (after a change of measure)

$$X = x \wedge 0 + \int_0^\cdot \sigma_t(X, g_t) dW_t$$

$$Y = y + \int_0^\cdot g_t dX_t + \mathcal{B}$$

$$V = V_0 + \int_0^\cdot Y_t dX_t + \int_0^\cdot F_t(X, g_t) dt, \quad V_T = \Xi(X)$$

(possibly weak formulation)

Interpretation:
- X: stock price,
- Y: number of stocks in the portfolio,
- V: cash value of the portfolio (at the current stock price),
- $F(\cdot, g)$ and $\sigma(\cdot, g)$: liquidity cost and price impact.
PDE point of view

Second order stochastic target problems with generalized market impact.
Markovian setting

Given $x \in \mathbb{R}$, find $y \in \mathbb{R}$ and $\phi := (g, \mathcal{B}) \in \mathcal{A}_2 \times \mathcal{B}_2$ such that

\begin{align*}
X &= x + \int_0 \cdots \sigma_t(X_t, g_t) dW_t \\
Y &= y + \int_0 \cdots g_t dX_t + \mathcal{B} \quad \text{with} \quad d\mathcal{B}_t = b_t dt \\
V &= \Xi(X_T) - \int . \cdots F_t(X_t, g_t) dt - \int . \cdots Y_t dX_t, \quad (\text{adapted})
\end{align*}
Markovian setting

Given $x \in \mathbb{R}$, find $y \in \mathbb{R}$ and $\phi := (g, \mathcal{B}) \in A_2 \times B_2$ such that

$$X = x + \int_0^\cdot \sigma_t(X_t, g_t) \, dW_t$$

$$Y = y + \int_0^\cdot g_t \, dX_t + \mathcal{B} \quad \text{with} \quad d\mathcal{B}_t = b_t \, dt$$

$$V = \Xi(X_T) - \int_0^T F_t(X_t, g_t) \, dt - \int_0^T Y_t \, dX_t, \quad (\text{adapted})$$

Assume a solution $V = v(\cdot, X)$ exists, then $dV = dv(\cdot, X)$ and therefore:

- $Y = \nabla_x v(\cdot, X)$,
- $F(X, g) = \partial_t v(\cdot, X) + \frac{1}{2} \sigma^2(X, g) \nabla_{xx} v(\cdot, X)$
Markovian setting

Given $x \in \mathbb{R}$, find $y \in \mathbb{R}$ and $\phi := (g, \mathcal{B}) \in \mathcal{A}_2 \times \mathcal{B}_2$ such that

$$X = x + \int_0^\cdot \sigma_t(X_t, g_t) dW_t$$

$$Y = y + \int_0^\cdot g_t dX_t + \mathcal{B} \quad \text{with } d\mathcal{B}_t = b_t dt$$

$$V = \Xi(X_T) - \int_\cdot^T F_t(X_t, g_t) dt - \int_\cdot^T Y_t dX_t, \quad (adapted)$$

Assume a solution $V = v(\cdot, X)$ exists, then $dV = dv(\cdot, X)$ and therefore:

- $Y = \nabla_x v(\cdot, X)$,
- $F(X, g) = \partial_t v(\cdot, X) + \frac{1}{2} \sigma^2(X, g) \nabla_{xx} v(\cdot, X)$

Moreover, $Y = \nabla_x v(\cdot, X)$ implies $dY = d\nabla_x v(\cdot, X)$ and therefore

- $g = \nabla_{xx} v(\cdot, X)$,
Markovian setting

Given $x \in \mathbb{R}$, find $y \in \mathbb{R}$ and $\phi := (g, \mathcal{B}) \in \mathcal{A}_2 \times \mathcal{B}_2$ such that

$$
X = x + \int_0^\cdot \sigma_t(X_t, g_t) dW_t
$$

$$
Y = y + \int_0^\cdot g_t dX_t + \mathcal{B} \quad \text{with} \quad d\mathcal{B}_t = b_t dt
$$

$$
V = \Xi(X_T) - \int_0^T F_t(X_t, g_t) dt - \int_0^T Y_t dX_t, \quad \text{(adapted)}
$$

Assume a solution $V = v(\cdot, X)$ exists, then $dV = dv(\cdot, X)$ and therefore:

- $Y = \nabla_x v(\cdot, X)$,
- $F(X, \nabla_{xx} v(\cdot, X)) = \partial_t v(\cdot, X) + \frac{1}{2} \sigma^2(X, \nabla_{xx} v(\cdot, X)) \nabla_{xx} v(\cdot, X)$

Moreover, $Y = \nabla_x v(\cdot, X)$ implies $dY = d\nabla_x v(\cdot, X)$ and therefore

- $g = \nabla_{xx} v(\cdot, X)$,
Markovian setting

This leads to the PDE:

\[
0 = - \partial_t v(\cdot, x) - \frac{1}{2} \sigma^2(x, \nabla_{xx}v(\cdot, x)) \nabla_{xx}v(\cdot, x) + F(x, \nabla_{xx}v(\cdot, x))
\]
Markovian setting

This leads to the PDE:

$$0 = -\partial_t v(\cdot, x) - \frac{1}{2}\sigma^2(x, \nabla_{xx}v(\cdot, x))\nabla_{xx}v(\cdot, x) + F(x, \nabla_{xx}v(\cdot, x))$$

$$= -\partial_t v(\cdot, x) - \tilde{F}(x, \nabla_{xx}v(\cdot, x))$$

with

$$\tilde{F}(x, g) := \frac{1}{2}\sigma^2(x, g)g - F(x, g).$$

and terminal condition

$$v(T, \cdot) = \Xi.$$
Markovian setting - Linear impact case

In this case

\[F(x, g) = \frac{1}{2} \left(\frac{\sigma^x(x)g}{1 - f(x)g} \right)^2 f(x) \mathbf{1}_{\{f(x)g < 1\}} + \infty \mathbf{1}_{\{f(x)g \geq 1\}} \]

\[\bar{F}(x, g) = \frac{1}{2} \frac{\sigma^x(x)^2g}{1 - f(x)g} \mathbf{1}_{\{f(x)g < 1\}} + \infty \mathbf{1}_{\{f(x)g \geq 1\}}. \]
Markovian setting - Linear impact case

In this case

\[F(x, g) = \frac{1}{2} \left(\frac{\sigma^\circ(x)g}{1 - f(x)g} \right)^2 f(x)1_{\{f(x)g < 1\}} + \infty 1_{\{f(x)g \geq 1\}} \]

\[\bar{F}(x, g) = \frac{1}{2} \frac{\sigma^\circ(x)^2g}{1 - f(x)g} 1_{\{f(x)g < 1\}} + \infty 1_{\{f(x)g \geq 1\}}. \]

Gamma constraint: \(\{\bar{F}(x, g) < \infty\} = \{g < \gamma(x)\} \), where \(\gamma := 1/f \) in the linear case.
Markovian setting - Linear impact case

In this case

\[
F(x, g) = \frac{1}{2} \left(\frac{\sigma^\circ(x)g}{1 - f(x)g} \right)^2 f(x)1\{f(x)g < 1\} + \infty 1\{f(x)g \geq 1\}
\]

\[
\bar{F}(x, g) = \frac{1}{2} \frac{\sigma^\circ(x)^2g}{1 - f(x)g} 1\{f(x)g < 1\} + \infty 1\{f(x)g \geq 1\}.
\]

Gamma constraint : \(\{\bar{F}(x, g) < \infty\} = \{g < \gamma(x)\}\), where \(\gamma := 1/f\) in the linear case.

In general, the correct equation is

\[
0 = \min \{-\partial_t v(\cdot, x) - \bar{F}(x, \nabla_{xx} v(\cdot, x)); \gamma - \nabla_{xx} v\}
\]

and the terminal condition \(\Xi\) is replaced by the smallest function above \(\Xi\) satisfying the gamma constraint.
Markovian setting - Linear impact case

Remember the typical example

\[F(x, g) = \frac{1}{2} \left(\frac{\sigma^\circ(x)g}{1 - f(x)g} \right)^2 f(x) \mathbf{1}_{\{f(x)g < 1\}} + \infty \mathbf{1}_{\{f(x)g \geq 1\}} \]

\[\tilde{F}(x, g) = \frac{1}{2} \frac{\sigma^\circ(x)^2 g}{1 - f(x)g} \mathbf{1}_{\{f(x)g < 1\}} + \infty \mathbf{1}_{\{f(x)g \geq 1\}}. \]
Markovian setting - Linear impact case

Remember the typical example

\[F(x, g) = \frac{1}{2} \left(\frac{\sigma(x)g}{1 - f(x)g} \right)^2 f(x)1\{f(x)g < 1\} + \infty 1\{f(x)g \geq 1\} \]

\[\bar{F}(x, g) = \frac{1}{2} \frac{\sigma(x)^2g}{2 - f(x)g} 1\{f(x)g < 1\} + \infty 1\{f(x)g \geq 1\}. \]

If \(\nabla_{xx} g \leq \gamma - \varepsilon, \varepsilon > 0 \), + smooth coefficients, the gamma constraint propagates backward and there exists a smooth solution to

\[0 = -\partial_t v(\cdot, x) - \bar{F}(x, \nabla_{xx} v(\cdot, x)) \]

satisfying \(\nabla_{xx} v < \bar{\gamma} \).

\[\Rightarrow \] Perfect hedging strategy with \(Y = \nabla_x v + \) super-hedging price is a hedging price (actually the only, see later).
Markovian setting - Convex case

Assume that: \(g \mapsto \bar{F}(x, g) \) is convex (as in the linear impact case).
Markovian setting - Convex case

Assume that: \(g \mapsto \bar{F}(x, g) \) is convex (as in the linear impact case).

Then,

\[
0 = -\partial_t v(\cdot, x) - \bar{F}(x, \nabla_{xx} v(\cdot, x)) \\
= \inf_{s \in \mathbb{R}} \left(-\partial_t v(\cdot, x) - \frac{1}{2} s^2 \nabla_{xx} v(\cdot, x) + \bar{F}^*(x, s) \right)
\]

where

\[
\bar{F}^*(\cdot, s) := \sup_{g < \gamma} \left(\frac{1}{2} s^2 g - \bar{F}(\cdot, g) \right),
\]

so that

\[
\bar{F}(\cdot, g) := \sup_{s \in \mathbb{R}} \left(\frac{1}{2} s^2 g - \bar{F}^*(\cdot, s) \right).
\]
Markovian setting - Convex case (continued)

If \(v \) solves

\[
0 = -\partial_t v(\cdot, x) - \bar{F}(x, \nabla_{xx} v(\cdot, x))
\]

\[
= \inf_{s \in \mathbb{R}} \left(-\partial_t v(\cdot, x) - \frac{1}{2} s^2 \nabla_{xx} v(\cdot, x) + \bar{F}^*(x, s) \right)
\]
Markovian setting - Convex case (continued)

If \(v \) solves

\[
0 = - \partial_t v(\cdot, x) - \bar{F}(x, \nabla_{xx} v(\cdot, x))
\]

\[
= \inf_{s \in \mathbb{R}} \left(-\partial_t v(\cdot, x) - \frac{1}{2} s^2 \nabla_{xx} v(\cdot, x) + \bar{F}^*(x, s) \right)
\]

then

\[
v(0, x) = \bar{v}(0, x) := \sup_{s \in A_2} \mathbb{E} \left[\Xi(\bar{X}^s_T) - \int_0^T \bar{F}^*_t(\bar{X}^s_t, s_t) dt \right]
\]

with

\[
\bar{X}^s := x + \int_0^t s_t dW_t.
\]

\(\Rightarrow \) Dual formulation!
Example

In the linear impact model

\[\bar{F}^*(x, s) = \frac{1}{2} \gamma(x)|s - \sigma^\circ|^2, \quad \text{with} \quad \gamma = 1/f. \]
Example

In the linear impact model

\[\bar{F}^*(x, s) = \frac{1}{2} \gamma(x) |s - \sigma^o|^2, \quad \text{with } \gamma = 1/f. \]

then

\[v(0, x) = \bar{v}(0, x) := \sup_{s \in A} \mathbb{E} \left[\Xi(\bar{X}^s_T) - \int_0^T \frac{1}{2} \gamma(\bar{X}^s_t) |s_t - \sigma^o_t(\bar{X}^s_t)|^2 dt \right] \]

with

\[\bar{X}^s := x + \int_0^s s_t dW_t. \]
How can one retrieve this in a general Path Dependent case?

(in the following, one can replace W by a martingale M and dt by $d\langle M \rangle$, under the martingale representation property)
How can one retrieve this in a general Path Dependent case?
(in the following, one can replace \(W \) by a martingale \(M \) and \(dt \) by \(d\langle M\rangle \), under the martingale representation property)

Recall that

\[
V = V_0 + \int_0^\cdot Y_t dX_t + \int_0^\cdot F_t(X, g_t) dt.
\]
How can one retrieve this in a general Path Dependent case?

(in the following, one can replace \(W \) by a martingale \(M \) and \(dt \) by \(d\langle M\rangle \), under the martingale representation property)

Recall that

\[
V = V_0 + \int_0^\cdot Y_t \,dX_t + \int_0^\cdot F_t(X, g_t) \,dt.
\]

Hedging means:

\[
V_0 + \int_0^\cdot Y_t \,dX_t = \Xi(X) - \int_0^\cdot F_t(X, g_t) \,dt.
\]
Assuming hedging holds...

Assume we have a hedging strategy \((\hat{g}, \hat{B})\), then

\[
V_0 = \mathbb{E}^{Q, \hat{g}, \hat{B}} \left[\Xi(\hat{X}, \hat{B}) - \int_0^T F_t(\hat{X}, \hat{B}, \hat{g}_t) dt \right]
\]
Assuming hedging holds...

Assume we have a hedging strategy \((\hat{g}, \hat{B})\), then

\[
V_0 = \mathbb{E}^{Q, \hat{g}, \hat{B}} \left[\Xi(\hat{X}, \hat{B}) - \int_0^T F_t(\hat{X}, \hat{B}, \hat{g}_t) \, dt \right]
\]

\[
\leq \sup_{(g, B)} \mathbb{E}^{Q, g, B} \left[\Xi(X, B) - \int_0^T F_t(X, B, g_t) \, dt \right].
\]
Assuming hedging holds...

Assume we have a hedging strategy \((\hat{g}, \hat{B})\), then

\[
V_0 = \mathbb{E}^{Q, \hat{g}, \hat{B}} \left[\Xi(\hat{X}, \hat{B}) - \int_0^T F_t(\hat{X}, \hat{B}, \hat{g}_t) dt \right]
\]

\[
\leq \sup_{(g, B)} \mathbb{E}^{Q^g, \mathfrak{B}} \left[\Xi(X^g, \mathfrak{B}) - \int_0^T F_t(X^g, \mathfrak{B}, g_t) dt \right].
\]

We need to retrieve

\[
\sup_{\bar{s}} \mathbb{E} \left[\Xi(\bar{X}_T^\bar{s}) - \int_0^T \bar{F}_t^*(\bar{X}_t^\bar{s}, s_t) dt \right]
\]

with \(\bar{X}_t^\bar{s} := x + \int_0^t s_t dW_t\) while \(X^g, \mathfrak{B} = x + \int_0^T \sigma_t(X_t, g_t) dW^g_t\).
Assuming hedging holds...

Assume we have a hedging strategy \((\hat{g}, \hat{B})\), then

\[
V_0 = \mathbb{E}^Q_{\hat{g}, \hat{B}} \left[\Xi(X_{\hat{g}, \hat{B}}) - \int_0^T F_t(X_{\hat{g}, \hat{B}}, \hat{g}_t) \, dt \right]
\]

\[
\leq \sup_{(g, B)} \mathbb{E}^Q_{g, B} \left[\Xi(X_{g, B}) - \int_0^T F_t(X_{g, B}, g_t) \, dt \right].
\]

We need to retrieve

\[
\sup_s \mathbb{E} \left[\Xi(\bar{X}_T^s) - \int_0^T \bar{F}^*_t(\bar{X}_T^s, s_t) \, dt \right]
\]

with \(\bar{X}^s := x + \int_0^\cdot s_t \, dW_t\) while \(X_{g, B} = x + \int_0^\cdot \sigma_t(X_t, g_t) \, dW_t^{g, B}\)

Ok, if \((\sigma^{-1} = \text{inverse w.t. second coordinate})\)

\[
\bar{F}^*(\cdot, s) = F(\cdot, \sigma^{-1}(\cdot, s)) \quad \text{i.e.} \quad \frac{1}{2} (\partial_g \sigma^2) g = \partial_g \bar{F}.
\]
Assuming hedging holds...

Assume we have a hedging strategy \((\hat{g}, \hat{B})\), then

\[
V_0 = \mathbb{E}^{Q_{\hat{g}}, \hat{B}} \left[\Xi(\hat{X}, \hat{B}) - \int_0^T F_t(\hat{X}^g, \hat{B}^g, \hat{g}_t) dt \right]
\]

\[
\leq \sup_{(g, B)} \mathbb{E}^{Q_g, B} \left[\Xi(X^g, B) - \int_0^T \left(F_t(X^g, B, g_t) - F_t(X^g, B, \sigma^{-1}_t(X, s_t)) \right) dt \right].
\]

We need to retrieve

\[
\sup_{s} \mathbb{E} \left[\Xi(\bar{X}^s_T) - \int_0^T \bar{F}_t^*(\bar{X}^s_t, s_t) dt \right]
\]

with \(\bar{X}^s := x + \int_0^t s_t dW_t\) while \(X^{g, B} = x + \int_0^t \sigma_t(X, g_t) dW^{g, B}_t\)

Ok, if \((\sigma^{-1} = \text{inverse w.r.t. second coordinate})\)

\[
\bar{F}^*(\cdot, s) = F(\cdot, \sigma^{-1}(\cdot, s)) \quad \text{i.e.} \quad \frac{1}{2} (\partial_g \sigma^2) g = \partial_g \bar{F}.
\]
Assuming hedging holds...

Note that super-hedging does not permit to say anything... :

\[V_0 \geq \mathbb{E}^\mathbb{Q}_{\hat{\theta}, \hat{\mathbb{B}}} \left[\Xi(\hat{X}, \hat{\mathbb{B}}) - \int_0^T F_t(\hat{X}, \hat{\mathbb{B}}, \hat{\theta}_t)dt \right] \]
Assuming hedging holds...

Note that super-hedging does not permit to say anything... :

\[V_0 \geq \mathbb{E}^{Q, \hat{\mathcal{B}}} \left[\Xi(\hat{\mathbf{X}}, \hat{\mathbf{B}}) - \int_0^T F_t(\hat{\mathbf{X}}, \hat{\mathbf{B}}, \hat{g}_t) dt \right] \]

\[\not\geq \sup_{(g, \mathcal{B})} \mathbb{E}^{Q^g, \mathcal{B}_t} \left[\Xi(\mathbf{X}^g, \mathcal{B}) - \int_0^T F_t(\mathbf{X}^g, \mathcal{B}, g_t) dt \right]. \]
Dupire derivative of the gain function and calculus of variation

Assumption: \(\bar{v}(t, x) \) admits a solution \(\hat{s}[t, x] \) (need weak...) + smoothness assumptions.
Dupire derivative of the gain function and calculus of variation

Assumption: $\bar{v}(t, x)$ admits a solution $\hat{s}[t, x]$ (need weak...) + smoothness assumptions.

Result #1: The gain function

$$J(t, x; s) := \mathbb{E} \left[\Xi(\bar{X}^{t, x, s}) - \int_t^T \bar{F}_r^{*}(\bar{X}^{t, x, s}, s_r)dr \right],$$

$$\bar{X}^{t, x, s} := x \wedge t + \int_t^* s_r dW_r,$$

admits a Dupire vertical derivative

$$\nabla_x J(t, x; s) := \mathbb{E} \left[\mathcal{B}^{x, s} - \mathcal{B}^{x, s}_T \right]$$

where $\mathcal{B}^{x, s}$ is an adapted BV process.
Example

Recall

\[\bar{X}^{t,x,s} := x \wedge t + \int_t^\cdot s_r dW_r. \]
Recall

\[\bar{X}^{t,x,s} := x \wedge t + \int_t^s s_r dW_r. \]

If

\[J(t, x; s) := \mathbb{E} \left[\Xi(\bar{X}^{t,x,s}) - \int_t^T \bar{F}_r(s_r) dr \right], \]
Example

Recall

\[\bar{X}^{t, x, s} := x \wedge t + \int_t \cdot s_r \, dW_r. \]

If

\[J(t, x; s) := \mathbb{E} \left[\Xi(\bar{X}^{t, x, s}) - \int_t^T \tilde{F}_r^*(s_r) \, dr \right], \]

then

\[\nabla_x J(t, x; s) := \mathbb{E} \left[\int_t^T \lambda^\circ_{\Xi}(dr; \bar{X}^{t, x, s}) \right], \]

where \(\lambda^\circ_{\Xi}(\cdot; \bar{X}^{t, x, s}) \) is the dual predictable projection of the Fréchet derivative of \(\Xi \) at \(\bar{X}^{t, x, s} \).
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[\partial_s \bar{F}^*(\bar{X}^{t,x,\hat{s}[t,x]}, \hat{s}[t, x]) = \beta[t, x] \]

where \((m[t, x], \beta[t, x])\) is the element of \(\in \mathbb{R} \times A_2\) such that

\[m[t, x] + \int_t^T \beta[t, x]_u dW_u = \mathcal{B}^{x,\hat{s}[t,x]}_T - \mathcal{B}^{x,\hat{s}[t,x]}_t. \]
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[\partial_s \bar{F}^*(\bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]) = \beta[t, x] \]

where \((m[t, x], \beta[t, x])\) is the element of \(\mathbb{R} \times \mathcal{A}_2\) such that

\[m[t, x] + \int_t^T \beta[t, x] u dW_u = \mathcal{B}_T^{x, \hat{s}[t,x]} - \mathcal{B}_t^{x, \hat{s}[t,x]} . \]

Recall that

\[\nabla_x J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\mathcal{B}_T^{x, \hat{s}[t,x]} - \mathcal{B}_t^{x, \hat{s}[t,x]} \right] . \]
Dupire derivative of the gain function and calculus of variation (continued)

Example for

\[J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\Xi(\tilde{X}^{t, x, \hat{s}[t, x]} - \int_t^T \tilde{F}_r^*(\hat{s}[t, x]_r)dr \right], \]

the first order condition implies (for all \(\delta \) adapted bounded):

\[0 = \mathbb{E} \left[\int_t^T (\int_t^r \delta_s dW_s) \lambda_\Xi^\circ(dr; \tilde{X}^{t, x, \hat{s}[t, x]} - \int_t^T \delta_r \partial_s \tilde{F}_r^*(\hat{s}[t, x]_r)dr \right] = \mathbb{E} \left[\int_t^T \lambda_\Xi^\circ(dr; \tilde{X}^{t, x, \hat{s}[t, x]} \int_t^T \delta_r dW_r - \int_t^T \partial_s \tilde{F}_r^*(\hat{s}[t, x]_r)dr \right] \]
Dupire derivative of the gain function and calculus of variation (continued)

Example for

$$J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\Xi(\bar{X}^{t,x,\hat{s}[t,x]} - \int_t^T \bar{F}_r^*(\hat{s}[t,x]_r) dr \right],$$

the first order condition implies (for all δ adapted bounded):

$$0 = \mathbb{E} \left[\int_t^T (\int_t^r \delta_s dW_s) \lambda^\circ_{\Xi}(dr; \bar{X}^{t,x,\hat{s}[t,x]} - \int_t^T \delta_r \partial_s \bar{F}_r^*(\hat{s}[t,x]_r) dr \right]$$

$$= \mathbb{E} \left[\int_t^T \lambda^\circ_{\Xi}(dr; \bar{X}^{t,x,\hat{s}[t,x]} - \int_t^T \delta_r \partial_s \bar{F}_r^*(\hat{s}[t,x]_r) dr \right]$$

Set $\int_t^T \lambda^\circ_{\Xi}(dr; \bar{X}^{t,x,\hat{s}[t,x]}) = m + \int_t^T \beta_r dW_r,$
Dupire derivative of the gain function and calculus of variation (continued)

Example for

\[J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\Xi(\bar{X}^{t,x,\hat{s}[t,x]}_t) - \int_t^T \bar{F}_r^*(\hat{s}[t, x]_r) dr \right] , \]

the first order condition implies (for all \(\delta \) adapted bounded) :

\[0 = \mathbb{E} \left[\int_t^T \left(\int_t^r \delta_s dW_s \right) \lambda^0_\Xi (dr; \bar{X}^{t,x,\hat{s}[t,x]}_t) - \int_t^T \delta_r \partial_s \bar{F}_r^*(\hat{s}[t, x]_r) dr \right] \]

\[= \mathbb{E} \left[\int_t^T \lambda^0_\Xi (dr; \bar{X}^{t,x,\hat{s}[t,x]}_t) \int_t^T \delta_r dW_r - \int_t^T \delta_r \partial_s \bar{F}_r^*(\hat{s}[t, x]_r) dr \right] \]

Set \(\int_t^T \lambda^0_\Xi (dr; \bar{X}^{t,x,\hat{s}[t,x]}_t) = m + \int_t^T \beta_r dW_r \), then

\[0 = \mathbb{E} \left[\int_t^T \delta_s \beta_r dr - \int_t^T \delta_r \partial_s \bar{F}_r^*(\hat{s}[t, x]_r) dr \right] = \mathbb{E} \left[\int_t^T \delta_s (\beta_r - \partial_s \bar{F}_r^*(\hat{s}[t, x]_r)) dr \right] . \]
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[
\frac{\partial}{\partial s} \tilde{F}^\ast(\tilde{X}^{t,x},\hat{s}[t,x],\hat{s}[t,x]) = \beta[t,x]
\]

where \((m[t,x],\beta[t,x])\) is the element of \(\mathbb{R} \times \mathcal{A}_2\) such that

\[
m[t,x] + \int_t^T \beta[t,x]_u d\mathcal{W}_u = \mathcal{B}_T^{x,\hat{s}[t,x]} - \mathcal{B}_t^{x,\hat{s}[t,x]}.
\]
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[\partial_s \bar{F}^* (\bar{X}^t, x, \hat{s}[t,x], \hat{s}[t,x]) = \beta[t,x] \]

where \((m[t,x], \beta[t,x])\) is the element of \(\mathbb{R} \times A_2\) such that

\[m[t,x] + \int_t^T \beta[t,x] u dW_u = \mathcal{B}_T^{x, \hat{s}[t,x]} - \mathcal{B}_t^{x, \hat{s}[t,x]} \]

Since, \(\nabla_x J(\cdot, \bar{X}^t, x, \hat{s}[t,x], \hat{s}[t,x]) := \mathbb{E} \left[\mathcal{B}_T^{x, \hat{s}[t,x]} - \mathcal{B}_t^{x, \hat{s}[t,x]} | \mathcal{F} \right] \),
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[\partial_s \bar{F}^* (\bar{X}^{t,x,\hat{s}[t,x]}, \hat{s}[t, x]) = \beta[t, x] \]

where \((m[t, x], \beta[t, x])\) is the element of \(\mathbb{R} \times \mathcal{A}_2\) such that

\[m[t, x] + \int_t^T \beta[t, x] u d\mathcal{W}_u = \mathcal{B}^{x,\hat{s}[t,x]}_{T} - \mathcal{B}^{x,\hat{s}[t,x]}_{t} \]

Since, \(\nabla_x J(\cdot, \bar{X}^{t,x,\hat{s}[t,x]}; \hat{s}[t, x]) := \mathbb{E} \left[\mathcal{B}^{x,\hat{s}[t,x]}_{T} - \mathcal{B}^{x,\hat{s}[t,x]}_{t} \mid \mathcal{F} \right] \),

\[\hat{Y}[t, x] := m[t, x] + \int_t^T \beta[t, x] u d\mathcal{W}_u - (\mathcal{B}^{x,\hat{s}[t,x]}_{T} - \mathcal{B}^{x,\hat{s}[t,x]}_{t}) \]

satisfies

\[\hat{Y}[t, x] = \nabla_x J(\cdot, \bar{X}^{t,x,\hat{s}[t,x]}; \hat{s}[t, x]) \]
Result #2: By a simple calculus of variations argument,

\[
\partial_s \bar{F}^*(\bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]) = \beta[t,x]
\]

where \((m[t,x], \beta[t,x])\) is the element of \(\mathbb{R} \times \mathcal{A}_2\) such that

\[
m[t,x] + \int_t^T \beta[t,x]_u d\mathcal{W}_u = \mathcal{B}_T^{x,\hat{s}[t,x]} - \mathcal{B}_t^{x,\hat{s}[t,x]}.
\]

Since, \(\nabla_x J(\cdot, \bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]) := \mathbb{E} \left[\mathcal{B}_T^{x,\hat{s}[t,x]} - \mathcal{B}_t^{x,\hat{s}[t,x]} \mid \mathcal{F} \right],\)

\[
\hat{Y}[t,x] := m[t,x] + \int_t^T \beta[t,x]_u d\mathcal{W}_u - (\mathcal{B}_t^{x,\hat{s}[t,x]} - \mathcal{B}_t^{x,\hat{s}[t,x]})
\]

satisfies

\[
\hat{Y}[t,x] = \nabla_x J(\cdot, \bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]).
\]
Dupire derivative of the gain function and calculus of variation (continued)

Result #2: By a simple calculus of variations argument,

\[\partial_s \bar{F}^*(\bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]) = \beta[t,x] \]

where \((m[t,x], \beta[t,x])\) is the element of \(\mathbb{R} \times A_2\) such that

\[m[t,x] + \int_t^T \beta[t,x]_u \, dW_u = \mathcal{B}^{x,\hat{s}[t,x]}_T - \mathcal{B}^{x,\hat{s}[t,x]}_t. \]

Since, \(\nabla_x J(\cdot, \bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]) := \mathbb{E} \left[\mathcal{B}^{x,\hat{s}[t,x]}_T - \mathcal{B}^{x,\hat{s}[t,x]}_t | \mathcal{F} \right],\)

\[\hat{Y}[t,x] := m[t,x] + \int_t^T \partial_s \bar{F}^*_u(\bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]_u) \, dW_u - (\mathcal{B}^{x,\hat{s}[t,x]}_T - \mathcal{B}^{x,\hat{s}[t,x]}_t) \]

satisfies

\[\hat{Y}[t,x] = \nabla_x J(\cdot, \bar{X}^{t,x}, \hat{s}[t,x], \hat{s}[t,x]). \]
Regularity of the value function

Assumption: \bar{F} is bounded from below (by a map with linear growth in x).
Regularity of the value function

Assumption: \(\bar{F} \) is bounded from below (by a map with linear growth in \(x \)).

Result #3: Set

\[
\Gamma(t, x) = \int_0^{x_t} \int_0^{y_1} \gamma_t(x_{\land t} + 1_{\{t\}}(y^2 - x_t)) dy^2 dy^1,
\]

then \(y \mapsto (\bar{v} - \Gamma)(t, x + 1_{\{t\}}y) \) is concave (\(\bar{v} - \Gamma \) is Dupire concave).

Recall that:

\[
J(t, x; s) := \mathbb{E} \left[\Xi(\bar{X}^{t, x, s}) - \int_t^T \bar{F}^*_r(\bar{X}^{t, x, s}, s_r) dr \right] ,
\]

\[
\bar{X}^{t, x, s} := x_{\land t} + \int_t^r s_r dW_r ,
\]
Regularity of the value function

Assumption: \bar{F} is bounded from below (by a map with linear growth in x).

Result #3: Set

$$\Gamma(t, x) = \int_0^{x_t} \int_0^{y_1} \gamma_t(x \wedge t + 1_{\{t\}}(y^2 - x_t)) dy^2 dy^1,$$
then $y \mapsto (\bar{v} - \Gamma)(t, x + 1_{\{t\}}y)$ is concave ($\bar{v} - \Gamma$ is Dupire concave).

Result #4: \bar{v} admits a continuous vertical Dupire derivative given by

$$\nabla_x \bar{v}(t, x) = \nabla_x J(t, x; \hat{s}[t, x]) = \mathbb{E} \left[\hat{\mathcal{B}}[t, x]_T - \hat{\mathcal{B}}[t, x]_t \right], \quad \hat{\mathcal{B}}[t, x] := \mathcal{B}^{x, \hat{s}[t, x]}$$
Regularity of the value function

Assumption: \bar{F} is bounded from below (by a map with linear growth in x).

Result #3: Set

$$\Gamma(t, x) = \int_0^{x_t} \int_0^{y_1} \gamma_t(x \wedge t + 1_{\{t\}}(y^2 - x_t)) dy^2 dy^1,$$

then $y \mapsto (\bar{v} - \Gamma)(t, x + 1_{\{t\}}y)$ is concave ($\bar{v} - \Gamma$ is Dupire concave).

Result #4: \bar{v} admits a continuous vertical Dupire derivative given by

$$\nabla_x \bar{v}(t, x) = \nabla_x J(t, x; \hat{s}[t, x]) = \mathbb{E} \left[\hat{B}[t, x]_T - \hat{B}[t, x]_t \right], \quad \hat{B}[t, x] := \mathcal{B}^{x, \hat{s}[t, x]}$$

because (t, x) maximizes $(t', x') \mapsto \bar{v}(t', x') - J(t', x'; \hat{s}[t, x])$
Regularity of the value function

Assumption: \bar{F} is bounded from below (by a map with linear growth in x).

Result #3: Set

$$\Gamma(t, x) = \int_0^{\gamma_t(x \wedge t + 1_{\{t\}})} \int_0^{y^1} \gamma_t(x \wedge t + 1_{\{t\}}) (y^2 - x_t)) dy^2 dy^1,$$

then $y \mapsto (\bar{v} - \Gamma)(t, x + 1_{\{t\}} y)$ is concave ($\bar{v} - \Gamma$ is Dupire concave).

Result #4: \bar{v} admits a continuous vertical Dupire derivative given by

$$\nabla_x \bar{v}(t, x) = \nabla_x J(t, x; \hat{\mathcal{S}}[t, x]) = \mathbb{E} \left[\mathcal{B}[t, x]_T - \hat{\mathcal{B}}[t, x]_t \right], \quad \hat{\mathcal{B}}[t, x] := \mathcal{B}^{x, \hat{\mathcal{S}}[t, x]}$$

and (Meyer-Tanaka + martingale property - just need $C^{0,1}_r$)

$$\bar{v}(t', X^{t,x,\hat{\mathcal{S}}[t,x]}) = \bar{v}(t, x) + \int_t^{t'} \nabla_x \bar{v}(r, X^{t,x,\hat{\mathcal{S}}[t,x]}) dX^{t,x,\hat{\mathcal{S}}[t,x]} + \int_t^{t'} \bar{F}^*(r, X^{t,x,\hat{\mathcal{S}}[t,x]}, \mathcal{S}[t, x]_r) dr.$$
More generally

Let Z be a $(\mathcal{F}, \mathbb{P})$-continuous adapted process such that $\mathbb{E}^\mathbb{P}[\|Z\|^2] < \infty$. Let ϕ be a non-anticipative map in $C_r^{0,1}$. Assume that there exists $R \in C_r^{1,2}$ and a continuous function $\ell : [0, T] \rightarrow \mathbb{R}$ such that:

1. $\phi - R$ is Dupire-concave (i.e. $y \mapsto (\phi - R)(t, x + 1_{\{t\}}y)$ is concave for all t),
2. $\phi - \ell$ is non-increasing in time.

Moreover, if Z and $\phi \cdot (Z)$ are $(\mathcal{F}, \mathbb{P})$-martingales, for some predictable bounded variation process B, then $\phi \cdot (Z) = \phi_0(Z_0) + \int_0^\cdot \nabla x \phi_t(Z_t) dZ_t + B$, on $[0, T]$. Compare with Cont and Fournier (2013), Saporito (2017) for the Functional Itô-Meyer-Tanaka, Russo and Vallois (1996), and Gozzi and Russo (2006) for C^1 functionals of semimartingales.
More generally

Let Z be a $(\mathcal{F}, \mathbb{P})$-continuous adapted process such that $\mathbb{E}^\mathbb{P}[\|Z\|^2] < \infty$. Let ϕ be a non-anticipative map in $C^{0,1}_r$. Assume that there exists $R \in C^{1,2}_r$ and a continuous function $\ell : [0, T] \to \mathbb{R}$ such that:

1. $\phi - R$ is Dupire-concave (i.e. $y \mapsto (\phi - R)(t, x + 1_{\{t\}}y)$ is concave for all t),

2. $\phi - \ell$ is non-increasing in time.

Then, there exists a non-increasing predictable process A starting at 0 such that

$$\phi \cdot (Z) - \int_0^\cdot \frac{1}{2} \nabla^2_x R_r(Z) d\langle Z \rangle_r = \phi_0(Z) + \int_0^\cdot \nabla_x \phi_r(Z) dZ_r + A + \ell(\cdot) - \ell(0).$$
More generally

Let Z be a (\mathbb{F}, \mathbb{P})-continuous adapted process such that $\mathbb{E}^{\mathbb{P}}[\|Z\|^2] < \infty$.

Let ϕ be a non-anticipative map in $C^{0,1}_{r}$. Assume that there exists $R \in C^{1,2}_{r}$ and a continuous function $\ell : [0, T] \to \mathbb{R}$ such that:

1. $\phi - R$ is Dupire-concave (i.e. $y \mapsto (\phi - R)(t, x + 1_{\{t\}}y)$ is concave for all t),
2. $\phi - \ell$ is non-increasing in time.

Then, there exists a non-increasing predictable process A starting at 0 such that

$$
\phi(Z) - \int_0^T \frac{1}{2} \nabla^2_x R_r(Z) d\langle Z \rangle_r = \phi_0(Z) + \int_0^T \nabla_x \phi_r(Z) dZ_r + A + \ell(\cdot) - \ell(0).
$$

Moreover, if Z and $\phi(Z) - B$ are (\mathbb{P}, \mathbb{F})-martingales, for some predictable bounded variation process B, then

$$
\phi(Z) = \phi_0(Z_0) + \int_0^T \nabla_x \phi_t(Z) dZ_t + B, \text{ on } [0, T].
$$
More generally

Let \(Z \) be a \((\mathbb{F}, \mathbb{P})\)-continuous adapted process such that \(\mathbb{E}^\mathbb{P}[\|Z\|^2] < \infty \). Let \(\phi \) be a non-anticipative map in \(C_r^{0,1} \). Assume that there exists \(R \in C_r^{1,2} \) and a continuous function \(\ell : [0, T] \to \mathbb{R} \) such that:

1. \(\phi - R \) is Dupire-concave (i.e. \(y \mapsto (\phi - R)(t, x + 1_{\{t\}}y) \) is concave for all \(t \)),
2. \(\phi - \ell \) is non-increasing in time.

Then, there exists a non-increasing predictable process \(A \) starting at 0 such that

\[
\phi(Z) - \int_0^\cdot \frac{1}{2} \nabla_x^2 R_r(Z)d\langle Z \rangle_r = \phi_0(Z) + \int_0^\cdot \nabla_x \phi_t(Z)dZ_r + A + \ell(\cdot) - \ell(0).
\]

Moreover, if \(Z \) and \(\phi.(Z) - B \) are \((\mathbb{P}, \mathbb{F})\)-martingales, for some predictable bounded variation process \(B \), then

\[
\phi.(Z) = \phi_0(Z_0) + \int_0^\cdot \nabla_x \phi_t(Z)dZ_t + B, \text{ on } [0, T].
\]

Regularity of the value function

Result #4: \(\tilde{v} \) admits a continuous vertical Dupire derivative given by

\[
\nabla_x \tilde{v}(t, x) = \nabla_x J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\hat{\mathcal{B}}[t, x]_T - \hat{\mathcal{B}}[t, x]_t \right], \quad \hat{\mathcal{B}}[t, x] := \mathcal{B}^{x, \hat{s}[t, x]}
\]

and (Meyer-Tanaka + martingale property - just need \(C^{0, 1} \))

\[
\tilde{v}(t', \bar{X}^{t, x, \hat{s}[t, x]}) = \tilde{v}(t, x) + \int_t^{t'} \nabla_x \tilde{v}(r, \bar{X}^{t, x, \hat{s}[t, x]}) d\bar{X}^{t, x, \hat{s}[t, x]}_r + \int_t^{t'} \bar{F}^*(r, \bar{X}^{t, x, \hat{s}[t, x]}, \hat{s}[t, x]_r) dr.
\]
Regularity of the value function

Result #4: \bar{v} admits a continuous vertical Dupire derivative given by

$$
\nabla_x \bar{v}(t, x) = \nabla_x J(t, x; \hat{s}[t, x]) := \mathbb{E} \left[\hat{\mathcal{B}}[t, x]_T - \hat{\mathcal{B}}[t, x]_t \right], \quad \hat{\mathcal{B}}[t, x] := \mathcal{B}^{x, \hat{s}[t, x]}
$$

and (Meyer-Tanaka + martingale property - just need $C^{0,1}$)

$$
\bar{v}(t', \bar{X}^{t, x, \hat{s}[t, x]}) = \bar{v}(t, x) + \int_t^{t'} \hat{Y}[t, x]_r d\bar{X}^{t, x, \hat{s}[t, x]}_r + \int_t^{t'} \hat{F}^* (r, \bar{X}^{t, x, \hat{s}[t, x]}, \hat{s}[t, x]_r, \hat{s}[t, x]_r) dr.
$$
Construction of the hedging strategy

Assumption: \(\frac{1}{2} (\partial_s \sigma^2) g = \partial_s \bar{F} \) (satisfied in the linear impact model).
Construction of the hedging strategy

Assumption : \(\frac{1}{2}(\partial_g \sigma^2)g = \partial_g \bar{F} \) (satisfied in the linear impact model).

Recall that \(\bar{v}(T, \cdot) = \Xi \) and that

\[
\bar{v}(T, \bar{X}^x, \hat{s}[t,x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r d\bar{X}_r^x, \hat{s}[x] + \int_0^T \bar{F}_r^*(\bar{X}_r^x, \hat{s}[x], \hat{s}[x]_r) dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^T \partial_s \bar{F}_t^*(\bar{X}_t^x, \hat{s}[x], \hat{s}[x]_t) dW_t - (\hat{B}[x] - \hat{B}[x]_0).
\]
Construction of the hedging strategy

Assumption: \(\frac{1}{2}(\partial_g \sigma^2)g = \partial_g \bar{F} \) (satisfied in the linear impact model).

Recall that \(\bar{v}(T, \cdot) = \Xi \) and that

\[
\bar{v}(T, \bar{X}^x, \hat{s}[t,x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r d\bar{X}^x_r, \hat{s}[x] + \int_0^T \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]_r) dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^T \partial_s \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]_t) dW_t - (\hat{B}[x] - \hat{B}[x]_0).
\]

Under the above assumption, for \(\hat{g}[x]\hat{s}[x] := \partial_s \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]_t) \),

\[
\bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]) = F(\bar{X}^x, \hat{s}[x], \hat{g}[x]), \quad \hat{s}[x] = \sigma(\cdot, \hat{g}[x])
\]
Construction of the hedging strategy

Assumption: \(\frac{1}{2} (\partial g \sigma^2) g = \partial g \bar{F}\) (satisfied in the linear impact model).

Recall that \(\bar{v} (T, \cdot) = \Xi\) and that

\[
\bar{v}(T, \tilde{X}^x, \hat{s}[t, x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r d\tilde{X}^x_r, \hat{s}[x] + \int_0^T \bar{F}^*(\tilde{X}^x, \hat{s}[x], \hat{s}[x]_r) dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^T \partial_s \bar{F}^*(\tilde{X}^x, \hat{s}[x], \hat{s}[x]_t) dW_t - (\hat{B}[x] - \hat{B}[x]_0).
\]

Under the above assumption, for \(\hat{g}[x] \hat{s}[x] := \partial_s \bar{F}^*(\tilde{X}^x, \hat{s}[x], \hat{s}[x]_t)\),

\[
\bar{F}^*(\tilde{X}^x, \hat{s}[x], \hat{s}[x]) = F(\tilde{X}^x, \hat{s}[x], \hat{g}[x]), \hat{s}[x] = \sigma(\cdot, \hat{g}[x])
\]
Construction of the hedging strategy

Assumption: \(\frac{1}{2}(\partial_g \sigma^2)g = \partial_g \bar{F} \) (satisfied in the linear impact model).

Recall that \(\bar{v}(T, \cdot) = \Xi \) and that

\[
\bar{v}(T, \bar{X}^x, \hat{s}[t,x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r d\bar{X}^x_r,\hat{s}[x] + \int_0^T \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]_r)dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^T \hat{g}[x]_t\hat{s}[x]_t dW_t - (\hat{\mathcal{B}}[x] - \hat{\mathcal{B}}[x]_0).
\]

Under the above assumption, for \(\hat{g}[x]\hat{s}[x] := \partial_s \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]). \)

\[
\bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{s}[x]) = F(\bar{X}^x, \hat{s}[x], \hat{g}[x]), \hat{s}[x] = \sigma(\cdot, \hat{g}[x])
\]
Construction of the hedging strategy

Assumption: $\frac{1}{2}(\partial g \sigma^2)g = \partial g \bar{F}$ (satisfied in the linear impact model).

Recall that $\bar{v}(T, \cdot) = \Xi$ and that

$$\bar{v}(T, \bar{X}^x, \hat{s}[t, x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r d\bar{X}_r^x, \hat{s}[x] + \int_0^T \bar{F}^* (\bar{X}^x, \hat{s}[x], \hat{s}[x]_r) dr,$$

$$\hat{Y}[x] := m[x] + \int_0^T \hat{g}[x]_t \hat{s}[x]_t dW_t - (\hat{\mathcal{B}}[x] - \hat{\mathcal{B}}[x]_0).$$

Under the above assumption, for $\hat{g}[x] \hat{s}[x] := \partial_s \bar{F}^* (\bar{X}^x, \hat{s}[x], \hat{s}[x])$,

$$\bar{F}^* (\bar{X}^x, \hat{s}[x], \hat{s}[x]) = F (\bar{X}^x, \hat{s}[x], \hat{g}[x]), \hat{s}[x] = \sigma(\cdot, \hat{g}[x]), \bar{X}^x, \hat{s}[x] = X^x, \hat{g}[x], \hat{\mathcal{B}}[x].$$
Construction of the hedging strategy

Assumption: \[\frac{1}{2}(\partial_g \sigma^2)g = \partial_g \bar{F} \] (satisfied in the linear impact model).

Recall that \(\bar{v}(T, \cdot) = \Xi \) and that

\[
\Xi(X^x, \hat{s}[x], \hat{\mathcal{B}}[x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r dX^x_r, \hat{s}[x], \hat{\mathcal{B}}[x] + \int_0^T F_r(X^x, \hat{s}[x], \hat{\mathcal{B}}[x], \hat{g}[x]_r) dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^t \hat{g}[x]_t dX^x_t, \hat{s}[x], \hat{\mathcal{B}}[x] - (\hat{\mathcal{B}}[x] - \hat{\mathcal{B}}[x]_0).
\]

Under the above assumption, for \(\hat{g}[x]\hat{s}[x] := \partial_s \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{g}[x]). \)

\[
\bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{g}[x]) = F(\bar{X}^x, \hat{s}[x], \hat{g}[x]), \hat{s}[x] = \sigma(\cdot, \hat{g}[x]), \bar{X}^x, \hat{s}[x] = X^x, \hat{s}[x], \hat{\mathcal{B}}[x]
\]
Construction of the hedging strategy

Assumption: \(\frac{1}{2}(\partial_g \sigma^2)g = \partial_g \bar{F} \) (satisfied in the linear impact model).

Recall that \(\bar{v}(T, \cdot) = \Xi \) and that

\[
\Xi(X^x, \hat{s}[x], \hat{\mathcal{B}}[x]) = \bar{v}(0, x) + \int_0^T \hat{Y}[x]_r dX^x_r, \hat{s}[x], \hat{\mathcal{B}}[x] + \int_0^T F_r(X^x, \hat{s}[x], \hat{\mathcal{B}}[x], \hat{\mathcal{S}}[x]) dr,
\]

\[
\hat{Y}[x] := m[x] + \int_0^T \hat{g}[x]_t dX^x_t, \hat{s}[x], \hat{\mathcal{B}}[x] - (\hat{\mathcal{B}}[x] - \hat{\mathcal{B}}[x]_0).
\]

Under the above assumption, for \(\hat{g}[x] \hat{s}[x] := \partial_s \bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{\mathcal{S}}[x]) \),

\[
\bar{F}^*(\bar{X}^x, \hat{s}[x], \hat{\mathcal{S}}[x]) = F(\bar{X}^x, \hat{s}[x], \hat{\mathcal{S}}[x]), \hat{s}[x] = \sigma(\cdot, \hat{g}[x]), \bar{X}^x, \hat{s}[x] = X^x, \hat{s}[x], \hat{\mathcal{S}}[x]
\]

\(\Rightarrow \hat{s}[x] \) provides \((\hat{g}[x], -\hat{\mathcal{B}}[x])\) which is the hedging strategy starting from \(V_0 = \bar{v}(0, x) \) and \(Y_0 = \nabla_x \bar{v}(0, x) \). \(\square \)
Conclusion and open question

- **Conclusion**: In a fairly general path-dependent setting, solving the dual problem provides one solution to the hedging problem.

- **Open question**: In the Markovian setting, and under smoothness conditions, the super-hedging price is the only hedging price. How to prove this in the path-dependent case by simply using probabilistic arguments?

 Main issue: the terminal condition $\Xi(X)$ depends on the hedging strategy -> standard comparison does not hold.
Conclusion and open question

- **Conclusion**: In a fairly general path-dependent setting, solving the dual problem provides one solution to the hedging problem.

- **Open question**: In the Markovian setting, and under smoothness conditions, the super-hedging price is the only hedging price. How to prove this in the path-dependent case by simply using probabilistic arguments?

Main issue: the terminal condition $\Xi(X)$ depends on the hedging strategy -> standard comparison does not hold.
Thank you!

B. Bouchard, G. Loeper, and Y. Zou.
Almost-sure hedging with permanent price impact.

B. Bouchard, G. Loeper, and Y. Zou.
Hedging of covered options with linear market impact and gamma constraint.

Second order stochastic target problems with generalized market impact.

B. Bouchard, P. Cardaliaguet and X. Tan,
Dual formulation for perfect-hedging with generalized market impact.
Forthcoming.

G. Loeper,
Option Pricing with Market Impact and Non-Linear Black and Scholes Equations,
arXiv:1301.6252v3