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Problem formulation and motivation



Motivation

Construct market models with permanent price impact (possibly with
resilience effect) in which hedging is possible :

® Buying pushes up the price, selling pushes it down.
e We pay an illiquidity cost.
® Solve the “running after the delta” effect.

Avoid hidden transaction costs (fixed or proportional).

Not at the level of high-frequency level — mesoscopic model.
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resilience effect) in which hedging is possible :

® Buying pushes up the price, selling pushes it down.
e We pay an illiquidity cost.
® Solve the “running after the delta” effect.

Avoid hidden transaction costs (fixed or proportional).

Not at the level of high-frequency level — mesoscopic model.
We will focus on the case of covered options :

® The "premium” is paid at 0 in cash plus delta (number of stocks)
asked by the trader.
® The trader delivers at T cash and stocks (evaluated at their current
price).
= Avoids jumps at 0 and T, and therefore important impacts on the
stock price.
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® a permanent price move of X;_ — X; = X;— + (Xi-) Ay,
® an average buying cost of %(Xt_ + Xp).
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Example
Linear impact rule and covered options : buying A; stocks leads to
® a permanent price move of X;_ — X; = X;— + (Xi-) Ay,
® an average buying cost of %(Xt_ + Xp).
When no trading, the stock evolves according to

dXt = U?(Xt)th

Consider rebalancing at times ¢/ :

Xn:X0+/O'O(X:)th+Zl[t:17T]f(Xg17) ?[n,
0

i=1
n—1 . !
V' =D L, </o gedX? +/o btdt) AL =YE-YE
i=0

n 1 .
V"=V, + Z l[tin,T]E(Agn)zf(Xg,,) + / YL dX/,
i=1 0

where
V™" = cash part + Y"X" = “portfolio value”.
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Example
Linear impact rule and covered options : buying A; stocks leads to
® a permanent price move of X;_ — X; = X;— + (Xi-) Ay,
® an average buying cost of 2(X;— + X;).
When no trading, the stock evolves according to
dX; = o2(X;)dW.

= Let £, —

(X)) :
X = +/t7dW+/~~dt
o o 1—1fi(Xe)ge ‘ 0( )

0 0

1 .
V= v0+/ ngft(Xt)dH—/ YedX;.
0 0

t7 —0:

Note that trading impacts the whole dynamics through the flow of the
SDE. It will also impact the claim =(X).



Example

Linear impact rule and resilience
X = Xo + /0 2 (Xe)dW,s + R
R=Ro+ [ £06)Y + [ (@u(£o2)0X) — pRo)ds
Y:y+/.gtht+/.btdt

V= v0+/ Ytht+/ SRt



Example

Linear impact rule and resilience
X = Xo + /O 2 (Xe)dW,s + R
R=Ro+ [ £06)Y + [ (@u(£o2)0X) — pRo)ds
Y:y+/0.gtht+/0.btdt

. ‘1
V= vo+/ Ytht+/ §gff;(Xt)dt.
0 0

For covered options, resilience does not play any role... we omit it.



Abstract hedging of covered options

Given x € C([0, T]), find y € R and (g,B) € Ax x B, such that (after a
change of measure)

X:XA0+/ oe(X, g:)dW,

0

Y:}/+/ g:dX; + B
0

V:V0—|—/ Ytht—l—/ Fi(X, ge)dt, Vr =Z=(X)
0 0

(possibly weak formulation)



Abstract hedging of covered options

Given x € C([0, T]), find y € R and (g,B) € A» x By such that (after a
change of measure)

X:XA0+/ oe(X, g¢)dW,
0

Y:}/+/ g:dX; +B
0

V=V, +/ Y,dX; +/ Fi(X,a.)dt, Vr=Z(X)
0 0
(possibly weak formulation)

Interpretation :
® X : stock price,
® Y : number of stocks in the portfolio,

® V : cash value of the portfolio (at the current stock price),

® F(-,g) and o(-, g) : liquidity cost and price impact.



PDE point of view

ﬁ B. Bouchard, G. Loeper, M. Soner and C. Zhou.

s d order hastic target probl with g lized market impact.

arxiv.org/pdf/1806.08533.pdf, 2018.




Markovian setting
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Given x € R, find y € R and ¢ := (g,B) € Ay x By such that

X = X+/ Ut(Xtvgt)th
0

0

T T
V= =(Xr) - / Fu(Xe, ge)dt — / YedX., (adapted)

Assume a solution V = v(+, X) exists, then dV = dv(-, X) and
therefore :

e Y =Vv(X),
* F(X,Vuv(-. X)) = 0v(-, X) 4+ 50%(X, Vv (-, X)) Vv (-, X))

Moreover, Y = V,v(:, X.) implies dY = dV,v(-, X.) and therefore
® g= vX)<V('5)<-)v
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Markovian setting

This leads to the PDE :
1
0=—0v(:,x)— Eoz(x, ViV (4, X)) VeV (+, X) + F(x, VeV (-, %))

= — Oev(-.x) — F(x, Vv ()

with )
I:_(X7g) = Eoz(x,g)g — F(x, g).

and terminal condition

v(T,)=



Markovian setting - Linear impact case

In this case
F(x,g) =

F(x,g) =

2
1
21

o°(x)g
( ~flx ( ) r()g <1y 001 {r(x)g>1)
o° 2

f(x) 1 r0g <y +ool raz1)-



Markovian setting - Linear impact case

In this case

1 c°(x)g 2
F(x,g) = (())g> F(X)r(g<13+00L r(x)g>1}
o

X)" &
Fix8) = 5T F(0g Lrwe<n ool ire=1y-
Gamma constraint : {F(x,g) < oo} = {g < 7(x)}, where ~:=1/f in

the linear case.



Markovian setting - Linear impact case

In this case
1( o°(xg
F(x,g) = 2 (1f(x)g> () r(g<1y +00L{r(x)g>1}
- 1 o°(x)’g
Fix.g) = 57— Flx 5 L{r0s<1) Fo0L{r(0a21)-

)
Gamma constraint : {F(x,g) < oo} = {g < 7(x)}, where ~:=1/f in
the linear case.

In general, the correct equation is
0 =min{—0;v(-,x) — F(x, Viuv(,X)); ¥ — Viuv'}

and the terminal condition = is replaced by the smallest function above =
satisfying the gamma constraint.



Markovian setting - Linear impact case

Remember the typical example
1( 0°e \* 4y .
3 (T g ) T rme<nFocl gz

- 1 0°(x)’g
Fix8) = 5T F(0g Lol re>1y-

F(x,g) =



Markovian setting - Linear impact case

Remember the typical example

1/ o°(xg \’
F(x,g) = 5 (l—f(x)g> FO)rg<1y 001 r(x)g>1}
- 1 0°(x)’g
Fix8) = 5T F(0g Lol re>1y-

If Vixg < v —¢, & >0, + smooth coefficients, the gamma constraint
propagates backward and there exists a smooth solution to

0=—0v(,x)— 'E(Xv Vv (-, x))
satisfying Vv < 7.

= Perfect hedging strategy with Y = V,v + super-hedging price is a
hedging price (actually the only, see later).
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Markovian setting - Convex case

Assume that : g —+ F(x, g) is convex (as in the linear impact case).

Then,

where

so that

0 =—0:v(-,x) — F(x, Viuv(:, x.))

=inf <8tv(~,x) - }szvxxv(gx) + F*(x, b))
seR 2



Markovian setting - Convex case (continued)

If v solves
0=—0(,x)— I-=(x7 VaxV(+s x.))

. 1 _
:Slgﬂg (—8tv(-,x) - §S2VXXV(~,X.) + F*(x, 5))



Markovian setting - Convex case (continued)

If v solves
0=—0(,x)— I:_(x7 VaxV(+s x.))

. 1 _
:;2}1}; (—8tv(-,x) - §S2VXXV(~,X.) + F*(x, 5))

then

v(0,x) = ¥(0,x) := sup E
s€A,

=(X2) - / ' ﬁ:()?f,st)dt]

with _
)_<5 =X + / ﬁtth.
0

= Dual formulation!



Example

In the linear impact model

1
—y(x)|s = 6°|?, with v =1/f.

Fo(x9) =



Example

In the linear impact model

I:_*(x,s):%'y(x)\sfaoﬁ with v =1/f.

then

v(0,x) =7(0,x) := sup E

.
— VS 1 v oOf VS
=53~ [ 52K se — ot (K6 Pl

s€Az 0

with ‘
)_<5 =X+ / 51‘th‘
0
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under the martingale representation property)
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V= v0+/ YthtJr/ Fe(X, g¢)dt.
0 0



How can one retrieve this in a general Path
Dependent case?
(in the following, one can replace W by a martingale M and dt by d(M),
under the martingale representation property)

Recall that
V = V0+/ YthtJr/ F:(X, g¢)dt.
0 0

Hedging means :

VO +/ Ytht = E(X) - / Ft(X7gt)dt
0 0
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Assume we have a hedging strategy (§,B), then
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o T S
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)
=% - [ ﬁ:(>‘<f7st)dt]

with X* ::x+/ s.dW, while X% :x+/ at(tht)thg"B
0 0



Assuming hedging holds...

A

Assume we have a hedging strategy (§,B), then

. A T A
Vo =E27 E(XQ’%)—/ Fe(X® ,ﬁt)dt]
0
g, B T
< sup E®V E(Xg’%)—/ Ft(Xg’%,gt)dt .
(9,B) 0

We need to retrieve

)
=% - [ ﬁ:(>‘<f7st)dt]

suplE
S

with X* ::x+/ s.dW, while X% :x+/ at(tht)thg’%
0 0
Ok, if (c~! = inverse w.t. second coordinate)

I-=*(~,s) = F(~,U*1(-,s)) i.e. %(8g02)g = 8g/:_.



Assuming hedging holds...

A

Assume we have a hedging strategy (§,B), then

e o T .
Vo = B2 E(ng%)—/ Ft(xgv%,gt)dt]
0

-

< sup EQ"” E(XE»‘B)_/ Fe(X®%,g:) dt
0 ———

Fe(X®B o7 (X,s:))

We need to retrieve

=(X2) - /0 ' ﬁ:(Xf,st)dt]

supE
5

with )_<5 :X+/ ﬁtth while )<g7‘B :X+/ O-t(Xtugt) thg’%
0 0 ~—~—"

St

Ok, if (67! = inverse w.t. second coordinate)

F*(-,8) = F(-,o7*(-,9)) i.e. %(agoz)g = 0,F.



Assuming hedging holds...

Note that super-hedging does not permit to say anything... :

Vo > EQ"®

) T .
E(Xg’%) _/0 Ft(Xg"B,ﬁt)dt]



Assuming hedging holds...

Note that super-hedging does not permit to say anything... :

s . T .
Vo > B9 | Z(x8%) - / Ft(Xg"B,ﬁt)dt]
0
;
# sup EQ°” E(Xg’%)—/ Fo(X®® g.)dt] .
(9,B) 0




Dupire derivative of the gain function and calculus of
variation

Assumption : ¥(t,x) admits a solution &[t, x| (need weak...) +
smoothness assumptions.



Dupire derivative of the gain function and calculus of
variation

Assumption : ¥(t,x) admits a solution &[t, x| (need weak...) +
smoothness assumptions.

Result #1 : The gain function

.
J(t,x;5) = E | Z(X"°) —/ F:,*()_(t’x’s,sr)drl ,
t

)_<t7x,5 = XAt +/ 5rdW,—,
t

admits a Dupire vertical derivative
ViJ(t,x;8) = E [B}" — BF?]

where B*° is an adapted BV process.



Example

Recall

Xt’x’s = XAt +/ 5rdWr.

t

Y P

it
v

Q>



Example

Recall _
X% = x +/ s, dW,.
t

J(t,x;5) :=FE

.
S(XUo) — /t I:_,*(s,)dr] :



Example

Recall .
Xt0® = xM+/ s,dW,.
t
If
_ T
J(t7X;5) = E(Xt,x,g) 7/ F,*(sr)dr] ’
t
then

.
V. J(t,x;5) :=E l/ A2 (dr; Xt59)
t

where A2(+; X**%) is the dual predictable projection of the Fréchet
derivative of = at X©%*.



Dupire derivative of the gain function and calculus of
variation (continued)

Result #2 : By a simple calculus of variations argument,
O (Xt gt x]) = Blt, x]

where (m[t, x], 8[t,x]) is the element of € R x A; such that

4 e S
m[t,x] + / Blt, x|, dW, = S5 _ gzt
t



Dupire derivative of the gain function and calculus of
variation (continued)

Result #2 : By a simple calculus of variations argument,
O (Xt gt x]) = Blt, x]
where (m[t, x], 8[t,x]) is the element of € R x A; such that

4 e S
m[t,x] + / Blt, x|, dW, = S5 _ gzt
t

Recall that

Vo(t,x: 8]t ) = B [ 85100 - @]



Dupire derivative of the gain function and calculus of

variation (continued)
Example for

J(t,x;5[t,x]) = E

T
E()_(t,x,ﬁ[t,)(])f‘/ I:';k(ﬁ[t,x],)dr] ,
t

the first order condition implies (for all § adapted bounded) :

0=E

T r T
| ([ sawe(ar xexsted - | aasﬁ,*(s[nx]r)dr]
t t t

=E

T _ N T T _
/ A2 (dr; Xelexd) / 5,dW, — / 6,85Fr*(§[t,x],)dr]
t t t



Dupire derivative of the gain function and calculus of
variation (continued)

Example for

,
J(t,x;8[t,x]) = E |Z(Xtx580Edy / F',*(ﬁ[t,x],)dr],

the first order condition implies (for all § adapted bounded) :

T r T
0=E / ( / 5edW A (dr; X3y _ / 6,85l3,*(§[t,x],)dr]
t t t

T B R T T _
=E / A2 (dr; Xty / 5, dW, — / 6,8SF:(§[t,x]r)dr1
t t t

Set [" A2 (dr; Xtx5exd) — m 4 [T .aW,,



Dupire derivative of the gain function and calculus of

variation (continued)
Example for

,
J(t,x;8[t,x]) = E |Z(Xtx580Edy / F',*(ﬁ[t,x],)dr],

the first order condition implies (for all § adapted bounded) :

T r T
0=E / ( / 5edW A (dr; X3y _ / 6,85l3,*(§[t,x],)dr]
t t t

T B R T T _
=E / A2 (dr; Xty / 5, dW, — / 6,8SF,*(§[t,x]r)dr1
t t t

Set ftT A2 (dr; Xt3AlExd) = m ftT B,dW,, then

T T T
0 :E[/ 555,dr—/ 5,05F* (8[t,x],)dr] = IE[/ 54(B, — DF(3[t,x],))dr].



Dupire derivative of the gain function and calculus of

variation (continued)
Result #2 : By a simple calculus of variations argument,

as":_*()_(tm)g[t’)(]’%[t?}(]) = B[tv X]

where (m(t,x], B[t,x]) is the element of R x A, such that

T ~ ~
mt,x] + / Blt, x],dW, = %’;lﬁ[t’xl — Rl
t



Dupire derivative of the gain function and calculus of

variation (continued)
Result #2 : By a simple calculus of variations argument,

as":_*()_(tm)g[n)(]’%[t’x]) = B[tv X]

where (m(t,x], B[t,x]) is the element of R x A, such that
T ~ ~
mt,x] + / Blt, x],dW, = %’;lg[t’xl — Rl
t

Since, VyJ(-, X230 51 x]) = B [ B3] - %?f‘“’xlw] ,



Dupire derivative of the gain function and calculus of
variation (continued)

Result #2 : By a simple calculus of variations argument,
OsF* (X580 51t x]) = Blt, x]

where (m(t,x], B[t,x]) is the element of R x A, such that
T 2 a
m(t, x| + / Blt, x],dW, = %’;ﬂhxl _ogndle],
t
Since, Vi J(-, Ko, 8¢, ) = B [ 33900 — S| £ ],
Yt,x] == ml[t,x] +/ Blt, x],dW, — (B8] %?ﬁlt,xl)
t

satisfies . o
Yt,x] = Vi (-, X098 51 ).



Dupire derivative of the gain function and calculus of
variation (continued)

Result #2 : By a simple calculus of variations argument,
DsF* (X358t g1t «]) = Blt, x]

where (m(t,x], B[t,x]) is the element of R x A, such that
T 2 a
mlt, x| + / Blt, x],dW, = %yﬁ[hxl _ogndle],
t
Since, Vi J(-, Ko, 8¢, ) = B [ 33900 — S| £ ],
Yt,x] == ml[t,x] +/ Blt, x],dW, — (B8] %?ﬁlt,xl)
t

satisfies . o
Y[t,x] = Vi (-, X051 51 x]).



Dupire derivative of the gain function and calculus of

variation (continued)
Result #2 : By a simple calculus of variations argument,

asl:_*()_(t,x,ﬁ[tﬁx]‘ﬁ[t,/ X]) = ﬁ[ﬂ X]

where (m(t,x], B[t,x]) is the element of R x .4, such that
T ~ ~
m(t, x| + / Blt,x],dW, = %’;lﬁ[t’xl D
t
Since, (-, Xt300; ¢, ) = B [ 37900 — S| £ ],

V[t,x] := m[t,x]+ / O Fy (XE510 5t 5], ) dW, — (9% 3lE] g ¥l
t

a[t,x]u8[t, x|y

satisfies . o
Y[t,x] = Vi J(-, X030 51 x]).
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Assumption : F is bounded from below (by a map with linear growth in
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Regularity of the value function
Assumption : F is bounded from below (by a map with linear growth in

).
Result #3 : Set
Xyt 2 2,1
e = [ [ b + 11902 = x))dy ey,
o Jo

then y — (Vv —T)(t,x + 114 y) is concave (Vv — I is Dupire concave).

Recall that :

J(t,x;8) =E

.
=Xty - / ﬁ:(xnx’s,g,)dr] ,
t

X% = x,, +/ s.dW,,
t
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Regularity of the value function
Assumption : F is bounded from below (by a map with linear growth in

).

Result #3 : Set

0= [ [ wbonct g2 - xaay,
then y — (Vv —T)(t,x + 174 y) is concave (Vv — I is Dupire concave).
Result #4 : v admits a continuous vertical Dupire derivative given by
Vo(t,x) = Vi J(t,x;8[t,x]) = E [%[t, {7 — Blt, x|, Bt x] = Beiled

because (t,x) maximizes (t',x') — v(t',x") — J(t',x'; §[t,x])



Regularity of the value function
Assumption : F is bounded from below (by a map with linear growth in

).
Result #3 : Set
e 2 2 41
e = [ [ b + 11902 = x))dy ey,
o Jo
then y — (Vv —T)(t,x + 114 y) is concave (Vv — I is Dupire concave).

Result #4 : v admits a continuous vertical Dupire derivative given by
Vi¥(t,x) = Vi J(t,x;8[t,x]) = E [%[t, Xt — B[t,x]¢|, B[t,x] = B

and (Meyer-Tanaka + martingale property - just need C%1)

t/
‘—,(t/’)_(t,x,ﬁ[t,x]) :‘—](LX) +/ vx\—/(r, )‘(t,x,ﬁ[t,x])d)_(:,x,ﬁ[t,x]
t

t,
+ / F*(r, X535 8¢ x], ) dr.
t



More generally

Let Z be a (FF,P)-continuous adapted process such that EF[||Z||?] < co.
Let ¢ be a non-anticipative map in C%1. Assume that there exists
R € C}2 and a continuous function ¢ : [0, T] — R such that :
1. ¢ — R is Dupire-concave (i.e. y = (¢ — R)(t,x 4 174 y) is concave
for all t),
2. ¢ — £ is non-increasing in time.



More generally

Let Z be a (FF,P)-continuous adapted process such that EF[||Z||?] < co.
Let ¢ be a non-anticipative map in C%1. Assume that there exists
R € C}2 and a continuous function ¢ : [0, T] — R such that :

1. ¢ — R is Dupire-concave (i.e. y = (¢ — R)(t,x 4 174 y) is concave
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Let Z be a (FF,P)-continuous adapted process such that EF[||Z||?] < co.
Let ¢ be a non-anticipative map in C%1. Assume that there exists
R € C}2 and a continuous function ¢ : [0, T] — R such that :

1. ¢ — R is Dupire-concave (i.e. y = (¢ — R)(t,x 4 174 y) is concave

for all t),

2. ¢ — £ is non-increasing in time.
Then, there exists a non-increasing predictable process A starting at 0
such that

6.(2)- /0 SVARA2)(Z), = dol(2) + /0 V6(2)dZ, + A+ L() —(0).

Moreover, if Z and ¢.(Z) — B are (P, F)-martingales, for some
predictable bounded variation process B, then

6.(2) = ¢o(2o) +/O' Vite(2)dZ: + B, on [0, T].

Compare with Cont and Fournier (2013), Saporito (2017) for the
Functional |t6-Meyer-Tanaka, Russo and Vallois (1996), and Gozzi and
Russo (2006) for C! functionals of semimartingales.
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Construction of the hedging strategy

Assumption : (9,0°)g = 0, F (satisfied in the linear impact model).

Recall that ¥(T,-) = = and that
~ T T ~ ~ pS T " o
=(x86B6) — 5(0, x) +/ ¥ [x], dx <8 BE +/ FL (X< B0 g1 ) g
0 0
Y[x] = m[x] +/ IS S I Y Y Y
0
Under the above assumption, for §[x]3[x] := 8, F* (X5 3[x].),

F (R, 8[x]) = F(X4, 3[x]), 8[x] = o(-,§lx]), X = xo=dld- B0

= §[x] provides (§[x], —B[x]) which is the hedging strategy starting
from Vp = ¥(0,x) and Yy = V,¥(0,x). O
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Conclusion and open question

O Conclusion : In a fairly general path-dependent setting, solving the
dual problem provides one solution to the hedging problem.

O Open question : In the Markovian setting, and under smoothness
conditions, the super-hedging price is the only hedging price. How to
prove this in the path-dependent case by simply using probabilistic
arguments ?

Main issue : the terminal condition =(X) depends on the hedging
strategy -> standard comparison does not hold.
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