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Abstract

We prove a robust super-hedging duality result for path-dependent options on assets
with jumps, in a continuous time setting. It requires that the collection of martingale
measures is rich enough and that the payoff function satisfies some continuity property.
It is a by-product of a quasi-sure version of the optional decomposition theorem, which
can also be viewed as a functional version of Itô’s Lemma, that applies to non-smooth
functionals (of càdlàg processes) which are concave in space and nonincreasing in time, in
the sense of Dupire.

1 Introduction
A key element in the proof of the super-hedging duality is the optional decomposition theorem.
Let X be a stochastic process on some filtered probability space and consider the class of all
equivalent martingale measures under whichX is a local martingale. Let V be a supermartingale
under all these equivalent martingale measures. Then, the classical optional decomposition
theorem states that there exists a predictable process H and a non-decreasing process C such
that V = V0 +

∫ ·
0
Hr · dXr − C, almost surely. Initially introduced by El Karoui and Quenez

[10] in the case where X has continuous paths, it was then extended to the càdlàg paths case in
Kramkov [18], Föllmer and Kabanov [12], Delbaen and Schachermayer [7], Föllmer and Kramkov
[13].

The robust optional decomposition theorem has been recently studied, as a key step to prove
(and also motivated by) the robust super-hedging duality. In this context, one considers a family
P of (singular) martingale measures, under each of which the process V is a supermartingale.
Applying the classical decomposition theorem, one obtains a family (HP, CP)P∈P such that
V = V0 +

∫ ·
0
HP
r · dXr − CP, P–a.s. for all P ∈ P. Then the robust optional decomposition

theorem consists essentially in aggregating the family (HP)P∈P into a universal process H,
independent of P.

When X is a continuous martingale, one can in fact express HP as the ratio of the intensity of
the (co-)quadratic variation terms 〈V,X〉 and 〈X〉 under each reference probability measure P.
Since the (co-)quadratic variation 〈V,X〉 and 〈X〉 can be defined universally and independently
of P, one can aggregate (HP)P∈P into a universal process H. This technique has been explored
by Neufeld and Nutz [20], Possamaï, Royer and Touzi [23] and Biagini, Bouchard, Kardaras
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and Nutz [1]. The same is true when X is a càdlàg martingale whose jump part is “dominated”
by its diffusion part (see Nutz [22] for a precise definition). Based on this observation, Nutz [22]
established a robust version of the optional decomposition theorem for càdlàg processes. In all
of this literature, almost no regularity condition is imposed on the payoff function.

The open question is how to aggregate the family (HP)P∈P when X is a càdlàg martingale,
without the “domination” condition of Nutz [22]. In this paper, we investigate a functional Itô’s
calculus approach, with the objective to establish a robust optional decomposition theorem, as
well as a robust super-hedging duality result. Although it requires a minimum of regularity on
V , see below, it provides a partial answer that can turn out to be useful in many applications.

This idea was indeed a motivation for Dupire [9] to introduce the functional Itô’s calculus.
Clearly, when V is a C1,2 smooth functional of (t,X), in the sense of Dupire, one can apply
the functional Itô’s formula rigorously established by Cont and Fournié [5, 6] to identify that
HP = ∇ωV (·, X), in which ∇ωV denotes the vertical derivative of V . When X is a one-
dimensional continuous semimartingale, and V is a concave functional of X (in the sense of
Dupire) satisfying some additional regularity conditions, Saporito [24] obtained a functional
Meyer-Tanaka’s formula that also provides a decomposition formula on V that is very close to
the one we are looking for in the context of the optional decomposition. However, the regularity
conditions they impose are usually too strong to be checked (or even not true especially in the
case of [9]). Moreover, their Itô’s formulas are given on functionals defined on the space of all
Rd-valued paths. For the applications in finance, one may for instance consider only positive
valued paths, so that the value function is defined on the canonical space of Rd+–valued paths.
But it is not trivial to extend such a functional to the whole space of Rd–valued paths and at
the same time keep the pathwise regularity/concavity properties.

In this paper, we consider the setting with multivariate càdlàg paths and build on concepts and
ideas of [9, 5, 6], and in particular on the regularization technique of Saporito [24], to establish a
robust optional decomposition formula, under some mild continuity, concavity and monotonicity
conditions on (t, ω) 7→ V (t, ω). In the robust super-hedging problem, the supermartingale V is
obtained as the supremum of the expectation of the payoff over a family of martingale measures.
We then show that the conditions imposed on V are satisfied as soon as the family of martingale
measures is rich enough, and the payoff function enjoys some continuity conditions. In terms
of required regularity, our setting is obviously not as general as [22] but we do not require the
“domination” conditions in [22] and we are able to provide an explicit expression of the optimal
super-hedging strategy H as an element of the super-differential of V . This paper should thus
be considered as a complement to earlier works.

As a by-product, we prove that any locally-bounded path-dependent Dupire-concave function
of a Rd-valued semi-martingale remains a semi-martingale, thus generalizing the result of Meyer
[19, Chapter VI] (see also Carlen and Protter [4]).

The rest of this paper is organized as follow. We first introduce some notations that will be
used all over this paper. We state our version of the robust optional decomposition theorem
in Section 2. In Section 3, we provide a pretty general version of the robust super-hedging
duality for continuous payoffs, including two typical examples in which the components of X
are restricted to remain non-negative.

Notations. (i). Let E ⊆ Rd be a closed convex set, we denote by Ω = D([0, T ], E) be the space
of all càdlàg E–valued paths on [0, T ], with canonical filtration F = (Ft)0≤t≤T and canonical
process X(ω) := ω. We endow Ω with the uniform convergence topology induced by the norm
‖ω‖ := supt∈[0,T ] |ωt| for ω ∈ Ω. For (t, ω) ∈ Θ := [0, T ] × Ω, we consider the (optional)
stopped path ωt∧· := (ωt∧s)s∈[0,T ], and (predictable) stopped path ωt− := (ωt−s )s∈[0,T ] defined
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by ωt−s := ωs1{s∈[0,t)} + ωt−1{s∈[t,T ]}. A function ϕ : Θ −→ R is said to be non-anticipative if
ϕ(t, ω) = ϕ(t, ωt∧·) for all (t, ω) ∈ Θ.

(ii). For a function ϕ : Θ −→ R, we follow Dupire [9] (see also Cont and Fournié [6]) to
introduce the Dupire derivatives as follows: ϕ is said to be horizontally differentiable if, for all
(t, ω) ∈ [0, T )× Ω, its horizontal derivative

∂tϕ(t, ω) := lim
h↘0

ϕ(t+ h, ωt∧·)− ϕ(t, ωt∧·)

h

is well-defined ; ϕ is said to be vertically differentiable if, for all (t, ω) ∈ Θ, the function

y ∈ E 7−→ ϕ(t, ω �t y) ∈ R is differentiable, with ω �t y := ω1[0,t) + y1[t,T ],

in which case its derivative at y = ωt is defined as the vertical derivative ∇ωϕ(t, ω) of ϕ at
(t, ω).

(iii). A non-anticipative function ϕ : Θ −→ R is called right-continuous if, for all (t, ω) ∈ Θ,
ε > 0, there exists δ > 0 such that

t′ ≥ t, |t′ − t|+ ‖ω′t′∧· − ωt∧·‖ ≤ δ =⇒
∣∣ϕ(t′, ω′)− ϕ(t, ω)

∣∣ ≤ ε.
Let us denote by Cr(Θ) the class of all right-continuous non-anticipative functions. We say that
ϕ ∈ C0,1

r (Θ) if both ϕ and ∇ωϕ are well defined and belong to Cr(Θ). Similar to the terminology
in Saporito [24], a non-anticipative functions ϕ : Θ → R is called right equi-continuous, which
we write as ϕ ∈ Ce

r(Θ), if for each (t, ω) ∈ Θ, for all ε > 0 there exists δ > 0 such that

t′ ≥ t, |t′ − t|+ ‖ω′t′∧· − ωt∧·‖ ≤ δ =⇒
∣∣ϕ(t′, ω′ �t′ y)− ϕ(t, ω �t y)

∣∣ ≤ ε, ∀y ∈ B1(ωt) ∩ E,

where B1(ωt) := {y ∈ Rd : |ωt − y| ≤ 1}. It is clear that Ce
r(Θ) ⊂ Cr(Θ).

(iv). A non-anticipative map ϕ : Θ −→ R is said to be Dupire-concave if, for all t ∈ [0, T ],
ω1, ω2 ∈ Ω, such that ω1 = ω2 on [0, t), and θ ∈ [0, 1],

ϕ(t, θω1 + (1− θ)ω2) ≥ θϕ(t, ω1) + (1− θ)ϕ(t, ω2). (1)

Notice that the above definition of Dupire-concavity is the same as that in Saporito [24] or
Köpfer and Rüschendorf [17]. For a Dupire-concave function ϕ, one can define the Dupire
super-differential (set)

∂ϕ(t, ω) :=
{
z ∈ Rd : ϕ(t, ω �t y) ≤ ϕ(t, ω) + z · (y − ωt), ∀ y ∈ E

}
.

The map ϕ is said to be Dupire-nonincreasing in time if

ϕ(t+ h, ωt∧·) ≤ ϕ(t, ωt∧·), for all (t, ω) ∈ Θ and h ∈ [0, T − t].

The map ϕ is said to be locally equi-nonincreasing in time if, for all K > 0, there is a non-
decreasing function rK : [0, T ]→ R and a module continuity1 ρK : R+ → R+ such that, for all
0 ≤ t ≤ t+ h ≤ T , ‖ω‖ ≤ K, and y ∈ B1(ωt) ∩ E,

ϕ(t+ h, ωt∧· �t+h y) ≤ ϕ(t, ω �t y) + ρK(|y − ωt|)
(
rK(t+ h)− rK(t)

)
. (2)

Taking y = ωt in (2), we see that a functional ϕ which is locally equi-nonincreasing in time is
in particular Dupire-nonincreasing in time. Notice also that a map ϕ : Ω −→ R can be also
associated to the Dupire-nonincreasing map t 7→ ϕ(ωt∧·).

1That is ρK is non-negative, continuous around 0 and vanishes at 0.
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(v). Given a locally bounded predictable process H, and a (càdlàg) semimartingale X, we write
(as usual)

∫ t
s
Hr · dXr for the stochastic integral

∫
(s,t]

Hr · dXr. In the case that the law of X

depends on the reference probability measure P, the integral
∫ t
s
Hr · dXr depends also on P,

which is usually omitted whenever it is obviously given by the context.

2 Optional decomposition of Dupire concave functionals
We provide immediately our version of the optional decomposition theorem, which is the key
ingredient for proving the super-hedging duality of Theorem 3.6 below. It can also be seen
as a functional version of Itô’s or Meyer-Tanaka’s formula, as it generalizes both up to the
fact that the bounded variation part entering our decomposition is not explicitly characterized.
As opposed to the classical versions of the optional decomposition theorem mentioned in the
introduction, it is a functional one as our starting point is not that t 7→ V (t, ω) is a super-
martingale under martingale measures (although one can easily check that our assumptions
imply this).

Recall that Ω := D([0, T ], E) denotes the canonical space of all E-value càdlàd paths on [0, T ].
Throughout the paper, we assume that E ⊆ Rd is closed convex set, with non-empty interior,
and moreover that there exists a compactly supported smooth density function φ : Rd −→ R
such that

the map y 7−→ φ(y − x) is supported in E, for all x ∈ E. (3)

Remark 2.1 Examples of sets E satisfying (3) could be E = Rd, or E = Rd+, with R+ :=
[0,∞), or any cone of Rd (with non-empty interior).

Let P denote the collection of all Borel probability measures on Ω, under which the canonical
process X is a semimartingale, that is, a (càdlàg) process which can be decomposed as the
sum of a local martingale and an adapted finite variation process. For s ∈ [0, T ], denote also
Xs−
r (ω) := ωs−r , or equivalently, Xs−

r := Xs∧r −∆Xs1{r≥s} for all r ∈ [0, T ].

Theorem 2.2 Let V ∈ Ce
r(Θ) be Dupire-concave, locally equi-nonincreasing in time, and such

that

sup
{
|V (t, ω)|+ |z| : (t, ω) ∈ Θ, ‖ω‖ ≤ K, z ∈ ∂V (t, ω)

}
<∞, for all K > 0. (4)

Then, there exists a F–predictable locally bounded process H : Θ −→ Rd, together with a collec-
tion of non-decreasing processes {CP : P ∈ P}, satisfying

V (t,X) = V (0, X) +

∫ t

0

Hs · dXs − CP
t , t ∈ [0, T ], P−a.s. ∀ P ∈ P. (5)

Moreover, Hs ∈ ∂V (s,Xs−) for all s ∈ [0, T ], P-q.s.

Let us make some remarks before proving this result.

Remark 2.3 An explicit formula for H is given in Remark 2.7 as an element of the super-
differential of ∂V (·, X ·−).

(i) From this point of view, it can be considered as a version of the functional Meyer-Tanaka’s
formula, except that CP is not identified to be associated to local time processes. In particular,
when E = Rd and V (t, ω) = f(ωt) for some convex function f : Rd −→ R, it satisfies clearly
all the conditions in Theorem 2.2, and the decomposition result (5) implies the result of Meyer
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[19, Chapter VI] (see also Carlen and Protter [4]) which states that a convex function of a
semimartingale is still a semimartingale. Our result provides a path-depend version of this
(apply it to V (t, ω) := f(ωt∧·) with f : Ω −→ R). In the functional (path-dependent) case, when
X is a one-dimensional process with continuous paths, such a decomposition has been derived
in Saporito [24] with an explicit expression of CP in terms of the local times of X, but under
additional smoothness conditions (see also Bouchard and Tan [3] for a version when V is only
in C0,1

r (Θ)).

(ii) It is clear that one may have different versions of the process H, which depends on the kernel
φ used in part (ii) of the proof of Theorem 2.2.

(iii) Such an explicit formula is not available in the approach of Nutz [22] because it is based on
the aggregation argument mentioned in the introduction (and does not assume any continuity).

Remark 2.4 When E = Rd, if we assume in addition that V ∈ C1,2(Θ) in the sense of Dupire,
or that X is a one-dimensional continuous process and that V is differentiable in t, together
with some other technical conditions, one can apply the functional Itô’s formula in Cont and
Fournié [6] or in Saporito [24] to deduce immediately the result of Theorem 2.2. However, in
practice, V is usually obtained as the value function of an optimal control problem, and such
regularity conditions are pretty difficult to check, especially in the path-dependent context.

When E ( Rd, one needs (at least formally) to extend the definition of V from the space of
E–valued paths to the space of all Rd–valued paths in order to apply the functional Itô’s formulas
of [6, 24]. In the path-dependent case, such an extension seems not trivial if it is required to
keep the same concavity and regularity properties of V .

Remark 2.5 In Theorem 2.2, the stochastic integrals (
∫ t

0
Hs ·dXs)t≤T depend on the reference

measure P, the fundamental point being that H does not. However, following Nutz [21], these
stochastic integrals could be aggregated into a single F∗-optional process, with F∗ defined as the
universally augmented filtration. In this case, the corresponding nonincreasing processes {CP :
P ∈ P} can also be aggregated into a process independent of P. But, this requires to work under
the Zermelo-Fraenkel set theory with the axiom of choice (ZFC) plus the Continuum Hypothesis,
as well as to assume the existence of a uniform dominating measure for the characteristics of
X (see [21, Assumption 2.1]).

Remark 2.6 When E = Rd, one has

sup
{
|z| : z ∈ ∂ϕ(t, ω)

}
≤ sup
|y|≤1

∣∣ϕ(t, ω �t y)− ϕ(t, ω)
∣∣,

so that Condition (4) is equivalent to assuming that V : Θ −→ R is a locally bounded function.

Proof. (of Theorem 2.2) (i) Let us first provide a proof under the conditions that V ∈ C0,1
r (Θ)

is Dupire-concave, Dupire-nonincreasing in time and (4) holds. In this case, ∇ωV ∈ Cr(Θ) and,
for each (t, ω) ∈ Θ, ∇ωV (t, ω) is the unique element in ∂V (t, ω), or equivalently, in the super-
differential of the map y 7→ V (r, ω �r y) at y = ωr.

(a) Let us fix s < t and consider a sequence of deterministic discrete time grids (πn)n≥1, where
πn = {tnk}0≤k≤n satisfies

s = tn0 < tn1 < · · · < tnn = t and |πn| := max
k=1,··· ,n

(tnk − tnk−1) −→ 0, as n −→∞.

Next, with fixed δ > 0, we define the sequences of F–stopping times (τnk )k≥1, n ≥ 1, by

τn0 ≡ s, and τnk+1 := inf
{
r>τnk : |∆Xr| ≥ δ or r ∈ πn

}
, k ≥ 0.

5



Observe that the random number mn := max{k ≥ 0 : τnk ≤ t} is finite, but is not uniformly
bounded in general.

For each n ≥ 1 and u ∈ [s, t], let the processes Xn and Xn,u− be defined by

Xn
r :=

mn−1∑
k=0

Xτnk
1{r∈[τnk ,τ

n
k+1)} +Xt1{r=t}, Xn,u−

r := Xn
u∧r −∆Xu1{r≥u}, r ∈ [s, t],

so that
Xn
τnk

= Xτnk
and X

n,τnk+1−
τnk+1

= Xτnk+1−, for each k ≥ 0.

Recall that V is non-anticipative, Dupire-concave and Dupire-nonincreasing in time, so that
V (τnk , X

n) ≥ V (τnk+1, X
n
τnk ∧·

). It follows that

V (τnk+1, X
n)− V (τnk , X

n) ≤ ∇ωV (τnk+1, X
n
τnk ∧·

) · (Xτnk+1
−Xτnk

), if τnk+1 ∈ πn, (6)

and

V (τnk+1, X
n)− V (τnk , X

n)

≤ V (τnk+1, X
n)− V (τnk+1, X

n,τnk+1−) + V (τnk+1, X
n,τnk+1−)− V (τnk+1, X

n
τnk ∧·

)

≤ ∇ωV (τnk+1, X
n,τnk+1−) ·∆Xτnk+1

+∇ωV (τnk+1, X
n
τnk ∧·

) · (Xτnk+1− −Xτnk
), if τnk+1 /∈ πn.(7)

By summing up the two sides of (6) and (7) for k = 0, · · · ,mn − 1, it follows that

V (t,Xn)− V (s,Xn) ≤ Iδn (8)

with

Iδn :=

mn−1∑
k=0

(
∇ωV (τnk+1, X

n
τnk ∧·

) · (Xτnk+1
−Xτnk

)
)
1{τnk+1∈πn}

+

mn−1∑
k=0

(
∇ωV (τnk+1, X

n,τnk+1−) ·∆Xτnk+1
+∇ωV (τnk+1, X

n
τnk ∧·

) · (Xτnk+1− −Xτnk
)
)
1{τnk+1 /∈πn},

where we add the superscript δ on Iδn to emphasis the dependence of the random number mn

and the stopping times (τnk )1≤k≤mn on δ > 0. The term Iδn can be written as an integral w.r.t.
X, but the integrand may not be adapted to the filtration F. This motivates us to introduce

In :=

n−1∑
k=0

∇ωV (tnk+1, X
n
tnk∧·

) ·
(
Xtnk+1

−Xtnk

)
=

∫ t

s

Hn
r dXr,

where Hn is the F-predictable process defined by

Hn :=

n−1∑
k=0

∇ωV (tnk+1, X
n
tnk∧·

)1{
(tnk ,t

n
k+1]
}.

Notice that, for all fixed δ > 0 and ω ∈ Ω, there exists only a finite number of τnk+1. Further,
by (4), the terms ∇ωV (τnk+1, X

n
τnk ∧·

) and ∇ωV (τnk+1, X
n,τnk+1−) are uniformly bounded for every

fixed ω ∈ Ω. Then by the continuity of ∇ωV and the fact that X has càdlàg paths, it is easy
to see that, for every fixed ω ∈ Ω,

lim
n−→∞

∣∣Iδn(ω)− In(ω)
∣∣ = 0. (9)
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(b) Let us now assume that, for some δ > 0, P belongs to the collection of probability measures

Pδ :=
{
P′ ∈ P : P′

[
|∆Xr| ∈ {0} ∪ [δ,∞), ∀r ∈ [0, T ]

]
= 1
}
,

i.e. X has only big jumps (with jump size bigger than δ) under P. As ∇ωV ∈ Cr(Θ), then

Hn
r −→ ∇ωV −(r,X), for all r ∈ [s, t], P–a.s. for each P ∈ Pδ,

in which (∇ωV −(r,X))r≥0 := (∇ωV (r,Xr−))r≥0 is F-predictable. Further, notice that one
can localize the sequence of processes (X01{0}+

∑n−1
k=0 Xtnk

1(tnk ,t
n
k+1])n≥1 uniformly by using the

sequence of F–stopping times τm := inf{t : |Xt| ≥ m}, m ≥ 1. Then, by (4), the sequence
(|Hn|)n≥1 can be uniformly bounded by a locally bounded predictable process. By Jacod and
Shiryaev [15, Theorem I.4.31], and after possibly passing to a subsequence, it follows that∫ t

s

Hn
r · dXr −→

∫ t

s

∇ωV −(r,X) · dXr and V (t,Xn) −→ V (t,X), P–a.s.

Therefore, (8) and (9) imply that, for all P ∈ Pδ,

V (t,X)− V (s,X) ≤
∫ t

s

∇ωV −(r,X) · dXr, P–a.s. (10)

(c) We now consider P ∈ P, under which X is a general semimartingale taking value in the inte-
rior of the set E. Under P, X can be uniquely decomposed as the sum of a continuous martingale
Xc and a purely discontinuous semimartingale Xd. Recall that every purely discontinuous semi-
martingale can be approximated uniformly, on [0, T ], by processes with finite variation (see e.g.
[15, Section I.4 and Theorem II.2.34]). Namely, by keeping only the (compensated) small jumps
in Xd, one can find a sequence (Zn)n≥1 of purely discontinuous semimartingales, together with
a sequence of positive real numbers (δn)n≥1, such that δn −→ 0, and P–a.s.

|∆Znt | ≤ δn, ∀t ∈ [0, T ]; and ‖Zn‖+ [Zn]T −→ 0, as n −→∞, (11)

and Y n := X − Zn has only jumps bigger than δn. Notice that Y n may not take value in E
when E 6= Rd. Let us define

τn := inf{r ≥ s : Y nr /∈ E}, Y
n

r := Y nr 1{r<τn} + Y nτn−1{r≥τn}, r ∈ [s, t],

so that P ◦ (Y
n
)−1 ∈ Pδ. Then, applying (10) to Y

n
leads to

V (t, Y
n
) ≤ V (s, Y

n
) +

∫ t

s

∇ωV −(r, Y
n
) · dY nr , P–a.s., n ≥ 1. (12)

As X takes values in the interior of E, and ‖X − Y n‖ −→ 0, P–a.s., then, for P–a.e. ω,
there exists n0(ω) such that τn(ω) = ∞ for all n ≥ n0(ω). Moreover, since Zn is a purely
discontinuous semimartingale with jumps no bigger than δn, one can localise the process, so
that both ∇ωV −(·, Y n), Zn and [Zn]T are uniformly bounded. Taking the limit n −→ ∞, we
deduce from (11), (12) and [15, Theorem I.4.31] that (10) holds true for all P ∈ P under which
X takes values in the interior of E.

(d) We finally consider an arbitrary P ∈ P under which X a semimartingale taking values in E.
For all ε > 0, let Xε := (1 − ε)X + εx0, where x0 is a given point belonging to the interior of
E. Then Xε is a semimartingale taking values in the interior of E. Applying (10) to Xε and
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then letting ε −→ 0, it follows that (10) holds true for all P ∈ P. By the arbitrariness of s ≤ t
and P ∈ P, this proves (5) under the additional condition that V ∈ C0,1

r (Θ).

(ii) Let us now consider the general case (in particular without the condition V ∈ C0,1
r (Θ)).

Let φ : Rd → R be a compactly supported smooth density function satisfying (3), we define
φε(y) := ε−dφ(ε−1y), y ∈ Rd, ε > 0. Without loss of generality, we assume that φ is supported
in B1(0) := {y ∈ Rd : |y| ≤ 1}. Let us define V ε : Θ −→ R by

V ε(r, ω) :=

∫
Rd
V
(
r, ω �r y

′)φε(y′ − ωr)dy′.
First, it is clear that V ε is Dupire-concave as soon as V is. Next, notice that V is right
equi-continous, then by a direct adaptation of Proposition 2.6 of Saporito [24], it follows that

V ε ∈ C0,1
r (Θ), and V ε(r, ω) −→ V (r, ω), ∀(r, ω) ∈ Θ.

Moreover, recall that V is locally equi-nonincreasing in time (in the sense of (2) with functions
(ρK , rK)K>0), and that, by (4), the maps y 7→ V (t+ h, (ωt∧·) �t+h y) are Lipschitz-continuous
uniformly in h. It follows that, for each K > 0, the functional V ε(t, ω)− ρK(ε)rK(t) is Dupire-
nonincreasing in time for all ω ∈ Ω satisfying ‖ω‖ ≤ K. Further, by Stokes formula and a
change of variables,

∇ωV ε(r, ω) :=

∫
Rd
ε−1
[
V
(
r, ω �r (ωr + εy)

)
− V (r, ω)

](
−∇φ(y)

)
dy,

in which ∇φ is the gradient of φ. Then, for all (r, ω) ∈ Θ,

∇ωV ε(r, ω) −→ H(r, ω) :=

∫
Rd
∂+V (r, ω; y)

(
−∇φ(y)

)
dy, as ε −→ 0, (13)

where

∂+V (r, ω; y) := lim
ε↘0

V
(
r, ω �r (ωr + εy)

)
− V (t, ω)

ε
, for all y in the support of φ,

is well-defined since V is Dupire-concave (see also Remark 2.7 below). Using (4), up to a
localisation argument, one can assume w.l.o.g. that (∇ωV ε(·, X ·−))ε>0 is uniformly bounded.
Then, using the decomposition result (10) on V ε−ρK(ε)rK , and then letting ε −→ 0, we can
apply [15, Theorem I.4.31] to conclude that, for all P ∈ P,

V (t,X) ≤ V (s,X) +

∫ t

s

H(r,Xr−) · dXr, P–a.s.

As P ∈ P and s < t are arbitrary and H does not depend on P and s < t, this proves the
decomposition result (5).

(iii) Finally, recalling the definition of the super-differential of a concave function, the fact that
H(r, ω) ∈ ∂V (r, ω) is an immediate consequence of (13) and the fact that the Dupire-concave
functionals V ε −→ V pointwisely. Moreover, it is clear that the process (H(s,Xs−)s∈[0,T ] is
F–predictable, and is a locally bounded process by (4). �

Remark 2.7 One can check that2

∂+V (r, ω; y) = min{y · z : z ∈ ∂V (r, ω)}.
2We would like to thank Pierre Cardaliaguet who pointed out to us this identity and its proof.
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Indeed, first, it is clear from the definition of ∂+V (r, ω; y) that ∂+V (r, ω; y) ≤ min{y · z :
z ∈ ∂V (r, ω)}. Next, let us consider zε ∈ arg min{y · z : z ∈ ∂V

(
r, ω �r (ωr + εy)

)
}, so that

zε ·(εy) ≤ V
(
r, ω�r(ωr+εy)

)
−V (r, ω). By (4), one can then find a sequence (εn)n≥1 converging

to 0 such that zεn −→ z ∈ ∂V (r, ω), and z · y ≤ ∂+V (r, ω; y).

Remark 2.8 Notice that the condition (3) is only used to regularize V into a function with
continuous first order vertical Dupire derivative. It is not necessary if ∂V (t, ω) admits a unique
element for all (t, ω) ∈ Θ. In this case, the vertical Dupire derivative inherits the regularity of
V automatically, and there is no need for the intermediate smoothing procedure in part (ii) of
the proof of Theorem 2.2.

3 Super-hedging duality
Let us now turn to the main motivation of this paper. From Theorem 2.2, we derive in this
section a robust super-hedging problem and provide a duality result. We first state it under
general abstract conditions, Theorem 3.6, and then discuss a typical example of applications in
Proposition 3.12.

3.1 Abstract framework
Let Φ : Ω −→ R be a payoff function and M0 = (M(0, x))x∈E be a family of collections of
probability measures Q on Ω such that X is a Q-local martingale with X0 = x, Q–a.s. We
assume that, for all x ∈ E and Q ∈M(0, x),

EQ[∣∣Φ(X)
∣∣] <∞, (EQ[Φ(X)−|Ft]

)
t≤T is a Q-martingale, and sup

Q∈M(0,x)

EQ[Φ(X)
]
<∞. (14)

The super-hedging price of a derivative option with payoff Φ(X) is defined by

v(0, x) := inf
{
v ∈ R : ∃ H ∈ H s.t. Y v,HT ≥ Φ(X), M(0, x)− q.s.

}
,

in which
Y v,H := v +

∫ ·
0

Hr · dXr

and H is the collection of all locally bounded F-predictable processes such that Y v,H is Q-
a.s. bounded from below by a Q-martingale, for all Q ∈M(0, x).

The aim of this section is to prove the following super-hedging duality:

v(0, x) = V (0, x) := sup
Q∈M(0,x)

EQ[Φ(X)]. (15)

As usual, one can easily obtain the weak duality

v(0, x) ≥ V (0, x) := sup
Q∈M(0,x)

EQ[Φ(X)]. (16)

Indeed, for all (v,H) ∈ R × H such that Y v,HT ≥ Φ(X), M(0, x)-q.s., one has v ≥ EQ[Φ(X)
]

for all Q ∈M(0, x), since Y v,H is a Q-local-martingale bounded from below by a Q-martingale,
and therefore a Q-supermartingale, for any Q ∈M(0, x), whenever H ∈ H.
To prove the converse inequality, we will rely on Theorem 2.2. Assuming that V defined above
satisfies all the conditions of Theorem 2.2, then there exists a F-predictable process H such that
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Y V (0,x),H ≥ V (·, X) on [0, T ], and in particular that Y V (0,x),H
T ≥ Φ(X),M(0, x)-q.s. Since, for

all Q ∈M(0, x), V (t,X) ≥ EQ[Φ(X)|Ft] ≥ EQ[Φ(X)−|Ft] Q-a.s., and
(
EQ[Φ(X)−|Ft]

)
t∈[0,T ]

is
a Q-martingale, it follows that H ∈ H, and therefore that V (0, x) ≥ v(0, x). Together with the
weak duality (16), this implies the duality result (15).

To ensure that the conditions of Theorem 2.2 hold, we need to assume more structure conditions
on M(0, x) and Φ. Recall that, given a probability measure P on (Ω,FT ) and a F–stopping
time τ taking value in [0, T ], a r.c.p.d. (regular conditional probability distribution) of P con-
ditional to Fτ is a family (Pω)ω∈Ω of probability measure on (Ω,FT ), such that ω 7→ Pω is
Fτ–measurable, Pω[Xs = ωs, s ≤ τ(ω)] = 1 for all ω ∈ Ω, and EP[1A|Fτ ](ω) = EPω [1A] for
P–a.e. ω ∈ Ω for all A ∈ FT .

Assumption 3.1 There exists a family (M(t, ω))(t,ω)∈[0,T ]×Ω of collections of probability mea-
sures on Ω such that, for all (t, ω) ∈ Θ :

(i) M(0, ω) =M(0, ω0) andM(t, ω) =M(t, ωt∧·).

(ii) For all Q ∈M(t, ω), X is a Q–local martingale on [t, T ] and Q[Xs = ωs, s ≤ t] = 1.

(iii) Given Q ∈M(t, ω) and a F–stopping time τ taking values in [t, T ]:

(a) There exists a family (Qω)ω∈Ω of r.c.p.d. of Q conditional to Fτ such that

Qω ∈M(τ(ω), ω), for Q–a.e. ω ∈ Ω.

(b) For all ε > 0, there exists Qε ∈ M(t, ω) such that Q|Fτ = Qε|Fτ and a family
(Qεω)ω∈Ω of r.c.p.d. of Qε conditional to Fτ such that

EQε[Φ(X)
]
≥ V (t, ω)− ε and Qεω ∈M(τ(ω), ω), for Q–a.e. ω ∈ Ω,

where
V (t, ω) := sup

Q∈M(t,ω)

EQ[Φ(X)
]
. (17)

Remark 3.2 Assumption 3.1.(iii) is a standard condition to ensure that the dynamic program-
ming principle holds true for the optimization problem in (16). Namly, it ensures that the
families M(t, ω) of probability measures is stable under conditioning and concatenation. It
could be compared to the conditions used in Biagini, Bouchard, Kardaras and Nutz [1], or Nutz
[22].

We also need the following additional conditions. Let conv(A) denote the convex envelope of a
set A ⊂ Rd, δω denote the Dirac measure at ω ∈ Ω, and, for all x ∈ Rd, (t, ω) ∈ Θ and η > 0,
set

Bη(x) := {y ∈ Rd : |y−x| ≤ η}, Bη(t, ω) :=
{

(t′, ω′) ∈ Θ : t′ ≥ t, |t′−t|+‖ωt∧·−ω′t′∧·‖ ≤ η
}
.

Let (ρK , rK)K>0 denote a family of maps such that, for each K > 0, rK : [0, T ] 7→ R is
non-decreasing and ρK : R+ 7→ R+ is a modulus of continuity.

Assumption 3.3 With some constant C > 0, the following holds for all (t, ω) ∈ [0, T ) × Ω,
y ∈ B1(ωt) ∩ E and x1, x2 ∈ E such that ωt ∈ conv{x1, x2}:

(i) for all ε > 0,
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(a) for all Q ∈ M(t, ω �t y), we can find η > 0 such that for all (t′, ω′) ∈ Bη(t, ω) there
exists Q′ ∈M(t′, ω′ �t′ y) satisfying EQ[Φ(X)] ≤ EQ′ [Φ(X)] + ε.

(b) there is η > 0 such that for all (t′, ω′) ∈ Bη(t, ω) and Q′ ∈M(t′, ω′�t′ y) we can find
Q ∈M(t, ω �t y) satisfying EQ′ [Φ(X)] ≤ EQ[Φ(X)] + ε.

(ii) there exists a family (Qh, A1
h, A

2
h)h∈(0,h0) for some h0 ≤ T − t, such that Qh ∈ M(t, ω),

Qh[X ∈ A1
h ∪A2

h] = 1, and

Aih ⊂ {ω′ ∈ Ω : ω′s = ωs on [0, t], |ω′s| ≤ |x1|+ |x2| on (t, t+ h), ω′t+h = xi}, i = 1, 2.

Moreover, for each ε > 0, i = 1, 2, Q ∈M(t, ω�t xi) and h1 > 0, there exists h < h1 such
that for all ω′ ∈ Aih one can find Q′ ∈M(t+ h, ω′) satisfying EQ[Φ(X)] ≤ EQ′ [Φ(X)] + ε.

(iii) for all h ∈ (0, T − t) and Q ∈M(t+ h, (ωt∧·)�t+h y), there exists Q′ ∈M(t, ω�t y) such
that

EQ′ [Φ(X)] ≥ EQ[Φ(X)] − ρK(|y − ωt|)
(
rK(t+ h)− rK(t)

)
,

whenever ‖ω‖ ≤ K ∈ (0,∞).

Remark 3.4 In Assumption 3.3, Condition (i) is used to ensure that V is right equi-continuous.
Condition (ii) is used to prove that V is Dupire-concave. Condition (iii) is used to ensure that
V is locally equi-nonincreasing in time. In particular, taking y = ωt, this implies that for all
Q ∈M(t+h, ωt∧·) there exists Q′ ∈M(t, ω) such that EQ′ [Φ(X)] ≥ EQ[Φ(X)]. To check this,
a convenient sufficient condition is to assume that δωt∧· ∈M(t, ω), so that one can concatenate
δωt∧· and Q at t+ h to obtain Q′ ∈M(t, ω).

In this case, the condition δωt∧· ∈ M(t, ω) is almost a necessary condition to ensure that V is
Dupire-nonincreasing in time. For a simple counter-example, let us consider a one-dimensional
Markovian case where Φ(ω) = φ(ωT ), for some concave function φ : R → R, and M(t, ω)
denotes the collection of all probability measures Q ∈ P(Ω) such that Q[Xs = ωs, s ∈ [0, t]] = 1,
where X is Q–diffusion martingale process on [t, T ] with volatility greater than 1. As φ is
concave, it is easy to see that

V (t, ω) := sup
Q∈M(t,ω)

EQ[Φ(X)] = EP[φ(ωt +WT−t)], for all (t, ω) ∈ Θ,

where W is a standard Brownian motion under P. When φ is strictly concave, by Jensen’s
inequality, one has

V (t, ω) = EP[φ(ωt +WT−t)] < EP[φ(ωt +WT−t−h)] = V (t+ h, ωt∧·),

i.e. V is not non-increasing in time.

Remark 3.5 When Φ : Ω → R is a concave function, Condition (ii) of Assumption 3.3 is
not always necessary to ensure that V is Dupire concave. For typical financial derivatives with
payoff function Φ(X) = φ(XT , AT ,MT ,mT ), where AT (resp. MT , mT ) represents the running
average (resp. maximum, minimum) of the underlying process X, the concavity of φ may not
propagate to V as soon as it depends onMT or mT . But when φ is just a concave function of XT

and AT , the optimality in (17) is achieved by the constant martingale measure δωt∧· , because
EQ[(XT , AT )|X0] = (X0, X0T ) for any martingale measure Q, so that the problem becomes
trivial.

Under Assumptions 3.1 and 3.3 , we can now state our main result which is an immediate
consequence of the discussion above, combined with Theorem 2.2, Lemma 3.8 and Lemma 3.9
below. Two examples of applications will be studied in Sections 3.2 and 3.3 below.
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Theorem 3.6 Let Assumptions 3.1 and 3.3 hold true. Assume in addition that V satisfies
(4), and that y ∈ E 7→ Φ(ω �T y) is concave for all ω ∈ Ω. Then the duality (15) holds true,
and there exists a F-predictable process H ∈ H such that Hs ∈ ∂V (s,Xs−) for all s ∈ [0, T ],
M(0, x)–q.s., and Y V (0,x),H

T ≥ Φ(X), M(0, x)–q.s., for all x ∈ E.

Remark 3.7 The condition that y 7→ Φ(ω �T y) is concave for all ω ∈ Ω is not important as
soon as the collectionM(0, x) is rich enough. For a general payoff function Φ : Ω −→ R, let us
denote by Φ̂ : Ω −→ R the smallest function dominating Φ and such that y ∈ E 7→ Φ̂(ω �T y)
is concave. In many situations, such as in the examples of Sections 3.2 and 3.3, one can show
that

V (t, ω) = V̂ (t, ω) := sup
Q∈M(t,ω)

EQ[Φ̂(X)
]
, for all (t, ω) ∈ [0, T )× Ω.

Then, one only needs to work on Φ̂ and V̂ to obtain the duality result (15) for Φ̂, and then to
use the weak duality (16) and the above identity to deduce that (15) holds for Φ as well. See the
proof of Propositions 3.12 and 3.16 below for more details.

The rest of this section is dedicated to the proof of the two lemmas mentioned above.

Lemma 3.8 The value function V is non-anticipative and right equi-continuous, i.e. V ∈
Ce

r(Θ). Further, for all (t, ω) ∈ Θ and all F-stopping times τ taking values in [t, T ],

V (t, ω) = sup
Q∈M(t,ω)

EQ[V (τ,X)
]
. (18)

Finally, V is locally equi-nonincreasing in t.

Proof. (i). First, it is clear that V is non-anticipative by the conditionM(t, ω) =M(t, ωt∧·)
in Assumption 3.1.(i).

(ii). We next prove that V is right equi-continuous. Let (t, ω) ∈ Θ, y ∈ B1(ωt)∩E, (tn, ωn)n≥1 ⊂
Θ be a sequence such that tn ↘ t and ‖ωntn∧· − ωt∧·‖ −→ 0. By Assumption 3.3(i), for any
ε > 0 and Q ∈ M(t, ω �t y) such that EQ[Φ(X)] ≥ V (t, ω �t y) − ε, there exists a sequence of
(Qn)n≥1 such that Qn ∈ M(tn, ωn �tn y) and EQn [Φ(X)] ≥ EQ[Φ(X)] − ε for n large enough.
This implies that

lim inf
n−→∞

V (tn, ωn �tn y) ≥ lim inf
n−→∞

EQn [Φ(X)] ≥ EQ[Φ(X)]− ε ≥ V (t, ω �t y)− 2ε.

Next, let (Q′n)n≥1 be a sequence such that Q′n ∈ M(tn, ωn �tn y) and limn−→∞ EQ′n [Φ(X)] =
lim supn−→∞ V (tn, ωn�tn y). By Assumption 3.3(i) again, for all ε > 0, there exists a sequence
(Qn)n≥1 ⊂M(t, ω �t y) such that EQn [Φ(X)] ≥ EQ′n [Φ(X)]− ε for n ≥ 1 large enough. Hence,

lim sup
n−→∞

V (tn, ωn �tn y) = lim
n−→∞

EQ′n [Φ(X)] ≤ lim sup
n−→∞

EQn [Φ(X)] + ε ≤ V (t, ω �t y) + ε.

By arbitrariness of ε, one concludes that limn−→∞ V (tn, ωn �tn y) = V (t, ω �t y). Taking
y = ωt, this implies that V ∈ Cr(Θ). Further, by (4), the maps y 7→ V (tn, ωn�tn y) is Lipschtiz,
uniformly in n, it follows that V (tn, ωn�tn y) −→ V (t, ω�t y) uniformly in y ∈ B1(ωt)∩E, i.e.
V is right equi-continuous.

(iii). Finally, the dynamic programming principle (18) is a direct consequence of Assumption
3.1.(iii). Moreover, using Assumption 3.3.(iii), it is direct to obtain that

V (t+ h, ωt∧· �t+h y) ≤ V (t, ω �t y) + ρK(|y − ωt|)
(
rK(t+ h)− rK(t)

)
,

that is, V is locally equi-nonincreasing in t. �
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Lemma 3.9 The value function V is Dupire-concave.

Proof. We first notice that V (T, ω) = Φ(ω) by definition, so that y ∈ E 7→ V (T, ω �T y) is
concave, for all ω ∈ Ω. Let us now set (t, ω) ∈ [0, T ) × Ω and ω1, ω2 such that ω1

s = ω2
s = ωs

for all s ∈ [0, t) and ωt = θω1
t + (1 − θ)ω2

t for some θ ∈ (0, 1). Set x1 := ω1
t , x2 := ω2

t . By
Assumption 3.3.(ii), there exists a family (Qh, A1

h, A
2
h)h∈(0,T−t) such that, for all h ∈ (0, T − t),

one has Qh ∈M(t, ω), Qh[Xt+h = ω1
t ] = θ and Qh[Xt+h = ω2

t ] = 1− θ. By (18),

V (t, ω) ≥ EQh
[
V (t+ h,X)

]
= θEQh

[
V (t+ h,X)

∣∣Xt+h = ω1
t

]
+ (1− θ)EQh

[
V (t+ h,X)

∣∣Xt+h = ω2
t

]
≥ θ inf

ω′∈A1
h

V (t+ h, ω′) + (1− θ) inf
ω′∈A2

h

V (t+ h, ω′).

Fix i ∈ {1, 2} and ε > 0. Let (ωh,i)h>0 be such that ωh,i ∈ Aih and

inf
ω′∈Aih

V (t+ h, ω′) ≥ V (t+ h, ωh,i)− ε,

for each h > 0. Let (Qin)n≥1 ⊂ M(t, ωi) be such that V (t, ωi) = limn−→∞ EQin [Φ(X)]. Then,
by Assumption 3.3(ii), we can find hn −→ 0 and a sequence (Q′hn)n≥1 such that Q′hn ∈ M(t+

hn, ω
hn,i) and EQin [Φ(X)] ≤ EQ′hn [Φ(X)] + ε for all n ≥ 1. It follows that

V (t, ωi) ≤ lim sup
n−→∞

EQ′hn [Φ(X)] + ε ≤ lim sup
n−→∞

V (t+ hn, ω
hn,i) + ε.

Combining the above implies that

V (t, ω) ≥ θV (t, ω1) + (1− θ)V (t, ω2),

i.e. V is Dupire-concave. �

3.2 Example 1: robust hedging with positive martingales
We now provide a first typical example of application, where we consider the one-dimensional
(d = 1 for simplicity) non-negative martingales. Let E = R+ = [0,∞), so that Ω = D([0, T ],R+).
Let

M+(t, ω) :=
{
Q : Q[Xt∧·=ωt∧·]=1, X is Q–martingale on [t, T ]

}
.

Given

Mt(ω) := sup
0≤s≤t

ωs, mt(ω) := inf
0≤s≤t

ωs, At(ω) :=

∫ t

0

ωsµ(ds), t ≤ T,

in which µ is a finite signed measure on [0, T ] without atom, and a uniformly continuous function
φ : R4 −→ R, we define

Φ(ω) := φ
(
MT (ω),mT (ω), AT (ω), ωT

)
.

We assume that φ is uniformly Lipschitz in a, and that there exists some constant K > 0 such
that, for all 0 ≤M0 ≤M1, 0 ≤ m1 ≤ w1 ∧ ε and a0, a1 ∈ R,∣∣∣φ(M1,m1, a1, w1)− φ(M0, 0, a0, 0)

∣∣∣ ≤ K(|a1 − a0|+ w1

)
. (19)

Let us then introduce the value function

V+(t, ω) := sup
Q∈M+(t,ω)

EQ[Φ(X)
]
, for all (t, ω) ∈ [0, T )× Ω,

and V+(0, x) := V+(0, x1[0,T ]) as well asM+(0, x) :=M+(0, x1[0,T ]), for each x ∈ R+.
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Remark 3.10 The technical condition (19) will be used to ensure Condition (4). First, (19)
implies that ∣∣Φ(ω)

∣∣ ≤ K
(

1 + ωT +

∫ T

0

ωt|µ|(dt)
)
, for all ω ∈ Ω, (20)

for some constant K > 0, and hence

|V+(t, ω)| ≤ K
(

1 + ωt +

∫ T

0

ωt∧·|µ|(dt)
)
, (21)

as X is a non-negative martingale on [t, T ] under each Q ∈ M+(t, ω). When V+ is Dupire-
concave, one has

max
z∈∂V+(t,ω)

|z| ≤ max
{
|V+(t, ω �t (ωt + 1))− V+(t, ω)| ∨ |z0| : z0 ∈ ∂V+(t, ω �t 0)

}
. (22)

Next, we will use Condition (19) again to obtain a bound on |z0| for z0 ∈ ∂V+(t, ω�t 0), which
then ensures that the super-gradient in ∂V+(t, ω) are also locally bounded.

Example 3.11 Let φ(M,m, a,w) = f(a)+(w−g(M))+ for some Lipschitz function f : R −→ R
and a uniformly continuous non-negative function g : R+ −→ R+, then (20) and (19) hold true.

Proposition 3.12 Let the conditions of this subsection hold. Then, for all x ∈ R+,

V+(0, x) = inf
{
v ∈ R : ∃H ∈ H s.t. Y v,HT ≥ Φ(X), M+(0, x)− q.s.

}
. (23)

Moreover, there exists a F-predictable process H ∈ H such that Hs ∈ ∂V+(s,Xs−)3 for all
s ∈ [0, T ],M+(0, x)–q.s., and

Y
V+(0,x),H
T ≥ Φ(X), M+(0, x)–q.s.

Remark 3.13 A duality result similar to (23) has been proved in Guo, Tan and Touzi [14,
Theorem 5.3], using the discretization technique of Dolinsky and Soner [8] together with the S-
topology technique of Jakubowski [16]. In [14, Theorem 5.3], the payoff function Φ is essentially
assumed to be upper semi-continuous w.r.t. the S-topology and uniformly continuous w.r.t. the
Skorokhod topology. They define the super-hedging price in terms of dynamic trading strategies
H that are restricted to be piecewisely constant, so that the integration

∫ T
0
Ht ·dXt can be defined

ω by ω, and the super-hedging property Y v,HT ≥ Φ(X) also holds ω by ω. Our super-hedging
property Y v,HT ≥ Φ(X) holds in a quasi-sure sense, but we do not require the (semi-)continuity
property w.r.t. the S-topology (note that a uniformly continuous function of (MT (ω),mT (ω))
is generally not upper semi-continuous in ω under the S-topology). Meanwhile, we are able to
prove the existence of an optimal super-hedging strategy, which can not hold in general in the
setting of [14]. Such an optimal strategy is even given by an explicit expression, recall Remark
2.3.

Remark 3.14 The duality result in Proposition 3.12 covers a class of derivative options de-
pending on the running underlying, running average/maximum/minimum, under additional con-
tinuity conditions. In this aspect, it is much less general than classical results such as in Nutz
[22], where no regularity condition on the payoff function is required. The continuity condi-
tion is mainly due to our approach, which relies on the functional Itô analysis technique. This
approach nevertheless does not require the “domination” condition in [22] and provides an ex-
plicit expression of the optimal superhedging strategy in terms of V+, which is trackable from a
computational point of view.

3See also (13) and Remark 2.7 for an explicit expression of H in terms of V+.
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Proof. (of Proposition 3.12). (i) Let Φ̂ : Ω −→ R be the smallest function dominating Φ

and such that y 7→ Φ̂(ω �T y) is concave on R+. We claim that

V+(t, ω) = V̂+(t, ω) := sup
P∈M+(t,ω)

EP[Φ̂(X)
]
, for all (t, ω) ∈ [0, T )× Ω. (24)

Indeed, by the definition of Φ̂, there exists a probability space (Ω∗,F∗,P∗) and a measurable
map ξ : Ω× Ω∗ −→ R+ such that, for all ω ∈ Ω,

EP∗ [ξ(ω, ·)] = ωT , and Φ̂(ω) = EP∗ [Φ(ωT− �T ξ(ω, ·))].

Let (t, ω) ∈ [0, T ) × Ω and P ∈ M+(t, ω), we consider the product space (Ω,F ,P) := (Ω ×
Ω∗,FT ⊗F∗,P× P∗), and define the process

Xt := Xt1{t∈[0,T )} +
(
XT + ξ

)
1{t=T}, t ≤ T.

Then,
Q := P ◦X−1 ∈M+(t, ω) and EQ[Φ(X)

]
= EP[Φ(X)

]
= EP[Φ̂(X)

]
.

This implies (26). We next set V̂+(T, ω) := Φ̂(ω) and claim that the conditions of Theorem 3.6
are satisfied for Φ̂ and V̂+, so that

sup
Q∈M+(0,x)

EQ[Φ̂(X)
]

= inf
{
v ∈ R : ∃ H ∈ H s.t. Y v,HT ≥ Φ̂(X), M+(0, x)− q.s.

}
≥ inf

{
v ∈ R : ∃ H ∈ H s.t. Y v,HT ≥ Φ(X), M+(0, x)− q.s.

}
,

and we conclude by appealing to (16) applied to (V̂+, Φ̂), and the existence result of Theorem
3.6.

(ii) It remains to check that the conditions of Theorem 3.6 are satisfied for Φ̂ and V̂+. By
construction Φ̂ is Dupire-concave and it is straightforward to check that it inherits the uniform
continuity of Φ, as a function of (MT (ω),mT (ω), AT (ω), ωT ), as well as the bound (20) on Ω.
First, it is easy to see that (14) holds true. In the following, we check the remaining conditions
in Theorem 3.6.

(a) As for Assumption 3.1, it is obvious that Items (i) and (ii) hold forM+(t, ω). To check Item
(iii).(a), we notice that a martingale is still a martingale under the r.c.p.d. For Item (iii).(b),
one can apply measurable selection arguments, as in e.g. El Karoui and Tan [11], in which the
essential argument is to check that the graph set [[M+]] := {(t, ω,Q) ∈ [0, T ]×Ω×P(Ω) : Q ∈
M+(t, ω)} is a Borel (or only analytic) subset of [0, T ] × Ω × P(Ω), where P(Ω) denotes the
space of all Borel probability measures on Ω. Indeed, [[M+]] is a Borel set as it can rewritten
as

[[M+]] =
{

(t, ω,Q) ∈ [0, T ]× Ω× P(Ω) : Q[Xs∧t = ωs∧t] = 1, EQ[|Xr|+ |Xs|] <∞,
EQ[(Xt∨s −Xt∨r)ξ

]
= 0, for all (r, s, ξ) ∈ L

}
,

where L := L1 ∪ L2, L1 is a countable dense subset of{
(r, s, ξ) : 0 ≤ r < s ≤ T, ξ being bounded continuous and Fr–measurable

}
,

and L2 is a countable dense subset of{
(r, T, ξ) : 0 ≤ r < T, ξ being bounded continuous and Fr–measurable

}
.
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(b) For Assumption 3.3.(i), we shall use constructions that preserve the max, the min, the
T -value and the integral w.r.t. µ of a given path up at a uniform distance, possibly up to
an event with vanishing probability. The uniform continuity of ω 7→ Φ̂(ω) as a function of
(MT (ω),mT (ω), AT (ω), ωT ) will then allow us to conclude.

Let us first consider (t, ω) ∈ [0, T ) × Ω, η > 0, (t′, ω′) ∈ B2η(t, ω), i.e. t′ ≥ t, |t′ − t| + ‖ωt∧· −
ω′t′∧·‖ ≤ 2η and y ∈ B1(ωt) ∩ E. For simplicity, we can assume that t = 0, t′ = η and
‖ω′η∧· − ω0∧·‖ ≤ η. Let us fix Q ∈M+(0, ω �0 y), we construct a process X

η
as follows:

X
η

s :=


ω′s, when s ∈ [0, η),

X2(s−η), when s ∈ [η, 2η),

Xs, when s ∈ [2η, T ].

Then Q′η := Q ◦ (X
η
)−1 ∈ M+(t′, ω′ �t′ y) and limη−→0 EQ[Φ̂(X

η
)
]

= EQ[Φ̂(X)
]
(recall that

Φ̂ is uniformly continuous). Thus, for all ε > 0, EQ[Φ̂(X)] ≤ EQ′η [Φ̂(X)] + ε for η > 0 small
enough. This proves Item (i).(a) of Assumption 3.3.

Next, let (t, ω) ∈ [0, T ) × Ω, η > 0, (t′, ω′) ∈ B2η(t, ω) and y ∈ B1(ωt) ∩ E. W.l.o.g., let us
assume that t = 0 and t′ = η. Then, for each Q′η ∈M+(η, ω′ �η y), we construct a process X

η

by

X
η

s :=

{
y, when s ∈ [0, η),

Xs, when s ∈ [η, T ].

Then it is easy to check that Qη := Q′η ◦ (X
η
)−1 ∈ M+(0, ω �0 y), and limη−→0(EQ′η [Φ̂(X)] −

EQη [Φ̂(X)]) = 0. This shows that, for all ε > 0, EQ′η [Φ̂(X)] ≤ EQη [Φ̂(X)] + ε when η > 0 is
small enough. We hence proved Item (ii).(b) of Assumption 3.3.

(c) Let us then check Item (ii) of Assumption 3.3. We use a similar type of construction as in
step (b) above. Let (t, ω) ∈ [0, T ) × Ω and x1, x2 ∈ R+ be such that x1 < ωt < x2. For each
h > 0, i = 1, 2, we define Aih by

Aih :=
{
ω′ ∈ Ω : ω′ = ωt∧· on [0, t+ h), ω′t+h = xi

}
,

and let Qh ∈ M+(t, ω) be such that Qh[Xs = ωt, s ∈ [t, t + h)] = 1 and Qh[Xt+h = x1] +

Qh[Xt+h = x2] = 1. Then, for each h > 0 and i = 1, 2, we define X
h,i

by

X
h,i

s := ωt∧s1{s∈[0,t+h)}+
(
xi+Xt+2(s−t−h)−Xt

)
1{s∈[t+h,t+2h)}+

(
xi+Xs−Xt

)
1{s∈[t+2h,T ]}.

For every Q ∈ M+(t, ω �t xi), we notice that Q′h := Q ◦ (X
h,i

)−1 ∈ M+(t + h, ωt∧· �t+h xi)

and that limh−→0 EQ′h [Φ̂(X)] = limh−→0 EQ[Φ̂(X
h,i

)] = EQ[Φ̂(X)], which is enough to conclude
that Item (ii) of Assumption 3.3 holds true.

(d) To prove Assumption 3.3.(iii), we consider t ∈ [0, T ), h ∈ (0, T − t], ω ∈ Ω, and y ∈
B1(ωt) ∩ E. Let Q ∈M+(t+ h, ωt∧· �t+h y), we define X

h
by

X
h

t :=


ωs, when s ∈ [0, t),

y, when s ∈ [t, t+ h),

Xs, when s ∈ [t+ h, T ].

One observes that X
h

T = XT , mT (X
h
) = mT (X),MT (X

h
) = MT (X), and AT (X

h
) = AT (X)+

(y − ωt)h. Moreover, Qh := Q ◦ (X
h
)−1 ∈ M+(t, ω �t y). As φ is uniformly Lipschitz in a, we
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then conclude that, for some constant L,

EQh [Φ(X)] ≥ EQ[Φ(X)] − L|y − ωt|h.

This proves Assumption 3.3.(iii).

(e) Finally, we prove that V+ satisfies (4). As discussed in Remark 3.10, the growth condition
(20) implies the locally boundedness of the function V+, c.f. (21). Further, in view of (22), it is
enough to prove that y 7→ V+(t, ω �t y) is Lipschitz on [0, ε] for some ε > 0. This is true since,
for y ∈ [0, ε],∣∣V+(t, ω �t y)− V+(t, ω �t 0)

∣∣ ≤ sup
Q∈M+(t,ω�ty)

KEQ
[
|AT −At|+XT

]
≤ 2K

(
1 ∨ |µ|([t, T ])

)
y.

�

3.3 Example 2: robust hedging with continuous positive martingales
We can adapt the results of Section 3.2 to the case of continuous martingales, for Asian type
options. Let E = R+ = [0,∞), so that Ω = D([0, T ],R+). Let

Mc
+(t, ω) :=

{
Q ∈ P(Ω) : Q[Xt∧·=ωt∧·] = 1, X is a Q–continuous martingale on [t, T ]

}
.

We consider the payoff function

Φ(ω) := φ
(
AT (ω), ωT

)
, with At(ω) :=

∫ t

0

ωsµ(ds), t ≤ T,

where µ is a finite signed measure on [0, T ] without atom, and φ : R2 −→ R is a Lipschtiz
function. Similarly, we define the value function

V c+(t, ω) := sup
Q∈Mc

+(t,ω)

EQ[Φ(X)
]
, for all (t, ω) ∈ [0, T )× Ω,

and V c+(0, x) := V c+(0, x1[0,T ]) as well asMc
+(0, x) :=Mc

+(0, x1[0,T ]), for each x ∈ R+.

Remark 3.15 (i) As φ is Lipschitz, it follows that the growth conditions (20) and (21) hold
true in our context.

(ii) We only consider Asian type payoff functions in this context of continuous martingales, which
excludes in practice the lookback type options. The main reason is that the Dupire concavity
condition involves path jumps in its definition. In our proof, one needs to approximate paths with
jumps by continuous martingales, which changes both the running maximum and the running
minimum at the same time, at a non neglectable order. The approximation of paths would not
imply the approximation of the value function whenever it depends on MT and mT .

Proposition 3.16 Let the conditions of this subsection hold. Then, for all x ∈ R+,

V c+(0, x) = inf
{
v ∈ R : ∃H ∈ H s.t. Y v,HT ≥ Φ(X), Mc

+(0, x)− q.s.
}
. (25)

Moreover, there exists a F-predictable process H ∈ H such that Hs ∈ ∂V c+(s,Xs−) for all
s ∈ [0, T ],Mc

+(0, x)–q.s., and

Y
V c+(0,x),H

T ≥ Φ(X), Mc
+(0, x)–q.s.

17



Remark 3.17 The duality result in (25) has already been established in e.g. [1, 20], under
much more general conditions. The only new point is somehow the expected fact that Hs ∈
∂V c+(s,Xs−), for all s ∈ [0, T ].

Proof. (of Proposition 3.16). We follow the same main steps as in the proof of Proposition
3.12.

(i) Let Φ̂ : Ω −→ R be the smallest function dominating Φ and such that y 7→ Φ̂(ω �T y) is
concave on R+. We first show that

V c+(t, ω) = V̂ c+(t, ω) := sup
P∈Mc

+(t,ω)

EP[Φ̂(X)
]
, for all (t, ω) ∈ [0, T )× Ω. (26)

By the definition of Φ̂, there exists a probability space (Ω∗,F∗,P∗) and a measurable map
ξ : Ω× Ω∗ −→ R+ such that, for all ω ∈ Ω,

EP∗ [ξ(ω, ·)] = ωT , and Φ̂(ω) = EP∗ [Φ(ωT− �T ξ(ω, ·))].

Assuming that (Ω∗,F∗,P∗) is the canonical space of continuous functions endowed with the
Wiener measure, and using the martingale representation theorem, one can construct a diffusion
martingale process (Zεt (ω, ω∗)

)
t∈[T,T+ε]

such that

ZεT (ω, ω∗) = ωT , and ZεT+ε(ω, ω
∗) = ξ(ω, ω∗).

We now extend the canonical process X with Zε on [0, T + ε] and then rescale it to [0, T ]. More
precisely, let (t, ω) ∈ [0, T ) × Ω and P ∈ Mc

+(t, ω), we consider the product space (Ω,F ,P) :=
(Ω× Ω∗,FT ⊗F∗,P× P∗), and define the process

X̂ε
t := Xt1{t∈[0,T ]} + Zt1{t∈(T,T+ε]}, t ∈ [0, T + ε], and then X

ε

t := X̂ε
t(T+ε)/T , t ∈ [0, T ].

One can easily check that

Qε := P ◦ (X
ε
)−1 ∈Mc

+(t, ω) and lim
ε↘0

EQε[Φ(X)
]

= lim
ε↘0

EP[Φ(X
ε
)
]

= EP[Φ̂(X)
]
.

This implies (26). We next set V̂ c+(T, ω) := Φ̂(ω) and claim that all the conditions of Theorem
3.6 are satisfied for Φ̂ and V̂ c+, so that

sup
Q∈Mc

+(0,x)

EQ[Φ̂(X)
]

= inf
{
v ∈ R : ∃ H ∈ H s.t. Y v,HT ≥ Φ̂(X), Mc

+(0, x)− q.s.
}

≥ inf
{
v ∈ R : ∃ H ∈ H s.t. Y v,HT ≥ Φ(X), Mc

+(0, x)− q.s.
}
.

We can then conclude by appealing to (16) applied to (V̂ c+, Φ̂), and the existence result of
Theorem 3.6.

(ii) As in Proposition 3.12, it remains to check that the conditions of Theorem 3.6 are satisfied
for Φ̂ and V̂ c+. In fact, most of the arguments are the same as in the proof of Proposition 3.12,
except that we need to adapt the arguments in Step (ii).(a) to check Assumption 3.1, and those
in Step (ii).(c) to check Assumption 3.3.(ii).

For Assumption 3.1, we notice that Ωc := C([0, T ],R+) is a closed subset of Ω = D([0, T ],R+),
and that

[[Mc
+]] :=

{
(t, ω,Q) ∈ [0, T ]× Ω× P(Ω) : Q ∈Mc

+(t, ω)
}

=
{

(t, ω,Q) ∈ [[M+]] : Q
[
ωt1[0,t] +X1(t,T ] ∈ Ωc

]
= 1
}
,
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Then [[Mc
+]] is Borel measurable as [[M+]] is, and, by following the arguments in Proposition

3.12, one can check that Assumption 3.1 holds.

(c) For Assumption 3.3.(ii). Let (t, ω) ∈ [0, T )×Ω and x1, x2 ∈ R+ be such that x1 < ωt < x2.
For each h > 0, i = 1, 2, we define Aih by

Aih :=
{
ω′ ∈ Ω : ω′s = ωs for s ∈ [0, t], ω′s ∈ [x1, x2] for s ∈ [t, t+ h), and ω′t+h = xi

}
.

As in Step (i), for every h ∈ [t, T − t], one can construct a processMh equal to ω on [0, t], which
is a martingale on [t, T ] taking values in [x1, x2] on [t, t+ h] and satisfying Mh

t+h ∈ {x1, x2} a.s.
In other words, Qh := Q ◦ (Mh)−1 ∈ Mc

+(t, ω) satisfies that Qh[A1
h] + Qh[A2

h] = 1. Next, let

Q ∈Mc
+(t, ω �t xi). For each h > 0, i = 1, 2 and ω′ ∈ Aih, we define X

h,i,ω′

by

X
h,i,ω′

s := ω′s1{s∈[0,t+h)}+
(
xi+Xt+2(s−t−h)−Xt

)
1{s∈[t+h,t+2h)}+

(
xi+Xs−Xt

)
1{s∈[t+2h,T ]}.

Then it is easy to check thatQ′h := Q◦(Xh,i,ω′

)−1 ∈Mc
+(t+h, ω′) and that limh−→0 EQ′h [Φ̂(X)] =

limh−→0 EQ[Φ̂(X
h,i,ω′

)] = EQ[Φ̂(X)]. This proves the conditions in Assumption 3.3.(ii). �

References
[1] Sara Biagini, Bruno Bouchard, Constantinos Kardaras and Marcel Nutz. Robust funda-

mental theorem for continuous processes. Mathematical Finance, 27(4):963-987, 2017.

[2] Bruno Bouchard and Marcel Nutz. Arbitrage and duality in non-dominated discrete-time
models. The Annals of Applied Probability, 25(2):823-859, 2015.

[3] Bruno Bouchard and Xiaolu Tan. Understanding the dual formulation for the hedging of
path-dependent options with price impact. arXiv:1912.03946, 2019.

[4] Eric Carlen and Philip Protter. On semimartingale decompositions of convex functions of
semimartingales. Illinois journal of mathematics, 36(3), 1992.

[5] Rama Cont and David-Antoine Fournié. Change of variable formulas for non-anticipative
functionals on path space. Journal of Functional Analysis, 259(4):1043–1072, 2010.

[6] Rama Cont and David-Antoine Fournié. Functional Itô calculus and stochastic integral
representation of martingales. The Annals of Probability, 41(1):109–133, 2013.

[7] Freddy Delbaen andWalter Schachermayer. A compactness principle for bounded sequences
of martingales with applications. Seminar on stochastic analysis, random fields and appli-
cations. Birkhäuser, Basel, 1999.

[8] Yan Dolinsky and H. Mete Soner. Martingale optimal transport in the Skorokhod space.
Stochastic Processes and their Applications, 125(10):3893-3931, 2015.

[9] Bruno Dupire. Functional Itô calculus. Portfolio Research Paper, 04, 2009.

[10] Nicole El Karoui and Marie-Claire Quenez. Dynamic programming and pricing of contin-
gent claims in an incomplete market. SIAM journal on Control and Optimization, 33(1):29–
66, 1995.

[11] Nicole El Karoui and Xiaolu Tan. Capacities, measurable selection and dynamic program-
ming Part I: abstract framework. arXiv:1310.3363, 2013.

19



[12] Hans Föllmer and Yuri Kabanov. Optional decomposition and Lagrange multipliers. Fi-
nance and Stochastics, 2(1):69-81, 1997.

[13] Hans Föllmer and Dmitry Kramkov. Optional decompositions under constraints. Probability
Theory and Related Fields, 109(1):1-25, 1997.

[14] Gaoyue Guo, Xiaolu Tan and Nizar Touzi. Tightness and duality of martingale transport
on the Skorokhod space. Stochastic Processes and their Applications, 127(3):927-956, 2017.

[15] Jean Jacod and Albert Shiryaev. Limit theorems for stochastic processes. Springer Science
& Business Media, 288, 2013.

[16] Adam Jakubowski. A non-Skorohod topology on the Skorohod space. Electronic journal of
probability, 2, 1997.

[17] Benedikt Köpfer and Ludger Rüschendorf. Comparison of path-dependent functionals of
semimartingales. arXiv preprint arXiv:1908.10076, 2019.

[18] Dmitry Kramkov. Optional decomposition of supermartingales and hedging contingent
claims in incomplete security markets. Probability Theory and Related Fields, 105(4):459–
479, 1996.

[19] Paul-André Meyer. Un cours sur les intégrales stochastiques (exposés 1 à 6). Séminaire de
probabilités de Strasbourg, 10:245–400, 1976.

[20] Ariel Neufeld and Marcel Nutz. Superreplication under volatility uncertainty for measurable
claims. Electronic journal of probability, 18, 2013.

[21] Marcel Nutz. Pathwise construction of stochastic integrals. Electronic Communications in
Probability, 17(24):1-7, 2012.

[22] Marcel Nutz. Robust superhedging with jumps and diffusion. Stochastic Processes and their
Applications, 125(12), 4543-4555, 2015.

[23] Dylan Possamaï, Guillaume Royer, and Nizar Touzi. On the robust superhedging of mea-
surable claims. Electronic Communications in Probability,18, 2013.

[24] Yuri F. Saporito. The functional Meyer-Tanaka formula. Stochastics and Dynamics, 18(04):
1850030, 2018.

20


	Introduction
	Optional decomposition of Dupire concave functionals
	Super-hedging duality
	Abstract framework
	Example 1: robust hedging with positive martingales
	Example 2: robust hedging with continuous positive martingales


