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Abstract

We study a class of linear parabolic path-dependent PDEs (PPDEs) defined on

the space of càdlàg paths x ∈ D([0, T ]), in which the coefficient functions at time t

depend on x(t) and
∫ t

0
x(s)dAs, for some (deterministic) continuous function A with

bounded variations. Under uniform ellipticity and Hölder regularity conditions on the

coefficients, together with some technical conditions on A, we obtain the existence of

a smooth solution to the PPDE by appealing to the notion of Dupire’s derivatives. It

provides a generalization to the existing literature studying the case where At = t, and

complements our recent work in [2] on the regularity of approximate viscosity solutions

for parabolic PPDEs. As a by-product, we also obtain existence and uniqueness of

weak solutions for a class of path-dependent SDEs.
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1 Introduction

We consider linear parabolic path-dependent PDEs (PPDEs) of the form

∂tv + µ̄∂xv +
1

2
σ̄2∂2

xv + ¯̀= 0, on [0, T )×D([0, T ]) (1.1)

v(T, ·) = ḡ on D([0, T ]).

In the above, D([0, T ]) denotes the space of all real-valued càdlàg path x = (x(t))t∈[0,T ] on

[0, T ], the derivatives are taken in the sense of Dupire [6, 3] (see Section 2.1 below), and

the coefficient functions (µ̄, σ̄, ¯̀, ḡ) : [0, T ]×D([0, T ]) −→ R× R× R× R are of the form

(
µ̄t, σ̄t, ¯̀

t, ḡ
)
(x) =

(
µt, σt, `t

)(
x(t), It(x)

)
, ḡ(x) = g(xT , IT (x)), with It(x) :=

∫ t

0
x(s)dAs,

for some functions (µ, σ, `, g) : [0, T ]× R2 −→ R× R× R× R, and a continuous process A

with bounded variations. When A is absolutely continuous, say simply At = t, the above
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can be written as a degenerate parabolic PDE

∂tv + µ∂x1v + x1∂x2v +
1

2
σ2∂2

x1x1
v + ` = 0 on [0, T )× R2, v(T, ·) = g on R2, (1.2)

in which the derivatives are now taken in the usual sense and

v(t, x) = v
(
t, xt, It(x)

)
.

Indeed, the Dupire’s horizontal derivative ∂tv and vertical derivatives (∂xv, ∂2
xv) are related

to the partial derivatives of v through

(∂t, ∂x, ∂
2
x)v(t, x) =

(
∂t + x(t)∂x2 , ∂x1 , ∂

2
x1x1

)
v
(
t, x(t), It(x)

)
.

Various works are devoted to such equations, going back to [10], in more complex multi-

variate frameworks, see e.g. [5, 8, 11, 13, 15] and the references therein. The latter PDE

may not admit a C1,2-solution, in the traditional sense, even when σ̄ is uniformly elliptic:

∂tv and ∂x2v are in general not well-defined and one needs to define ∂tv + x1∂x2v jointly,

appealing to the notion of Lie derivative, which amounts to considering Dupire’s horizontal

derivative when the PDE is seen as a PPDE.

The main novelty of this paper is that we do not assume anymore that (At)t∈[0,T ] is ab-

solutely continuous in t. In this case, the PDE formulation (1.2) is not valide anymore,

but the PPDE formulation (1.1) is still adequate. We provide conditions under which (1.1)

admits a solution that is smooth in the sense of Dupire’s deviratives. It complements [2] in

which coefficients are assumed to be C1+α, which allows one to construct the so-called ap-

proximate viscosity solutions of non-linear path-dependent PDEs with first order Dupire’s

vertical derivative enjoying some Hölder-type regularity (see [2] for details). As shown

in e.g. [1], in many situations, this is already sufficient to derive a Feynman-Kac’s repre-

sentation of the solution by appealing to a version of Itô-Dupire’s stochastic calculus for

path-dependent functionals that are only vertically differentiable up to the first order. In

contrast to [2], we only assume here that the coefficients are Hölder continuous, but require

σ̄ to be non-degenerate, so as to expect the classical regularization effect to operate.

We rely on the parametrix approach, see e.g. [9, Chapter 1]. For this, we perform a change

of variables which allows us to reduce to a PDE of the form

∂tu+ µ〈(1, A), Du〉+
1

2
σ2(1, A)D2u(1, A)> = 0,

which can be written even if A is not absolutely continuous. The above is again degenerate

and (Du,D2u) may not be well-defined. However, the parametrix approach allows one to

show that 〈(1, A), Du〉 and (1, A)D2u(1, A)> are, which in turn implies that the vertical

derivatives (∂xv, ∂2
xv) of the path-dependent functional v are.

As a by-product, we establish the existence and uniqueness of a weak solution to the path-

dependent stochastic differential equation (SDE)

Xt = X0 +

∫ t

0
µs(Xs, Is)ds+

∫ t

0
σt(Xs, Is)dWt, It =

∫ t

0
XsdAs, t ≥ 0,
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and provide some first properties of the transition density of the Markov process (X, I), as

well as the corresponding Feynman-Kac’s formula.

These results require structural conditions relating the Hölder regularity of the coefficient

(µ, σ) and the path behavior of A. If one knows a priori that the above SDE admits a unique

weak solution, then one can prove under weaker conditions that the candidate solution to

(1.1), deduced from a formal application of the Feynman-Kac’s formula1, is already C1 in

space, in the sense of Dupire. As mentioned above, this turns out to be enough to deduce

its Itô-Dupire’s semimartingale decomposition.

All over this paper, we stick to a one-dimensional setting for ease of notations. Extensions

to multivariate frameworks can be provided by using similar techniques.

The rest of this paper is organized as follows. Section 2 states our main results. Proofs are

collected in Section 3.

In the following, the i-th component of a vector x is denoted by xi, the (i, j)-component of

a matrix M is denoted by Mij . Given φ : (t, x) ∈ [0, T ] × R2 −→ φ(t, x) ∈ R, we let Dφ

and D2φ (or Dxφ and D2
xxφ) be the gradient and the Hessian matrix with respect to x.

The space partial derivatives are denoted by ∂xiφ, ∂2
xixjφ, and so on if we have to consider

higher orders.

2 Dupire’s regularity for linear PPDEs depending on the

average of the path

2.1 Notations and assumptions

Given T > 0, let D([0, T ]) denote the Skorokhod space of all R–valued càdlàg paths

x = (x(t))t∈[0,T ] on [0, T ], and let C([0, T ]) denote the subspace of continuous paths. Let

us equipped D([0, T ]) with the Skorokhod topology, and C([0, T ]) with the uniform con-

vergence topology. Let A = (At)t≥0 be a deterministic continuous process with finite

variation, and (µ, σ, `) : [0, T ]× R2 −→ R× R× R be coefficient functions, from which we

define path-dependent functionals (µ̄, σ̄, ¯̀) : [0, T ]×D([0, T ]) −→ R× R× R by

(
µ̄t, σ̄t, ¯̀

t

)
(x) :=

(
µt, σt, `t

)(
x(t), It(x)

)
, with It(x) :=

∫ t

0
x(s)dAs.

We study the following linear parabolic path-dependent PDE (PPDE):

∂tv + µ̄∂xv +
1

2
σ̄2∂2

xv + ¯̀ = 0, on [0, T )×D([0, T ]), (2.1)

with terminal condition v(T, x) = ḡ(x) := g
(
x(T ), IT (x)

)
for some function g : R×R −→ R.

In the above, the derivatives are taken in the sense of Dupire.

1Or more rigorously its viscosity solution in the sense of [4, 16], see also e.g. [2, 7, 12] and the references

therein for an alternative definition.
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Dupire’s derivatives for path-dependent functionals To give a precise definition to

the PPDE (2.1), let us recall Dupire’s [6, 3] notion of horizontal derivative ∂t and vertical

derivatives ∂x and ∂2
x for path-dependent functionals.

Let F : [0, T ] × D([0, T ]) −→ R be a path-dependent functional, it is said to be non-

anticipative if F (s, x) = F (s, x(s ∧ ·)) for all (s, x) ∈ [0, T ] × D([0, T ]). For an non-

anticipative map F , its horizontal derivative ∂sF (s, x) at (s, x) ∈ [0, T )×D([0, T ]) is defined

as

∂sF (s, x) := lim
h↘0

F (s+ h, x(s ∧ ·))− F (s, x)

h
,

and its vertical derivative ∂xF (s, x) is defined as

∂xF (s, x) := lim
y→0

F (s, x + y1[s,T ])− F (s, x)

y
,

whenever the limits exist. In the above, x + y1[s,T ] denotes the path taking value xt +

y1[s,T ](t) at time t ∈ [0, T ]. Similarly, one can define the second order vertical derivative

∂2
xF as the vertical derivative of ∂xF . Given t ∈ (0, T ], we denote by C([0, t)) the space of

all continuous non-anticipative functionals F : [0, t)×D([0, T ]) −→ R, and we set

C0,1([0, t)) :=
{
F ∈ C([0, t)) : ∂xF is well-defined and belongs to C([0, t))

}
,

as well as

C1,2([0, t)) :=
{
F ∈ C0,1([0, t)) : ∂sF and ∂2

xF are well-defined and belong to C([0, t))
}
.

Assumptions on the process A: Recall that A = (At)t∈[0,T ] is a deterministic process

with finite variation. For 0 ≤ s < t ≤ T , let us define As,t := 1
t−s
∫ t
s Ardr and

ms,t :=
1

t− s

∫ t

s

(
Ar −As,t

)2
dr, m̃s,t :=

1

t− s

∫ t

s
(Ar −As)2dr.

The above will play a major role in our analysis, as they will drive the behavior of the

parametrix density on small time intervals.

Assumption 2.1. (i) There exist constants β0, β1, β2, β3 ≥ 0 and C(2.2), C(2.3) > 0 such

that, for all 0 ≤ s < t ≤ T ,

1

C(2.2)
(t− s)−β1 ≤ m̃s,t

ms,t
≤ C(2.2)(t− s)−β0 , (2.2)

1

C(2.3)
(t− s)−β2 ≤ 1

ms,t
≤ C(2.3)(t− s)−β3 . (2.3)

(ii) There exist constants β4 ≥ 0 and C(2.4) > 0 such that

|At −As| ≤ C(2.4)(t− s)β4 , for all 0 ≤ s < t ≤ T. (2.4)

Remark 2.2. Notice that, limt↓s m̃s,t = 0 by continuity of A. Without loss of generality,

one can therefore assume that

β1 ≤ β0 ≤ β3 and β1 ≤ β2 ≤ β3.

Moreover, one can always choose β0 = β4 = 0 since ms,t ≤ m̃s,t by their definitions.
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Let us provide some typical examples.

Example 2.3. (i) Let A be defined by At =
∫ t

0 ρ(s)ds, t ≥ 0, with ε ≤ ρ ≤ 1/ε a.e. for

some ε > 0. Then, it is easy to check that Assumption 2.1 holds with

β0 = 0, β1 = 0, β2 = 2, β3 = 2, β4 = 1.

In this setting, our main results are similar to those in [8], which studied a multivariate

version of the case where ρ is constant.

(ii) Let At = tγ for some γ ∈ (0, 1). Then,

ms,t =
t2γ+1 − s2γ+1

(2γ + 1)(t− s)
− |t

γ+1 − sγ+1|2

(γ + 1)2(t− s)2
,

and

m̃s,t =

1
2γ+1(t2γ+1 − s2γ+1)− 2 1

γ+1(tγ+1 − sγ+1)sγ + (t− s)s2γ

t− s
.

In this setting, Assumption 2.1 holds true with

β0 = 0, β1 = 0, β2 = 2γ, β3 = 2γ, β4 = γ.

(iii) Assume that there exists 1 ≥ γ1 ≥ γ2 > 0 and C1, C2 > 0 such that

C1|t− s|γ1 ≤ At −As ≤ C2|t− s|γ2 , for all s ≤ t ≤ T.

Then, Assumption 2.1 holds with

β0 = 2(γ1 − γ2), β1 = 0, β2 = 2γ2, β3 = 2γ1, β4 = γ2.

Indeed, let us choose t0 ∈ [0, T ] such that At0 = As,t. Assume that t − t0 ≥ (t − s)/2

(otherwise t0 − s ≥ (t− s)/2 and we can use similar computations), then

(t− s)ms,t =

∫ t

s
|Ar −At0 |2 ≥

∫ t

t0

C2
1 |r − t0|2γ1dr ≥ C2

1

22γ1+1(2γ1 + 1)
|t− s|2γ1+1.

On the other hand, (t− s)ms,t ≤
∫ t
s |Ar −As|

2 ≤ C2
2

2γ2+1 |t− s|
2γ2+1. Thus,

1 ≤ m̃s,t

ms,t
≤ 22γ1+1C

2
2 (2γ1 + 1)

C2
1 (2γ2 + 1)

|t− s|−2(γ1−γ2).

Assumptions on the coefficient functions µ and σ: As in e.g. [8], the following

Hölder regularity assumption on the coefficient functions (µ, σ) : [0, T ] × R2 −→ R × R is

calibrated to match with the explosion rate of the quadratic form entering the parametrix.

It does not impose smoothness conditions on µ and σ as in e.g. [13], and facilitate the

analysis, see Remark 2.6 below. Let us set

Θ :=
{

(s, x, t, y) ∈ [0, T ]× R2 × [0, T ]× R2 : s < t
}
,

and, for (s, x, t, y) ∈ Θ,

ws,t(x, y) := x− Es,t(y) ∈ R2, with Es,t(y) :=

(
1 0

−(At −As) 1

)
y ∈ R2. (2.5)
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Assumption 2.4. Let β0, β1, β2 ≥ 0 be the constants in Assumption 2.1. Then,

(i) We have

β′1 := β1 − β0 > −1, β′2 := β2 − β0 > −1.

Moreover, the coefficients µ and σ are continuous, and there exist constants (a, ā) ∈ R2,

b ∈ R, C(2.7) > 0 and α > 0 such that

|µ| ≤ b, 0 < a ≤ σ2 ≤ ā, on [0, T ]× R2, (2.6)

and ∣∣σs(x)− σt(y)
∣∣ ≤ C(2.7)

(
|t− s|α +

∣∣ws,t(x, y)
∣∣ 2α

1+β′1 +
∣∣ws,t(x, y)

∣∣ 2α
1+β′2

)
, (2.7)

for all (s, x, t, y) ∈ Θ.

(ii) There exists a constant C(2.8) > 0 such that

∣∣µt(x)− µt(y)
∣∣ ≤ C(2.8)

(∣∣x1 − y1

∣∣ 2α
1+β′1 +

∣∣x2 − y2

∣∣ 2α
1+β′2

)
, for all (t, x, y) ∈ [0, T ]× R2 × R2.

(2.8)

Example 2.5. The condition (2.7) holds for instance if σs(x1, x2) depends only on (s, x1)

and is Hölder with respect to (s, x1). It would also hold if it is of the form σs(x) = σ̃s(x1, x2−
Asx1) for some Hölder continuous map σ̃. Indeed, one has∣∣x2 −Asx1 − (y2 −Aty1)

∣∣ =
∣∣x2 −Asx1 − (y2 −Aty1)−As(y1 − x1) +As(y1 − x1)

∣∣
≤
∣∣x2 − y2 + (At −As)y1)

∣∣+ |As|
∣∣y1 − x1

∣∣
≤
(

1 + max
[0,T ]
|A|
)
|ws,t(x, y)|.

Remark 2.6. The case where the coefficient σ is Hölder in the classical sense, i.e.∣∣σs(x)− σt(y)
∣∣ ≤ C

(
|t− s|α +

∣∣x1 − y1

∣∣ 2α
1+β′1 +

∣∣x2 − y2

∣∣ 2α
1+β′2

)
can be tackled by combining the arguments below with those of e.g. [13]. This will add

additional exponentially growing terms in the estimates on Φ̃ in Proposition 3.5 below,

which can be handled, to the price of adapted restrictions on the coefficients (βi)0≤i≤4. We

chose the formulation of the conditions in (2.7) for sake of simplicity.

2.2 Heuristic derivation using a change of variables and the parametrix

method

Let us consider the path-dependent SDE

Xt = X0 +

∫ t

0
µs(Xs, Is)ds+

∫ t

0
σt(Xs, Is)dWs, It =

∫ t

0
XsdAs, t ∈ [0, T ], (2.9)

where W is a Brownian motion. Assume that the above SDE has a solution X such

that (X, I) is Markov. Then, to deduce a solution to the PPDE (2.1), it suffices to find the

transition probability (density) function f(s, x; t, y) of the Markov process (X, I) from (s, x)
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to (t, y). When t 7−→ At is absolutely continuous, it is well-known that (s, x) 7−→ f(s, x; t, y)

solves a Kolmogorov’s backward PDE and that (t, y) 7−→ f(s, x; t, y) solves a Kolmogorov’s

forward PDE. One can then apply the classical parametrix method as in [8, Section 4] to

guess the expression of f(s, x; t, y).

In our setting where A is not necessarily absolutely continuous, it is no more possible to

write the Kolmogorov’s PDE for the transition probability (density) function of (X, I). We

therefore perform a change of variable and set

X̃t := At

(
Xt

It

)
, with At :=

(
1 0

At −1

)
, t ∈ [0, T ]. (2.10)

Notice that A−1
t = At and that X̃ is a diffusion process with dynamics

X̃t = X̃0 +

∫ t

0
µ̃s(X̃s)

−→
A sds+

∫ t

0
σ̃s(X̃s)

−→
A sdWs, t ∈ [0, T ], (2.11)

where
−→
A, µ̃ : R2 −→ R and σ̃ : R2 −→ R are defined by

−→
A s :=

(
1

As

)
, µ̃s(x) := µs(Asx) and σ̃s(x) := σs(Asx), (s, x) ∈ [0, T ]× R2. (2.12)

The generator L̃ of X̃ is given by

L̃φ(s, x) := µ̃s(x)
−→
A s ·Dφ(s, x) +

1

2
σ̃s(x)2 Tr

[−→
A s(
−→
A s)

>D2φ(s, x)
]
,

for smooth functions φ : [0, T ]× R2 −→ R.

Assume that the SDE (2.11) has a solution X̃ which is Markovian and has a smooth

transition probability density function f̃(s, x; t, y), from x at s to y at t, then (s, x) 7−→
f̃(s, x; t, y) solves the Kolmogorov backward equation(

∂s + L̃
)
f̃(s, x; t, y) = 0, for (s, x) ∈ [0, t)× R2. (2.13)

Notice that, in the above, the operator L̃ acts on the first two arguments (s, x) of f̃(s, x; t, y).

To construct the parametrix, we consider the following process, with volatility frozen at

(r, z) ∈ [0, T ]× R2,

X̃r,z
t := σ̃r(z)

∫ t

0

−→
A sdWs, t ∈ [0, T ].

The corresponding generator L̃r,z is then given by

L̃r,zφ(s, x) :=
1

2
σ̃r(z)

2 Tr
[−→

A s(
−→
A s)

>D2φ(s, x)
]
, for smooth functions φ.

We further define f̃r,z(s, x; t, y) as the corresponding transition probability function from

(s, x) to (t, y), for (s, x, t, y) ∈ Θ. Notice that f̃r,z is explicitly given and that y 7−→
f̃r,z(s, x; t, y) is the density function of the Gaussian random vector x+ σ̃r(z)

∫ t
s

−→
A rdWr. It

satisfies (
∂s + L̃r,z

)
f̃r,z(s, x; t, y) = 0, for (s, x) ∈ [0, t)× R2. (2.14)
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Now, we employ the machinery of the parametrix method (see e.g. [9, Chapter 1] or [8]),

taking f̃t,y(s, x; t, y) as parametrix, and expressing f̃(s, x; t, y) in the following form:

f̃(s, x; t, y) = f̃t,y(s, x; t, y) +

∫ t

s

∫
R2

f̃r,z(s, x; r, z)Φ̃(r, z, t, y)dzdr, (2.15)

for some function Φ̃ : Θ −→ R. By (2.13) and (2.14), one must have

0 =
(
∂s + L̃

)
f̃(s, x; t, y)

=
(
∂s + L̃

)
f̃t,y(s, x; t, y) +

(
∂s + L̃

) ∫ t

s

∫
R2

f̃r,z(s, x; r, z)Φ̃(r, z, t, y)dzdr

=
(
L̃ − L̃t,y

)
f̃t,y(s, x; t, y)− Φ̃(s, x; t, y)

+

∫ t

s

∫
R2

(
L̃ − L̃t,z

)
f̃r,z(s, x; r, z)Φ̃(r, z; t, y)dzdr.

Therefore, Φ̃ must satisfy

Φ̃(s, x; t, y) =
(
L̃ − L̃t,y

)
f̃t,y(s, x; t, y) +

∫ t

s

∫
R2

(
L̃ − L̃t,z

)
f̃r,z(s, x; r, z)Φ̃(r, z; t, y)dzdr.

(2.16)

In view of (2.16), we obtain

Φ̃(s, x; t, y) :=

∞∑
k=0

∆̃k(s, x; t, y), (2.17)

where ∆̃0(s, x; t, y) :=
(
L̃ − L̃t,y

)
f̃t,y(s, x; t, y), and

∆̃k+1(s, x; t, y) :=

∫ t

s

∫
R2

∆̃0(s, x; r, z)∆̃k(r, z; t, y)dzdr, k ≥ 0. (2.18)

Notice that L̃, L̃t,y and f̃t,y have explicit expressions. The main strategy of the classical

parametrix method consists in checking that Φ̃ in (2.17) is well-defined and solves the

integral equation (2.16). Then, one defines f̃ by (2.15), and check that it provides a solution

to (2.13). If f̃ is smooth, one can basically deduce that f̃ is the transition probability density

function of X̃ in (2.11) by using the Feynman-Kac’s formula.

The main difficulty here lies in the fact that f̃ is, in general, not smooth enough. For

smoothness properties, we will therefore turn back to the initial coordinates (X, I) and

define the candidate transition probability function f of the process (X, I) in (2.9) through

(2.19)-(2.20) below, and work on it directly.

2.3 Main results

Under some conditions on the constants α and (β)i=0,··· ,4 given in Assumptions 2.1 and 2.4,

we will show that Φ̃ : Θ −→ R is well-defined by (2.17)-(2.18). For (r, z) ∈ [0, T ]× R2, we

can then define fr,z and Φ by inverting the change of variables in (2.10):

fr,z(s, x; t, y) := f̃r,Arz(s,Asx; t,Aty), Φ(s, x; t, y) := Φ̃(s,Asx; t,Aty). (2.19)
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The corresponding candidate transition density f : Θ −→ R for (X, I) is therefore:

f(s, x; t, y) := ft,y(s, x; t, y) +

∫ t

s

∫
R2

fr,z(s, x; r, z)Φ(r, z; t, y)dzdr, (2.20)

for all (s, x, t, y) ∈ Θ.

For any positive constant a ∈ R+ and 0 ≤ s < t ≤ T , let us set

Σs,t(a) := a

(
t− s −

∫ t
s (Ar −As)dr

−
∫ t
s (Ar −As)dr

∫ t
s (Ar −As)2dr

)
.

For (r, z) ∈ [0, T ]× R2, we write Σs,t(r, z) := Σs,t(σ
2
r (z)) for simplicity. Equivalently,

Σs,t(r, z) := σ2
r

(
z
)( t− s −

∫ t
s (Ar −As)dr

−
∫ t
s (Ar −As)dr

∫ t
s (Ar −As)2dr

)
. (2.21)

Then, it is easy to check that y 7−→ fr,z(s, x; t, y) is the density function of the Gaussian

random vector(
x1 + σr(z)(Wt −Ws), x2 +

∫ t

s

(
x1 + σr(z)(Wu −Ws)

)
dAu

)>
,

so that, with w := ws,t(x, y) as in (2.5),

fr,z(s, x; t, y) =
1

2π det (Σs,t(r, z))
1
2

exp
(
− 1

2

〈
Σ−1
s,t (r, z)w,w

〉)
.

Let us also define the Gaussian transition probability function f◦ : Θ −→ R by

f◦(s, x; t, y) :=
1

2π det (Σs,t(4ā))
1
2

exp
(
− 1

2

〈
Σ−1
s,t (4ā)w,w

〉)
, (s, x, t, y) ∈ Θ. (2.22)

As a first main result, we show that f is well-defined under some conditions on the coeffi-

cients α and β0, and then provide some first regularity and bound estimates.

Theorem 2.7. Let Assumption 2.1.(i) and Assumption 2.4.(i) hold true.

(i) Assume that

κ0 :=
1− β0

2
∧ (α− β0) > 0. (2.23)

Then Φ̃ in (2.17)-(2.18) is well-defined, and so is f : Θ −→ R in (2.20). Moreover, f is

continuous on Θ, and there exists a constant C > 0 such that∣∣f(s, x; t, y)
∣∣ ≤ Cf◦(s, x; t, y), for all (s, x, t, y) ∈ Θ. (2.24)

(ii) Assume that (2.23) holds and that

κ1 := κ0 +
1− β0

2
= (1− β0) ∧ (

1

2
+ α− 3

2
β0) > 0. (2.25)

Then, the partial derivative (s, x; t, y) ∈ Θ 7→ ∂x1f(s, x; t, y) exists, is continuous on Θ,

and, for some constant C(2.26) > 0,∣∣∂x1f(s, x; t, y)
∣∣ ≤ C(2.26)

(t− s)1−κ1
f◦(s, x; t, y), for all (s, x, t, y) ∈ Θ. (2.26)
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Under further conditions, we can obtain more regularity of f and then check that it is the

transition probability function of the Markov process (X, I). To be more precise, let us

rephrase this in terms of path-dependent functionals. For 0 ≤ s < t ≤ T , x ∈ D([0, T ]) and

y ∈ R2, we set

(f, f◦)(s, x; t, y) := (f, f◦)
(
s, x(s), Is(x); t, y

)
, with Is(x) :=

∫ s

0
x(r)dAr. (2.27)

We now fix ` : [0, T ] × R2 −→ R and g : R2 −→ R such that, for some constants C`,g > 0

and α` > 0, ∣∣`(t, x)
∣∣+
∣∣g(x)

∣∣ ≤ C`,g exp
(
C`,g|x|

)
, (2.28)

and ∣∣`(t, x)− `(t, x′)
∣∣ ≤ C`,g

(
eC`,g |x| + eC`,g |x

′|)(|x1 − x′1|
2α`

1+β′1 + |x2 − x′2|
2α`

1+β′2

)
, (2.29)

for all t ∈ [0, T ] and x, x′ ∈ R2. In view of the upper-bound estimate of f in (2.24), we can

then define

v(s, x) :=

∫ T

s

∫
R2

`(t, y)f(s, x; t, y)dydt +

∫
R2

g(y)f(s, x;T, y)dy, (s, x) ∈ [0, T )×D([0, T ]).

(2.30)

Remark 2.8. By its definition in (2.27), it is straightforward to check that

∂xf(s, x; t, y) = ∂x1f
(
s, x(s), Is(x); t, y

)
.

Similarly, let us define, for (r, z), (t, y) ∈ [0, T ]× Rd,

fr,z(s, x; t, y) := fr,z(s, x(s), It(x); t, y), (s, x) ∈ [0, t)×D([0, T ]).

Then, the functional (s, x) 7−→ fr,z(s, x; t, y) is a classical solution to the PPDE

∂sfr,z(s, x; t, y) +
1

2
σr(z)

2∂2
xxfr,z(s, x; t, y) = 0, for (s, x) ∈ [0, t)×D([0, T ]). (2.31)

Theorem 2.9. Let Assumptions 2.1 and 2.4 hold true. Assume that (2.23), (2.25), (2.28)

and (2.29) hold, and that there exists αΦ ∈ R such that

0 < αΦ < κ0 ∧ α̂Φ ∧ min
i=1,2

1 + β′i
2

, with α̂Φ :=
1

2
− β0 −

∆̂β

2
− (β0 + 1− 2α)+

2
,

where

∆̂β := max {β0 − β1 , β3 − β2} , (2.32)

and

min
(2β4 + 1 + β′1

1 + β′2
, 1
)

min{αΦ, α`, α} − β0 > 0.

(i) For each (t, y) ∈ (0, T ]×R2, the path-dependent functional f(·; t, y) belongs to C1,2([0, t)).
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(ii) v ∈ C1,2([0, T )) and it solves the PPDE (2.1). Moreover, there exists C > 0 such that,

for all (s, x) ∈ [0, T )×D([0, T ]),

∣∣∂xv(s, x)
∣∣ ≤ CeC(|xs|+|Is(x)|)

(T − s)1−κ1
, and

∣∣∂tv(s, x)
∣∣+
∣∣∂2

xv(s, x)
∣∣ ≤ CeC(|xs|+|Is(x)|)

(T − s)1+β0
. (2.33)

If, in addition, g : R2 −→ R is continuous, then v is the unique classical solution to the

PPDE (2.1) satisfying

lim
t↗T

v(t, x) = ḡ(x) and |v(s, x)| ≤ CeC(|xs|+|Is(x)|) (2.34)

for all (s, x) ∈ [0, T ]× C([0, T ]), for some C > 0.

(iii) The SDE (2.9) has a unique weak solution X. Moreover, (X, I) is a strong Markov

process with transition probability given by f and

v(s, x) = E
[ ∫ T

s
`(Xt, It)dt+ g(XT , IT )

∣∣∣Xs = x(s), Is = Is(x)
]
, (s, x) ∈ [0, T ]×D([0, T ]).

(2.35)

Remark 2.10. To check the conditions on α and βi, i = 0, · · · , 4 in Theorem 2.9, let us

stay in the setting of Example 2.3.

(i)− (ii) In these cases, κ0 = 1
2 ∧ α, κ1 = 1 ∧ (α + 1

2), α̂Φ = 1
2 − [1

2 − α]+ = α ∧ 1
2 and we

can choose αΦ ∈ (0, 1
2 ∧ α).

(iii) In this case, κ0 = 1−2(γ1−γ2)
2 ∧ (α − 2(γ1 − γ2)) which requires that γ1 − γ2 <

1
2 ∧

α
2

to ensure that κ0 > 0. Then, κ1 > 0 and α̂Φ = 1
2 − 3(γ1 − γ2) − [γ1 − γ2 + 1

2 − α]+. If

2α/(1 + β′1) ≤ 1, then α ≤ 1/2 and therefore γ1 − γ2 + 1
2 − α ≥ 0. In this case, we can

choose αΦ ∈ (0, α − 4(γ1 − γ2)) if γ1 − γ2 < α/4. If 2α/(1 + β′1) > 1, then (µ, σ) does no

depend on its first argument, and the different cases can also be treated explicitly, leading

to a suitable αΦ when γ1 − γ2 is small enough.

The conditions in Theorem 2.9 ensure that f is smooth enough, so that one can basically

apply the Feynman-Kac’s formula to justify that it is the transition probability function

of a Markov process. It can then be used to prove that the wellposedness (existence and

uniqueness) of the SDE (2.9). If one already knows that the SDE (2.9) has a unique a weak

solution, then one can rely on Theorem 2.11 below, which requires less technical conditions

on A and (µ, σ), to check that f is the corresponding transition probability function. In

this case, the path-dependent functional v defined above may only be C0,1([0, T )), but it is

enough to deduce that (2.35) holds, and obtain it’s Itô-Dupire’s decomposition, whenever

it satisfies for instance one of the conditions a. or b. of Theorem 2.11 .

Theorem 2.11. Let Assumption 2.1.(i) and Assumption 2.4.(i) hold true, and assume

that the SDE (2.9) has a unique weak solution, so that the corresponding process (X, I) is

a strong Markov process.

(i) Assume in addition that (2.23) holds true so that f is well defined. Then, f is the

transition probability function of (X, I), and (2.35) holds whenever (2.28) does.
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(ii) Assume that (2.23), (2.25) and (2.28) hold. Then, v ∈ C0,1([0, T )). Suppose in addition

that one of the following holds:

(a) there exists C(2.36) > 0 such that

∣∣v(t, x)− v(t, x′)
∣∣ ≤ C(2.36)

∫ t

0
|x(r)− x′(r)|d|A|r, (2.36)

for all t ∈ [0, T ], x, x′ ∈ D([0, T ]) such that x(t) = x′(t), in which |A| denotes the total

variation of A.

(b) A is monotone and 0 < 1+β2−β0

2+4β4
< 1− β3−β2+β0

2 .

Then,

v(t,X) = v(0, X) +

∫ t

0
∂xv(s,X)σ̄s(X)dWs −

∫ t

0

¯̀
s(X)ds, t ∈ [0, T ]. (2.37)

Remark 2.12. When b/σ is bounded, and σ is Lipschitz in its space variable in the sense

that, for some constant C(2.38) > 0,∣∣σs(x)− σs(x′)
∣∣ ≤ C(2.38)|x− x′|, s ∈ [0, T ], x, x′ ∈ R2, (2.38)

with (σs(0))s≤T bounded, then the SDE (2.9) has a unique weak solution.

Remark 2.13. To check the conditions in Theorem 2.11.(ii).(b), let us consider the situ-

ations of Example 2.3.

(i)− (ii) In these cases, 1+β2−β0

2+4β4
= 1

2 and 1−β3−β2+β0

2 = 1, so that the conditions inTheorem

2.11.(ii).(b) hold true.

(iii) In this case, 1+β2−β0

2+4β4
= 1

2 −
γ1−γ2

1+2γ2
and 1 − β3−β2+β0

2 = 1 − 2(γ1 − γ2). Therefore, the

conditions in Theorem 2.11.(ii).(b) hold true when γ1 − γ2 is small enough.

3 Proofs

This section is devoted to the proof of Theorems 2.7, 2.9 and 2.11.

3.1 A priori estimates

Recall that, with w := ws,t(x, y) (see (2.5)),

fr,z(s, x; t, y) :=
1

2πdet (Σs,t(r, z))
1
2

exp
(
− 1

2

〈
Σ−1
s,t (r, z)w,w

〉)
,

where

Σs,t(r, z) := σ2
r

(
z
)( t− s −

∫ t
s (Ar −As)dr

−
∫ t
s (Ar −As)dr

∫ t
s (Ar −As)2dr

)
.
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By direct computation, one has

det (Σs,t(r, z)) = σ4
r

(
z
)
(t− s)2ms,t, (3.1)

and hence

Σ−1
s,t (r, z) = σ−2

r

(
z
) 1

t−s
m̃s,t
ms,t

∫ t
s (Ar−As)dr
(t−s)2ms,t∫ t

s (Ar−As)dr
(t−s)2ms,t

1
(t−s)ms,t

 . (3.2)

The following quantities will play an important role in our analysis. For i = 1, 2, (r, z) ∈ R2

and (s, x, t, y) ∈ Θ, with w := ws,t(x, y) (see (2.5)), we compute that

∂xifr,z(s, x; t, y) = fr,z(s, x; t, y)
(
−
(
Σ−1
s,t (r, z)w

)
i

)
, (3.3)

∂2
x1xifr,z(s, x; t, y) = fr,z(s, x; t, y)

((
Σ−1
s,t (r, z)w

)
1

(
Σ−1
s,t (r, z)w

)
i
−
(
Σ−1
s,t (r, z)

)
1,i

)
, (3.4)

and

∂3
x1x1xifr,z(s, x; t, y)

fr,z(s, x; t, y)
= 2

(
Σ−1
s,t (r, z)w

)
1

(
Σ−1
s,t (r, z)

)
1,i

+
(
Σ−1
s,t (r, z)w

)
i

(
Σ−1
s,t (r, z)

)
1,1

−
(
Σ−1
s,t (r, z)w

)2
1

(
Σ−1
s,t (r, z)w

)
i
. (3.5)

Let us first provide some estimations in the following lemma.

Lemma 3.1. Let Assumption 2.1.(i) hold. Then, there exists constants C(3.6), C(3.7),

C(3.8), C(3.9) > 0, such that, for all (s, x, t, y) ∈ Θ and (r, z) ∈ [0, T ] × R2, with w :=

ws,t(x, y) (see (2.5)), we have∣∣∣(Σ−1
s,t (r, z)w

)
1

∣∣∣ =
∣∣∣∂x1fr,z(s, x; t, y)

fr,z(s, x; t, y)

∣∣∣ ≤ C(3.6)

(t− s)
1+β0

2

√〈
Σ−1
s,t (r, z)w,w

〉
, (3.6)

∣∣∣(Σ−1
s,t (r, z)w

)
2

∣∣∣ ≤ C(3.7)

(t− s)
1+β3

2

√〈
Σ−1
s,t (r, z)w,w

〉
, (3.7)

∣∣∣(Σ−1
s,t (r, z)

)
1,1

∣∣∣ ≤ C(3.8)

(t− s)1+β0
, (3.8)∣∣∣(Σ−1

s,t (r, z)
)

1,2

∣∣∣ ≤ C(3.9)

(t− s)1+
β0+β3

2

. (3.9)

Proof. The bound in (3.8) and (3.9) are immediate consequences of Assumption 2.1.(i) and

(3.2), up to appealing to Cauchy-Schwarz’s inequality for the latter. By direct computation,

one has

σt(z)
2
〈
Σ−1
s,t (r, z)w,w

〉
=

1

(t− s)2ms,t

∫ t

s

(
(Ar −As)2w2

1 + 2(Ar −As)w1w2 + w2
2

)
dr

=
1

(t− s)2ms,t

∫ t

s

(
(Ar −As)w1 + w2

)2
dr.
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Hence, using Assumption 2.4 and (2.2),

a
∣∣∣(Σ−1

s,t (r, z)w
)

1

∣∣∣ ≤ σt(z)2
∣∣∣(Σ−1

s,t (r, z)w
)

1

∣∣∣
=

1

(t− s)2ms,t

∣∣∣ ∫ t

s

(
Ar −As

)(
(Ar −As)w1 + w2

)
dr
∣∣∣

≤

√
m̃s,t

(t− s)ms,t

√
ā
〈
Σ−1
s,t (r, z)w,w

〉
≤

√
āC(2.2)

(t− s)
1+β0

2

√〈
Σ−1
s,t (r, z)w,w

〉
.

Similarly, using the above, Assumption 2.4 and Cauchy-Schwarz inequality, implies that

a
∣∣∣(Σ−1

s,t (r, z)w
)

2

∣∣∣ ≤ σt(z)2
∣∣∣(Σ−1

s,t (r, z)w
)

2

∣∣∣
=
∣∣∣ 1

(t− s)2ms,t

∫ t

s

(
(Ar −As)w1 + w2

)
dr
∣∣∣

≤
√
āC(2.3)

(t− s)
1+β3

2

√〈
Σ−1
s,t (r, z)w,w

〉
.

As usual, an important step consists in providing a suitable upper-bound on the parametrix

density. Recall that y 7−→ f◦(s, x; t, y) defined in (2.22) is a Gaussian density function on

R2.

Lemma 3.2. Let Assumption 2.1.(i) hold. Then, there exists C(3.11) > 0 such that, for all

(s, x, t, y) ∈ Θ and (r, z) ∈ [0, T ]× R2, we have

fr,z(s, x; t, y) ≤ $(s, x; t, y) f◦(s, x; t, y), (3.10)

in which $ := $1$2 with $1(s, x; t, y) := C(3.11) exp

(
− 1
C(3.11)

(
|w1|2

(t−s)1+β′1
+ |w2|2

(t−s)1+β′2

))
,

$2(s, x; t, y) := exp
(
− 1

2〈Σ
−1
s,t (4ā)w,w

〉)
,

(3.11)

where w := ws,t(x, y) as defined in (2.5).

Proof. Let us first observe that ms,t = m̃s,t − [(t− s)−1
∫ t
s (Ar −As)ds]2, so that the right-

hand side of (2.2) is equivalent to(
1

t− s

∫ t

s
(Ar −As)ds

)2

≤ m̃s,t

(
1− (t− s)β0

C(2.2)

)
.

Note that, upon changing the value of C(2.2), one can assume that C(2.2) ≥ 2T β0 . Hence,

using the inequality 2ab ≤ a2 + b2 for a, b ∈ R,

2

∣∣∣∣∣
∫ t
s (Ar −As)w1w2ds

(t− s)2ms,t

∣∣∣∣∣ ≤ 2

[
m̃s,t

(
1− (t− s)β0

C(2.2)

)] 1
2 w1w2

(t− s)ms,t

≤
(

1− (t− s)β0

C(2.2)

) 1
2
{

m̃s,t

(t− s)ms,t
|w1|2 +

1

(t− s)ms,t
|w2|2

}
.
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Combining the above with (2.2)-(2.3) and Assumption 2.4 implies that

〈
Σ−1
s,t (r, z)w,w

〉
≥ 1

σr(z)2

(
m̃s,t

(t− s)ms,t
|w1|2 − 2

∣∣∣∣∣
∫ t
s (Ar −As)w1w2ds

(t− s)2ms,t

∣∣∣∣∣+
1

(t− s)ms,t
|w2|2

)

≥ C

ā

(
|w1|2

(t− s)1+β1−β0
+

|w2|2

(t− s)1+β2−β0

)
, (3.12)

for some C > 0 that does not depend on (s, x, t, y). The required result then follows from

obvious algebra and Assumption 2.4.

Lemma 3.3. Let Assumption 2.1.(i) hold. Let us define the transition density function

f◦,
1
2 by, for (s, x, t, y) ∈ Θ,

f◦,
1
2 (s, x; t, y) :=

1

2π det (Σs,t(8ā))
1
2

exp
(
− 1

2

〈
Σ−1
s,t (8ā)ws,t(x, y),ws,t(x, y)

〉)
. (3.13)

Then, there exists C[3.3] > 0 such that, for all (s, x, t, y) ∈ Θ and x′ ∈ R2 satisfying

|x1 − x′1|
1

1+β′1 + |x2 − x′2|
1

1+β′2 ≤ (t− s)1/2, (3.14)

we have

f◦(s, x′; t, y) ≤ C[3.3]f
◦, 1

2 (s, x; t, y) (3.15)

and (
|ws,t(x

′, y)1|2

(t− s)1+β′1
+
|ws,t(x

′, y)2|2

(t− s)1+β′2

)
$1(s, x, t, y) ≤ C[3.3]. (3.16)

Proof. Set w := ws,t(x, y) and w′ := ws,t(x
′, y). First observe that(

〈Σ−1
s,t (ā)w,w〉

) 1
2 ≤

(
〈Σ−1

s,t (ā)(w − w′), (w − w′)〉
) 1

2 +
(
〈Σ−1

s,t (ā)w′, w′〉
) 1

2 .

Using that 2ab ≤ 2a2 + 2b2 for a, b ≥ 0, we deduce that

−〈Σ−1
s,t (ā)w′, w′〉 ≤ −1

2
〈Σ−1

s,t (ā)w,w〉+ 〈Σ−1
s,t (ā)(w − w′), (w − w′)〉.

Now, by the same arguments as in the proof of Lemma 3.2 and Assumption 2.4, we have

〈
Σ−1
s,t (ā)(w − w′), (w − w′)

〉
≤ 2ā

(
|x1 − x′1|2

(t− s)1+β′1
+
|x2 − x′2|2

(t− s)1+β′2

)
≤ 4ā,

in which we used (2.5) and our assumption (3.14). This proves (3.15). The assertion (3.16)

is proved similarly, upon interchanging the role of x and x′.
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3.2 Wellposedness of Φ̃

In this section, we prove that Φ̃ in (2.17)-(2.18) is well defined. Recall that f◦ is defined in

(2.22), and let us define

f̃◦(s, x; t, y) := f◦(s,Asx; t,Aty), (s, x, t, y) ∈ Θ.

Noticing that A = A−1, and recalling that

fr,z(s, x; t, y) := f̃r,Arz(s,Asx; t,Aty),

it is straightforward to check that

∂x1fr,z(s, x; t, y) =
−→
A s ·Dxf̃r,Arz(s,Asx; t,Aty), (3.17)

∂2
x1x1

fr,z(s, x; t, y) = Tr
[−→

A s

(−→
A s

)>
D2
xxf̃r,Arz(s,Asx; Aty)

]
. (3.18)

Lemma 3.4. Let the conditions of Theorem 2.7.(i) hold. Then, there exist a constant

C(3.19) > 0 such that

∣∣(L̃ − L̃t,ỹ)f̃t,ỹ(s, x̃; t, ỹ)
∣∣ ≤ C(3.19)

(t− s)1−κ0
f̃◦(s, x̃; t, ỹ), for all (s, x̃, t, ỹ) ∈ Θ, (3.19)

in which κ0 is defined in (2.23).

Proof. For simplicity, we assume that t− s ≤ 1, the case t− s > 1 being trivially handled.

Let us denote

x := Asx̃ and y := Atỹ. (3.20)

(i) Using (2.12) and (3.17), we first estimate

I1 := µ̃s(x̃)
−→
A ·Dxf̃t,ỹ(s, x̃; t, ỹ) = µs(x) ∂x1ft,y(s, x; t, y).

Then, by Assumption 2.4, Lemmas 3.1 and 3.2, it follows that

|I1| ≤
bC(3.6)

(t− s)
1+β0

2

√〈
Σ−1
s,t (t, y)w,w

〉
ft,y(s, x; t, y) ≤

bC(3.6)C(3.22)

(t− s)1− 1−β0
2

f◦(s, x; t, y), (3.21)

in which w := ws,t(x, y) and, with w′ := ws′,t′(x
′, y′),

C(3.22) := sup
(s′,x′,t′,y′,z′)∈Θ×R2

√〈
Σ−1
s′,t′(t

′, z′)w′, w′
〉
$(s′, x′; t′, y′) < ∞. (3.22)

(ii) Using (2.12) and (3.18), we now estimate

I2 := Tr
[(
σ̃2
t (ỹ)− σ̃2

s(x̃)
)−→

A s(
−→
A s)

>D2
xxf̃t,ỹ(s, x̃; t, ỹ)

]
=
[
σ2
t (y)− σ2

s(x)
]
∂2
x1x1

fy(s, x; t, y).

By (3.4) and Lemma 3.1, one obtains

|I2| ≤
[
σ2
t (y)− σ2

s(x)
](C(3.6))

2 ∨ C(3.8)

(t− s)1+β0

(〈
Σ
−1
s,t (t, y)w,w

〉
+ 1
)
fy(s, x; t, y).
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Recalling (2.5), (2.7), (2.6) and Lemma 3.2, it follows that, for some C > 0 that does not

depend on (s, x, t, y) and z ∈ R2,

|I2| ≤ C
1

(t− s)1+β0−α

(
1 +

∣∣ws,t(x, y)
∣∣ 2α

1+β′1 +
∣∣ws,t(x, y)

∣∣ 2α
1+β′2

)
($1f◦)(s, x; t, y),

and we conclude by using the definition of $1 in (3.11).

Proposition 3.5. Let the conditions of Theorem 2.7.(i) hold. Then, the sum in (2.17) is

well-defined and there exists a constant C(3.23) > 0 such that

∣∣Φ̃(s, x; t, y)
∣∣ ≤ C(3.23)

(t− s)1−κ0
f̃◦(s, x; t, y), for all (s, x, t, y) ∈ Θ. (3.23)

Moreover, Φ̃ is continuous on Θ and satisfies

Φ̃(s, x; t, y) = ∆̃0(s, x; t, y) +

∫ t

s

∫
R2

∆̃0(s, x; r, z)Φ̃(r, z; t, y)dzdr, for all (s, x, t, y) ∈ Θ.

(3.24)

Proof. Let us recall that, if well-defined,

Φ̃(s, x; t, y) :=

∞∑
k=0

∆̃k(s, x; t, y),

where ∆̃0(s, x; t, y) :=
(
L̃ − L̃t,y

)
f̃t,y(s, x; t, y), and

∆̃k+1(s, x; t, y) :=

∫ t

s

∫
R2

∆̃0(s, x; r, z)∆̃k(r, z; t, y)dzdr, k ≥ 0.

We already know from Lemma 3.4 that

∣∣(L̃ − L̃t,y)f̃t,y(s, x; t, y)
∣∣ ≤ C(3.19)

(t− s)1−κ0
f̃◦(s, x; t, y),

for all (s, x, t, y) ∈ Θ. By the same induction argument as in [8, proof of Proposition 4.1],

together with (3.1) and (2.3), we then deduce that∣∣∆̃k(s, x; t, y)
∣∣ ≤ Mk

(t− s)1−kκ0
f̃◦(s, x; t, y) ≤ CMk(t− s)kκ0−2−β3

2 , (3.25)

in which, C > 0 does not depend on (s, x, t, y) and k, and

Mk :=
{C(3.19)Γ(κ0)}k

Γ(kκ0)
,

where Γ denotes the Gamma function. By dominated convergence, each map ∆̃k is contin-

uous. Then, the well-posedness of Φ̃ follows from the fact that the power series
∑

k≥0Mku
k

has a radius of convergence equal to ∞. Continuity of Φ̃ is a consequence of the absolute

continuity of the series.
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It remains to prove (3.24). Note that, by the above,

Φ̃(s, x; t, y) = ∆̃0(s, x; t, y) +
∑
k≥0

∫ t

s

∫
R2

∆̃0(s, x; r, z)∆̃k(r, z; t, y)dzdr

and the family {(r, z) ∈ (s, t) × R2 7→
∑n

k=0 ∆̃0(s, x; r, z)∆̃k(r, z; t, y), n ≥ 1} is uniformly

integrable and converges to ∆̃0(s, x; ·)Φ̃(·; t, y). This implies (3.24).

Recall that

Φ(s, x; t, y) := Φ̃(s,Asx; t,Aty).

Proposition 3.6. Let the conditions of Theorem 2.7.(i) hold. Then, f : Θ −→ R is

well-defined in (2.20). Moreover, it is continuous on Θ and, for some C[3.6] > 0,∣∣f(s, x; t, y)
∣∣ ≤ C[3.6]f

◦(s, x; t, y), for all (s, x, t, y) ∈ Θ.

Proof. This is an immediate consequence of Proposition 3.5 and Lemma 3.2, recalling that

f◦ is a transition density and observing that
∫ t
s (t− r)−1+κ0dr ≤ CT κ0 .

3.3 C1-regularity

We now prove that x = (x1, x2) 7→ f(s, x; t, y) is C1 in its first space variable x1, with

partial derivative dominated by a Gaussian density.

Lemma 3.7. Let the conditions of Theorem 2.7 hold. Then, there exists C[3.7] > 0 such

that, for all (r, z) ∈ [0, T ]× R2 and (s, x, t, y) ∈ Θ,

∣∣∂x1fr,z(s, x; t, y)
∣∣ ≤ C[3.7]

(t− s)
β0+1

2

f◦(s, x; t, y).

Moreover, let h : R2 −→ R be a (measurable) function such that
∫
R2 f

◦(s, x; t, y)|h(y)|dy <
∞, and

V (s, x; t) :=

∫
R2

ft,y(s, x; t, y)h(y)dy, (s, x) ∈ [0, t)× R2,

then (s, x) ∈ [0, t)× R2 7→ V (s, x; t) is continuously differentiable in its first space variable

x1 and satisfies

∣∣∂x1V (s, x; t)
∣∣ ≤ C[3.7]

(t− s)
β0+1

2

∫
R2

f◦(s, x; t, y) |h(y)|dy,

in which C[3.7] > 0 does not depend on (s, x, t) ∈ [0, T ]× R2 × [0, T ] with s < t.

Proof. The first inequality follows immediately from Lemmas 3.1 and 3.2, as in the proof

of (3.21). The second one then follows by dominated convergence.

For the following, we recall the defintion of κ1 in (2.25).
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Proposition 3.8. Let the conditions of Theorem 2.7 hold. Then, for each (t, y) ∈ (0, T ]×
R2, the map (s, x) ∈ [0, t)×R2 7→ f(s, x; t, y) is continuously differentiable in its first space

variable x1. Moreover, there exists C[3.8] > 0 such that

|∂x1f(s, x; t, y)| ≤
C[3.8]

(t− s)1−κ1
f◦(s, x; t, y), for all (s, x; t, y) ∈ Θ.

Proof. Fix z ∈ R2. In view of the estimate in (3.23), together with Lemma 3.7, we can find

C > 0, that does not depend on (s, x, t, y) ∈ Θ, such that∫
R2

∣∣∣∂x1fr,z(s, x; r, z)Φ(r, z; t, y)
∣∣∣dz

≤ C(r − s)
−β0−1

2

∫
R2

f◦(s, x; r, z)
∣∣Φ(r, z; t, y)

∣∣dz
≤ C(t− r)−1+κ0(r − s)

−β0−1
2

∫
R2

f◦(s, x; r, z)f◦(r, z; t, y)dz

= C(t− r)−1+κ0(r − s)
−β0−1

2 f◦(s, x; t, y).

Therefore, by the dominated convergence theorem,

∂x1

∫ t

s

∫
R2

fr,z(s, x; r, z)Φ(r, z, t, y)dzdr

is well-defined and continuous, and so is ∂x1f(·; t, y). The latter is bounded from the above

estimates by integrating over r and using the relation between the Euler-Gamma and the

Beta functions.

We conclude this section by a continuity property result on f , which allows one to apply

the C1-Itô’s formula in the context of Theorem 2.11.

Proposition 3.9. Let Assumptions 2.1 and 2.4.(i) hold true. Assume in addition that

(2.23) holds and that β3−β2+β0

2 < 1, and let us fix α′ ∈
(
0,

1+β′2
2 ∧ (1 − β3−β2+β0

2 )
]
. Then,

for all δ > 0, there exists C[3.9] > 0 such that

∣∣f(s, x; t, y)− f(s, x′; t, y)
∣∣ ≤ C[3.9]|x2 − x′2|

2α′
1+β′2 ,

for all (s, x, t, y) ∈ Θ and x′ = (x′1, x
′
2) ∈ R2 such that t− s ≥ δ and x1 = x′1.

Proof. Let I :=
∣∣fr,z(s, x; t, y) − fr,z(s, x′; t, y)

∣∣ and denote by C > 0 a generic constant

that can change from line to line but does not depend on (s, x, x′, t, y, z). Then, by (3.3),

Lemma 3.1 and Lemma 3.2, one can find x′′2 in the interval formed by x2 and x′2 such that,

with x′′ := (x1, x
′′
2),

I ≤ |x2 − x′2| |∂x2fr,z(s, x
′′; t, y)| ≤ C|x2 − x′2|

1

(t− s)
1+β3

2

f◦(s, x′′; t, y).
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If (t− s)
1+β′2

2 /|x2 − x′2| ≥ 1, then

I ≤ C|x2 − x′2|
2α′

1+β′2
1

(t− s)
1+β3

2
−

1+β′2
2

+α′
f◦(s, x′′; t, y)

= C|x2 − x′2|
2α′

1+β′2
1

(t− s)α′+
β3−β2+β0

2

f◦(s, x′′; t, y).

Otherwise, by (3.10),

I ≤ |x2 − x′2|
2α′

1+β′2
1

(t− s)α′
(
f◦(s, x; t, y) + f◦(s, x′; t, y)

)
.

We conclude by using the fact that β3 − β2 + β0 ≥ 0 and by appealing to (3.23).

3.4 C2-regularity

We now prove that f is C2 in its first space variable x1 and that v is a smooth solution of

the path-dependent PDE (2.1).

3.4.1 Potential estimate and Hölder regularity of Φ

Let 0 ≤ s < t ≤ T and x ∈ R2, h : R2 −→ R be a (measurable) function, we first estimate

the second order derivative of the following functional:

V (s, x; t) :=

∫
R2

ft,y(s, x; t, y)h(y)dy.

Let us also denote

E−1
s,t (x) :=

(
1 0

At −As 1

)
x. (3.26)

Lemma 3.10. Let Assumption 2.1 and Assumption 2.4.(i) hold. Let h : R2 −→ R and

h◦ : R2 −→ R+ be such that, for some αh > 0 and Ch > 0,∣∣h(y)− h(y′)
∣∣ ≤ Ch(|y1 − y′1|

2αh
1+β′1 + |y2 − y′2|

2αh
1+β′2

)(
h◦(y) + h◦(y

′)
)
, for all y, y′ ∈ R2,

and ∫
R2

f◦(s, x; t, y)h◦(y)dy < ∞, for all 0 ≤ s < t ≤ T, x ∈ R2.

Assume that

κh := min
(2β4 + 1 + β′1

1 + β′2
, 1
)

min{αh, α} − β0 > 0.

Then, ∂2
x1x1

V (s, x; t) is well defined and continuous. Moreover

∂2
x1x1

V (s, x; t) =

∫
R2

∂2
x1x1

ft,y(s, x; t, y)h(y)dy,

and there exists C > 0, that does not depend on Ch > 0, such that∣∣∂2
x1x1

V (s, x; t)
∣∣ ≤ CCh

(t− s)1−κh

(∣∣h(E−1
s,t (x)

)∣∣+
∣∣h◦(E−1

s,t (x)
)∣∣+

∫
R2

f◦(s, x; t, y)h◦(y)dy

)
,

for all 0 ≤ s < t ≤ T and x ∈ R2.
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Proof. For simplicity, we only consider the case t − s ≤ 1. To estimate the second order

derivative, we decompose

I :=

∫
R2

∂2
x1x1

ft,y(s, x; t, y)h(y)dy

into the sum of the three following terms, with x̌ := E−1
s,t (x),

I1 :=

∫
R2

∂2
x1x1

ft,y(s, x; t, y)
[
h(y)− h

(
x̌
)]
dy,

I2 := h
(
x̌
) ∫

R2

{
∂2
x1x1

ft,y(s, x; t, y)− ∂2
x1x1

ft,x̌(s, x; t, y)
}
dy,

I3 := h
(
x̌
) ∫

R2

∂2
x1x1

ft,x̌(s, x; t, y)dy.

All over this proof, C > 0 denotes a generic constant that may change from line to line but

does not depend on Ch, (s, x; t, y) ∈ Θ and z ∈ R2.

(i) We first estimate I1. Set w = ws,t(x, y), recall (2.5). By the Hölder regularity property

of h and the inequality (a+ b)γ ≤ 2γ(aγ + bγ) for a, b ≥ 0 and γ > 0, one has∣∣∣∂2
x1x1

ft,y(s, x; t, y)
[
h(y)− h

(
x̌
)
]
∣∣∣

≤ Ch
∣∣∣∂2
x1x1

ft,y(s, x; t, y)
∣∣∣(|x1 − y1|

2αh
1+β′1 + |y2 − x2 − (At −As)x1|

2αh
1+β′2

)(
h◦(y) + h◦(E

−1
s,t (x))

)
≤ CCh

∣∣∣∂2
x1x1

ft,y(s, x; t, y)
∣∣∣(|w1|

2αh
1+β′1 + |w2|

2αh
1+β′2 +

∣∣(At −As)w1

∣∣ 2αh
1+β′2

)(
h◦(y) + h◦(E

−1
s,t (x))

)
.

Then, arguing as in the proof of Lemma 3.4 and using (2.4), we deduce that∣∣I1

∣∣ ≤CCh( 1

(t− s)1+β0−αh
+

1

(t− s)
1+β0−αh

2β4+1+β′1
1+β′2

)∫
R2

f◦(s, x; t, y)
(
h◦(y) + h◦(E

−1
s,t (x))

)
dy,

≤ CCh
(t− s)1−κh

(∫
R2

f◦(s, x; t, y)h◦(y)dy + h◦
(
E−1
s,t (x)

))
.

(ii) We now consider I2. By (3.4) and Lemma 3.1,∣∣∂2
x1x1

ft,y(s, x; t, y)− ∂2
x1x1

ft,x̌(s, x; t, y)
∣∣

≤
∣∣ft,y(s, x; t, y)− ft,x̌(s, x; t, y)

∣∣∣∣∣(Σ−1
s,t (t, y)w

)2
1
−
(
Σ−1
s,t (t, y)

)
1,1

∣∣∣
+ ft,x̌(s, x; t, y)

∣∣∣(Σ−1
s,t (t, y)w

)2
1
−
(
Σ−1
s,t (t, x̌)w

)2
1

∣∣∣
+ ft,x̌(s, x; t, y)

∣∣∣(Σ−1
s,t (t, y)

)
1,1
−
(
Σ−1
s,t (t, x̌)

)
1,1

∣∣∣
=
∣∣ft,y(s, x; t, y)− ft,x̌(s, x; t, y)

∣∣∣∣∣(Σ−1
s,t (t, y)w

)2
1
−
(
Σ−1
s,t (t, y)

)
1,1

∣∣∣
+ ft,x̌(s, x; t, y)

∣∣σt(y)−4 − σt(x̌)−4
∣∣ ∣∣∣(Σ−1

s,t (1)w
)

1

∣∣∣2
+ ft,x̌(s, x; t, y)

∣∣σt(y)−2 − σt(x̌)−2
∣∣ ∣∣∣(Σ−1

s,t (1)
)

1,1

∣∣∣,
21



in which, by (2.7),

|σt(y)− σt(x̌)| ≤ C(2.7)

(∣∣y1 − x1

∣∣ 2α
1+β′1 +

∣∣y2 − x1(At −As)− x2

∣∣ 2α
1+β′2

)
≤ C

(
|w1|

2αg

1+β′1 + |w2|
2αg

1+β′2 +
∣∣(At −As)w1

∣∣ 2αg

1+β′2

)
by the same arguments as in in step 1. Using Lemma 3.12 below, (3.6), (3.8) and (2.6), it

follows that

∣∣I2

∣∣ ≤ C|h
(
x̌
)
|

(t− s)
1+β0−α

2β4+1+β′1
1+β′2

∫
R2

f◦(s, x; t, y)dy ≤
C|h

(
E−1
s,t (x)

)
|

(t− s)1−κh
.

(iii) We finally consider I3. Notice that y 7→ ft,x̌(s, x; t, y) is a Gaussian density function,

so that ∫
R2

∣∣∂2
x1x1

ft,x̌(s, x; t, y)
∣∣dy < ∞.

Moreover, by the definition of ft,x̌(s, x; t, y), one has

Dyft,x̌(s, x; t, y) = −

(
1 0

−(At −As) 1

)>
Dxft,x̌(s, x; t, y),

so that

∂x1ft,x̌(s, x; t, y) = −∂y1ft,x̌(s, x; t, y)− (At −As)∂y2ft,x̌(s, x; t, y),

which implies ∫
R

∫
R
∂x1ft,x̌(s, x; t, y)dy1dy2 = 0,

and therefore I3 = 0.

Finally, we can apply the Leibniz integral rule to interchange the derivative and the integral,

and hence to conclude the proof.

Remark 3.11. Let us consider V (s, x; t) as a path-dependent functional:

V (s, x; t) := V (s, x(s), Is(x); t) =

∫
R2

ft,y(s, x; t, y)h(y)dy.

In view of Remark 2.8, the above results implies that, in the context of Lemma 3.10, the

second order vertical derivative ∂2
xxV (s, x; t) is well defined. Moreover, by (2.31), one has

∂sft,y(s, x; t, y) = − 1

2
σ(t, y)2∂2

xxft,y(s, x; t, y). (3.27)

Then, by the same technique as in Lemma 3.10, we can deduce that the horizontal derivative

∂sV (s, x; t) is also well defined.

We now provide the following easy estimate which is used in the proof of Lemma 3.10.
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Lemma 3.12. Let Assumption 2.1.(i) and Assumption 2.4.(i) hold. Then, there exists

C[3.12] > 0 such that, for all (s, x, t, y) ∈ Θ and z, z′ ∈ R2,∣∣ft,z(s, x; t, y)− ft,z′(s, x; t, y)
∣∣

≤ C[3.12]

(
|z1 − z′1|

2α
1+β′1 + |z2 − z′2|

2α
1+β′2

)[
1 + 〈Σ−1

s,t (1)w,w〉
]

($f◦)(s, x; t, y)

in which w := ws,t(x, y).

Proof. Let us write f[a] for ft,z if σ2
t (z) = a, and let ∂af[a] denote its derivative with respect

to this parameter a. Then,

∂af[a](s, x; t, y) =

[
−1

a
+
σt(0)2

2a2
〈Σ−1

s,t (0)w,w〉
]
f[a](s, x; t, y)

in which w = ws,t(x, y) is as in (2.5). In view of Assumption 2.4 and Lemma 3.2, it follows

that

|∂af[a](s, x; t, y)| ≤ C
[
1 + 〈Σ−1

s,t (0)w,w〉
]
$(s, x; t, y)f◦(s, x; t, y),

for some C > 0 that does not depend on a, (s, x, t, y). We conclude by appealing to (2.7).

In order to apply Lemma 3.10 to (2.15), we need to prove that the function Φ(s, x; t, y)

defined by (2.17) and (2.19) is Hölder in x. Recall the definition of ∆̂β in (2.32), of κ0 in

(2.23) and of f◦,
1
2 in (3.13).

Lemma 3.13. Let the conditions of Theorem 2.9 hold. Fix αΦ ∈
(
0, α̂Φ ∧ κ0 ∧ min

i=1,2

1+β′i
2

)
.

Then, there exists CαΦ > 0 such that,

|Φ(s, x; t, y)− Φ(s, x′; t, y)|

≤ CαΦ

|x1 − x′1|
2αΦ
1+β′1 + |x2 − x′2|

2αΦ
1+β′2

(t− s)1−ηΦ

(
f◦,

1
2 (s, x; t, y) + f◦,

1
2 (s, x′; t, y)

)
,

for all (s, x, t, y) ∈ Θ, in which

ηΦ := α̂Φ ∧ κ0 − αΦ > 0.

Proof. In all this proof, C > 0 denotes a generic constant, whose value can change from

line to line, but which does not depend on (s, x, t, y) ∈ Θ. We set ∆k(s, x; t, y) :=

∆̃k(s,Asx; t,Aty) and recall that Φ(s, x; t, y) := Φ̃(s,Asx; t,Aty), (s, x, t, y) ∈ Θ.

(i) Let us first consider

I := ∆0(s, x; t, y)−∆0(s, x′; t, y)

= µs(x)∂x1ft,y(s, x; t, y) +
1

2

(
σ2
s(x)− σ2

t (y)
)
∂2
x1x1

ft,y(s, x; t, y)

−
(
µs(x

′)∂x1ft,y(s, x
′; t, y) +

1

2

(
σ2
s(x
′)− σ2

t (y)
)
∂2
x1x1

ft,y(s, x
′; t, y)

)
. (3.28)

(i.1) In the case where

|x1 − x′1|
1

1+β′1 + |x2 − x′2|
1

1+β′2 > (t− s)1/2,
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Lemma 3.4 implies that, for α′ ∈ (0, κ0),∣∣∣∆0(s, x; t, y)−∆0(s, x′; t, y)
∣∣∣

≤ C(3.19)
1

(t− s)1−κ0

(
f◦(s, x; t, y) + f◦(s, x′; t, y)

)
≤ C(3.19)

|x1 − x′1|
2α′

1+β′1 + |x2 − x′2|
2α′

1+β′2

(t− s)1−κ0+α′

(
f◦(s, x; t, y) + f◦(s, x′; t, y)

)
.

(i.2) We next consider the case where

|x1 − x′1|
1

1+β′1 + |x2 − x′2|
1

1+β′2 ≤ (t− s)1/2. (3.29)

Let us write

I := ∆0(s, x; t, y)−∆0(s, x′; t, y) = I1 + I2 + I3 + I4,

where

I1 :=
(
µs(x)− µs(x′)

)
∂x1ft,y(s, x; t, y),

I2 := µs(x
′)
(
∂x1ft,y(s, x; t, y)− ∂x1ft,y(s, x

′; t, y)
)
,

I3 :=
1

2

(
σ2
s(x)− σ2

s(x
′)
)
∂2
x1x1

ft,y(s, x
′; t, y),

and

I4 :=
1

2

(
σ2
s(x)− σ2

t (y)
)(
∂2
x1x1

ft,y(s, x; t, y)− ∂2
x1x1

ft,y(s, x
′; t, y)

)
.

For I1, we use the Hölder continuity property of µ in (2.8), Lemma 3.1 and Lemma 3.2 to

obtain that

∣∣I1

∣∣ ≤ C
|x1 − x′1|

2α
1+β′1 + |x2 − x′2|

2α
1+β′2

(t− s)
1+β0

2

f◦(s, x; t, y). (3.30)

For I2, let us fix ρ ∈ [0, 1] and x′′ = ρx+ (1− ρ)x′ so that, using Assumption 2.4,∣∣I2

∣∣ ≤ b
(∣∣∂2

x1x1
ft,y(s, x

′′; t, y)
∣∣∣∣x1 − x′1

∣∣+
∣∣∂2
x1x2

ft,y(s, x
′′; t, y)

∣∣∣∣x2 − x′2
∣∣).

Using (3.4), (3.4), Lemma 3.1, Lemma 3.2 and the fact that β0 ≤ β3, it follows that

∣∣I2

∣∣ ≤ C( |x1 − x′1|
(t− s)1+β0

+
|x2 − x′2|

(t− s)1+
β0+β3

2

)
f◦(s, x′′; t, y).

Since x′′ lies in the interval formed by x and x′, Lemma 3.3 and (3.29) imply that

∣∣I2

∣∣ ≤ C( |x1 − x′1|
(t− s)1+β0

+
|x2 − x′2|

(t− s)1+
β0+β3

2

)
f◦,

1
2 (s, x; t, y). (3.31)

Next, using the Hölder property of σ in (2.7), Lemma 3.1 and Lemma 3.2, it follows that∣∣I3

∣∣ ≤ C

(t− s)1+β0

(
|x1 − x′1|

2α
1+β′1 + |x2 − x′2|

2α
1+β′2

)
f◦(s, x; t, y). (3.32)
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Finally, I4 is tackled as I2. Namely, we can find x̃′′ = ρ̃x + (1 − ρ̃)x′ with ρ̃ ∈ [0, 1] such

that ∣∣∣∂2
x1x1

ft,y(s, x; t, y)− ∂2
x1x1

ft,y(s, x
′; t, y)

∣∣∣
≤
∣∣∂3
x1x1x1

ft,y(s, x̃
′′; t, y)

∣∣∣∣x1 − x′1
∣∣+
∣∣∂3
x1x1x2

ft,y(s, x̃
′′; t, y)

∣∣∣∣x2 − x′2
∣∣

≤ C

( ∣∣x1 − x′1
∣∣

(t− s)
3
2

(1+β0)
+

∣∣x2 − x′2
∣∣

(t− s)
3
2

+β0+
β3
2

)
($1f◦)(s, x̃′′; t, y),

in which we used Lemma 3.1 and Lemma 3.2 again. Next, we appeal to (2.7) to deduce

that ∣∣σ2
s(x)− σ2

t (y)
∣∣ ≤ C(2.7)

(
|t− s|α + |w1|

2α
1+β′1 + |w2|

2α
1+β′2

)
.

Using that β3 ≥ β0, the condition (3.29) together with Lemma 3.3 and the fact that x̃′′ lies

on the interval formed by x and x′ implies that

|I4| ≤ C|t− s|α
( ∣∣x1 − x′1

∣∣
(t− s)

3
2

(1+β0)
+

∣∣x2 − x′2
∣∣

(t− s)
3
2

+β0+
β3
2

)
f◦,

1
2 (s, x; t, y). (3.33)

Note that there exists C > 0, that does not depend on (s, x, t, y) such that

f◦(s, x; t, y) ≤ Cf◦,
1
2 (s, x; t, y).

Thus, combining (3.30)-(3.33) and recalling (3.28) and (3.15) leads to a upper bound for

J :=
|I|

C
(
f◦,

1
2 (s, x; t, y) + f◦,

1
2 (s, x′; t, y)

) .
Namely,

J ≤ |x1 − x′1|
2α

1+β′1 + |x2 − x′2|
2α

1+β′2

(t− s)1+β0

+ |x1 − x′1|

(
1

(t− s)1+β0
+

1

(t− s)
3
2

(1+β0)−α

)

+ |x2 − x′2|

(
1

(t− s)1+
β0+β3

2

+
1

(t− s)
3
2

+β0+
β3
2
−α

)
.

We then use that (t − s)
1+β′i

2 /|xi − x′i| ≥ 1, for i = 1, 2, to deduce that, for 0 < α′ ≤
α ∧ min

i=1,2

1+β′i
2 ,

J ≤ |x1 − x′1|
2α′

1+β′1 + |x2 − x′2|
2α′

1+β′2

(t− s)1+β0+α′−α

+
|x1 − x′1|

2α′
1+β′1

(t− s)(1+β0)∨( 3
2

(1+β0)−α)−
1+β′1

2
+α′

+
|x2 − x′2|

2α′
1+β′2

(t− s)(1+
β0+β3

2
)∨( 3

2
+β0+

β3
2
−α)−

1+β′2
2

+α′
.
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Since β0 ≥ β1 and β3 ≥ β2,

J ≤ |x1 − x′1|
2α′

1+β′1

(t− s)( 1
2

+β0+
β0−β1

2
)∨(1+ 3

2
β0+

β0−β1
2
−α)+α′

+
|x2 − x′2|

2α′
1+β′2

(t− s)( 1
2

+β0+
β3−β2

2
)∨(1+ 3

2
β0+

β3−β2
2
−α)+α′

.

(i.3) We now combine the results of steps (i.1) and (i.2) to deduce that, when α′ = αΦ ∈
(0, α̂Φ ∧ κ0),

|I| ≤ C
|x1 − x′1|

2αΦ
1+β′1 + |x2 − x′2|

2αΦ
1+β′2

(t− s)1−ηΦ

(
f◦,

1
2 (s, x; t, y) + f◦,

1
2 (s, x′; t, y)

)
.

(ii) To conclude, it remains to use an induction argument as in the end of the proof of

Proposition 3.5.

3.4.2 Smoothness of the transition density and Feynman-Kac’s representation

Recall that f(s, x; t, y) is defined in (2.27).

Proposition 3.14. Let the conditions of Theorem 2.9 hold. Then, the vertical derivative

∂2
xxf(s, x; t, y) and horizontal derivative ∂sf(s, x; t, y) are well-defined for all 0 ≤ s < t ≤ T ,

x ∈ D([0, T ]) and y ∈ R2. Moreover, for all (t, y) ∈ [0, T ] × R2, ∂2
xxf(·; t, y) and ∂sf(·; t, y)

are continuous on [0, t)× C([0, T ]).

Proof. We denote by C > 0 a generic constant that does not depend on (s, x, t, y). Let us

fix t0 ∈ (s, t), then by (2.20) and (2.27),

f(s, x; t, y) := ft,y(s, x; t, y) +

∫ t0

s

∫
R2

fr,z(s, x; r, z)Φ(r, z; t, y)dzdr

+

∫ t

t0

∫
R2

fr,z(s, x; r, z)Φ(r, z; t, y)dzdr

=: ft,y(s, x; t, y) + f1(s, x; t, y) + f2(s, x; t, y).

First, the existence and continuity of the vertical derivative and horizontal derivative of

ft,y(s, x; t, y) is trivial.

For f1(s, x; t, y), we can use Lemmas 3.10 and 3.13, Proposition 3.5, together with (3.15),

to obtain that∫ t0

s

∣∣∣∣∫
R2

∂2
xxfr,z(s, x; r, z)Φ(r, z; t, y)dz

∣∣∣∣ dr ≤ C

∫ t0

s

I1(s, x; r; t, y) + I2(s, x; r; t, y)

(r − s)1−κΦ
dr,

where

κΦ := min
(2β4 + 1 + β′1

1 + β′2
, 1
)

min{αΦ, α} − β0 > 0,

and, with x := (x(s), Is(x)),

I1(s, x; r; t, y) :=

∫
R2

f◦,
1
2 (s, x; r, z)

(
f◦,

1
2 (r, E−1

s,r (x); t, y) + f◦,
1
2 (r, z; t, y)

)
dz

= f◦,
1
2 (r, E−1

s,r (x); t, y) + f◦,
1
2 (s, x; t, y)

I2(s, x; r; t, y) := f◦,
1
2 (r, E−1

s,r (x); t, y).
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Since t0 < t, we can then easily obtain the existence and continuity of ∂2
xxf1(·; t, y) by

dominated convergence. Further, in view of Remark 3.11 and in particular (3.27), we can

also deduce the existence and continuity of the horizontal derivative ∂sf1(·; t, y).

For f2(s, x; t, y), we notice that∣∣∂sfr,z(s, x; r, z)
∣∣+
∣∣∂2

xxfr,z(s, x; r, z)
∣∣ ≤ Cf◦(s, x; r, z), for r ≥ t0 > s, z ∈ R2.

Together with the estimate on Φ(r, z; t, y) in Proposition 3.5, it follows the existence and

continuity of the vertical derivative ∂2
xxf2(·; t, y) and the horizontal derivative ∂sf2(·; t, y).

Recall the growth condition (2.28) on ` and g, and the Hölder continuity condition (2.29)

on `. Let

v(s, x) :=

∫ T

s

∫
R2

`(t, y)f(s, x; t, y)dydt+

∫
R2

g(y)f(s, x;T, y)dy, (s, x) ∈ [0, T )× R2.

Then, with v defined in (2.30), one has, for x = (x(s), Is(x)),

v(s, x) = v(s, x), ∂xv(s, x) = ∂x1v(s, x) and ∂2
xxv(s, x) = ∂2

x1x1
v(s, x).

Proposition 3.15. Let the conditions of Theorem 2.9 hold. Then:

(i) v ∈ C1,2([0, T )) and the bound estimates in (2.33) hold true.

(ii) The function v is a classical solution to the PPDE (2.1). If in addition g is continuous,

then v is the unique classical solution of (2.1) satisfying (2.34).

Proof. (i) Let us define, for (r, z) ∈ [0, T )× R2,

vΦ(r, z) :=

∫ T

r

∫
R2

Φ(r, z; t, y)`(t, y)dydt +

∫
R2

Φ(r, z;T, y)g(y)dy, (3.34)

so that

v(s, x) =

∫
R2

fT,y(s, x;T, y)g(y)dy +

∫ T

s

∫
R2

fr,z(s, x; r, z)
(
vΦ(r, z) + `(r, z)

)
dzdr. (3.35)

Then, it follows from Lemma 3.13 that

|vΦ(r, z)− vΦ(r, z′)| ≤ CαΦ

|z1 − z′1|
2αΦ
1+β′1 + |z2 − z′2|

2αΦ
1+β′2

(T − r)1−ηΦ

(
v◦,

1
2 (r, z) + v◦,

1
2 (r, z′)

)
,

in which

v◦,
1
2 (r, z) :=

∫ T

r

∫
R2

f◦,
1
2 (r, z;T, y)

∣∣`(t, y)
∣∣dydt+

∫
R2

f◦,
1
2 (r, z;T, y)

∣∣g(y)
∣∣dy.

Together with the Hölder continuity condition on ` in (2.29), we can then apply Lemma

3.10 to deduce that ∂2
x1x1

v(s, x) exists and

∂2
x1x1

v(s, x)

=

∫
R2

∂2
x1x1

fT,y(s, x;T, y)g(y)dy +

∫ T

s

∫
R2

∂2
x1x1

fr,z(s, x; r, z)
(
vΦ(r, z) + `(r.z)

)
dzdr.
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Then, using (3.4) and Lemma 3.1, we deduce that, for some constant C > 0,∫
R2

∣∣∣∂2
x1x1

fT,y(s, x;T, y)g(y)
∣∣∣dy ≤ C

(T − s)1+β0

∫
R2

f◦(s, x;T, y)|g(y)|dy ≤ CeC|x|

(T − s)1+β0
.

By Lemma 3.10, one can choose C > 0 such that,∣∣∣∣∫ T

s

∫
R2

∂2
x1x1

fr,z(s, x; r, z)`(r.z)dzdr

∣∣∣∣
≤
∫ T

s

C

(r − s)1−κ`

(∣∣`(E−1
s,r (x))

∣∣+ Ce|E
−1
s,r (x)| +

∫
R2

f◦(s, x; r, z)eC|z|dz
)
dr ≤ CeC|x|,

in which

κ` := min
(2β4 + 1 + β′1

1 + β′2
, 1
)

min{α`, α} − β0 > 0,

and∣∣∣∣∫ T

s

∫
R2

∂2
x1x1

fr,z(s, x; r, z)vΦ(r.z)dzdr

∣∣∣∣ ≤ ∫ T

s

C

(r − s)1−κΦ(T − r)1−ηΦ
eC|x|dr ≤ CeC|x|.

This proves the bound estimate on ∂2
x1x1

v(s, x) (or equivalently ∂2
xxv(s, x)) in (2.33). In

view of (3.27), one can obtain the same bound on ∂sv(s, x) in (2.33). Finally, ∂xv(s, x) is

estimated by appealing to Proposition 3.8 and (2.28). The bound on the right-hand side

of (2.34) is proved similarly.

(ii) Recall that

f(s, x; t, y) = ft,y(s, x; t, y) +

∫ t

s

∫
R2

fr,z(s, x; r, z)Φ(r, z, t, y)dzdr,

and that (s, x) ∈ [0, t)×D([0, T ]) 7→ ft,y(s, x; t, y) solves

Lt,yft,y(·; t, y) = 0 on [s, t)× C([0, T ]), (3.36)

where

Lt,y := ∂s +
1

2
σt(y)2∂2

xx.

Let

Lφ(s, x) := ∂sφ(s, x) + µs(x)∂xφ(s, x) +
1

2
σ2
s(x)∂2

xφ(s, x),

for φ ∈ C1,2([0, T )). Recalling the definition of vΦ in (3.34) and using (3.35), we obtain

that, with x := (x(s), Is(x)),

Lv(s, x) =

∫
R2

LfT,y(s, x;T, y)g(y)dy − vΦ(s, x)−`(s, x)

+

∫ T

s

∫
R2

Lfr,z(s, x; r, z)
(
vΦ(r, z)+`(r, z)

)
dzdr. (3.37)

At the same time, as a consequence of (3.24) and (3.17)-(3.18), we observe that

Φ(s, x;T, y) = (L− Lt,y)ft,y(s, x; t, y)

+

∫ t

s

∫
R2

(L− Lr,z)fr,z(s, x; r, z)Φ(r, z; t, y)dzdr.
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Hence, recalling Lemma 3.4 and Proposition 3.5, it follows by (3.34) that

vΦ(s, x) =

∫
R2

(L− LT,y)fT,y(s, x;T, y)g(y)dy

+

∫ T

s

∫
R2

(L− Lr,z)fr,z(s, x; r, z)
(
vΦ(r, z)+`(r, z)

)
dzdr.

We then use (3.36) to obtain

vΦ(s, x) =

∫
R2

LfT,y(s, x;T, y)g(y)dy +

∫ T

s

∫
R2

Lfr,z(s, x; r, z)
(
vΦ(r, z)+`(r, z)

)
dzdr.

It follows then by (3.37) that v is a classical solution to the PPDE (2.1).

(iii) We now prove that lims↗T v(s, x) = g(xT , IT (x)), or equivalently lims↗T v(s, x) = g(x),

whenever g is continuous. In view of the estimates in (3.10) and (3.23), and Proposition

3.6, one has

lim
s↗T

v(s, x) = lim
s↗T

∫
R2

f(s, x;T, y)g(y)dy = lim
s↗T

∫
R2

fT,y(s, x;T, y)g(y)dy

= lim
M→∞

lim
s↗T

∫
DMs,T

fT,y(s, x;T, y)g(y)dy = lim
M→∞

lim
s↗T

∫
DMs,T

fT,x(s, x;T, y)g(y)dy

= lim
s↗T

∫
R2

fT,x(s, x;T, y)g(y)dy = g(x),

in which

DM
s,T :=

[
x1−M

√
T − s, x1 +M

√
T − s

]
×
[
x2−M

√
(T − s)m̃s,t, x2 +M

√
(T − s)m̃s,t

]
,

so that third and fifth equalities are true since both fT,y(s, x;T, y) and fT,x(s, x;T, y) are

dominated by Cf◦(s, x;T, y) in which the covariance matrix in f◦ is given by Σs,T (4ā), and

the fourth equality follows by the fact that, for every fixed M > 0,

lim
s↗T

sup
y∈DMs,T

∣∣∣∣fT,y(s, x;T, y)

fT,x(s, x;T, y)
− 1

∣∣∣∣ = 0.

(iv) The fact that v is the unique solution of (2.1) satisfying (2.34) holds true follows easily

by a verification argument based on Itô-Dupire’s formula, see [3], whenever g is continuous.

3.5 Proofs of Theorems 2.7, 2.9 and 2.11

Proof of Theorem 2.7. (i) First, the well-posedness of Φ̃ in (2.17)-(2.18) is proved in Propo-

sition 3.5. Further, the well-posedness of f in (2.20) as well as its continuity and growth

property is proved in Proposition 3.6.

(ii) Under further conditions, the existence of ∂x1f(s, x; t, y) as well as its continuity and

growth property is proved in Proposition 3.8.
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Proof of Theorem 2.9. (i) The fact that f(·; t, y) ∈ C1,2([0, t)) is proved in Proposition 3.14.

(ii) The fact that v provides a classical solution to the PPDE, as well as the estimation on

the derivatives are proved in Proposition 3.15.

(iii) We now use the PPDE results in Item (ii) to study the path-dependent SDE (2.9).

To study the weak solution of the SDE (2.9), we consider the martingale problem on the

canonical space C([0, T ]) of all R2-valued continuous paths on [0, T ]. By abuse of notation,

we denote by (Xt, It)t∈[0,T ] the canonical process, which generates the canonical filtration

F. Then, given an initial condition (t, x) ∈ [0, T ] × R2, a solution to the corresponding

martingale problem is a probability measure P on C([0, T ]) such that P[(Xs, Is) = x =

(x1, x2), s ∈ [0, t]] = 1, P[Is = x2 +
∫ s
t XrdAr, s ∈ [t, T ]] = 1 and the process

ϕ(Xs)−
∫ s

t

(
µ̄r(X)Dϕ(Xr) +

1

2
σ̄r(X)D2ϕ(Xr)

)
dr, s ∈ [t, T ],

is a (P,F)-martingale for all bounded smooth functions ϕ : R −→ R. Let us denote, for all

(t, x) ∈ [0, T ]× R2,

P(t, x) :=
{
P : P is solution to the martingale problem with initial condition (t, x)

}
.

Notice that µ̄ and σ̄ are both bounded continuous, it is then classical to know that P(t, x)

is a nonempty compact set (see e.g. Stroock and Varadhan [14, Chapter VI]).

We next apply the classical Markovian selection technique (see e.g. [14, Chapter 12.2])

to construct a weak solution to the SDE (2.9) such that (Xt, It)t∈[0,T ] is a strong Markov

process. Let (φn)n≥1 be a sequence of bounded continuous functions from [0, T ]×R2 −→ R
such that it is a measure determining sequence in the sense that the sequence{

EP
[ ∫ T

0
φn(t,Xt, It)dt

]}
n≥1

can determinate the probability measure P on C([0, T ]). For each (t, x) ∈ [0, T ] × R2, let

P+
0 (t, x) := P(t, x), and then define, for each n ≥ 0,

P+
n+1(t, x) =

{
P ∈ P+

n (t, x) : EP
[ ∫ T

0
φn(t,Xt, It)dt

]
= max

P′∈P+
n (t,x)

EP′
[ ∫ T

0
φn(t,Xt, It)dt

]}
.

It is easy to see that each P+
n (t, x) is a non-empty compact set, so that P+(t, x) :=

∩n≥1P+
n (t, x) is also non-empty compact, as the sequence is non-increasing. Moreover,

since any two probability measures in P+(t, x) has the same value by evaluating w.r.t. any

φn, this implies that P+(t, x) contains exactly one probability measure denoted by P+
t,x.

By the dynamic programming principle for the optimal control problem in the definition of

P+
n+1, it follows that (X, I, (P+

t,x)(t,x)∈[0,T ]×R2) provides a Markov process solution to SDE

(2.9) such that (X, I) is a strong Markov process.

At the same time, one can apply the above Markovian selection argument to construct

another Markov process (X, I, (P−t,x)(t,x)∈[0,T ]×R2 by replacing “max” by “min” in the def-

inition of P+
n+1(t, x). If the class of all martingale solutions P(t, x) is not unique, then

P+
t,x 6= P−t,x as (φn)n≥1 is measure determining.
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At the same time, by the results in Item (ii) and the Feynman-Kac’s formula in the case

g ≡ 0, one has

EP+
s,x

[ ∫ T

s
`t(Xt, It)dt

]
= EP−s,x

[ ∫ T

s
`t(Xt, It)dt

]
=

∫ T

s

∫
R2

f(s, x; t, y)`t(y)dydt.

Since ` could be an arbitrary bounded continuous function, this implies that P+
s,x = P−s,x

for all (s, x) ∈ [0, T ] × R2. Therefore, for all initial condition (t, x), there exists a unique

solution to the martingale problem, i.e. a unique weak solution. Moreover the (unique)

solution process (X, I) is a strong Markov process, and the transition probability function

is given by f .

Proof of Theorem 2.11. When the SDE (2.9) admits weak uniqueness, the above Markovian

selection argument shows that the only solution (X, I) is a strong Markov process.

(i) Let W⊥ be a Brownian motion independent of W , (εn)n≥1 be a sequence of positive

constants such that εn −→ 0. For each n > 1, let us define X̃n = (X̃n,1, X̃n,2) as the unique

(Markovian) solution to the SDE

dX̃n,1
t = µ̃t(X̃

n
t )dt+ σ̃t(X̃

n
t )dWt, dX̃n,2

t = µ̃t(X̃
n
t )Atdt+ σ̃t(X̃

n
t )AtdWt + εndW

⊥
t .

By stability of weak solutions of SDEs, it is clear that, by using the same initial condition

for the above SDE as that in (2.11) for X̃, one has X̃n −→ X̃ weakly.

At the same time, it follows from e.g. [8] that, for each t ∈ (s, T ], X̃n
t has a density

f̃n(s, x; t, ·) whenever X̃n
s = x. Moreover, f̃n can be defined in the form

f̃n(s, x; t, y) = f̃nt,y(s, x; t, y) +

∫ t

s

∫
R2

f̃nr,z(s, x; r, z)Φ̃n(r, z; t, y)dzdr

in which f̃nt,y is defined as f̃t,y but with

Σn
s,t(r, z) = σ2

r (z)

(
t− s −

∫ t
s (Au −As)du

−
∫ t
s (Au −As)du

∫ t
s

[
(Au −As)2 + ε2

nσr(z)
−2
]
du

)

in place of Σs,t(r, z), and

Φ̃n(s, x; t, y) :=
∞∑
k=0

∆̃n
k(s, x; t, y),

where ∆̃n
0 (s, x; t, y) :=

(
L̃ns − L̃

n,t,y
s

)
f̃nt,y(s, x; t, y),

∆̃n
k+1(s, x; t, y) :=

∫ t

s

∫
R2

∆̃n
0 (s, x; r, z)∆̃n

k(r, z; t, y)dzdr, k ≥ 0.

In the above, L̃n is the generator of X̃n and L̃n,t,y is defined from L̃n as L̃t,y is defined from

L̃ by freezing σ to σt(y) and erasing the drift term. Then, we define fnr,z from f̃n· as fr,z is

defined from f̃· in Section 2.3.
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It is straightforward to check that the estimates in (3.25) hold for (∆̃n
k)k≥0 in place of

(∆̃k)k≥0, uniformly in n > 0. Then, an induction argument combined with the fact that

f̃nt,y(s, x; t, y)→ f̃t,y(s, x; t, y) as n→∞, for all (s, x, t, y) ∈ Θ, implies that fn(s, x; t, y) :=

f̃n(s,Asx; t,Aty) converges to f(s, x; t, y) as n −→ ∞, for all (s, x, t, y) ∈ Θ. By the weak

convergence of the sequence of processes (X̃n)n≥1 to X, this shows that f is the transition

probability function of (X, I).

(ii) As shown in Theorem 2.7, one has v ∈ C0,1([0, T )) and the vertical derivative ∂xv is

locally bounded. Let (X, I) be the solution of SDE (2.9), then by Feynman-Kac’s formula,

the process

v(t,X) +

∫ t

0

¯̀(s,X)ds, t ∈ [0, T ], is a local martingale.

One can further apply the C1-Itô formula for path-dependent functionals in [1] to prove

(2.37). Indeed, when (2.36) holds true, one can directly apply [1, Proposition 2.11 and

Theorem 2.5].

Otherwise, when A is monotone and 0 < 1+β2−β0

2+4β4
< 1 − β3−β2+β0

2 , we can fix α′ ∈
(1+β2−β0

2+4β4
, 1− β3−β2+β0

2 ), and, by Proposition 3.9, there exists a constant C > 0 such that,

for all ε > 0,

E
[∣∣∣v(s+ ε,X

)
− v
(
s+ ε,Xs∧· ⊕s+ε (Xs+ε −Xs)

)∣∣∣2]
≤ CE

[(
sup

s≤t≤s+ε

∣∣Xt −Xs

∣∣ εβ4

) 4α′
1+β′2

]
≤ Cε

α′(2+4β4)

1+β′2 ,

where
(
Xs∧· ⊕s+ε (Xs+ε −Xs)

)
t

:= 1[0,s+ε)(t)Xs∧t + 1[s+ε,T ](t)Xs+ε for all t ∈ [0, T ]. Since
α′(2+4β4)

1+β′2
> 1, it follows that

lim
ε↘0

1

ε
E
[∣∣∣v(s+ ε,X

)
− v
(
Xs∧· ⊕s+ε (Xs+ε −Xs)

)∣∣∣2] = 0.

Finally, we can apply [1, Proposition 2.6 and Theorem 2.5] to deduce (2.37).
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