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O See under which conditions one can apply 1t6-Dupire's formula to
value functions associated to path-dependent pricing or optimal control
problems.

O Use C'*@-regularity or show C2-regularity using PDEs.



Example #1 : second order coupled FBSDE

O B. and Tan [3] : Solve a second order BSDE related to a (perfect)
hedging problem under price impact. Find (X, Y, Z,g,9) such that

t
Xt:XO+/ Us(Xygs)dWs
0

t
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Y: = ®(X) —/ Fs(X,gs)ds —/ Z:dXs; and Z; = Z, +/gsts — 9B,
t 0 0

where ®, o and F are path-dependent (non-anticipative).
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O B. and Tan [3] : Solve a second order BSDE related to a (perfect)
hedging problem under price impact. Find (X, Y, Z,g,9) such that

t
Xt:XO+/ Us(Xygs)dWs
0

t

T t
Y: = ®(X) —/ Fs(X,gs)ds —/ Z:dXs; and Z; = Z, +/gsts — B,
t 0 0

where ®, o and F are path-dependent (non-anticipative).

O Derive a solution from a dual formulation of the form :
T
v(t,x) = supE[®(X"2) — / Gy (Xt a,)ds], dX* = adW,
« t

by using 1t6's lemma : Y = v(+, X), Z = Dv(-, X), etc.
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Reminder on Dupire’s derivatives

O Notations :
® x belongs to C([0, T]) or D([0, T]).
® Xen = (Xens)sefo, ]

® X®Bry 3:X+y1[t,T]-

O Horizontal derivative :

t —v(t
Dev(t, x) — lim YEFEXen) ZV(8:%).
el0 e

O Vertical derivative :

Viv(t,x) -y = lim v(t.x@eey) = v(tx)
XD €10 € '

O We define C%! and €2 accordingly.
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Monotonicity and concavity are defined accordingly.
O We say that v is non-increasing in time if
v(t+ h,xen) — v(t,x) <0 when h > 0.
We say that v is Dupire-concave if for x! = x2 on [0, t)
v(t,0x* + (1 — 0)x?) > Ov(t,x") + (1 — 0)v(t,x?), forall 6 €[0,1]
O If v is Dupire-concave, one can define its super-differential

ov(t,x) = {z:v(t,xBry) <v(t,x)+z-y, Vy}.



Let P = {P € P(D([0, T])) : X is a cadlag semimartingale under P }.



Let P = {P € P(D([0, T])) : X is a cadlag semimartingale under P }.

Theorem [B. and Tan [3, 4]] Assume that v is Dupire-concave and
non-increasing in time. Under additional local boundedness and
equi-continuity assumptions [- - -], we have

t
v(t, X) = v(0, X) +/ HsdX, — CP, t € [0, T], P—as. VP € P,
0

in which {C¥ : P € P} is a collection of non-decreasing processes and
Hs € dv(s, X*7) for all s € [0, T], P-q.s, where

Xt$7 = Xt]-te[O,s) + Xs—]-te[s,T]-



Let P = {P € P(D(]0, T])) : X is a cadlag semimartingale under P }.

Theorem [B. and Tan [3, 4]] Assume that v is Dupire-concave and
non-increasing in time. Under additional local boundedness and
equi-continuity assumptions [- - -], we have

t
w(£,X) = v(0,X) +/ HdX, — CP, t € [0, T], P—as. VP e P,
0

in which {C¥ : P € P} is a collection of non-decreasing processes and
Hs € dv(s, X*7) for all s € [0, T], P-q.s, where

X1557 = Xt]-te[O,s) JrXs—lte[s,T]-

= Enough to construct a solution to our second order FBSDE. See
also B. and Tan [4] for an application to robust super-hedging with
jumps (compare to Nutz 15).



Qe
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Example #2 : super-hedging under (bounded)
volatility uncertainty

Let us consider a payoff function of the form

.
g0 = £ (xr. [ XidA). g € CHo(R).

O Uncertainty modeled by Py : P such that P[Xp = xp] =1 and
dX, = 0,dW., o, € [0,7], s € [0, T], P-as.
O Dual formulation :

v(t,x) := sup EF[g(X)] = robust super-hedging price
PeP(t,x)

where P(t,x) := {P : P[X¢n = x¢a] =1, and (1) holds on [¢, T]}.

= is not C2 a priori but may be C%'*“ since g is.



If it is C%1*<, then on can find the hedging strategy (and prove duality)
by applying this version of It6-Dupire’'s Lemma.

Theorem [B., Loeper and Tan [2]] : Let X be a semimatingale,
v € C%! such that v and Vv are locally uniformly continuous and [---].
Then,

t
v(t,X) = v(0,X) + / Viv(s,X)dXs + Iy, te€]0,T],
0
where I is a continuous orthogonal process, if and only if
1
. /{V(s+s,X)—v(s+5,X5A®5+8(XS+E—XS))}{Ns+5—Ns}ds ?7 u.c.p.
0 E.

for all (bounded) continuous martingale N.

Remark : Compare with Bandini and Russo (17) and Gozzi and Russo
(06). Here

1
X, Y]e = lim f/ (Xove — Xo)(Yore — Yo)ds
e—=0 ¢ 0



Remark : The above condition holds as soon as for some L € BV :
t
[v(t,x) — v(t,x")| < C/ |xs — x| dLs.
0

O Similar result for cadlag processes (B. and Vallet [5]).



O It remains to show that the candidate solution to the PPDE

o2
—0¢v — sup 7Viv =0, v(T,)=g

o€lag,a]

is C%! with locally uniformly continuous vertical Dupire's derivative.



Approximate viscosity solutions of PPDEs
(A tool for regularity)

—0p(t,x) = F(t, %, ¢(t,%), Vxp(t, %), Vip(t,x)) =0, (T, ) =g

B., Loeper and Tan [10].

Related works : Ekren, Touzi and Zhang (16), Ren, Touzi and Zhang
(17), Ekren and Zhang (16), Cosso and Russo (19), Jianjun Zhou (21).



Definition of solutions by approximation

O Let m = (7"),, with 7" = (t")o<i<n, be an increasing sequence of time
grids. Set

Zthl[tn n —|—th1{7—}



Definition of solutions by approximation

O Let m = (7"),, with 7" = (t")o<i<n, be an increasing sequence of time
grids. Set

Zthl[tn n —|—Xt’r1-1{7—}

O We say that a continuous function v” is a 7"-viscosity solution of
— Dep(t,x) — F(t,%,(t,%), Vip(t,x), Vip(t,x)) =0V t < T

if it is of the form

Z 1[tn,t+1)v (t }_(7\,5[”, x)



Definition of solutions by approximation

O Let m = (7"),, with 7" = (t")o<i<n, be an increasing sequence of time
grids. Set

Zthl[tn n —|—Xt’r1-1{7—}

O We say that a continuous function v” is a 7"-viscosity solution of
— Dep(t,x) — F(t,%,(t,%), Vip(t,x), Vip(t,x)) =0V t < T
if it is of the form

Z 1[tn,t+1)v (t }_(7\,5[”, x)

in which each v/(+,%]{;, ) is a viscosity solution on RY x [P, t0, ) of

- al“/i”(ta ig\t’.”vx) - F(t7 )_(it’."y vin(t7 i;’\tﬁx)? Dv'n(t i;’\t" X)7 Dzvin(ty}_(g\tl."7x)) =0

ng.n —-n n n —n
% (ti+1_7XAt;’7X) = Vi+1(ti+17XAtf1[o,t" )t l{t" 115 x)
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O Example : Think about replacing

v(t,x) == sup EF[g(X)]
PeP(t,x)
by B B
vi(t,%") = sup EF [g(Xt’(’q, . ,Xt’;n)].
PeP(t,X")
(i) If t € [t7,t,1), then (X, .-+, X3) is known (and is a parameter for

the period [t, T])
(i) At the boundary t = tf,,, the value X} _ is also frozen, and serves
T i+
as a starting point for X" on the period [t/ ;, t/ ).

(iii) Ends up with a sequence of backward PDEs on : [t ;, T),
[t?_,,t" 1), and so on.



O We say that v is a m-approximate-viscosity solution on D([0, T]) of
— 0pv(t,x) — F(t,x,v(t,x), Vyv(t, x), Viv(t,x)) =0, t< T

with terminal condition

V( T, ) =&
if v(t,x,x;)— v(t,x) for all (t,x) € [0, T] x D([0, T]) where (v"), is
the sequence defined as above with
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O We say that v is a m-approximate-viscosity solution on D([0, T]) of
— 0pv(t,x) — F(t,x,v(t,x), Vyv(t, x), Viv(t,x)) =0, t< T
with terminal condition
V( T, ) =8
if v(t,x,x;)— v(t,x) for all (t,x) € [0, T] x D([0, T]) where (v"), is

the sequence defined as above with

V"(tg,x, X) = g()_(nl[oqf,’,’) + 1{fr',’}x)

O Typical examples : Semi-linear PPDEs or HJB equations.
= In both cases, amounts to replacing X by X" in the coefficients and
payoff.

But we also want to consider general non-linear parabolic PPDEs.
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Existence, comparison, stability

O We focus on the case where
1
F(t.x,r,p,q) = H(t,x,r, p,q) + p(t,x)r + b(t, x)p + 50°(t, x)q

where all the coefficients are continuous and Lipschitz/uniformly
continuous in space [-- -] 4+ standard assumptions to have comparison

and existence of a viscosity solution with linear growth in finite dimension
(fOF the F('7)_<r/1\tf’a ))

Theorem : Let g be uniformly continuous, then 3 a unique
m-approximate viscosity solution v on D([0, T]). Moreover,
e |t is locally uniformly continuous.

e |f 7/ is another increasing sequence of time grids and if v/ is the
m’-approximate viscosity solution, then v/ = v.

Proposition : Comparison and stability holds in the class of solutions.

Remark : We have precise estimates on the approximation error
[v"(t,x,x¢) — v(t,x)| (depending on the regul. of x).



Regularity in the fully non-linear case

Recall that

- al‘Vi”(ta )_(g\trpyx) - F(t7 }_{Z\t’.”a vl'n(ta )_(,;\t;’7x)7 Dvin(ta)_(;l\t’f’7x)7 Dzvin(t7)_(7\t/."7x)) =0

n n =n n n =n
vi'(tha—, Xhe, X) = vika(tha, Xaer Lo, ) + 13X, X)



O For terminal conditions of the form (can be made more abstract)

g(x) = gO(ATXtdAt)7

where g, € C'T*(R) is bounded, and A is BV with at most finitely many
jumps on [0, T].
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O For terminal conditions of the form (can be made more abstract)

g(x) = gO(ATXtdAt>7

where g, € C'T*(R) is bounded, and A is BV with at most finitely many
jumps on [0, T].

O Two cases

(d) Either a € (07 1) and F(t’vaazafY) = Fl(t)y + F2(t)z + F3(t,’y)’

(b) Ora=1and F(t,x,y,z,7) = F1(t,y,v) + F2(t)z with
y € R+ Fi(t,y,v) € C! with bounded and Lipschitz first order
derivative, uniformly iny € Rand t < T.

O In any case v — F(+,7) is concave or d < 2.
Theorem : Vv is well-defined and locally uniformly continuous.

Remark : In the semi-linear case F = F(t,x,y, z), only needs C*** (in
the Fréchet sense with respect to the path) : just differentiate the
corresponding BSDE...



Regularization in the uniformly elliptic case
(Bouchard and Tan [11])

We focus on the linear case (with d = 1) and consider
1
_atv(ta X) - Mt(X)va(t,X) - Eat(x)QViv(t,x) = Oa V( T7 ) =&

with

(16, 7)) = (p1er 0e) (e, / edAL) and g(x) = g(xr, / xsdAy),

0

in which

w and o2 are Holder (bounded), 02 > a > 0 and g measurable (bounded).



Relation with degenerate equations

O If A was absolutely continuous, this would amount to looking for
regularity for the degenerate PDE

: 1
—0rp(t,x) — x Ardap(t, x) — pe(x)0aip(t, x) — Eat(x)28317xlg0(t, x)=0
in which derivatives are taken in the traditional sense and
t .
(t,x) = (t,xt,/ xeAsds) | ot x) = v(t,x).
0

Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S.
Menozzi and S. Molchanov (10).
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to the regularizing effect of the noise .



Relation with degenerate equations

O If A was absolutely continuous, this would amount to looking for
regularity for the degenerate PDE

0ep(t ) — XA () — 1Dt x) — 50u(xV P et x) = O
in which derivatives are taken in the traditional sense and

(t,x) = (t,xt,/otstsds) (b %) = v(£x).
Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S.

Menozzi and S. Molchanov (10).

= In general d;¢ and O,2¢ are not well defined ! Even if 9% ¢ is, due
to the regularizing effect of the noise .

O Still all can be well-defined if we appeal to the notion of Dupire’s
derivative :

Orp(t, x) + xlAtango(t,x) = horizontal derivative 9;v of v!



Change of variables

O Another way to look at the PPDE is to make the change of variables
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Change of variables

O Another way to look at the PPDE is to make the change of variables

t t
(t,x) = (t,x¢, xeAr — / XsdAs) = (t, Xt,/ Asdxs)
0 0

which leads to

() — )1, AD( ) — TV TEAD (e, )] =0

A 1 A

= Again O;p and O,2¢ are not well defined in general (unless coefficients
are smooth). But this opens the door to the use of the parametrix
approach.

with



Parametrix
O Given (t,y), look for the transition density
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y

associated to the dynamics with frozen coefficients and zero drift
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Parametrix
O Given (t,y), look for the transition density

s,x) €[0,t] x R2— f,(s,x; t,y
y

associated to the dynamics with frozen coefficients and zero drift

—0r(s, x) — @Tr[ZfDZgo(s,x)] =0.

Lyp(s,x)
It is a Gaussian density

f(s,xit,y) = ;e—%(Y—X)TZs,:(y)*(y—X)

27| Ts e(y)|2

where
2 (t—5) Aglt) . (p) ‘
Yoi(y) i=0u(y) 1 ) with Ay ::/ (A, — As)Pdr, p e {1,2}.
As,t As,t S



Link with the original density
O Let
(s,x) € [0,t] x R? = f(s,x; t,y)

be the density for the original dynamics (without freezing the coefficients
and with a drift), assuming it exists and is smooth.
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Link with the original density
O Let
(s,x) € [0,t] x R? = f(s,x; t,y)

be the density for the original dynamics (without freezing the coefficients
and with a drift), assuming it exists and is smooth.

With S; :=[s, t] x R? and
Lo(t,x) == Lep(t, x) + pe(x)(1, A) Dep(t, x) -

f(57X; tay) - fy(57X; t7y)
= / O, [f(s,x; r,z)fy(r,z; t,y)} drdz
Ss,t

= / (—L*f(s,x; r,2))f,(r,zi t,y) — (s, x; r,2)L,F,(r, z; t, y)drdz
Ss,t

= / (L— L)), (r,z; t,y)f(s,x; r, z)drdz.
Ss.t



O This leads to

f(s,x; t,y) = fy(s,x; t,y)+ / Fy(s,x; r, z)é(r,z; t,y)drdz
Ss,t

with &(r, z; t,y) = D k1 Ax(r,z; t,y) where
Ai(s,x; t,y) = (L— L) (s,x; t,y)

Apii(s,x;t,y) = / (L — L), (s,x;r,2)A(r, z; t,y)drdz.
Ss,t

= Remains to check that the sum converges...



O This leads to

f(s,x; t,y) = fy(s,x; t,y)+ / Fy(s,x; r, z)é(r,z; t,y)drdz
Ss,t

with &(r, z; t,y) = D k1 Ax(r,z; t,y) where
Ai(s,x; t,y) = (L— L) (s,x; t,y)

Apii(s,x;t,y) = / (L — L), (s,x;r,2)A(r, z; t,y)drdz.
Ss,t

= Remains to check that the sum converges...
O Formally,

D f(s,x;t,y) = D, f,(s,x; t,y) + / D, f,(s,x;r,z)®(r,z t,y)drdz
Ss.f

in which (s, x) — f,(s,x; t,y) is smooth!

= Remains to estimate the derivatives and check that they are
integrable...



Existence of a transition density

O It requires structural conditions, which are just enough to obtain the
correct estimates. Define

1 t
mglt) = / A.dr
: t—s /).

1 t 1 t
m£2t) : / (A, — mglt))zdr and mﬁ? = / (A, — As)?dr.
’ t—s Js ’ ’ t—s Js



Existence of a transition density

O It requires structural conditions, which are just enough to obtain the
correct estimates. Define

1 t
mglt) = / A.dr
: t—s /).

1 t
m£2t) = /(A,— ()) dr and m(2 = 75/ (A, — dr.
s

t—s

O Assumption : 3 (Bj)o<i<a € RS and € >0st,V0<s<t<T,

1 ¢

—(t—s5)"r < =L < C(t—5) P,

¢ m?)

1 1

E(t—s) P2 < — < C(t—s)™"
ms ¢



O Assumption : We have
Br=p1—Po>-1, fy:=p—Po>—1,
and 3 (g,d) €R%2, bR, C>0and a >0s.t.
W <b, 0<a<o®<a,
os) — )] < €16 = sl + [wae o )| T+ s (3, 0)] )
e(x) = ()] < € (o = 31| FE + b — 3 ),

with



O Assumption : We have
Br=p1—Po>-1, fy:=p—Po>—1,
and 3 (g,d) €R%2, bR, C>0and a >0s.t.
W <b, 0<a<o®<a,
os) — )] < €16 = sl + [wae o )| T+ s (3, 0)] )
e(x) = ()] < € (o = 31| FE + b — 3 ),

with

wst(X,y) == x — ( —(Atl— As) (1) ) v

O Remark : can also impose standard Holder continuity conditions on o
(slightly more complex to handle).



Let us now assume that

Ko = 1*7[50/\(&7%) > 0.

O Proposition : ® is well-defined as well as

f(s,xit,y) = F(s,x t,y)+/ fy(s,x;r,z)®(r, z; t, y)drdz.
Ss,t



Let us now assume that

Ko = 177[50/\(047/3’0) > 0.

O Proposition : ® is well-defined as well as

f(s,xit,y) = F(s,x t,y)+/ fy(s,x;r,z)®(r, z; t, y)drdz.
Ss,t

O This is however not enough for f to be even C! in x...



Back to the original variables

O To obtain more regularity, we need to come back to the original
variables (and think in terms of Dupire's derivatives) :

t t
(t,Xt,/ XsdAs) = (t7 rt(XhXtAt_/ XsdAs)>
0 0
1 0
M= ( - )

with



Back to the original variables

O To obtain more regularity, we need to come back to the original
variables (and think in terms of Dupire's derivatives) :

t t
(t,Xt,/ XsdAs) = (t7 rt(XhXtAt - / XsdAs)>
0 0

1 0
=4 )

O The corresponding density is

with

f(S,X; t7y) = F(S7 r5X; t7 rf.y)7

which we write as

(s, % t,y) = F(5, (xs1 / xdA,): t,y).
0



C%!-regularity in the sense of Dupire

We now also assume that

(1—,80)/\(%4—@—%50) > 0.



C%!-regularity in the sense of Dupire

We now also assume that

(1 Bo) A (5 +a— 3f0) > 0.

O Theorem : (s,x) € [0, t) x C([0,t]) = f(s,x; t,y) is C®!



C%!-regularity in the sense of Dupire

We now also assume that

(1 Bo) A (5 +a— 3f0) > 0.

O Theorem : (s,x) € [0,t) x C([0,t]) = f(s,x; t,y) is C%! and, for all
(bounded) g : x — g(xT, fOT xsdAs), the map

(s,x) €0, T] x C([0, T]) — v(s,x) := /]Rz f(s,x; T,y)g(y)dy

is COL([0, T)).



C%!-regularity in the sense of Dupire

We now also assume that

(1—;6’0)/\(%4—(1—%[30) > 0.

O Theorem : (s,x) € [0,t) x C([0,t]) = f(s,x; t,y) is C%! and, for all
(bounded) g : x > g(xr,foT xsdAs), the map

(s,x) € [0, T] x C([0, T]) o v(s.) = / £(s.x: T.y)g(y)dy
]RZ
is C%1([0, T)). If moreover
t t t
X = Xo+ / 1s(Xe, Is)ds + / oo (Xe, 1)dW,s, I, = / X,dA,,
0 0 0

admits a unique (strong Markov) weak solution, then f is the transition
density of (X, /)



C%!-regularity in the sense of Dupire

We now also assume that

(1—;6’0)/\(%4—(1—%[30) > 0.

O Theorem : (s,x) € [0,t) x C([0,t]) = f(s,x; t,y) is C%! and, for all
(bounded) g : x > g(xr,foT xsdAs), the map

(s,x) € [0, T] x C([0, T]) o v(s.) = / £(s.x: T.y)g(y)dy
]RZ
is C%1([0, T)). If moreover
t t t
X = Xo+ / 1s(Xe, Is)ds + / oo (Xe, 1)dW,s, I, = / X,dA,,
0 0 0

admits a unique (strong Markov) weak solution, then f is the transition
density of (X, /) and (under additional technical conditions)

v(t,X) =v(0,X) + /Ot Viv(s, X)os(X)dWs.



C2-regularity in the sense of Dupire

We finally also assume that Jae > 0 s.t.

’ AR _ +
O<Oé¢o<l§l0/\d¢/\__]!nzl+5l, Wlth 6(@ ::%_ﬁo_%ﬂ_w7

where AB := max {Bo — f1, B3 — B2}, and

(2ﬁ4+1+ﬁ£

T+ 3 ,1) min{ae,a} — Bo > 0.



C2-regularity in the sense of Dupire

We finally also assume that Jae > 0 s.t.

1+ B 1 AB 1-2a)t
0 < o < Ko A G A min +6I, with &¢ (= = — 07757@7
=12 2 2 2 2

where m :=max{Bo — B1, B3 — B}, and

(2ﬁ4+1+ﬁ1
1+ 65

71) min{ae,a} — Bo > 0.
O Theorem : The SDE
t t t
X = Xo + / 1s(Xe, Is)ds + / oe(Xe, 1) dWs, 1y = / X,dA,
0 0 0

admits a unique weak solution that is a strong Markov process.



C2-regularity in the sense of Dupire

We finally also assume that Jae > 0 s.t.

14+ o 1
0<O¢¢<l’io/\6é¢/\mlr‘l2 —;“', with o ::57/3’07

=1,

A3 (Bo+1-2a)"
2 2 :

where A := max{fo — 1, B3 — B}, and

(2ﬁ4+1+6£
1+ 3,

71) min{ae,a} — Bo > 0.
O Theorem : The SDE
t t t
X=X+ / s(Xer Is)dls + / oe(Xer )W,y = / X, dA,
0 0 0

admits a unique weak solution that is a strong Markov process. f is its
transition density and (s,x) € [0, t) x C([0,t]) = f(s,x; t,y) is C1:2.



C2-regularity in the sense of Dupire

We finally also assume that Jae > 0 s.t.

14+ o 1
0<a¢<HOAd¢AmIr’I2 —;“', with o ::57/3’07

=1,

A3 (Bo+1-2a)"
2 2 :

where Zﬁ :=max{fo— B1, B3 — B2}, and

. (254+1+s31

T+ 3 71) min{ae,a} — Bo > 0.

O Theorem : The SDE
t t t
X: = Xo +/ ws(Xs, Is)ds +/ oe(Xs, Is)dWs, |, = / XsdAs
0 0 0
admits a unique weak solution that is a strong Markov process. f is its
transition density and (s,x) € [0, t) x C([0,t]) = f(s,x; t,y) is C1:2.
v is C12([0, T)) and solves the PPDE

~0v(t,) — e (IVar(t,%) — o< VEv(6) =0, (T, ) = g.



Toy examples

(i) Ar = fot p(s)ds, with e < p < 1/¢ a.e. for some ¢ > 0.
= all assumptions are satisfied for a > 0.



Toy examples

1) A = fot p(s)ds, with e < p < 1/¢ a.e. for some ¢ > 0.
= all assumptions are satisfied for a > 0.

(i1) A; = t7 for some v € (0,1).
= all assumptions are satisfied for o > 0.



Toy examples

1) A = fot p(s)ds, with e < p < 1/¢ a.e. for some ¢ > 0.
= all assumptions are satisfied for a > 0.

(i1) A; = t7 for some v € (0,1).
= all assumptions are satisfied for o > 0.

(111) 341> Y1 > 72 >0 and C1, G > 0st.
C1|f—5‘71 <A — A < C2|t—5|’yz.

= all assumptions are satisfied for 41 — 72 > 0 small enough (with
respect to ). Typically, 1 = 1 in this case.
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