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Motivation
O Replace C12-regularity by C%! when applying 1td’s lemma in
situations where regularity is difficult to obtain :
e Path-dependent functionals.

® McKean-Vlasov optimal control problems.

O We know that it is possible for functionals on [0, T] x RY associated to
classical Markovian problems.
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Weak Dirichlet processes

O In the Markovian case : works by Russo and his co-authors, using the
concept of weak Dirichlet processes and the stochastic calculus by
regularization. See in particular Gozzi and Russo [4].

Definitions :

® |let X and Y be two real valued cadlag processes. The co-quadractic
variation [X, Y] is defined by

1t
DY i i [ (X = X (Yiesone = Vo)

whenever the limit exists in the sense of u.c.p.
® X has finite quadratic variation, if [X] := [X, X], exists and is finite
a.s.

® Ais orthogonal if [A, N] = 0 for any real valued continuous local
martingale N.

® X is a weak Dirichlet process if X = Xo + M + A, where M is a
local martingale and A is orthogonal such that My = Ag = 0.



CY%L]te's formula

O Theorem (Gozzi and Russo [4]) : Let X = Xo+ M + A be a
continuous weak Dirichlet process with finite quadratic variation,
v e C%L([0, T) x RY). Then,

t
v(t,X:) = v(0,X) + / Oxv(s,Xs)dMs + Ty, t€]0,T),
0

where I is a continuous orthogonal process.
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CY%L]te's formula

O Theorem (Gozzi and Russo [4]) : Let X = Xo+ M + A be a
continuous weak Dirichlet process with finite quadratic variation,
v e C%L([0, T) x RY). Then,

t
v(t,X:) = v(0,X) + / Oxv(s,Xs)dMs + Ty, t€]0,T),
0

where I is a continuous orthogonal process.
O Remark :

® A version is available for processes with jumps, see Bandini and
Russo [1].

® If v(-, X) is a martingale, then ' = 0 (e.g. replication price in
finance, value function of an optimal control problem along the
optimal path,...)

e Can be extended to path-dependent functionals using the notion of
Dupire's derivatives, see B., Loeper and Tan [2].



C!-1té's formula for flows of semimartingale
distributions



The setting

O Consider a continuous semimartingale on a complete probability space
(Q, F,F = (Ft)e>0,P), satisfying the usual conditions,

X =Xo+ A+ M, with MX:M+/a:dM:.
0
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O Consider a continuous semimartingale on a complete probability space
(Q, F,F = (Ft)e>0,P), satisfying the usual conditions,

X =Xo+ A+ M, with MX:M+/a:dM:.
0

Define G° = (G¢)t>0, Where G2 := (M2, 0 < s <t) and
E°[¢] = E[¢]¢°]
O Consider a continuous weak Dirichlet process
Y=Y +A + MY,

with [Y, Y]T < 00.



The setting

O Assumption :

(i) o° is F-progressively measurable, and 3 sequence of stopping times
(Tn)n>1 w.rt. G° s.t. 7, T 00 a.s. and

Th A\t
]E[[I\/I]T,,At+|A|i M+/ |a§|2d[l\/l°]s] < +00, forallt > 0and n > 1.
" 0

(i) M is orthogonal to N (i.e. [M, N] = 0), for all G°-martingales N.
(iii) (H)-hypothesis condition :

E[1p|G;] =E[1p|G°], as., forall D€ F;, t > 0.
Define the P(R?)-valued process

me = L (X, |G°) = L(X, |G°), t>0.



Derivative with respect to the measure

O Given F : Po(RY) = R, let 6F/om : P2(RY) x R? — R, be s.t.

F(m) = //]Rd (tm" + (1 — t)m, x) [m’ — m] (dx)dt

and set SF
DmF(m,x) := 8Xﬁ(m,x).



Main result

O We consider F € COLLH (R, x RY x P»(RY)) such that the following
holds



Main result

O We consider F € COLLH (R, x RY x P»(RY)) such that the following
holds

O Assumption : V' n>1, T > 0 and compact K C R, 3 C > 0 s.t.
E° [ (DmF(r,y, mg’)"t,Xs"’"’t))z] <C(, as.,
V(r,s,t) €[0,2T] x [0,¢] x [0, T], (A, m,y) € [0,1]* x K,

where mPAt i= (1 — X)my as + Ampae, X2 = (1 —0)Xens + 01Xt

S



Main result

O We consider F € COLLH (R, x RY x P»(RY)) such that the following
holds

O Assumption : V' n>1, T > 0 and compact K C R, 3 C > 0 s.t.

E° [ (D,,,F(r,y7 mg’)"t,Xs"’”’t))z] <C(, as.,
V(r,s,t) €[0,2T] x [0,¢] x [0, T], (A, m,y) € [0,1]* x K,
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O Theorem : 3 a continuous orthogonal process I such that
t
F(t. Yo, me) =F(0, Yo, mo) +/ 8, F(s. Yoy ms) dMY
0

t
+/ E° [DF(s, -, ms, Xs)o 2] (Ys)dME + T+, t > 0.
0
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Sketch of proof

O We restrict to F(t,m,y) = F(m).

O Define
t
M = F(mt)—/ EO[DmF(mS,XS)a‘S’]de.
0

We need to show that, for any continuous martingale N,
1 t
: / [Tope — T (Nove — No)ds —» 0,
0
or equivalently
1 t
e = g/ [F(mere) — F(ms)] (Nese — No)ds — I,
0

where

t
/t:/ E° [DmF(ms,Xs)a:}d[M%N]s
0

1 t s+e
= lim f/ </ E° [ Dy F (M, Xu)o] dM3> (Nsc — Ny)ds
0 s

€ €



By definition of D,,F,

/ [Flmsye) = ww

/// x)[msye — ms](dx)d)‘wds

where mske

ds

= ms + M(Msye — ms)



By definition of D,,F,

Ns+5 - Ns
g

t 1
_ o oF e oF e
=[] B [ m X = St X) | aa

/0 [F(mﬁ_s) - F(ms)] ds

Ns+5 - Ns
9

ds,

where m}¢ 1= mg + \(msyc — my)
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By definition of D,,F,

Ns+s - Ns

/ [F(ms+5) — F(ms)] ds

// / E° [ Dy F(me X"E)(XSH—X)}d dAN-"*ES_ Ns gs.

where m}® := mg + A\(mgic — mg) and X7 := Xs + n(Xepe — Xs).
We can show that lim._,o If = lim._0 J;, where
Nesie — N
JE / E° [D F(me, Xs) (Xoge — Xo)| =2~ s,



We then write
o= S

where

e = /E" [DonF (e, Xe)(Ase — As)] = —"ds.
0
Nsie — N
.:/ E° [ D F (s, Xs) (M= — Ms)] = —ds,
0
s+e - N
J3a :/ D F ms7Xs)/ odMOi| Mds
0 s :



We then write
o= S

where

e = /E" [DonF (e, Xe)(Ase — As)] = —"ds.
0
Nsie — N
.:/ E° [ D F (s, Xs) (M= — Ms)] = —ds,
0
s+e - N
J3a :/ D F ms7Xs)/ odMOi| Mds
0 s :
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We then write
J o= T+ R+

where
Ns+5 - Ns

Jbe = /IE" [DinF (Mg, Xs)(Asie — As)] ——ds,
0
Neie — Ny
-:/ E° [DmF( ms,Xs)(l\/lerE—Ms)]%ds,
0
s+e - N
s -:/ D F( ms,Xs)/ °dMO}Mds.
0 s €

Then J& — 0, u.c.p., J> =0, and

lim J>* = I|m// EO DmF(m,, X, )o }dMC’NS“*NSds
3

e—0 e—0

:/0 EO[DmF(m,, X,)o ,]d[MO,N],.



A verification theorem for a class of McKean-Vlasov
optimal control problems



A class of McKean-Vlasov optimal control problems

O Let Q0 = Q! := C([0, T],R?) with canonical process X° and W/,
canonical filtrations F® and F!, and Wiener measures P$ and P}.



A class of McKean-Vlasov optimal control problems

O Let Q0 = Q! := C([0, T],R?) with canonical process X° and W/,
canonical filtrations F® and F!, and Wiener measures P$ and P}.

O Let A° denote the collection of FO-progressively measurable process
a:[0,T] x Q° — A, bounded.



A class of McKean-Vlasov optimal control problems

O Let Q0 = Q! := C([0, T],R?) with canonical process X° and W/,
canonical filtrations F® and F!, and Wiener measures P$ and P}.

O Let A° denote the collection of FO-progressively measurable process
a:[0,T] x Q° — A, bounded.

O Define
P (t,x°) = {IP’O € P(Q°%) :X° =x0 +/ offodr+/ dWﬂPO,PO—a.s.
t t
PO[XS. =x0, ] =1, where o e A

and W is a (P°, F°)-Brownian motion}.



A class of McKean-Vlasov optimal control problems

O Let Q0 = Q! := C([0, T],R?) with canonical process X° and W/,
canonical filtrations F® and F!, and Wiener measures P$ and P}.

O Let A° denote the collection of FO-progressively measurable process
a:[0, T] x Q° — A, bounded.

O Define
P (t,x°) = {IP’O € P(Q°%) :X° =x0 +/ alfoerr/ dWﬂPO,PO—a.s.
t t
PO[XS. =x0, ] =1, where o e A
and W is a (P°, F°)-Brownian motion}.
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Pw(t,x?) == {P=P° x Py :P° € PY(t,x°)}.



O For t € [0, T], m € Po(R?) and P € Py (t,x°), we consider the
McKean-Vlasov SDE :
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O For t € [0, T], m € Po(R?) and P € Py (t,x°), we consider the
McKean-Vlasov SDE :

S s
XJ’P:H/ oo(r,Xf’P,p?’"’P)dX%/ o(r, XP5, pp™F)dW,, mxP-as.
t t

with pt™F = E’"XP(Xrt*P|}',X°).
O Controlled laws of the canonical process (X, W, X, p) are in

Pw(t,m) = {(me)O(XO, W, X ptmE)Th e Py (£,x0), X0 € QO}.



O The value function of the McKean-Vlasov control problem is :

T

V(t,m) == sup J(t,P), with J(t,P) := ]Eﬁ{/ L(s, ps,of)ds—f—g(pr)].
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O The value function of the McKean-Vlasov control problem is :

_ T _
V(t,m) == sup J(t,P), with J(t,P) := ]EP{/ L(s, ps,af)ds—f—g(pr)].
PeEPw(t,m) t

O Define

K= {(;5 [0, T] x Pg(Rd) x RY 5 RY - ¢ is bounded and Borel measurable},

and H: [0, T] x P2(RY) x K — R, the Hamiltonian, defined by

H = h
(t,m,p) max (t,m,p,a),

h(t,m, p,a) := L(t,m,a) + a/(oop)(t, m, y)m(dy).
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Dual problems

O From now on, we fix the initial law to be my.

O We introduce the dual problems :
(i) Dy is the infimum over vy s.t.

T - B B
141 +A /(00¢)(t,Pt7Y)Pt(dy)dXtO > g(pT) +/0 h(t7pt7¢a Oé]f)dt, P -as.

for all P € Py/(0, mp), for some ¢ € K.

(ii) D5 is the infimum over v, s.t.

T T
Vo +/0 /(Uod’)(f»Ptv}/)/’t(d}/)dXt0 > glpT) —|—/O H(t, pe, ¢)dt, Po-a.s.

for some ¢ € KC, where Py is a probability measure under which the
canonical process X° is a Brownian motion.

O It is similar in spirit to B. and Dang [4] : stochastic target formulation
of the optimal control problem.
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O We have D, > D; by definition.

O Since . .
X°=X8+/ ozlf°dr+/ dW*"
0 0
the inequality

;
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O We have D, > D; by definition.

O Since _ '
X0:x8+/ aff’°dr+/ dW?
0 0

the inequality
T 0 0
w+/Lﬂ%@ﬁmmmﬂwwwp+/@mXM%ﬂmMﬂ£df
0

T _
> g(pr)+/ h(t, pe, &, oy )dt
0

implies (since h(t, m, p,a) = L(t,m,a) + [(oop)(t, m,y)m(dy)a)

P T —_ — —_—
wz@%@ﬂ+/LWMﬂW,WP€PMQm)
0



O We have D, > D; by definition.

O Since _ )
X0:x8+/ aff’°dr+/ dW?
0 0
the inequality
T 0 0
st [ [(oo)e ey o an)aws + [(oo0)(e.peyelay)ol
0
T _
> g(pr)+/ h(t, pe, &, oy )dt
0
implies (since h(t, m, p,a) = L(t,m,a) + [(oop)(t, m,y)m(dy)a)
p— T el P JR—
n = Elg(or) + [ Lt.peadl. for B e Pu(0.mo)
0

and therefore
D2 Z D1 2 V(t, mo).



Duality and verification

O Theorem : Assume that V € C%([0, T], P2(R9)) and that D,V is
uniformly bounded (or locally as above). Then,

\/(07 mo) = D1 = D2.

If in addition 3 a Borel measurable function 4: [0, T) x P2(R?Y) — A

s.t.
H(-,m,D,V) = h(-,m,D,V,4(-, m)),

for all m € Po(RY). Then, 3P € Py (0, mo) s.t. of = 4(-, p.), dP x dt
a.e. and P is optimal for V/(0, mp).



Duality and verification

O Theorem : Assume that V € C%([0, T], P2(R9)) and that D,V is
uniformly bounded (or locally as above). Then,

\/(07 mo) = D1 = D2.

If in addition 3 a Borel measurable function 4: [0, T) x P2(R?Y) — A
s.t.
H(-,m,D,V) = h(-,m,D,V,4(-, m)),

for all m € Po(RY). Then, 3P € Py (0, mo) s.t. of = 4(-, p.), dP x dt
a.e. and P is optimal for V/(0, mp).

O Remark : If A is compact, existence of 4 holds if L is
upper-semicontinuous.
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Proof of D, < V/(t, mp)

(a) We know that SP .= V(- p)+ [y L(s,ps, a ds is a super-martingale
under any P € Py (0, mp). Comblned with our C1 1td's formula, we
obtain :

ST = V(0, mo) +/ /(UoDmV)(t,phy)pt(dy)dW? _ AP
0

in which AP is non-negative

(b) Since V(T,p7) = g(p7) and AF is non-negative,
T
V.m0)+ [ [(oaDnV )ty )oi(ar)ax?
0

;
> g(pr)+/ H(t, pe, D V)dt.
0

Hence, V/(0, mg) > D, by arbitrariness of P.



Proof of the verification argument

Set
ot m) = / (00D V)(t, m, y)m(dy)

and note that (Aﬁ)@efw(o,mo) in the decomposition
ST = V(0, mo) +/ ot pe)dWF — AF
0

satisfies o
~inf  EF[A]=0.
IP’EPW(O,mo)

by classical arguments.



Moreover,
T _ B T
V(0,mg) = g(p71) —|—/ h(t, pe, ok )dt + A — / o(t, pr)dX?
0 0
T ~ ~ T
—g(or)+ [ (e prafder AT~ [ e p)ax?
0 0
T _ ~ T
> g(pr)+ [ At prcl)de+ A = [ dep)ax?
so that 0 < Aﬁ} < AE a.s. for P € Pw(0, mp), and

0= _inf EF[AZ]> inf EF[AR]=0.
IPGPW(O,mO) ]P’GPW(O,mo)



Moreover,
T _ _ T
V(0,mg) = g(p71) —|—/ h(t, pe, ok )dt + A% —/0 o(t, pr)dX?
0
T _ R T
= alor)+ [ Aepecal)de+A7 = [ i(epax?
0
T _ _ T
> g(pr)+ [ At prcl)de+ A = [ dep)ax?
0

so that 0 < AP < AL as for P e Pw(0, mg), and
T T

0= _inf EF[AZ]> inf EF[AR]=0.
IPGPW(O,mO) ]P’GPW(O,mo)

We indeed have (using the reverse Holder's inequality)

=0, P—as. VP e Py(0,m).

-

A



Then,
-
+ / h
0

(
+ /T L(t,pt,off)dt] .

~ ~ T ~
V(0, mp) = EF t, e, )dt — / ot pt)oz]f’dt]
0
P

g(pr)
= g(pT)

0
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Example

O Assume that :
0 o0=o09=1,
o A is a convex,
o L(t,m,a) = L(a) is strictly concave.
o g(m)=g([o(y)m(dy)) with g : R* - Rin C}, and ¢ : R — R?
that is C}.
Then, V € C%1([0, T], Po(RY)).

O An optimal control P exists (and is unique!) and we have
D V/(0, mo, x) = EF {g/(/Rd By + X9)mo(dy) )V (x + X3) |

where
B(y) = E"[g(y + Wr)].



Thank you |
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