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Motivation

2 Replace C 1,2-regularity by C 0,1 when applying Itô’s lemma in
situations where regularity is difficult to obtain :
• Path-dependent functionals.
• McKean-Vlasov optimal control problems.

2 We know that it is possible for functionals on [0,T ]×Rd associated to
classical Markovian problems.
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The classical Markovian situation



Weak Dirichlet processes
2 In the Markovian case : works by Russo and his co-authors, using the
concept of weak Dirichlet processes and the stochastic calculus by
regularization. See in particular Gozzi and Russo [4].

Definitions :
• Let X and Y be two real valued càdlàg processes. The co-quadractic

variation [X ,Y ] is defined by

[X ,Y ]t := lim
ε↘0

1
ε

∫ t

0
(X(s+ε)∧t − Xs)(Y(s+ε)∧t − Ys)ds,

whenever the limit exists in the sense of u.c.p.
• X has finite quadratic variation, if [X ] := [X ,X ], exists and is finite

a.s.
• A is orthogonal if [A,N] = 0 for any real valued continuous local

martingale N.
• X is a weak Dirichlet process if X = X0 + M + A, where M is a

local martingale and A is orthogonal such that M0 = A0 = 0.
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C0,1-Itô’s formula

2 Theorem (Gozzi and Russo [4]) : Let X = X0 + M + A be a
continuous weak Dirichlet process with finite quadratic variation,
v ∈ C 0,1([0,T )× Rd). Then,

v(t,Xt) = v(0,X ) +

∫ t

0
∂xv(s,Xs)dMs + Γt , t ∈ [0,T ),

where Γ is a continuous orthogonal process.

2 Remark :
• A version is available for processes with jumps, see Bandini and

Russo [1].
• If v(·,X ) is a martingale, then Γ ≡ 0 (e.g. replication price in

finance, value function of an optimal control problem along the
optimal path,...)

• Can be extended to path-dependent functionals using the notion of
Dupire’s derivatives, see B., Loeper and Tan [2].
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C 1-Itô’s formula for flows of semimartingale
distributions



The setting

2 Consider a continuous semimartingale on a complete probability space
(Ω,F ,F = (Ft)t≥0,P), satisfying the usual conditions,

X = X0 + A + MX , with MX = M +

∫ ·
0
σ◦s dM

◦
s .

Define G◦ = (G◦t )t≥0, where G◦t := σ(M◦s , 0 ≤ s ≤ t) and

E◦[ξ] := E[ξ|G◦]

2 Consider a continuous weak Dirichlet process

Y = Y0 + AY + MY ,

with [Y ,Y ]T <∞.
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The setting

2 Assumption :
(i) σ◦ is F-progressively measurable, and ∃ sequence of stopping times

(τn)n≥1 w.r.t. G◦ s.t. τn ↑ ∞ a.s. and

E
[
[M]τn∧t+

∣∣A∣∣2
τn∧t

+

∫ τn∧t

0

∣∣σ◦s ∣∣2d [M◦]s] < +∞, for all t ≥ 0 and n ≥ 1.

(ii) M is orthogonal to N (i.e. [M,N] = 0), for all G◦-martingales N.
(iii) (H)-hypothesis condition :

E
[
1D
∣∣G◦t ] = E

[
1D
∣∣G◦], a.s., for all D ∈ Ft , t ≥ 0.

Define the P(Rd)-valued process

mt := L (Xt |G◦t ) = L(Xt |G◦), t ≥ 0.



Derivative with respect to the measure

2 Given F : P2(Rd)→ R, let δF/δm : P2(Rd)× Rd → R, be s.t.

F (m′)− F (m) =

∫ 1

0

∫
Rd

δF

δm
(tm′ + (1− t)m, x) [m′ −m] (dx)dt

and set
DmF (m, x) := ∂x

δF

δm
(m, x).



Main result

2 We consider F ∈ C 0,1,1(R+ × Rd × P2(Rd)) such that the following
holds

2 Assumption : ∀ n ≥ 1, T > 0 and compact K ⊂ Rd , ∃ C > 0 s.t.

E◦
[ (

DmF (r , y ,mn,λ,t
s ,X n,η,t

s )
)2 ] ≤ C , a.s.,

∀ (r , s, t) ∈ [0, 2T ]× [0, t]× [0,T ], (λ, η, y) ∈ [0, 1]2 × K ,

where mn,λ,t
s := (1−λ)mτn∧s +λmτn∧t , X

n,η,t
s := (1− η)Xτn∧s + ηXτn∧t .

2 Theorem : ∃ a continuous orthogonal process Γ such that

F (t,Yt ,mt) =F (0,Y0,m0) +

∫ t

0
∂yF (s,Ys ,ms) dMY

s

+

∫ t

0
E◦
[
DmF (s, ·,ms ,Xs)σ◦s

]
(Ys)dM◦s + Γt , t ≥ 0.
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Sketch of proof
2 We restrict to F (t,m, y) = F (m).

2 Define

Γt := F (mt)−
∫ t

0
E◦
[
DmF (ms ,Xs)σ◦s

]
dM◦s .

We need to show that, for any continuous martingale N,

1
ε

∫ t

0

[
Γs+ε − Γs

]
(Ns+ε − Ns)ds −→ 0,

or equivalently

I εt :=
1
ε

∫ t

0

[
F (ms+ε)− F (ms)

]
(Ns+ε − Ns)ds −→ It ,

where

It =

∫ t

0
E◦
[
DmF (ms ,Xs)σ◦s

]
d [M◦,N]s

= lim
ε

1
ε

∫ t

0

(∫ s+ε

s

E◦
[
DmF (mu,Xu)σ◦u

]
dM◦u

)
(Ns+ε − Ns)ds
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By definition of DmF ,

∫ t

0

[
F (ms+ε)− F (ms)

]Ns+ε − Ns

ε
ds

=

∫ t

0

∫ 1

0

∫
δF

δm
(mλ,ε

s , x)[ms+ε −ms ](dx)dλ
Ns+ε − Ns

ε
ds

where mλ,ε
s := ms + λ(ms+ε −ms)

and X η,ε
s := Xs + η(Xs+ε − Xs).

We can show that limε→0 I
ε
t = limε→0 J

ε
t , where

Jεt :=

∫ t

0
E◦
[
DmF (ms ,Xs)(Xs+ε − Xs)

]Ns+ε − Ns

ε
ds.
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A verification theorem for a class of McKean-Vlasov
optimal control problems



A class of McKean-Vlasov optimal control problems

2 Let Ω0 = Ω1 := C([0,T ],Rd) with canonical process X 0 and W ,
canonical filtrations F0 and F1, and Wiener measures P0

0 and P1
0.

2 Let A0 denote the collection of F0-progressively measurable process
α : [0,T ]× Ω0 −→ A, bounded.

2 Define

P0
W (t, x0) :=

{
P0 ∈ P(Ω0) :X 0 = x0

t +

∫ ·
t

αP0
r dr +

∫ ·
t

dW P0
r ,P0-a.s.

P0[X 0
t∧· = x0

t∧·] = 1, where αP0 ∈ A0

and W P0 is a (P0,F0)-Brownian motion
}
.

and
PW (t, x0) :=

{
P = P0 × P1

0 : P0 ∈ P0
W (t, x0)

}
.
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2 Define
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φ : [0,T ]× P2(Rd)× Rd → Rd : φ is bounded and Borel measurable

}
,

and H : [0,T ]× P2(Rd)×K −→ R, the Hamiltonian, defined by

H(t,m, p) := max
a∈A

h(t,m, p, a),

h(t,m, p, a) := L(t,m, a) + a

∫
(σ0p)(t,m, y)m(dy).
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Dual problems
2 From now on, we fix the initial law to be m0.

2 We introduce the dual problems :
(i) D1 is the infimum over v1 s.t.

v1 +

∫ T
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∫
(σ0φ)(t, ρt , y)ρt(dy)dX 0

t ≥ g(ρT ) +
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P
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for all P ∈ PW (0,m0), for some φ ∈ K.

(ii) D2 is the infimum over v2 s.t.

v2 +

∫ T

0
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t ≥ g(ρT ) +

∫ T

0
H(t, ρt , φ)dt, P0-a.s.

for some φ ∈ K, where P0 is a probability measure under which the
canonical process X 0 is a Brownian motion.

2 It is similar in spirit to B. and Dang [4] : stochastic target formulation
of the optimal control problem.
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2 We have D2 ≥ D1 by definition.

2 Since

X 0 = x0
0 +

∫ ·
0
αP0
r dr +

∫ ·
0
dW P0

r

the inequality
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∫
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∫
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t dt

≥ g(ρT ) +

∫ T

0
h(t, ρt , φ, α

P
t )dt

implies (since h(t,m, p, a) = L(t,m, a) +
∫
(σ0p)(t,m, y)m(dy)a)

v1 ≥ EP[g(ρT ) +

∫ T

0
L(t, ρt , α

P
t )], for P ∈ PW (0,m0)

and therefore
D2 ≥ D1 ≥ V (t,m0).
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Duality and verification

2 Theorem : Assume that V ∈ C 0,1([0,T ],P2(Rd)) and that DmV is
uniformly bounded (or locally as above). Then,

V (0,m0) = D1 = D2.

If in addition ∃ a Borel measurable function â : [0,T )× P2(Rd) −→ A
s.t.

H(·,m,DmV ) = h(·,m,DmV , â(·,m)),

for all m ∈ P2(Rd). Then, ∃ P̂ ∈ PW (0,m0) s.t. αP̂ = â(·, ρ·), d P̂× dt

a.e. and P̂ is optimal for V (0,m0).

2 Remark : If A is compact, existence of â holds if L is
upper-semicontinuous.
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Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0).

Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dX 0

t

≥ g(ρT ) +

∫ T

0
H(t, ρt ,DmV )dt.

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0). Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dX 0

t

≥ g(ρT ) +

∫ T

0
H(t, ρt ,DmV )dt.

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0). Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t

≥ g(ρT ) +

∫ T

0
L(t, ρt , α

P
t )dt

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0). Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dX 0

t

≥ g(ρT ) +

∫ T

0

[
L(t, ρt , α

P
t ) +

∫
(σ0DmV )(t, ρt , y)ρt(dy)αP

t

]
dt

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0). Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dX 0

t

≥ g(ρT ) +

∫ T

0
h(t, ρt ,DmV , α

P
t )dt.

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of D2 ≤ V (t,m0)

(a) We know that SP := V (·, ρ·) +
∫ ·
0 L(s, ρs , α

P
s )ds is a super-martingale

under any P ∈ PW (0,m0). Combined with our C 1-Itô’s formula, we
obtain :

SP = V (0,m0) +

∫ ·
0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dW P

t − AP

in which AP is non-negative

(b) Since V (T , ρT ) = g(ρT ) and AP is non-negative,

V (0,m0) +

∫ T

0

∫
(σ0DmV )(t, ρt , y)ρt(dy)dX 0

t

≥ g(ρT ) +

∫ T

0
H(t, ρt ,DmV )dt.

Hence, V (0,m0) ≥ D2 by arbitrariness of P.



Proof of the verification argument

Set
`(t,m) :=

∫
(σ0DmV )(t,m, y)m(dy)

and note that (AP)P∈PW (0,m0)
in the decomposition

SP = V (0,m0) +

∫ ·
0
`(t, ρt)dW

P
t − AP

satisfies
inf

P∈PW (0,m0)
EP[AP

T ] = 0.

by classical arguments.



Moreover,

V (0,m0) = g(ρT ) +

∫ T

0
h(t, ρt , α

P
t )dt + AP

T −
∫ T

0
`(t, ρt)dX

0
t

= g(ρT ) +

∫ T

0
h(t, ρt , α

P̂
t )dt + AP̂

T −
∫ T

0
`(t, ρt)dX

0
t

≥ g(ρT ) +

∫ T

0
h(t, ρt , α

P
t )dt + AP̂

T −
∫ T

0
`(t, ρt)dX

0
t

so that 0 ≤ AP̂
T ≤ AP

T a.s. for P ∈ PW (0,m0), and

0 = inf
P∈PW (0,m0)

EP[AP
T ] ≥ inf

P∈PW (0,m0)
EP[AP̂

T ] = 0.

We indeed have (using the reverse Hölder’s inequality)

AP̂
T = 0, P− a.s. ∀ P ∈ PW (0,m0).
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Then,

V (0,m0) = EP̂

[
g(ρT ) +

∫ T

0
h(t, ρt , α

P̂
t )dt −

∫ T

0
`(t, ρt)α

P̂
t dt

]

= EP̂

[
g(ρT ) +

∫ T

0
L(t, ρt , α

P̂
t )dt

]
.



Example

2 Assume that :
o σ = σ0 ≡ 1,
o A is a convex,
o L(t,m, a) = L̄(a) is strictly concave.
o g(m) = ḡ

( ∫
φ(y)m(dy)

)
with ḡ : Rd → R in C 1

b , and φ : R −→ Rd

that is C 1
b .

Then, V ∈ C 0,1([0,T ],P2(Rd)).

2 An optimal control P̂ exists (and is unique !) and we have

DmV (0,m0, x) = EP̂
[
ḡ ′
(∫

Rd

φ̄(y + X 0
T )m0(dy)

)
∇φ̄
(
x + X 0

T

)]
where

φ̄(y) := EP10 [φ(y + WT )].
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