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Abstract

We provide an Itô’s formula for C1-functionals of flows of conditional marginal distribu-
tions of continuous semimartingales. This is based on the notion of weak Dirichlet process,
and extends the C1-Itô’s formula in Gozzi and Russo (2006) to this context. As the first
application, we study a class of McKean-Vlasov optimal control problems, and establish a
verification theorem which only requires C1-regularity of its value function, which is equiva-
lently the (viscosity) solution of the associated HJB master equation. It goes together with
a novel duality result.

1 Introduction

In its classical formulation, Itô’s formula provides a canonical decomposition for C2-transformations
of semimartingales. Since it was introduced, various variations have been proposed. In partic-
ular, the C1-Itô’s formula, that was developed in the series of works [18, 19, 20, 14] using the
notion of weak Dirichlet process and the stochastic calculus via regularization approach, only
requires the transformation to be C1. In this theory, a C1-functional of a weak Dirichlet process
is again a weak Dirichlet process, which can be (uniquely) decomposed as the sum of a martingale
and an orthogonal process.

Recently, motivated by the study of mean-field problems, involving McKean-Vlasov processes,
or Mean-Field Games (MFG), an Itô’s formula for flows of semimartingale distributions has
been introduced, see e.g. [4, 6, 7] or the recent paper [12] and the references therein. It applies
to transformations of measure-valued processes, obtained as the flows of (conditional) marginal
distributions of semimartingales, and provides a decomposition of C2-functionals of such measure-
valued processes. In particular, it can be used to deduce the master equation for MFGs, or the
Hamilton-Jacobi-Bellman (HJB) equation of McKean-Vlasov control problems. However, in
practical situations of application, it is usually not easy to check the required C2-differentiability
of the value function defined on the space of probability measures.

In this paper, we provide a C1-Itô’s formula for flows of semimartingale distributions, by using
the notion of weak Dirichlet process as in Gozzi and Russo [14]. This requires less regularity on
the value function and turns out to be enough in many applications. More precisely, on a filtered
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probability space (Ω,F ,F = (Ft)t≥0,P), let X be a Rd-valued continuous semimartingale with
decomposition

Xt = X0 +At +Mt +

∫ t

0
σ◦sdM

◦
s ,

where A is a continuous finite variation process, σ◦ is progressively measurable, and bothM and
M◦ are continuous martingales. Let G := σ(M◦t , t ≥ 0) denote the sub-σ-field generated by M◦,
which is usually referred to as the common noise σ-field in the mean-field literature. Then, one
defines a process m = (mt)t≥0, taking values in the space P(Rd) of probability measures on Rd,
by

mt := L(Xt

∣∣G), t ≥ 0.

Besides, we consider a continuous weak Dirichlet process Y with (unique) decomposition

Yt = Y0 +AYt +MY
t ,

where MY is the martingale part of Y , and AY is its orthogonal part (see Section 2 for a precise
definition). Under some (essentially related to integrability) technical conditions, we prove that,
for a continuous function F : (t, y,m) ∈ R+ × Rd × P(Rd) −→ F (t, y,m) ∈ R with continuous
partial derivative DyF in y, and continuous intrinsic derivative DmF (see Section 2 for a precise
definition), one has

F (t, Yt,mt) = F (0, Y0,m0) +

∫ t

0
DyF (s, Ys,ms) dM

Y
s

+

∫ t

0
E
[
DmF (s, y,ms, Xs)σ

◦
s

∣∣∣M◦]
y=Ys

dM◦s + Γt,

where Γ is an orthogonal process. When F is a C2-functional, Γ can be explicitly expressed in
terms of the first order time derivative ∂tF , together with the second order derivatives D2

yF ,
DxDmF and D2

mF (see e.g. [8, Section 6]). In particular, we extend the Itô’s formula for C1-
transformation of Dirichlet processes of [14] to our context.

Importantly, this formula allows one to identify the martingale part of the process F (·, Y,m),
which is enough in many practical situations of application. Let us for instance refer to [14] for
an application in optimal control, and to [3] for some applications in mathematical finance.

The second contribution of this paper is to provide a new type of application in the form of
a verification argument. Namely, we consider a McKean-Vlasov optimal control problem of the
form:

sup
ν∈U

E
[ ∫ T

0
L(t, ρνt , νt)dt+ g(ρνT )

]
,

where, given two independent Brownian motions W and W ◦, Xν is defined by the controlled
McKean-Vlasov SDE:

Xν
t = X0 +

∫ t

0
σ(s,Xν

s , ρ
ν
s)dWs +

∫ t

0
σ0(s,Xν

s , ρ
ν
s)
(
dW ◦s + νsds

)
, with ρνt := L(Xν

t |W ◦),

and where an admissible control process ν ∈ U is a FW ◦-progressively measurable process taking
value in a compact set U ⊂ Rd. In the above, W ◦ is the so-called common noise, and FW ◦

denotes the filtration generated by W ◦. Notice that one only controls the drift process, and the
control depends only on the common noise W ◦. For this McKean-Vlasov control problem, the
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value function can be written as V (t,m), where V is the unique (viscosity) solution of the master
HJB equation (see e.g. Pham and Wei [17]):

∂tV (t,m) + L[V ] +H
(
t,m,DmV (t,m, ·)

)
= 0,

where L[V ] is a linear operator involving DxDmV and D2
mV (see Section 3 for an explicit

expression), and H is the Hamiltonian given by

H(t,m,DmV (t,m, ·)) := sup
u∈U

(
L(t,m, u) + um

(
σ0(t, ·,m)DmV (t,m, ·)

))
.

The classical verification theorem states that, given a smooth solution to the HJB equation
(or equivalently the value function), the optimizer in the definition of H provides a feedback
optimal control. It relies on Itô’s formula, assuming that V ∈ C1,2 in the sense that V , ∂tV ,
DmV , DxDmV and D2

mV are all well-defined and continuous (see e.g. [15] and [21] for some
closely related problems). At the same time, for the above class of optimal control problems, the
definition of the Hamiltonian H as well as the associated optimizer only involve the first order
derivative DmV . It is then natural to ask whether it is enough to only require C1-regularity on
V (in the sense that V and DmV are both continuous).
By using our C1-Itô’s formula, we actually establish a verification theorem which only assumes
that V is C1. To the best of our knowledge, this approach is new even for classical optimal
control problems. The proof goes together with the proof of a dual formulation which is of own
interest.

The rest of this paper is organized as follows. The C1-Itô’s formula for flows of semimartin-
gale distributions is proved in Section 2. Section 3 is dedicated to our verification and duality
arguments for a class of McKean-Vlasov optimal control problems.

2 A C1-Itô’s formula for flows of semimartingale distributions

Throughout the section, we fix a complete probability space (Ω,F ,P), equipped with a filtration
F = (Ft)t≥0 satisfying the usual conditions. We assume that F is countably determined.

2.1 Preliminaries

Let P(Rd) denote the space of all (Borel) probability measures on Rd, and P2(Rd) denote the
set of all probability measures on Rd with finite second moment, i.e.

P2(Rd) =
{
µ ∈ P(Rd) :

∫
Rd

|x|2µ(dx) <∞
}
.

The space P2(Rd) is equipped with the Wasserstein distance

W2(µ1, µ2) :=

(
inf

γ∈Γ(µ1,µ2)

∫
Rd×Rd

|x− y|2dγ(x, y)

) 1
2

,

where Γ(µ1, µ2) is the set of all couplings of µ1 and µ2, i.e. joint probability measures on Rd×Rd
whose marginals are µ1 and µ2, respectively.

Definition 2.1. [7, Definition 5.43] A function F : P2(Rd) −→ R is said to have a linear
functional derivative if there exists a function

δF

δm
: P2(Rd)× Rd 3 (m,x) 7−→ δF

δm
(m)(x) ∈ R,
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that is continuous for the product topology, such that, for any bounded subset B ⊂ P2(Rd), the
function Rd 3 x 7−→ [δF/δm](m)(x) is at most of quadratic growth uniformly in m ∈ B, and
such that, for all m and m′ in P2(Rd):

F (m′)− F (m) =

∫ 1

0

∫
Rd

δF

δm

(
tm′ + (1− t)m

)
(x)
[
m′ −m

]
(dx)dt. (1)

Assume further that, for any m ∈ P2(Rd), the function Rd 3 x 7−→ δF
δm(m)(x) is differentiable.

Then, one defines the intrinsic derivative

DmF (m,x) := DxδmF (m,x), with δmF (m,x) :=
δF

δm
(m)(x), (2)

in which Dx is the gradient operator with respect to the x-variable.

In our paper, we will stay in the setting where DmF (m,x) is jointly continuous in (m,x)
and is at most of linear growth in x, uniformly in m ∈ B, for any bounded subset B ⊂ P2(Rd).
Then, for any m ∈ P2(Rd), the function Rd 3 x 7−→ DmF (m,x) is uniquely defined m-almost
everywhere on Rd.

We shall make use of the notion of weak Dirichlet process and stochastic calculus by regu-
larization, for which we now define the notions of quadratic variation and of orthogonal process
(see e.g. [14, Definition 3.4]). Recall that a sequence of stochastic processes

{
(Xn

t )t≥0, n ≥ 1
}
is

said to converge to the process (Xt)t≥0 in the u.c.p topology (uniform convergence on compacts
in probability) if, for all ε > 0 and t ≥ 0,

lim
n→∞

P
[

sup
s≤t
|Xn

s −Xs| > ε
]

= 0.

Definition 2.2. (i) Given two càdlàg processes X and Y , the quadratic covariation [X,Y ] is
defined by

[X,Y ]s = lim
ε→0

1

ε

∫ s

0
(Xr+ε −Xr)(Yr+ε − Yr)dr, s ≥ 0,

if the limit exists in the sense of u.c.p.

(ii) Let A be a F-adapted càdlàg process, we say that A is an orthogonal process if [A,N ] = 0 for
every continuous F-local martingale N .

(iii) Let X be a F-adapted càdlàg process, it is called a weak Dirichlet process if it has the
decomposition

Xt = X0 +At +Mt, t ≥ 0,

where M is a local martingale, and A is an orthogonal process w.r.t. the filtration F.

Remark 2.3. (i) When X and Y are càdlàg semimartingales, [X,Y ] coincides with the usual
bracket (see e.g. [19, Proposition 1.1]).

(ii) In the definition of the orthogonal process, it is equivalent to consider all bounded continuous
martingales N in place of all continuous local martingales.

(iii) For a continuous weak Dirichlet process, its decomposition as the sum of an orthogonal
process and a local martingale is unique.

(iv) We will consider later a sub-filtration G of F. Nevertheless, throughout the paper, the notion
of orthogonal and weak Dirichlet process are all w.r.t. the filtration F.
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2.2 Main Result

From now on, we fix a continuous semimartingale (Xt)t≥0 on the filtered space (Ω,F ,F,P) with
decomposition

Xt = X0 +At +MX
t , with MX

t = Mt +

∫ t

0
σ◦sdM

◦
s , t ≥ 0, (3)

where (At)t≥0 is continuous with finite variation, (Mt)t≥0 and (M◦t )t≥0 are continuous martin-
gales, with A0 = M0 = M◦0 = 0. Let us define G = (Gt)t≥0 as the (raw) filtration generated by
M◦, i.e.

Gt := σ(M◦s , 0 ≤ s ≤ t), t ≥ 0,

and define
G := σ(M◦s , s ≥ 0).

Assumption 2.1. (i) The process σ◦ is F-progressively measurable, and there exists an increasing
sequence of stopping times (τn)n≥1 w.r.t. G such that τn −→∞, a.s. as n −→∞, and

E
[
[M ]τn∧t +

∣∣A∣∣2
τn∧t +

∫ τn∧t

0

∣∣σ◦s ∣∣2d[M◦]s

]
< +∞, for all t ≥ 0 and n ≥ 1, (4)

where (|A|t)t≥0 denotes the total variation of A.

(ii) The martingale M is orthogonal to N (i.e. [M,N ] = 0), for all (càdlàg) G-martingale N .

(iii) (H)-hypothesis condition:

E
[
1D
∣∣Gt] = E

[
1D
∣∣G], a.s., for all D ∈ Ft, t ≥ 0.

We next introduce the P(Rd)-valued process m = (mt)t≥0 associated to the G-conditional
law of X:

mt := L (Xt |Gt) = L(Xt |G), t ≥ 0.

Assumption 2.1 ensures that m = (mt)t≥0 is continuous under W2, as shown in the following
lemma.

Lemma 2.4. Let Assumption 2.1 hold true, and (τn)n≥1 be the sequence of G-stopping times
therein, then for all bounded Ft-measurable random variable ξ,

E
[
ξ1{t≤τn}

∣∣Gτn∧t] = E
[
ξ1{t≤τn}

∣∣Gt] = E
[
ξ1{t≤τn}

∣∣G], a.s.

Consequently,

mt = L(Xτn∧t|Gt) = L(Xτn∧t|G), a.s., on {t ≤ τn}, for all t ≥ 0 and n ≥ 1.

In particular, one can choose m = (mt)t≥0 to be a continuous P2(Rd)-valued process, under the
Wasserstein distance W2 on P2(Rd).

Proof. (i) Let us fix n ≥ 1 and t ≥ 0. Since G, Gt and Gτn∧t are all countably generated, let us
take respectively a regular conditional probability (Pω)ω∈Ω of P w.r.t. G, a regular conditional
probability (Ptω)ω∈Ω of P w.r.t. Gt, and a regular conditional probability (Pn,tω )ω∈Ω of P w.r.t.
Gτn∧t. Under the (H)-hypothesis condition, one has, for all bounded Ft-measurable random
variables ξ,

E
[
ξ1{t≤τn}

∣∣Gτn∧t] = E
[
ξ1{t≤τn}

∣∣Gt] = E
[
ξ1{t≤τn}

∣∣G], a.s.
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Since F is assumed to be countably determined and Ft ⊂ F , this implies that

Pn,tω [B] = Ptω[B] = Pω[B], for all B ∈ Ft, for P-a.e. ω ∈ {t ≤ τn}.

As {t ≤ τn} ∈ Gτn∧t, one can then deduce that

mt(ω) = Pω ◦X−1
t = Ptω ◦X−1

t = Pn,tω ◦X−1
t = Pn,tω ◦X−1

τn(ω)∧t, for P-a.e. ω ∈ {t ≤ τn}.

(ii) Given the above, one can assume that the integrability condition in (4) holds for (X,A,M,M◦)
in place of (Xτn∧·, Aτn∧·,Mτn∧·,M

◦
τn∧·), up to using a standard localizing technique. Then,

EP
[

sup
0≤s≤t

X2
s

]
≤ 2X2

0 + 16EP [|MX
t |2
]

+ 4EP
[∣∣A∣∣2

t

]
<∞, for all t > 0,

in which we also used Doob’s inequality. This implies that EPω
[
sup0≤s≤tX

2
s

]
< ∞, for P- a.e.

ω. Define ms(ω) := Pω ◦X−1
s for 0 ≤ s ≤ t, then

lim
ε→0
W2

2 (ms(ω),ms+ε(ω)) ≤ lim
ε→0

EPω
[
(Xs+ε −Xs)

2
]

= 0, for P- a.e. ω.

Remark 2.5. (i) Let W and W ◦ be two independent Brownian motions, and σ = (σs)s≥0 and
σ◦ = (σ◦s)s≥0 be progressively measurable such that

E
[ ∫ t

0

(
|σs|2 + |σ◦s |2

)
ds
]
<∞, for all t ≥ 0.

Let us define M and M◦ by

Mt :=

∫ t

0
σsdWs, M◦t := W ◦t , t ≥ 0,

together with a continuous process A with square integrable total variation. Then, Assumption
2.1 holds true.

(ii) Since σ◦ is assumed to be adapted to the filtration F (rather than the sub-filtration G), the
form of processes X as in (3) covers the usual McKean-Vlasov SDEs with common noise:

Xt = X0 +

∫ t

0
b(Xs,ms)ds+

∫ t

0
σ(Xs,ms)dWs +

∫ t

0
σ0(Xs,ms)dW

◦
s ,

for two independent Brownian motions W and W ◦ and ms := L(Xs|W ◦). In our general formu-
lation, the process M◦ in (3) plays the role of the common noise.

For sake of more generality, we now also consider a Rd-valued continuous weak Dirichlet
process (Yt)t≥0 (see Definition 2.2), on the same filtered space (Ω,F ,F,P), with finite quadratic
variation (i.e. [Y, Y ]t <∞ for all t ≥ 0), whose unique decomposition is given by

Yt = Y0 +AYt +MY
t , t ≥ 0, (5)

for an orthogonal process AY and a local martingale MY , such that AY0 = MY
0 = 0. Notice

that there is no condition on the joint law or dynamics of X and Y , it is just required that X is
a semimartingale and Y is a weak Dirichlet process w.r.t. the same filtration F.
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For a function F : R+×Rd×P2(Rd) −→ R, we denote byDmF : R+×Rd×P2(Rd)×Rd −→ Rd
its partial derivative in the sense that (m,x) 7−→ DmF (t, y,m, x) is the derivative of m 7−→
F (t, y,m) as defined in (2). Then, we say that

F ∈ C0,1,1(R+ × Rd × P2(Rd)) (6)

if F and its partial derivatives DyF and DmF are well-defined and all (jointly) continuous.

In the following, for a random variable ξ, we use the notation

E◦
[
ξ
]
:=E

[
ξ
∣∣G]

whenever the right-hand side is well-defined, and

E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Yt) := E

[
DmF (s, y,ms, Xs)σ

◦
s

∣∣∣G]
y=Yt

, for all s, t ≥ 0.

We shall require the following local boundedness assumption on DmF .

Assumption 2.2. With the same sequence (τn)n≥1 of stopping times as in Assumption 2.1, for
all n ≥ 1, T > 0 and compact subsets K ⊂ Rd, there exists a constant C > 0 satisfying

E◦
[ (
DmF (r, y,mn,λ,t

s , Xn,η,t
s )

)2 ]
≤ C, a.s., for all r ∈ [0, 2T ], s ∈ [0, t], t ∈ [0, T ],

λ, η ∈ [0, 1], y ∈ K,

where mn,λ,t
s := mτn∧s + λ(mτn∧t −mτn∧s) and Xn,η,t

s := Xτn∧s + η(Xτn∧t −Xτn∧s).

Remark 2.6. If there exists a constant C > 0 such that∣∣DmF (r, y,m, x)
∣∣ ≤ C(1 + |x|), for all (r, y,m, x) ∈ R+ × Rd × P2(Rd)× Rd,

then one can check that Assumption 2.2 holds true whenever Assumption 2.1 does.

We can now state the main result of this section.

Theorem 2.3. Let F ∈ C0,1,1(R+ × Rd × P2(Rd)), and Assumptions 2.1 and 2.2 hold true.
Then,

F (t, Yt,mt) = F (0, Y0,m0) +

∫ t

0
DyF (s, Ys,ms) dM

Y
s

+

∫ t

0
E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Ys)dM

◦
s + Γt, t ≥ 0, (7)

where (Γt)0≤t≤T is an orthogonal process.

Before to provide the proof of this result, let us make some comments.

Remark 2.7. (i) The above theorem proves that (F(t, Yt,mt))t≥0 is a weak Dirichlet process.
Moreover, it is continuous so that the decomposition in (7) is unique.

(ii) The above result extends the classical C1-Itô’s formula such as in Gozzi and Russo [14].
Our new feature is that F depends on (mt)t≥0, the conditional marginal distribution of the semi-
martingale X. The main reason to consider a semimartingale X rather than a general weak
Dirichlet process is that, technically, we will use the integral w.r.t. the finite variation part A of
X to handle to conditional expectation terms in the proof (see in particular the proof of Lemma
2.11). It is an open question to us whether this formula still holds true if the process A in (3) is
only assumed to be orthogonal, so that X is only a weak Dirichlet process.
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Proof of Theorem 2.3. (i) Let (τYn )n≥1 be a sequence of F-stopping times such that τYn −→ ∞
as n −→ ∞, and Y is uniformly bounded on [0, τYn ], for each n ≥ 1. Then, given the sequence
(τn)n≥1 of localizing stopping times given in Assumption 2.1, we define

Xn
t := Xτn∧t, Y n

t := YτYn ∧t, and mn
t := L(Xn

t |Gt), t ≥ 0, n ≥ 1.

It is enough to prove that (7) holds for (Xn, Y n,mn), and then use Lemma 2.4 and let n −→∞.
For simplicity, we also assume that F (0, Y0,m0) = 0 and d = 1. Upon replacing the processes
(X,Y,m) in (7) by the localized process (Xn, Y n,mn), one can assume w.l.o.g. that

F (0, Y0,m0) = 0, d = 1,
Y is bounded,

Assumption 2.1 and 2.2 hold with τn ≡ ∞ a.s. for all n ≥ 1
(8)

which we do in the following.

Let us define the process (Γt)t≥0 by

Γt := F (t, Yt,mt)−
∫ t

0
DyF (s, Ys,ms)dM

Y
s −

∫ t

0
E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Ys)dM

◦
s .

To prove the theorem, it is enough to show that Γ is an orthogonal process, i.e. [Γ, N ] = 0 for
any bounded continuous martingale N . That is, for N given:

Iεt :=
1

ε

∫ t

0

[
F (s+ ε, Ys+ε,ms+ε)− F (s, Ys,ms)

]
(Ns+ε −Ns)ds −→ It, t ≥ 0, u.c.p.,

as ε −→ 0, where

It :=

∫ t

0
DyF (s, Ys,ms) d[MY , N ]s +

∫ t

0
E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Ys) d[M◦, N ]s, t ≥ 0.

To this end, we use the decomposition

Iεt = I1,ε
t + I2,ε

t + I3,ε
t , t ≥ 0,

with

I1,ε
t :=

∫ t

0

[
F (s+ ε, Ys+ε,ms+ε)− F (s+ ε, Ys,ms+ε)

]Ns+ε −Ns

ε
ds, (9)

I2,ε
t :=

∫ t

0

[
F (s+ ε, Ys,ms+ε)− F (s+ ε, Ys,ms)

]Ns+ε −Ns

ε
ds, (10)

and

I3,ε
t :=

∫ t

0

[
F (s+ ε, Ys,ms)− F (s, Ys,ms)

]Ns+ε −Ns

ε
ds. (11)

We shall prove in Lemmas 2.8 and 2.9 below that

I1,ε
t −→

∫ t

0
DyF (s, Ys,ms)d[MY , N ]s, and I

3,ε
t −→ 0, t ≥ 0, u.c.p.,

and, in Lemma 2.12, that

I2,ε
t −→

∫ t

0
E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Ys)d[M◦, N ]s, t ≥ 0, u.c.p.

This will provide the required result.
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Lemma 2.8. Let the conditions of Theorem 2.3 and Condition (8) hold. Let (I1,ε)ε>0 be defined
as in (9). Then,

I1,ε
t −→

∫ t

0
DyF (s, Ys,ms)d[MY , N ]s, t ≥ 0, u.c.p., as ε −→ 0.

Proof. Let us define

I11,ε
t :=

∫ t

0
DyF (s, Ys,ms)(Ys+ε − Ys)

Ns+ε −Ns

ε
ds, t ≥ 0,

and

I12,ε
t :=

∫ t

0
∆ε
s(Ys+ε − Ys)

Ns+ε −Ns

ε
ds, t ≥ 0,

with

∆ε
s :=

∫ 1

0
(DyF (s+ ε, Ys + λ(Ys+ε − Ys),ms+ε)−DyF (s, Ys,ms)) dλ,

so that I1,ε
t = I11,ε

t + I12,ε
t for all t ≥ 0.

First, by similar arguments as in [14, Proposition 3.10], one easily obtains that

I11,ε
t

u.c.p.−−−→
ε→0

∫ t

0
DyF (s, Ys,ms)d

[
MY , N

]
s
.

Further, by (uniform) continuity of (s, y) 7−→ DyF (s, y,ms) on compact sets, there exists random
variables (δ(DyF, ε))ε>0 such that

sup
0≤s≤t

∣∣∆ε
s

∣∣ ≤ δ(DyF, ε) −→ 0, a.s., as ε −→ 0.

Recall that Y has finite quadratic variation and that N is square integrable, so that(∫ t

0

(Ys+ε − Ys)2

ε
ds

)(∫ t

0

(Ns+ε −Ns)
2

ε
ds

)
u.c.p.−−−→
ε→0

[Y ]t[N ]t <∞.

It follows that

|I12,ε
t | ≤ δ (DyF, ε)

√∫ t

0

(Ys+ε − Ys)2

ε
ds

∫ t

0

(Ns+ε −Ns)2

ε
ds −→ 0, t ≥ 0, u.c.p.

as ε −→ 0.

Lemma 2.9. Let the conditions of Theorem 2.3 and Condition (8) hold. Let (I3,ε)ε>0 be defined
as in (11). Then, I3,ε

t −→ 0, t ≥ 0, u.c.p. as ε→ 0.

Proof. By the integration by parts formula, one can rewrite I3,ε
t as

I3,ε
t :=

∫ t+ε

0
ηεrdNr, with ηεr :=

1

ε

∫ r∧t

(r−ε)+

(
F (s+ ε, Ys,ms)− F (s, Ys,ms)

)
ds.

One observes that ηεr −→ 0 as ε −→ 0. Moreover, |ηε| is bounded by the (locally bounded)
continuous adapted process (η̄r)r≥0 defined as:

η̄r := 2 max
s≤r+1

max
r′≤r

∣∣F (s, Yr′ ,mr′)
∣∣.

Then, one can apply e.g. [16, Theorem I.4.31] to deduce that

I3,ε
t −→ 0, t ≥ 0, u.c.p.

9



To prove Lemma 2.12 below, we need the following two intermediate lemmas.

Lemma 2.10. Let the conditions of Theorem 2.3 and Condition (8) hold. Let H be a F-
progressively measurable process such that

M t :=

∫ t

0
HsdMs, t ≥ 0, is a martingale.

Then,
E◦
[
M t

]
= 0, a.s., for all t ≥ 0.

Moreover,
E◦
[
(Mt −Ms)

2
]

= E◦
[
[M ]t − [M ]s

]
, a.s., for all t ≥ s ≥ 0.

Proof. (i) Recall that G is the filtration generated by M◦. Then, for all φ ∈ Cb(Cd[0, T ];Rd),
there exists a bounded G-martingale Φ = (Φr)r≥0 such that Φr = E

[
φ(M◦)

∣∣Gr], for all r ≥ 0.
By Assumption 2.1.(ii), one knows that [M,Φ]r = 0 for all r ≥ 0. Up to a localization argument,
one obtains that

E
[
M tφ(M◦)

]
= E

[
M0Φ0 +

∫ t

0
M rdΦr +

∫ t

0
ΦrdM r + [M,Φ]t

]
= 0.

Using the (H)-hypothesis condition in Assumption 2.1, it follows that

E◦[M t] := E
[
M t

∣∣G] = E
[
M t

∣∣Gt] = 0.

(ii) Given the square integrability conditions on M of Condition (8), both processes∫ t

0
MrdMr =

1

2
M2
t −

1

2
[M ]t,

∫ t

0
Ms1{r≥s}dMr, t ≥ 0,

are true martingales. Thus

E◦
[ ∫ t

s
(Mr −Ms)dMr

]
= 0.

Then, it follows that

E◦
[
(Mt −Ms)

2
]

= E◦
[ ∫ t

s
2(Mr −Ms)dMr + [M ]t − [M ]s

]
= E◦

[
[M ]t − [M ]s

]
.

Lemma 2.11. Let the conditions of Theorem 2.3 and Condition (8) hold. Then,

lim
ε→0

E◦
[

1

ε

∫ t

0
(|A|s+ε − |A|s)2 ds

]
= 0, t ≥ 0, u.c.p.,

lim
ε→0

E◦
[

1

ε

∫ t

0
(Ms+ε −Ms)

2 ds

]
= E◦

[
[M ]t

]
, t ≥ 0, u.c.p.

and

lim
ε→0

E◦
[

1

ε

∫ t

0

(∫ s+ε

s
σ◦rdM

◦
r

)2

ds

]
=

∫ t

0
E◦
[
(σ◦s)

2
]
d[M◦]s, t ≥ 0, u.c.p.
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Proof. (i) Notice that the total variation process (|A|t)t≥0 of A is a continuous non-decreasing
process. By direct computations, it follows that

lim
ε→0

E◦
[

1

ε

∫ t

0

(
|A|s+ε − |A|s

)2
ds

]
= lim

ε→0

1

ε

[ ∫ t+ε

t
E◦
[
|A|2s

]
ds−

∫ ε

0
E◦
[
|A|2s

]
ds− 2

∫ t

0
E◦
[
|A|s

(
|A|s+ε − |A|s

)]
ds
]

= E◦
[
|A|2t

]
− lim
ε→0

E◦
[
2

∫ t

0

1

ε

∫ s+ε

s
|A|s d |A|r ds

]
= E◦

[
|A|2t

]
− lim
ε→0

E◦
[

2

∫ t+ε

0

1

ε

∫ r∧t

(r−ε)+
|A|s dsd |A|r

]

= E◦
[
|A|2t

]
− E◦

[∫ t

0
2 |A|r d |A|r

]
= 0, a.s.

In the above, we used the square integrability condition on |A|t in Condition (8) to deduce that

lim
ε→0

E◦
[∫ t+ε

0

1

ε

∫ r∧t

(r−ε)+
|A|s dsd |A|r

]
= E◦

[
lim
ε→0

∫ t+ε

0

1

ε

∫ r∧t

(r−ε)+
|A|s dsd |A|r

]

= E◦
[∫ t

0
|A|r d |A|r

]
, a.s.

(ii) Next, by Lemma 2.10, it follows that

lim
ε→0

E◦
[

1

ε

∫ t

0
(Ms+ε −Ms)

2 ds

]
= lim

ε→0

1

ε

∫ t

0
E◦
[
[M ]s+ε − [M ]s

]
ds = E◦

[
[M ]t

]
, a.s.

(iii) Let us set

M
◦
t :=

∫ t

0
σ◦sdM

◦
s , t ≥ 0.

Then,

E◦
[1

ε

∫ t

0

(
M
◦
s+ε −M

◦
s

)2
ds
]

= E◦
[ ∫ t

0

1

ε

(∫ s+ε

s
2(M

◦
r −M

◦
s)dM

◦
r +

∫ s+ε

s
d[M

◦
]r

)
ds
]

= 2

∫ t+ε

0

1

ε

∫ r∧t

(r−ε)+
E◦
[
(M
◦
r −M

◦
s)σ
◦
r

]
ds dM◦r + E◦

[ ∫ t+ε

0

r ∧ t− (r − ε)+

ε
d[M

◦
]r

]
. (12)

Let us define

Hε
r :=

1

ε

∫ r∧t

(r−ε)+
E◦
[
(M
◦
r −M

◦
s)σ
◦
r

]
ds.

Under the square integrability conditions in (8), it is easy to check that∣∣Hε
r

∣∣ ≤ √
E◦
[
|σ◦r |2

] 1

ε

∫ r∧t

(r−ε)+

√
E◦
[(
M
◦
r −M

◦
s

)2]
ds −→ 0, as ε −→ 0. (13)

Moreover, one has ∣∣Hε
r

∣∣ ≤ Hr := 2
√

E◦
[
|σ◦r |2

]
sup
s≤r

√
E◦
[
(M
◦
s)

2
]
.

11



Again, under the square integrability conditions in (8), the process
(
E◦
[
(M
◦
s)

2
])
s≥0

is continuous
so that one can localize it by a sequence of stopping times, which can be considered to be (τn)n≥1

w.l.o.g. It follows that, for a sequence of positive constants (Cn)n≥1,

E
[ ∫ t∧τn

0
H2
r d[M◦]r

]
≤ CnE

[ ∫ t

0
|σ◦r |2d[M◦]r

]
<∞.

Together with (13), one can deduce that∫ t+ε

0

1

ε

∫ r∧t

(r−ε)+
E◦
[
(M
◦
r −M

◦
s)σ
◦
r

]
ds dM◦r =

∫ t+ε

0
Hε
rdM

◦
r −→ 0, t ≥ 0, u.c.p. (14)

Further, it is easy to see that

E◦
[ ∫ t+ε

0

r ∧ t− (r − ε)+

ε
d[M

◦
]r

]
−→ E◦

[
[M
◦
]t
]
, a.s.

Together with (12) and (14), this leads to

lim
ε→0

E◦
[

1

ε

∫ t

0

(
M
◦
s+ε −M

◦
s

)2
ds

]
= E◦

[
[M
◦
]t
]

=

∫ t

0
E◦
[
(σ◦s)

2
]
d[M◦]s, t ≥ 0, u.c.p.

This concludes the proof.

Lemma 2.12. Let the conditions of Theorem 2.3 and Condition (8) hold. Let (I2,ε)ε>0 be defined
as in (10). Then,

I2,ε
t −→

∫ t

0
E◦
[
DmF (s, ·,ms, Xs)σ

◦
s

]
(Ys)d[M◦, N ]s, t ≥ 0, u.c.p., as ε −→ 0.

Proof. Recall that

I2,ε
t :=

∫ t

0

[
F (s+ ε, Ys,ms+ε)− F (s+ ε, Ys,ms)

]Ns+ε −Ns

ε
ds,

and that
ms = L(Xs|G), s ≥ 0.

By the definition of δmF and DmF in (1) and (2), it follows that

I2,ε
t =

∫ t

0

∫ 1

0
E◦
[
δmF (s+ ε, ·,mλ,ε

s , Xs+ε)− δmF (s+ ε, ·,mλ,ε
s , Xs)

]
(Ys)

Ns+ε −Ns

ε
dλds

=

∫ t

0

∫ 1

0

∫ 1

0
E◦
[
DmF (s+ ε, ·,mλ,ε

s , Xη,ε
s )(Xs+ε −Xs)

]
(Ys)

Ns+ε −Ns

ε
dηdλds,

where
mλ,ε
s := ms + λ(ms+ε −ms) and Xη,ε

s := Xs + η(Xs+ε −Xs).

Let us write
I2,ε
t = J1,ε

t + J2,ε
t , t ≥ 0,

where

J1,ε
t :=

∫ t

0

∫ 1

0

∫ 1

0
E◦
[
∆mF (s, s+ ε, ·, λ, η) (Xs+ε −Xs)

]
(Ys)

Ns+ε −Ns

ε
dηdλds,

12



with

∆mF (s, t, y, λ, η) := DmF
(
t, y,ms + λ(mt −ms), Xs + η(Xt −Xs)

)
−DmF

(
t, y,ms, Xs

)
,

and

J2,ε
t :=

∫ t

0
E◦
[
DmF (s+ ε, ·,ms, Xs)(Xs+ε −Xs)

]
(Ys)

Ns+ε −Ns

ε
ds.

(i) To study the limit of J1,ε
t , we notice that the map (s, t, y) 7−→ ∆mF (s, t, y, λ, η) is continuous.

Hence, by Condition (8),

(s, t, y) 7−→
∫ 1

0

∫ 1

0
E◦
[(

∆mF (s, t, y, λ, η)
)2]

dηdλ

is also continuous and hence uniformly continuous on compact sets. In particular, one has

lim
ε→0

∆t(ε) = 0, a.s., with ∆t(ε) := sup
s≤t

∫ 1

0

∫ 1

0
E◦
[(

∆mF (s, s+ ε, ·, λ, η)
)2]

(Ys)dηdλ.

Further, by Cauchy-Schwarz inequality,

sup
s≤t

∣∣J1,ε
s

∣∣ ≤ √
∆t(ε)

√
1

ε

∫ t

0
E◦
[(
Xs+ε −Xs

)2]
ds

√
1

ε

∫ t

0
(Ns+ε −Ns)2ds.

Since the limit in probability of

1

ε

∫ t

0
(Ns+ε −Ns)

2ds and
1

ε

∫ t

0
E◦
[
(Xs+ε −Xs)

2
]
ds

are both finite a.s., by the fact that N has finite quadratic variation and by Lemma 2.11 for the
right-hand side term, we hence conclude that

J1,ε
t −→ 0, t ≥ 0, u.c.p. as ε −→ 0.

(ii) We next consider J2,ε
t , and write it as

J2,ε
t = J21,ε

t + J22,ε
t + J23,ε

t ,

where

J21,ε
t :=

∫ t

0
E◦
[
DmF (s+ ε, ·,ms, Xs)(As+ε −As)

]
(Ys)

Ns+ε −Ns

ε
ds,

J22,ε
t :=

∫ t

0
E◦
[
DmF (s+ ε, ·,ms, Xs)(Ms+ε −Ms)

]
(Ys)

Ns+ε −Ns

ε
ds,

and

J23,ε
t :=

∫ t

0
E◦
[
DmF (s+ ε, ·,ms, Xs)

∫ s+ε

s
σ◦rdM

◦
r

]
(Ys)

Ns+ε −Ns

ε
ds.

First, observe that, under Condition (8), one has

E◦
[ (
DmF

(
r, y,mλ,t

s , Xη,t
s

))2 ]
≤ C,
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for some constant C > 0, and

∣∣J21,ε
t

∣∣ ≤ √C√1

ε

∫ t

0
E◦[(As+ε −As)2]ds

√
1

ε

∫ t

0
(Ns+ε −Ns)2ds −→ 0, u.c.p.,

by Lemma 2.11.

Next, by Lemma 2.10,

E◦
[
DmF (s+ ε, y,ms, Xs)

∫ s+ε

s
dMr

]
= 0, a.s. for all s ≥ 0.

Thus,
J22,ε
t = 0, for all t ≥ 0, a.s.

Finally, we study the limit of J23,ε
t . Define

ψ(s, r, ε) := E◦
[
DmF (s+ ε, ·,ms, Xs)σ

◦
r

]
(Ys)− E◦

[
DmF (r, ·,mr, Xr)σ

◦
r

]
(Yr).

We claim that

lim
ε→0

∫ t

0

∫ s+ε

s
ψ(s, r, ε)dM◦r

Ns+ε −Ns

ε
ds = 0, t ≥ 0, u.c.p., as ε −→ 0. (15)

Then, setting Dt :=
∫ t

0 E◦
[
DmF (r, ·,mr, Xr)σ

◦
r

]
(Yr)dM

◦
r , we can apply [19, Proposition 1.1] to

deduce that

lim
ε→0

J23,ε
t = lim

ε→0

∫ t

0

∫ s+ε

s
E◦
[
DmF (r, ·,mr, Xr)σ

◦
r

]
(Yr)dM

◦
r

Ns+ε −Ns

ε
ds

= lim
ε→0

∫ t

0
(Ds+ε −Ds)

Ns+ε −Ns

ε
ds

= [D,N ]t

=

∫ t

0
E◦
[
DmF (r, ·,mr, Xr)σ

◦
r

]
(Yr)d[M◦, N ]r,

where the last equality follows from the property of the classical covariation.

To conclude, it remains to prove our claim (15). By Cauchy-Schwarz inequality,∣∣∣∣J23,ε
t −

∫ t

0
E◦
[ ∫ s+ε

s
DmF (r, ·,mr, Xr)σ

◦
rdM

◦
r

]
(Yr)

Ns+ε −Ns

ε
ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∫ s+ε

s
ψ(s, r, ε)dM◦r

Ns+ε −Ns

ε
ds

∣∣∣∣
≤

√
1

ε

∫ t

0

(∫ s+ε

s
ψ(s, r, ε)dM◦r

)2

ds

√
1

ε

∫ t

0
(Ns+ε −Ns)2ds.

Thus, it suffices to show that

1

ε

∫ t

0
E[(

∫ s+ε

s
ψ(s, r, ε)dM◦r )2]ds −→ 0, as ε −→ 0. (16)

14



By Ito’s isometry,

1

ε

∫ t

0
E
[(∫ s+ε

s
ψ(s, r, ε)dM◦r

)2 ]
ds = E

[ ∫ t

0

1

ε

∫ s+ε

s
ψ(s, r, ε)2d[M◦]rds

]
= E

[ ∫ t+ε

0

1

ε

∫ r

(r−ε)+
ψ(s, r, ε)2dsd[M◦]r

]
.

Also, 1
ε

∫ r
(r−ε)+ ψ(s, r, ε)2ds −→ 0 as ε −→ 0, and

1

ε

∫ r

(r−ε)+
ψ(s, r, ε)2ds ≤ 4CE◦

[
(σ◦r )

2
]
,

and

E
[ ∫ 2t

0
4CE◦

[
(σ◦r )

2
]
d[M◦]r

]
< +∞,

both thanks to Condition (8). Therefore, it follows from the dominated convergence theorem
that (16) holds, and we hence conclude the proof.

3 A verification theorem for a class of McKean-Vlasov optimal
control problems

Let Ω0 = Ω1 := C([0, T ],Rd) be the canonical spaces of Rd-valued continuous paths on [0, T ],
where the canonical process on Ω0 is denoted by X0, and the one on Ω1 is denoted by W .
Under the uniform convergence topology, we define F0 := B(Ω0) and F1 := B(Ω1) as the Borel
σ-field of respectively Ω0 and Ω1. On Ω0 (resp. Ω1), we define F0 (resp. F1) as the canonical
filtration generated by X0 (resp. W ), and equip (Ω0,F0) (resp. (Ω1,F1)) with the Wiener
measure P0

0 (resp. P1
0). Let U be a bounded Borel subset of Rd, and U0 denote the collection of

all F0-progressively measurable process ν : [0, T ] × Ω0 −→ U. Then, for each initial condition
(t,x0) ∈ [0, T ]× Ω0, we consider a collection P0

W (t,x0) of probability measures on Ω0:

P0
W (t,x0) :=

{
P0 ∈ P(Ω0) : X0

s = x0
t +

∫ s

t
νP

0

r dr +

∫ s

t
dW P0

r , s ∈ [t, T ], P0-a.s.,

P0[X0
t∧· = x0

t∧·] = 1, where νP
0 ∈ U0, W P0

is a (P0,F0)-Brownian motion
}
.

Next, let Ω := Ω0 × Ω1, F := F0 ⊗F1 = B(Ω), and

PW (t,x0) :=
{
P = P0 × P1

0 : P0 ∈ P0
W (t,x0)

}
.

We also consider the canonical space (Rd,B(Rd)), equipped with the canonical element ξ.

We are given a bounded1 measurable coefficient (σ, σ0) : R+ × Rd × P2(Rd) −→ Md ×Md

with Md denoting the collection of all d × d matrix. Hereafter, we assume that (σ, σ0)(t, ·) is
Lipschitz continuous, uniformly in t ≤ T . Then, for all t ∈ [0, T ], µ ∈ P2(Rd) and P ∈ PW (t,x0),
on the space Rd × Ω with canonical element (ξ,X0,W ), we consider the McKean-Vlasov SDE

Xt,µ,P
s = ξ +

∫ s

t
σ0(r,Xt,µ,P

r , ρt,µ,Pr )dX0
r +

∫ s

t
σ(r,Xt,µ,P

r , ρt,µ,Pr )dWr, µ× P-a.s.,

1As usual, boundedness could be replaced by a suitable growth condition, see for instance [9, Assumption 2.8].
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with ρt,µ,Pr = Lµ×P(Xt,µ,P
r |FX0

r ), where FX0

r := σ(X0
s : s ∈ [0, r]). Notice that the above

McKean-Vlasov SDE has a unique strong solution (see e.g. [9, Appendix A]).

Finally, let us define an enlarged canonical space

Ω := Ω× C([0, T ],Rd)× C([0, T ],P2(Rd)),

with canonical process (X0,W,X, ρ), and

PW (t, µ) :=
{
P := (µ× P) ◦

(
X0,W,Xt,µ,P, ρt,µ,P

)−1
: P ∈ PW (t,x0), x0 ∈ Ω0

}
.

We denote by FX
0

= (FX
0

t )0≤t≤T the filtration generated by X0 on the enlarged canonical
space, and denote by P0 the probability measure on Ω under which the canonical process X0

is a Brownian motion. Notice that, for P = µ × P0 × P1
0 ∈ PW (t, µ), the part P1

0 is the fixed
Wiener measure, and P0 belongs to P0

W (t,x0) under which the canonical process X0 is a diffusion
process with drift νP0 . By abuse of notation, we denote by νP the corresponding drift process
of X0 on Ω and by W P the corresponding (P0,F0)-Brownian motion part of X0 on Ω , i.e.

X0
s = X0

t +

∫ s

t
νPr dr +

∫ s

t
dW P

r , s ∈ [t, T ], P-a.s.

Remark 3.1. A probability measure P ∈ PW (t, µ) describes the distribution of the controlled
McKean-Vlasov process with initial distribution µ at initial time t, and control νP. Since controls
take values in the bounded set U, given a fixed µ0 ∈ P2(Rd), all the probability measures in the
set PW (t, µ0) are equivalent by Girsanov’s theorem.

Let L : [0, T ] × P2(Rd) × U −→ R and g : P2(Rd) −→ R be measurable functions, to which
we associate the value function of the McKean-Vlasov control problem through

V (t, µ) := sup
P∈PW (t,µ)

J
(
t,P
)
, with J(t,P) := EP

[ ∫ T

t
L
(
s, ρs, ν

P
s

)
ds+ g(ρT )

]
. (17)

Here again, we assume for simplicity that L and g are bounded.

Given a probability measure µ ∈ P(Rd), and (measurable) functions ϕ : Rd −→ R and
ψ : Rd × Rd −→ R, we denote (whenever the integrals are well-defined)

µ(ϕ) :=

∫
Rd

ϕ(x)µ(dx), µ⊗ µ(ψ) :=

∫
Rd×Rd

ψ
(
x, x′

)
µ(dx)µ

(
dx′
)
.

Let us also define

K :=
{
φ : [0, T ]× P2(Rd)× Rd → Rd : φ is bounded and Borel measurable

}
.

Remark 3.2. The above McKean-Vlasov optimal control problem satisfies the following dynamic
programming principle: for (t, µ) ∈ [0, T ] × P2(Rd) and any FX

0

-stopping time τ taking values
in [t, T ], one has

V (t, µ) = sup
P∈PW (t,µ)

EP
[∫ τ

t
L(s, ρs, ν

P
s )ds+ V (τ, ρτ )

]
.
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Under general conditions, the value function V can be proved to be the unique (viscosity) solution
to the HJB master equation (see e.g. Pham and Wei [17]):{

−∂tV (t, µ)− LV (t, µ)−H(t, µ,DmV ) = 0, (t, µ) ∈ [0, T )× P2(Rd),
V (T, µ) = g(µ), µ ∈ P2(Rd),

where L is the operator defined for φ ∈ C2(P2(Rd)) as

Lφ(t, µ) := µ
(

tr(∂xDmφ(µ, x)(σσT + σ0σ
T
0 )(t, x, µ))

)
+ µ⊗ µ

(1

2
tr(D2

mφ(µ)(x, x′)σ0(t, x, µ)σT
0 (t, x′, µ))

)
,

and H : [0, T ]× P2(Rd)×K −→ R is the Hamiltonian defined by

H(t, µ, p) := sup
u∈U

(L(t, µ, u) + uµ (σ0(t, ·, µ)p(t, µ, ·))) . (18)

From now on we fix an initial distribution m0 ∈ P2(Rd), and study the optimal control
problem V (0,m0). Our verification argument goes together with a duality result, (19) below, in
which the two dual problems are defined as:

D1 := inf
{
v0 ∈ R : v0+

∫ T

0
ρt (σ0(t, ·, ρt)φ(t, ρt, ·)) dX0

t

≥ g(ρT ) +

∫ T

0

(
L(t, ρt, ν

P
t ) + νPt ρt(σ0(t, ·, ρt)φ(t, ρt, ·))

)
dt,

P -a.s. for all P ∈ PW (0,m0), for some φ ∈ K
}
,

and

D2 := inf
{
v0 ∈ R : ∃φ ∈ K s.t. v0 +

∫ T

0
ρt (σ0(t, ·, ρt)φ(t, ρt, ·)) dX0

t

≥ g(ρT ) +

∫ T

0
H(t, ρt, φ)dt, P0-a.s.

}
.

Similar to (6), we say that a function F : [0, T ]×P2(Rd) −→ R belongs to C0,1([0, T )×P2(Rd))
if F and DmF are both (jointly) continuous on [0, T )×P2(Rd), where DmF : [0, T )×P2(Rd)×
Rd −→ Rd is the partial derivative in the sense that (m,x) 7→ DmF (t,m, x) is the derivative of
m 7→ F (t,m) as defined in (2).

Theorem 3.1. Assume that the value function V is continuous on [0, T ] × P2(Rd), belongs to
C0,1([0, T )× P2(Rd)) and that DmV is uniformly bounded on [0, T )× P2(Rd).
(i) Then, one has the duality

V (0,m0) = D1 = D2. (19)

(ii) Assume that û : [0, T ) × P2(Rd) −→ U is a Borel measurable function such that, for all
(s, µ) ∈ [0, T )× P2(Rd),

H(s, µ,DmV ) = L(s, µ, û(s, µ)) + û(s, µ)µ (σ0(s, ·, µ)DmV (s, µ, ·)) . (20)

17



Then, there exists P̂ ∈ PW (0,m0) such that νP̂ = û(·, ρ), dP̂ × dt a.e., and P̂ is an optimal
solution to the control problem V (0,m0), i.e.

J(0, P̂) = V (0,m0) = sup
P∈PW (0,m0)

J(0,P),

and

V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t = g(ρT ) +

∫ T

0
H(t, ρt, DmV )dt, P̂-a.s.

Before to provide the proof of the above, let us comment these results.

Remark 3.3. (i) In Theorem 3.1, we assume that DmV is bounded for simplicity in order to
apply Theorem 2.3. The same results still hold if this boundedness condition is replaced by a local
integrability condition as in Assumption 2.2.

(ii) When U is compact, and L is upper semi-continuous, one can choose a Borel version of the
optimizer û as required in Theorem 3.1, see e.g. [1, Proposition 7.33, p.153].

(iii) The duality result (19) is in the spirit of duality results in mathematical finance and optimal
transport, see e.g. [2] for an abstract formulation in optimal control. The novelty here is that it
goes together with the proof of the verification argument and appeals directly to a functional class
of controls, which is made possible because we know a priori that DmV is well-defined so that we
can identify the optimal control by means of our Itô’s formula for C1-functionals.

(iv) In the literature of mean-field control or mean-field games, it is usually difficult to check
that the value function is C2 (see e.g. [6, 13] for examples). The C1-regularity as required in the
above will be clearly easier to prove. We provide in Example 3.6 below an example of McKean-
Vlasov control problem, in which the C1-regularity can be obtained by using purely probabilistic
arguments.

(v) The control problem in (17) is a pure McKean-Vlasov control problem, so that the value
function is in the form V (t, ρt). One could also study mixed control problems by considering a
controlled diffusion process Y in addition to X, and a reward function in the form g(ρXT , YT ),
so that the value of the control problem would be in the form V (t, ρXt , Yt). The same arguments
as below would lead to a similar verification result. We stay in this pure McKean-Vlasov control
setting for ease of presentation.

Remark 3.4. The reason for considering a weak formulation of the McKean-Vlasov control
problem in (17) comes from our duality type arguments which do not apply to strong formulations.
On the other hand, the law induced by a strong control is a weak control, as a probability measure
in PW (0,m0). Then, given a strong control ν which achieves the optimality in the Hamiltonian
as in (20), we obtain an optimal control for the weak formulation (17) by Theorem 3.1, and
hence it is also an optimal control for the (more restrictive) strong formulation. More generally
speaking, by a direct adaptation of the arguments in Djete, Possamaï and Tan [10, Section 4,
Proof of Theorem 3.1], one can prove that, under quite general upper-semicontinuity conditions
on L and g, the value functions of the weak and strong formulations are the same, even if an
optimal strong control does not exist.

Proof of Theorem 3.1. (i) Let (v0, φ) ∈ R×K be a couple satisfying the inequality in the defini-
tion of D1, i.e.

v0+

∫ T

0
ρt (σ0(t, ·, ρt)φ(t, ρt, ·)) dX0

t ≥ g(ρT )+

∫ T

0

[
L(t, ρt, ν

P
t ) + νPt ρt(σ0(t, ·, ρt)φ(t, ρt, ·))

]
dt, P -a.s.
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for all P ∈ PW (0,m0). Taking expectation under P on both sides of the above inequality, it leads
to

v0 ≥ EP
[
g(ρT ) +

∫ T

0
L(t, ρt, ν

P
t )dt

]
, for all P ∈ PW (0,m0).

Further, by the definition of H, we notice that, for all P ∈ PW (0,m0),

L(t, ρt, ν
P
t ) + νPt ρt(σ0(t, ·, ρt)φ(t, ρt, ·)) ≤ H(t, ρt, φ), t ∈ [0, T ].

This proves that
V (0,m0) ≤ D1 ≤ D2.

It remains to prove that V (0,m0) ≥ D2. For each P ∈ PW (0,m0), let us introduce the
process SP =

(
SP
t

)
0≤t≤T

by

SP
t := V (t, ρt) +

∫ t

0
L(s, ρs, ν

P
s )ds.

For all 0 ≤ t ≤ t+h ≤ T , the dynamic programming principle (see e.g. [9, Theorem 3.2]) implies
that

SP
t (ω) = sup

P̃∈P̄W (t,ρt(ω))

EP̃
[∫ t+h

t
L(s, ρs, ν

P̃
s )ds+ V (t+ h, ρt+h)

]
+

∫ t

0
L(s, ρs, ν

P
s )(ω)ds

≥ EP
[∫ t+h

t
L(s, ρs, ν

P
s )ds+ V (t+ h, ρt+h)

∣∣∣FX0

t

]
(ω) +

∫ t

0
L(s, ρs, ν

P
s )(ω)ds

= EP
[
SP
t+h

∣∣∣FX0

t

]
(ω), (21)

for P-a.e. ω. In other words, SP is a (P,FX
0

)-supermartingale for all P ∈ PW (0,m0). Therefore,
for each P ∈ PW (0,m0), one can apply the Doob-Meyer decomposition to obtain a unique FX

0

-
predictable non-decreasing process AP and a (P,FX

0

)-martingale MP such that AP
0 = MP

0 = 0
and

V (t, ρt) +

∫ t

0
L(s, ρs, ν

P
s )ds = V (0,m0) +MP

t −AP
t , t ∈ [0, T ], P-a.s.

At the same time, as V ∈ C0,1, we apply our C1-Itô’s formula in Theorem 2.3 to deduce another
unique decomposition

V (t, ρt) = V (0,m0) +

∫ t

0
ρs
(
σ0(s, ·, ρs)DmV (s, ρs, ·)

)
dW P

s + ΓP
t , P-a.s.,

where (ΓP
t )0≤t≤T is an orthogonal process. The above two decompositions are unique, so that

the two martingale parts should be the same. It follows that

V (t, ρt) +

∫ t

0
L(s, ρs, ν

P
s )ds = V (0,m0) +

∫ t

0
ρs (σ0(s, ·, ρs)DmV (s, ρs, ·)) dW P

s −AP
t , P-a.s.

As V (T, ρT ) = g(ρT ) and AP is non-decreasing, this implies

V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t

≥ g(ρT ) +

∫ T

0

(
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) νPt + L(t, ρt, ν

P
t )
)
dt. (22)
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For each ε > 0, one can then apply the measurable selection arguments, e.g. combine [11,
Proposition 2.21] with [1, Lemma 7.27, p.173], to obtain νε ∈ U0 such that

L(s, ρs, ν
ε
s) + νεsρs(σ0(s, ·, ρs)DmV (s, ρs, ·)) ≥ H(s, ρs, φ)− ε, dP0 × dt-a.e.

One can then construct a probability measure Pε such that νP
ε

= νε. As all probability measures
in PW (0,m0) are equivalent, together with (22), this shows that

Tε+ V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t ≥ g(ρT ) +

∫ T

0
H(t, ρt, DmV )dt, P0-a.s.

By arbitrariness of ε > 0, V (0,m0) ≥ D2.

(ii) Assume now that there exists a Borel measurable map û : [0, T )× P2(Rd) −→ U such that

H(s, ρs, DmV ) = L(s, ρs, û(s, ρs)) + û(s, ρs)ρs (σ0(s, ·, ρs)DmV (s, ρs, ·)) , s ∈ [0, T ].

We can then construct a probability measure P̂ such that (νP̂t )0≤t<T = (û(t, ρt))0≤t<T , P̂-a.s. To
show that P̂ is an optimal solution to the control problem V (0,m0), we appeal to Lemma 3.5
below to deduce that

V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t = g(ρT ) +

∫ T

0
H(t, ρt, DmV )dt, P̂-a.s. (23)

We can then compute directly that

V (0,m0) = g(ρT ) +

∫ T

0
H(t, ρt, DmV )dt−

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t

= g(ρT ) +

∫ T

0
L(s, ρs, û(s, ρs))ds−

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dW P̂

t .

Taking expectation on both sides under P̂, it follows that

V (0,m0) = EP̂
[
g(ρT ) +

∫ T

0
L(s, ρs, û(s, ρs))ds

]
= J(0, P̂),

i.e. P̂ is an optimal solution to the control problem V (0,m0).

Lemma 3.5. In the setting of Theorem 3.1 (ii), we have

V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t = g(ρT ) +

∫ T

0
H
(
t, ρt, DmV

)
dt, P0-a.s.

Proof. From the definition of the process (SP
t )0≤t≤T and its decomposition given in the proof of

Theorem 3.1, we have

sup
P∈PW (0,m0)

EP[SP
T ] = sup

P∈PW (0,m0)

EP
[
g(ρT ) +

∫ T

0
L(t, ρt, ν

P
t )dt

]
= V (0,m0)− inf

P∈PW (0,m0)
EP[AP

T ], P0-a.s.
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which implies that infP∈PW (0,m0) E
P[AP

T ] = 0. Moreover, for P ∈ PW (0,m0) and P̂ ∈ PW (0,m0)

such that νP̂ = û(·, ρ), dP× dt-a.e., we have

V (0,m0) = g(ρT ) +

∫ T

0

[
L(t, ρt, ν

P
t ) + νPρt (σ0(t, ·, ρt)DmV (t, ρt, ·))

]
dt+AP

T

−
∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t

= g(ρT ) +

∫ T

0

[
L(t, ρt, ν

P̂
t ) + νP̂t ρt (σ0(t, ·, ρt)DmV (t, ρt, ·))

]
dt+AP̂

T

−
∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t (24)

≥ g(ρT ) +

∫ T

0

[
L(t, ρt, ν

P
t ) + νPt ρt (σ0(t, ·, ρt)DmV (t, ρt, ·))

]
dt+AP̂

T

−
∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t .

Combining the above implies that 0 ≤ AP̂
T ≤ AP

T a.s. for P ∈ PW (0,m0), and

0 = inf
P∈PW (0,m0)

EP[AP
T ] ≥ inf

P∈PW (0,m0)
EP[AP̂

T ] = 0.

At the same time, we have by the reverse Hölder’s inequality

inf
P∈PW (0,m0)

EP[AP̂
T ] = inf

P∈PW (0,m0)
EP0

[
dP
dP0

AP̂
T

]

≥ inf
P∈PW (0,m0)

EP0

[
(AP̂

T )
1
2

]2

EP0

[(
dP
dP0

)−1
]

≥
EP0

[
(AP̂

T )
1
2

]2

C
,

where C > 0 is a fixed constant such that EP0 [( dP
dP0

)−1] ≤ C for ∀ P ∈ PW (0,m0) whose existence
is justified as follows:(

dP
dP0

)−1

= exp

(∫ T

0
−νPt dW

P0
t +

1

2

∫ T

0
(νPt )2dt

)
= exp

(∫ T

0
−νPt dW

P0
t −

1

2

∫ T

0
(νPt )2dt

)
exp

(∫ T

0
(νPt )2dt

)
,

which implies that

EP0

[(
dP
dP0

)−1
]
≤ exp

(
T ū2

)
=: C,

with ū := maxu∈U |u|. Therefore, combining the above shows that AP̂
T = 0,P0-a.s., and we can

conclude by (24) that

V (0,m0) +

∫ T

0
ρt (σ0(t, ·, ρt)DmV (t, ρt, ·)) dX0

t = g(ρT ) +

∫ T

0
H
(
t, ρt, DmV

)
dt, P0-a.s.
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Example 3.6. Let d ≥ 1, σ(·) = σ0(·) ≡ 1, U be a convex and compact subset of Rd, L(t, µ, u) =
L̄(u) for some function

L̄ : U −→ R , strictly concave,

and g(µ) = ḡ
(
µ(φ)

)
with ḡ : Rd −→ R (resp. φ : R −→ Rd) in C1

b (Rd) (resp. C1
b (R)). In this

simple setting, we can re-write the value function as

V (t, µ) = sup
P0∈P0

W (t,0)

J(t, µ,P0), (25)

where

J(t, µ,P0) := EP0
[ ∫ T

t
L̄
(
νP

0

s

)
ds+ ḡ

(∫
Rd

φ̄t(z +X0
T )µ(dz)

)]
, (26)

with
φ̄t(y) := EP1

0
[
φ(y +WT −Wt)

]
,

and

P0
W (t, 0) :=

{
P0 ∈ P(Ω0) : X0

s =

∫ s∨t

t
νP

0

r dr +

∫ s

t
dW P0

r , s ∈ [0, T ], P0-a.s.

where νP
0 ∈ U0, W P0

is a (P0,F0)-Brownian motion
}
.

For fixed P0 ∈ P0
W (t, 0), it is clear that the map µ 7−→ J(t, µ,P0) is differentiable and

DmJ(t, µ, x,P0) = EP0
[
ḡ′
(∫

Rd

φ̄t(z +X0
T )µ(dz)

)
∇φ̄t

(
x+X0

T

)]
(27)

in which ḡ′ is the Jacobian of ḡ and ∇φ̄t is the gradient of φ̄t as a column vector. Clearly, DmJ
is continuous in all its arguments.

Next, as L depends only on u, we can apply Tan and Touzi [22, Lemma 3.9] to deduce that
the map

P0 7−→ J(t, µ,P0) is upper semicontinuous,

while, since U is convex and compact, P0
W (t, 0) is also convex and compact (for the weak con-

vergence topology). Then, for every fixed (t, µ), there exists an optimizer for the optimal control
problem (25).

We now prove that
P0 7−→ J(t, µ,P0) is strictly concave. (28)

Let P0
1, P0

2 ∈ P0
W (t, 0) and P0

3 := (P0
1 + P0

2)/2. Following the arguments in the proof of [22,
Proposition 3.11.(ii) and Lemma 3.15 ], there exists an enlarged canonical space Ω

0 (of Ω0 :=

C([0, T ],Rd)) with canonical process (X0, ν̄), together with P0
1,P

0
2 ∈ P(Ω

0
) such that

P0
i ◦ (X0, νP

0
i )−1 = P0

i ◦ (X0, ν̄)−1, i = 1, 2,

so that

EP0
i

[ ∫ T

t
L̄
(
ν
P0
i

s

)
ds
]

= EP0
i

[ ∫ T

t
L̄
(
ν̄s
)
ds
]
, i = 1, 2.
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Let P0
3 := (P0

1+P0
2)/2 so that P0

3|Ω0 = P0
3. Since U is convex, one can apply the classical projection

theorem (see e.g. [22, Theorem A.3]) to deduce that P0
3 ∈ P0

W (t, 0) and

ν
P0
3

s = EP0
3
[
ν̄s|F

X0

s

]
, dP0

3 × ds-a.e.,

in which FX
0

s is the σ-field on the enlarged space Ω
0 generated by X0

s∧·, and we consider EP0
3
[
ν̄s|F

X0

s

]
as a random variable in Ω0. Moreover, νP

0
3

s = ν̄s dP
0
3×ds-a.e. only if P0

1 = P0
2. Since L̄ is strictly

concave, when P0
1 6= P0

2, it follows by Jensen’s inequality that

1

2

(
EP0

1

[ ∫ T

t
L̄
(
ν
P0
1

s

)
ds
]

+ EP0
2

[ ∫ T

t
L̄
(
ν
P0
2

s

)
ds
])

=
1

2

(
EP0

1

[ ∫ T

t
L̄
(
ν̄s
)
ds
]

+ EP0
2

[ ∫ T

t
L̄
(
ν̄s
)
ds
])

= EP0
3

[ ∫ T

t
L̄
(
ν̄s
)
ds
]

< EP0
3

[ ∫ T

t
L̄
(
ν
P0
3

s

)
ds
]

= EP0
3

[ ∫ T

t
L̄
(
ν
P0
3

s

)
ds
]
.

As P0
3 := (P0

1 + P0
2)/2, this implies that

P0 7−→ EP0
[ ∫ T

t
L̄
(
νP

0

s

)
ds
]
is strictly concave.

Since
P0 7−→ EP0

[
ḡ
(∫

Rd

φ̄t(z +X0
T )µ(dz)

)]
is linear,

it follows by the definition of J in (26) that (28) holds true. Therefore, for every fixed (t, µ),
there exists a unique optimizer P̂0

t,µ for the optimal control problem (25). In particular, one
immediately deduces that

(t, µ) 7−→ P̂0
t,µ is continuous. (29)

Now, we claim that

δV

δm
(t, µ, x) =

δJ

δm
(t, µ, x, P̂0

t,µ), for all (t, µ, x). (30)

Indeed, given µ 6= µ′, and with the notation µλ := λµ+ (1− λ)µ′, one has

V (t, µ)− V (t, µ′) ≤ J(t, µ, P̂t,µ)− J(t, µ′, P̂t,µ) =

∫ 1

0

∫
Rd

δJ

δm

(
t, µλ, x, P̂t,µ

)
(µ− µ′)(dx)dλ,

and similarly

V (t, µ)− V (t, µ′) ≥
∫ 1

0

∫
Rd

δJ

δm

(
t, µλ, x, P̂t,µ′

)
(µ− µ′)(dx)dλ.

Using the continuity of (t, µ) 7→ P̂0
t,µ in (29) and applying the two inequalities just above to

µ′ = µ′ε := µ + ε(µ′′ − µ) with ε ↓ 0, this is enough to prove (30). Taking derivatives on both
sides in (30), one has

DmV (t, µ, x) = DmJ(t, µ, x, P̂0
t,µ).

Finally, using (29) together with the continuity of DmJ̄ , we deduce that V ∈ C0,1([0, T ]×P2(Rd)).
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