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Abstract

We propose a new numerical scheme for Backward Stochastic Dif-
ferential Equations based on branching processes. We approximate
an arbitrary (Lipschitz) driver by local polynomials and then use a
Picard iteration scheme. Each step of the Picard iteration can be
solved by using a representation in terms of branching diffusion sys-
tems, thus avoiding the need for a fine time discretization. In contrast
to the previous literature on the numerical resolution of BSDEs based
on branching processes, we prove the convergence of our numerical
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are provided to illustrate the performance of the algorithm.
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1 Introduction
Since the seminal paper of Pardoux and Peng [15], the theory of Backward
Stochastic Differential Equations (BSDEs hereafter) has been largely devel-
oped, and has lead to many applications in optimal control, finance, etc.
(see e.g. El Karoui, Peng and Quenez [8]). Different approaches have been
proposed during the last decade to solve them numerically, without relying
on pure PDE based resolution methods. A first family of numerical schemes,
based on a time discretization technique, has been introduced by Bally and
Pagès [2], Bouchard and Touzi [5] and Zhang [21], and generated a large
stream of the literature. The implementation of these numerical schemes re-
quires the estimation of a sequence of conditional expectations, which can be
done by using simulations combined with either non-linear regression tech-
niques or Malliavin integration by parts based representations of conditional
expectations, or by using a quantization approach, see e.g. [6, 9] for references
and error analysis.
Another type of numerical algorithms is based on a pure forward simula-
tion of branching processes, and was introduced by Henry-Labordère [10],
and Henry-Labordère, Tan and Touzi [12] (see also the recent extension by
Henry-Labordère et al. [11]). The main advantage of this new algorithm is
that it avoids the estimation of conditional expectations. It relies on the
probabilistic representation in terms of branching processes of the so-called
KPP (Kolmogorov-Petrovskii-Piskunov) equation:

∂tu(t, x) +
1

2
D2u(t, x) +

∑
k≥0

pku
k(t, x) = 0, u(T, x) = g(x). (1.1)

Here, D2 is the Laplacian on Rd, and (pk)k≥0 is a probability mass sequence,
i.e. pk ≥ 0 and

∑
k≥0 pk = 1. This is a natural extension of the classical

Feynmann-Kac formula, which is well known since the works of Skorokhod
[17], Watanabe [20] and McKean [14], among others. The PDE (1.1) corre-
sponds to a BSDE with a polynomial driver and terminal condition g(WT ):

Y· = g(WT ) +

∫ T

·

∑
k≥0

pk(Yt)
kdt−

∫ T

·
ZtdWt,

in which W is a Brownian motion. Since Y· = u(·,W·), the Y -component of
this BSDE can be estimated by making profit of the branching process based
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Feynman-Kac representation of (1.1) by means of a pure forward Monte-Carlo
scheme, see Section 2.3 below. The idea is not new. It was already proposed
in Rasulov, Raimov and Mascagni [16], although no rigorous convergence
analysis was provided. Extensions to more general drivers can be found in
[10, 11, 12]. Similar algorithms have been studied by Bossy et al. [4] to solve
non-linear Poisson-Boltzmann equations.
It would be tempting to use this representation to solve BSDEs with Lipschitz
drivers, by approximating their drivers by polynomials. This is however not
feasible in general. The reason is that PDEs (or BSDEs) with polynomial
drivers, of degree bigger or equal to two, typically explode in finite time.
They are only well posed on a small time interval. It is worse when the
degree of the polynomial increases. Hence, no convergence can be expected
for the case of general drivers.
In this paper, we propose to instead use a local polynomial approximation.
Then, convergence of the sequence of approximating drivers to the original
one can be ensured without explosion of the corresponding BSDEs, that can
be defined on a arbitrary time interval. It requires to be combined with a
Picard iteration scheme, as the choice of the polynomial form will depend
on the position in space of the solution Y itself. However, unlike classical
Picard iteration schemes for BSDEs, see e.g. Bender and Denk [3], we do not
need to have a very precise estimation of the whole path of the solution at
each Picard iteration. Indeed, if local polynomials are fixed on a partition
(Ai)i of R, then one only needs to know in which Ai the solution stays at
certain branching times of the underlying branching process. If the Ai’s are
large enough, this does not require a very good precision in the intermediate
estimations. We refer to Remark 2.3 for more details.
We finally insist on the fact that our results will be presented in a Markovian
context for simplification. However, all of our arguments work trivially in a
non-Markovian setting too.

2 Numerical method for a class of BSDE based
on branching processes

Let T > 0, W be a standard d-dimensional Brownian motion on a filtered
probability space (Ω,F ,F = (Ft)t≥0,P), andX be the solution of the stochas-
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tic differential equation:

X = X0 +

∫ ·
0

µ(Xs) dt+

∫ ·
0

σ(Xs) dWs, (2.1)

where X0 is a constant, lying in a compact subset X of Rd, and (µ, σ) :
[0, T ] × Rd 7→ Rd ×Md is assumed to be Lipschitz continuous with support
contained in X. Our aim is to provide a numerical scheme for the resolution
of the backward stochastic differential equation

Y· = g(XT ) +

∫ T

·
f(Xs, Ys) ds−

∫ T

·
Zs dWs. (2.2)

In the above, g : Rd 7→ R is assumed to be measurable and bounded, f ∈
Rd × R 7→ R is measurable with linear growth and Lipschitz in its second
argument, uniformly in the first one. As a consequence, there exists M ≥ 1
such that

|g(XT )| ≤M and |X|+ |Y | ≤M on [0, T ]. (2.3)

Remark 2.1. The above conditions are imposed to easily localize the solution
Y of the BSDE, which will be used in our estimates later on. One could also
assume that g and f have polynomial growth in their first component and that
X is not compact. After possibly truncating the coefficients and reducing their
support, one would go back to our conditions. Then, standard estimates and
stability results for SDEs and BSDEs could be used to estimate the additional
error in a very standard way. See e.g. [8].

2.1 Local polynomial approximation of the generator

A first main ingredient of our algorithm consists in approximating the driver
f by a driver f`◦ that has a local polynomial structure. Namely, let

f`◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦∑
j=1

`◦∑
`=0

aj,`(x)y`ϕj(y
′), (2.4)

in which (aj,`, ϕj)`≤`◦,j≤j◦ is a family of continuous and bounded maps satis-
fying

|aj,`| ≤ C`◦ , |ϕj(y′1)− ϕj(y′2)| ≤ Lϕ|y′1 − y′2| and |ϕj| ≤ 1, (2.5)
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for all y′1, y′2 ∈ R, j ≤ j◦ and ` ≤ `◦, for some constants C`◦ , Lϕ ≥ 0. In the
following, we shall assume that `◦ ≥ 2 (without loss of generality). One can
think of the (aj,`)`≤`◦ as the coefficients of a polynomial approximation of f
on a subset Aj, the Aj’s forming a partition of [−M,M ]. Then, the ϕj’s have
to be considered as smoothing kernels that allow one to pass in a Lipschitz
way from one part of the partition to another one. We therefore assume that

#{j ∈ {1, · · · , j◦} : ϕj(y) > 0} ≤ 2 for all y ∈ R, (2.6)

and that y 7→ f`◦(x, y, y) is globally Lipschitz. In particular,

Ȳ· = g(XT ) +

∫ T

·
f`◦(Xs, Ȳs, Ȳs) ds−

∫ T

·
Z̄s dWs, (2.7)

has a unique solution (Ȳ , Z̄) such that E[sup[0,T ] |Ȳ |2] < ∞. Moreover, by
standard estimates, (Ȳ , Z̄) provides a good approximation of (Y, Z) whenever
f`◦ is a good approximation of f :

E
[

sup
[0,T ]

|Y − Ȳ |2
]

+ E
[∫ T

0

|Zt − Z̄t|2dt
]
≤ CE

[∫ T

0

|f − f`◦|2(Xt, Yt, Yt)dt
]
,(2.8)

for some C > 0 that does not depend on f`◦ , see e.g. [8].
The choice of f`◦ will obviously depend on the application at hand and does
not need to be more commented. Let us just mention that our algorithm will
be more efficient if the sets {y ∈ R : ϕj(y) = 1} are large and the intersection
between the supports of the ϕj’s are small, see Remark 2.3 below.
We also assume that

|Ȳ | ≤M. (2.9)

Since we intend to keep f`◦ with linear growth in its first component, and
bounded in the two other ones, uniformly in `◦, this is without loss of gener-
ality.

2.2 Picard iteration with doubly reflected BSDEs

Our next step is to introduce a Picard iteration scheme to approximate the
solution Ȳ of (2.7). Note however that, although the map y 7→ f(x, y, y)
is globally Lipschitz, the map y 7→ f(x, y, y′) is a polynomial, given y′, and
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hence only locally Lipschitz in general. In order to reduce to a Lipschitz
driver, we shall apply our Picard scheme to a doubly (discretely) reflected
BSDE, with lower and upper barrier given by the bounds −M and M for Ȳ ,
recall (2.9).

Let h◦ be defined by (A.1) in the Appendix. It is a lower bound for the
explosion time of the BSDE with driver y 7→ f(x, y, y′). Let us then fix
h ∈ (0, h◦) such that Nh := T/h ∈ N, and define

ti = ih and T := {ti, i = 0, · · · , Nh}. (2.10)

We initialize our Picard scheme by setting

Ȳ 0
t = y(t,Xt) for t ∈ [0, T ], (2.11)

in which y is a deterministic function, bounded byM and such that y(T, ·) =
g. Then, given Ȳ m−1, for m ≥ 1, we define (Ȳ m, Z̄m, K̄m,+, K̄m,−) as the
solution on [0, T ] of

Ȳ m
t = g(XT ) +

∫ T

t

f`◦(Xs, Ȳ
m
s , Ȳ

m−1
s ) ds−

∫ T

t

Z̄m
s dWs

+

∫
[t,T ]∩T

d(K̄m,+ − K̄m,−)s,

−M ≤ Ȳ m
t ≤M, ∀t ∈ T, a.s. (2.12)∫

T
(Ȳ m

s +M)dK̄m,+
s =

∫
T
(Ȳ m

s −M)dK̄m,−
s = 0,

where K̄m,+ and K̄m,− are non-decreasing processes.

Remark 2.1. Since the solution Ȳ of (2.7) is bounded by M , the quadruple
of processes (Ȳ , Z̄, K̄+, K̄−) (with K̄+ ≡ K̄− ≡ 0) is in fact the unique
solution of the same reflected BSDE as in (2.12) but with f`◦(X, Ȳ , Ȳ ) in
place of f`◦(Xs, Ȳ

m, Ȳ m−1).

Remark 2.2. One can equivalently define the process Ȳ m in a recursive way.
Let Ȳ m

T := g(XT ) be the terminal condition, and define, on each interval
[ti, ti+1], (Y m

· , Z
m
· ) as the solution on [ti, ti+1] of

Y m
· = Ȳ m

ti+1
+

∫ ti+1

·
f`◦(Xs, Y

m
s , Ȳ

m−1
s )ds−

∫ ti+1

·
Zm
s dWs. (2.13)

Then, Ȳ m := Y m on (ti, ti+1], and Ȳ m
ti

:= (−M) ∨ Y m
ti
∧M .
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The error due to our Picard iteration scheme is handled in a standard way.
It depends on the constants

L1 := 2C`◦

`◦∑
`=1

`(Mh◦)
`−1, Mh◦L2 := Lϕ

`◦∑
`=0

2C`◦(Mh◦)
`,

where Mh◦ is defined by (A.2).

Theorem 2.3. The system (2.12) of doubly reflected BSDEs admits a unique
solution (Ȳ m, Z̄m, K̄m,+, K̄m,−)m≥0 such that Ȳ m is uniformly bounded for
each m ≥ 0. Moreover, for all m ≥ 0, |Ȳ m| is uniformly bounded by the
constant Mh◦, and

|Ȳ m
t − Ȳt|2 ≤

L2

λ2

(L2(T − t)
λ2

)m
(2M)2 e

βT

β
,

for all t ≤ T , and all constants λ > 0, β > 2L1 + L2λ
2.

Proof. i) First, when Ȳ m is uniformly bounded, f`◦(Xs, Ȳ
m
s , Ȳ

m−1
s ) can be

considered to be uniformly Lipschitz in Ȳ m, then (2.12) has at most one
bounded solution. Next, in view of Lemma A.1 and Remark 2.2, it is easy
to see that (2.13) has a unique solution Y m, bounded by Mh◦ (defined by
(A.2)) on each interval [ti, ti+1]. It follows the existence of the solution to
(2.12). Moreover, Ȳ m is also bounded by Mh◦ on [0, T ], and more precisely
bounded by M on the discrete grid T, by construction.
ii) Consequently, the generator f`◦(x, y, y′) can be considered to be uniformly
Lipschitz in y and y′. Moreover, using (2.5) and (2.6), one can identify the
corresponding Lipschitz constants as L1 and L2.
Let us denote ∆Ȳ m := Ȳ m − Ȳ for all m ≥ 1. We notice that, in Remark
2.2, the truncation operation Ȳ m

ti
:= (−M) ∨ Y m

ti
∧M can only make the

value (∆Ȳ m
ti

)2 smaller than (Y m
ti
− Ȳti)2, since |Ȳ | ≤ M . Thus we can apply

Itô’s formula to (eβt(∆Ȳ m+1
t )2)t≥0 on each interval [ti, ti+1], and then take

expectation to obtain

E
[
eβt(∆Ȳ m+1

t )2
]

+ βE
[ ∫ T

t

eβs|∆Ȳ m+1
s |2ds+

∫ T

t

eβs|∆Z̄m+1
s |2ds

]
≤ 2E

[ ∫ T

t

eβs∆Ȳ m+1
s

(
f`◦(Xs, Ȳ

m+1
s , Ȳ m

s )− f`◦(Xs, Ȳs, Ȳs)
)
ds
]
.
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Using the Lipschitz property of f`◦ and the inequality λ2 + 1
λ2
≥ 2, it follows

that the r.h.s. of the above inequality is bounded by

(2L1 + L2λ
2)E
[ ∫ T

t

eβs(∆Ȳ m+1
s )2ds

]
+
L2

λ2
E
[ ∫ T

t

eβs(∆Ȳ m
s )2ds

]
.

Since β ≥ 2L1 + L2λ
2, the above implies

E
[
eβt(∆Ȳ m+1

t )2
]
≤ L2

λ2
E
[ ∫ T

t

eβs(∆Ȳ m
s )2ds

]
, (2.14)

and hence

E
[ ∫ T

0

eβt(∆Ȳ m+1
t )2dt

]
≤ L2

λ2
TE
[ ∫ T

0

eβs(∆Ȳ m
s )2ds

]
.

Since |∆Ȳ 0| = |y(·, X) − Ȳ | ≤ 2M by (2.9) and our assumption |y| ≤ M ,
this shows that

E
[ ∫ T

0

eβt(∆Ȳ m
t )2dt

]
≤

(L2

λ2
T
)m

(2M)2eβT/β.

Plugging this in (2.14) leads to the required result at t = 0. It is then clear
that the above estimation does not depend on the initial condition (0, X0),
so that the same result holds true for every t ∈ [0, T ].

2.3 A branching diffusion representation for Ȳ m

We now explain how the solution of (2.13) on [ti, ti+1) can be represented
by means of a branching diffusion system. More precisely, let us consider an
element (p`)0≤`≤`◦ ∈ R`◦+1

+ such that
∑`◦

`=0 p` = 1, set Kn := {(1, k2, . . . , kn) :
(k2, . . . , kn) ∈ {0, . . . , `◦}n} for n ≥ 1, and K := ∪n≥1Kn. Let (W k)k∈K
be a sequence of independent d-dimensional Brownian motions, (ξk)k∈K and
(δk)k∈K be two sequences of independent random variables, such that

P[ξk = `] = p`, ` ≤ `◦, k ∈ K,

and

F̄ (t) := P[δk > t] =

∫ ∞
t

ρ(s)ds, t ≥ 0, k ∈ K, (2.15)
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for some continuous strictly positive map ρ : R+ → R+. We assume that

(W k)k∈K , (ξk)k∈K , (δk)k∈K and W are independent. (2.16)

Given the above, we construct particles X(k) that have the dynamics (2.1)
up to a killing time Tk at which they split in ξk different (conditionally)
independent particles with dynamics (2.1) up to their own killing time.
The construction is done as follows. First, we set T(1) := δ1, and, given
k = (1, k2, . . . , kn) ∈ Kn with n ≥ 2, we let Tk := δk + Tk− in which
k− := (1, k2, . . . , kn−1) ∈ Kn−1. We can then define the Brownian parti-
cles (W (k))k∈K by using the following induction: we first set

W ((1)) := W 11[0,T(1)] , K
1
t := {(1)}1[0,T(1)](t) + ∅1[0,T(1)]

c(t), t ≥ 0,

then, given n ≥ 2 and k ∈ K̄n−1
T := ∪t≤TKn−1

t , we let

W (k⊕j) :=
(
W

(k)
·∧Tk +W k⊕j

·∨Tk −W
k⊕j
Tk

)
1[0,Tk⊕j ], 1 ≤ j ≤ ξk,

and

K̄nt := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ξk s.t. t ∈ (0, Tk⊕j]}, K̄t := ∪n≥1K̄nt ,

Knt := {k ⊕ j : k ∈ K̄n−1
T , 1 ≤ j ≤ ξk s.t. t ∈ (Tk, Tk⊕j]}, Kt := ∪n≥1Knt ,

in which we use the notation (1, k1, . . . , kn−1)⊕ j = (1, k1, . . . , kn−1, j).
Now observe that the solution Xx of (2.1) on [0, T ] with initial condition
Xx

0 = x ∈ Rd can be identified in law on the canonical space as a process of
the form Φ[x](·,W ) in which the deterministic map (x, s, ω) 7→ Φ[x](s, ω) is
B(Rd)⊗P-measurable, where P is the predictable σ-filed on [0, T ]× Ω. We
then define the corresponding particles (Xx,(k))k∈K by Xx,(k) := Φ[x](·,W (k)).

Given the above construction, we can now introduce a sequence of determin-
istic map associated to (Ȳ m)m≥0. First, we set

v0 := y , (2.17)

recall (2.11). Then, given vm−1, we define

V m
t,x :=

( ∏
k∈Kti+1−t

Gm
t,x(k)

)( ∏
k∈K̄ti+1−t\Kti+1−t

Amt,x(k)
)
,

Gm
t,x(k) :=

vm
(
ti+1, X

x,(k)
ti+1−t

)
F̄ (ti+1 − t− Tk−)

,

Amt,x(k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(v
m−1(t+ Tk, X

x,(k)
Tk

))

pξk ρ(δk)
, ∀(t, x) ∈ [ti, ti+1)×X.

9



We finally set, whenever V m
t,x is integrable,

vm(t, x) := E
[
V m
t,x

]
, (t, x) ∈ (ti, ti+1)×X, m ≥ 1,

and
vm(ti, x) := (−M) ∨ E

[
V m
ti,x

]
∧M, x ∈ X, m ≥ 1. (2.18)

Proposition 2.1. For all m ≥ 1 and (t, x) ∈ [0, T ]×X, the random variable
V m
t,x is integrable. Moreover, one has Ȳ m

· = vm(·, X) on [0, T ].

This follows from Proposition A.2 proved in the Appendix, which is in spirit
of [11]. The main use of this representation result here is that it provides
a numerical scheme for the approximation of the component Ȳ of (2.7), as
explained in the next section.

2.4 The numerical algorithm

The representation result in Proposition 2.1 suggests to use a simple Monte-
Carlo estimation of the expectation in the definition of vm based on the
simulation of the corresponding particle system. However, it requires the
knowledge of vm−1 in the Picard scheme which is used to localize our approx-
imating polynomials. We therefore need to approximate the corresponding
(conditional) expectations at each step of the Picard iteration scheme. In
practice, we shall replace the expectation operator E in the definition of vm
by an operator Ê that can be computed explicitly, see Remark 2.2 below.

In order to perform a general (abstract) analysis, let us first recall that
vm(t, x) = E[Vt,x(v

m(ti+1, ·), vm−1(·)] for all t ∈ (ti, ti+1) and vm(ti, x) =
(−M) ∨ E[Vti,x(v

m(ti+1, ·), vm−1(·)] ∧M , where, given two functions φ, φ′ :
(ti, ti+1]× Rd → R,

Vt,x(φ, φ
′) :=

( ∏
k∈Kti+1−t

Gt,x(φ, k)
)( ∏

k∈K̄ti+1−t\Kti+1−t

At,x(φ
′, k)

)
,

Gt,x(φ, k) :=
φ(ti+1, X

x,(k)
ti+1−t)

F̄ (ti+1 − t− Tk−)
,

At,x(φ
′, k) :=

∑j◦
j=1 aj,ξk(X

x,(k)
Tk

)ϕj(φ
′(t+ Tk, X

x,(k)
Tk

)

pξk ρ(δk)
.

Let us then denote by L∞Mh◦
the class of all Borel measurable functions φ :

[0, T ] × Rd → R that are bounded by Mh◦ , and let L∞Mh◦ ,0
⊂ L∞Mh◦

be a
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subspace, generated by a finite number of basis functions. Besides, let us
consider a sequence (Ui)i≥1 of i.i.d. random variables of uniform distribution
on [0, 1], independent of (W k)k∈K , (ξk)k∈K , (δk)k∈K and W introduced in
(2.16). Denote F̂ := σ(Ui, i ≥ 1).
From now on, we use the notations

‖φ‖ti := sup
(t,x)∈[ti,ti+1)×Rd

|φ(t, x)| and ‖φ‖∞ := sup
(t,x)∈[0,T ]×Rd

|φ(t, x)|

for all functions φ : [0, T ]× Rd → R.

Assumption 2.4. There exists an operator Ê[V̂t,x(φ, φ
′)](ω), defined for all

φ, φ′ ∈ L∞Mh◦ ,0
, such that (t, x, ω) 7→ Ê[V̂t,x(φ, φ

′)](ω) is B([0, T ] × Rd) ⊗ F̂-
measurable, and such that the function (t, x) ∈ [0, T ]×Rd 7→ Ê[V̂t,x(φ, φ

′)](ω)
belongs to L∞Mh◦ ,0

for every fixed ω ∈ Ω. Moreover, one has

E(Ê) := ‖ sup
φ,φ′∈L∞Mh◦ ,0

E
[
|E [V·(φ, φ

′)]− Ê[V̂·(φ, φ
′)]|
]
‖∞ <∞.

Then, one can construct a numerical algorithm by first setting v̂0 ≡ y,
v̂m(T, ·) = g, m ≥ 1, and then by defining by induction over m ≥ 1

v̂m(t, x) := (−Mh◦) ∨ Ê
[
V̂t,x(v̂

m(ti+1, ·), v̂m−1)
]
∧Mh◦ , t ∈ (ti, ti+1),

and
v̂m(ti, x) := (−M) ∨ Ê

[
V̂ti,x(v̂

m(ti+1, ·), v̂m−1)
]
∧M. (2.19)

In order to analyse the error due to the approximation of the expectation
error, let us set

q̄t := #K̄t , qt := #Kt,

and denote

V M
t :=

( ∏
k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)
.

Recall that h < h◦ that is defined by (A.1) in the Appendix.
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Lemma 2.5. The two constants

M1
h := sup

0≤t≤h
E
[
qtV

M
t

]
and M2

h := sup
0≤t≤h

E
[
q̄tV

M
t

]
are finite.

Proof. Notice that for any constant ε > 0, there is some constant Cε > 0
such that n ≤ Cε(1 + ε)n for all n ≥ 1. Then

M1
h ≤ CεE

[
sup

0≤t≤h
(1+ε)qtV M

t

]
≤ CεE

[ ∏
k∈Kh

(1 + ε)M

F̄ (h− Tk−)

∏
k∈K̄h\Kh

2(1 + ε)C`◦
pξkρ(δk)

]
,

where the latter expectation is finite for ε small enough. This follows from
the fact that h < h◦ for h◦ defined by (A.1) and from the same arguments
as in Lemma A.1 in the Appendix. One can similarly obtain that M2

h is also
finite.

Proposition 2.6. Let Assumption 2.4 hold true. Then

‖E [|vm − v̂m|] ‖∞ ≤ E(Ê)
(
1 +Nh

)(m+Nh)
Nh

Nh!

(
(2LϕM

2
h) ∨ M

1
h

M
∨ 1
)m+Nh

.

Before turning to the proof of the above, let us comment on the use of this
numerical scheme.

Remark 2.2. In practice, the approximation of the expectation operator can
be simply constructed by using pure forward simulations of the branching
process. Let us explain this first in the case h◦ = T . Given that v̂m has
already been computed, one takes it as a given function, one draws some
independent copies of the branching process (independently of v̂m) and com-
putes v̂m+1(t, x) as the Monte-Carlo counterpart of E[Vt,x(v̂

m+1(T, ·), v̂m)],
and truncates it with the a-priori bound Mh◦ for (Ȳ m)m≥1. This corresponds
to the operator Ê[V̂t,x(v̂

m+1(T, ·), v̂m)]. If h◦ < T , one needs to iterate back-
ward over the periods [ti, ti+1]. Obviously one cannot in practice compute the
whole map (t, x) 7→ v̂m+1(t, x) and this requires an additional discretization
on a suitable time-space grid. Then, the additional error analysis can be han-
dled for instance by using the continuity property of vm in Proposition A.5 in
the Appendix. This is in particular the case if one just computes v̂m+1(t, x)
by replacing (t, x) by its projection on a discrete time-space grid.
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Remark 2.3. i). In the classical time discretization schemes of BSDEs, such
as those in [5, 9, 21], one needs to let the time step go to 0 to reduce the
discretization error. Here, the representation formula in Proposition 2.1 has
no discretization error related to the BSDE itself (assuming the solution of
the previous Picard iteration is known perfectly), we only need to use a fixed
discrete time grid (ti)0≤i≤Nh for ti = ih with h small enough.
ii). Let A′j := {y ∈ R : ϕj(y) = 1} ⊂ Aj for j ≤ j◦, and assume that the A′j’s
are disjoint. If the A′j are large enough, we do not need to be very precise
on v̂m to obtain a good approximation of E[Vt,x(g, v

m)] by E[Vt,x(g, v̂
m)] for

t ∈ [tNh−1, tNh). One just needs to ensure that v̂m and vm belong to the same
set A′j at the different branching times and at the corresponding X-positions.
We can therefore use a rather rough time-space grid on this interval (i.e.
[tNh−1, tNh ]). Further, only a precise value of v̂m(tNh−1, ·) will be required for
the estimation of v̂m+1 on [tNh−2, tNh−1) and this is where a fine space grid
should be used. Iterating this argument, one can use rather rough time-space
grid on each (ti, ti+1) and concentrate on each ti at which a finer space grid is
required. This is the main difference with the usual backward Euler schemes
of [5, 9, 21] and the forward Picard schemes of [3].

Proof of Proposition 2.6. Define

ṽm(·) := (−Mh◦) ∨ E
[
V·(v̂

m(ti+1, ·), v̂m−1)
∣∣F̂] ∧Mh◦ .

Then, Lemma A.3 below combined with the inequality |ϕ| ≤ 1 implies that
for (t, x) ∈ [ti, ti+1)×X

|ṽm(t, x)− vm(t, x)|

≤ E
[ ∑
k∈Kti+1−t

1

M
V M
ti+1−t

∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣∣∣∣F̂]

+ E
[ ∑
k∈K̄ti+1−t\Kti+1−t

2LϕV
M
ti+1−t

∣∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣∣∣∣∣F̂].

Let us compute the expectation of the first term. Denoting by F̄ the σ-field

13



generated by the branching processes, we obtain

E
[ ∑
k∈Kti+1−t

1

M
V M
ti+1−t

∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣]

= E
[ ∑
k∈Kti+1−t

1

M
V M
ti+1−tE

[∣∣v̂m(ti+1, X
x,(k)
ti+1

)− vm(ti+1, X
x,(k)
ti+1

)
∣∣∣∣∣F̄]]

≤ 1

M
‖E[|v̂m − vm|]‖ti+1

E
[
qti+1−tV

M
ti+1−t

]
≤ M1

h

M
‖E[|v̂m − vm|]‖ti+1

.

Similarly, for the second term, one has

E
[ ∑
k∈K̄ti+1−t\Kti+1−t

2LϕV
M
ti+1−t

∣∣v̂m−1(Tk, X
x,(k)
Tk

)− vm−1(Tk, X
x,(k)
Tk

)
∣∣]

≤ 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖ti .

Notice that ‖E [|ṽm − v̂m|] ‖ti ≤ E(Ê) by Assumption 2.4. Hence,

‖E[|v̂m − vm|]‖ti ≤ E(Ê) + 2LϕM
2
h‖E[|v̂m−1 − vm−1|]‖ti

+
M1

h

M
‖E[|v̂m − vm|]‖ti+1

.

We now appeal to Proposition A.4 to obtain

‖E[|v̂m − vm|]‖ti ≤ E(Ê)

 m∑
i=1

Ci +

Nh−i∑
i′=2

 m∑
j1=1

· · ·
ji′−1∑
ji′=1

Cm−ji′Ci′−1


≤ E(Ê)(1 +Nh)

(m+Nh)
Nh

Nh!
Cm+Nh ,

with C := (2LϕM
2
h) ∨ M1

h

M
∨ 1. �

3 Example of application
In this section, we consider a toy example of application. Let us set X :=
[x, x̄] with x = π/8 and x̄ = 7π/8, and consider the solution X of (2.1) with

µ(x) = 0.1× (
π

2
− x) and σ(x) := 0.2× (x̄− x)(x− x).

14



We then take

f(x, y) = µ(x)
(√

1− y21|y|≤ȳ +
√

1− ȳ21|y|>ȳ

)
+

1

2
σ(x)2y

with ȳ := cos(x). As can be seen on Figure 1, the Lipschitz constant of the
driver is rather large. However, a simple application of Itô’s lemma shows
that the solution of (2.2) with g = cos is given by Y = cos(X), which will be
used to assess the precision of our estimator.

The driver f is approximated by polynomials of order two that are weighted
by localizing functions. Namely, we fix Aυj := (yj−υ, yj+1+υ] for j = 1, . . . , 5,
with υ := 10−5 and

y1 = −y6 =∞, y2 = −y5 = ȳ, y3 = −y4 = cos(xNX+1

4
−1

),

in which {x1, . . . , xNX} are equidistant points with x1 = x and xNX = x̄.
Then, f`◦ is defined as

f`◦(x, y, y
′) =

5∑
j=1

(
µ(x)(aj0 + aj1y + aj2y

2) +
1

2
σ(x)2y

)
ϕj(y

′)

where

ϕj(y
′) =


y′−yj+υ

2υ
if y′ ∈ Aυj ∩ [yj − υ, yj + υ)

1 if y′ ∈ Aυj ∩ [yj + υ, yj+1 − υ]

1− y′−yj+1+υ

2υ
if y′ ∈ Aυj ∩ [yj+1 − υ, yj+1 + υ)

0 if y′ /∈ Aυj

and

(a10, a11, a12) = (a50, a51, a52) = ((1− ȳ2)
1
2 , 0, 0)

(a20, a21, a22) = (a40, a41, a42)

= ((1− (y3)2)
1
2 − a21y3,

(1− (y3)2)
1
2 − (1− cos(x2)2)

1
2

y3 − cos(x2)
, 0)

(a30, a31, a32) = (1, 0,−1− (1− (y3)2)
1
2

(y3)2
).

In Figure 2, we plot the approximation of x 7→ f(x, cos(x), cos(x)) by x 7→
f`◦(x, cos(x), cos(x)), that drives the driver’s approximation error, recall (2.8).
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Figure 1: Driver f(π/4, ·).

Figure 2: Approximation of the driver - Crosses : f(·, cos). Circles:
f`◦(·, cos, cos).

It is very good except at the boundary points, which should not have a major
impact given our mean-reverting dynamics for X.

To construct the approximation operator Ê[V̂ ]. The time interval [0, T ) is
divided into NT intervals [si, si+1), 0 ≤ i ≤ NT − 1, of equal length, with
s0 = 0 and sNT = T . The branching density ρ is taken as the exponential
law density of parameter λ = 0.6, but the branching times Tk are replaced by
min(si : si ≥ Tk, i ≤ NT ), if Tk ≤ T . We take p0 = p1 = p2 = 1/3. We draw
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N independent path of the Brownian particles system (W (k),n; k ∈ K)n≤N (up
to T ) to which is associated the sequence of numbers of children, branching
and birth times (ζnk , δ

n
k , T

n
k ; k ∈ K)n≤N . The index sets Kn and K̄n are defined

correspondingly. Let Φ̄[x](·,W ) be the map that associates to x the Euler
scheme of (2.1) starting from X0 = x on the grid (si)i≤NT . Then, we set
X̄xl,(k),n := Φ̄[x](·,W (k),n) for each l ≤ NX . A typical path starting from π/2
is provided in Figure 3.

Figure 3: A typical simulated path of the branching diffusion starting from
π/2 on [0, 3]. Bullets denote branching or killing times.

The simplest algorithm reads as follows. We fix y(t, ·) = (t/T ) cos, v̂m(T, ·) =
cos, and then set, for κ ≥ 1, m ≥ 0, i < NT/κ with siκ ∈ [ti′ , ti′+1) and
l ≤ NX ,

Ê
[
V̂siκ,xl(v̂

m(ti′+1, ·), v̂m−1)
]

:=
1

N

N∑
n=1

V̂ n
siκ,xl

(v̂m(ti′+1, ·), v̂m−1)

17



where

V̂ n
siκ,xl

(φ, φ′) :=
( ∏
k∈Knti′+1−siκ

Ĝn
siκ,xl

(φ, k)
)( ∏

k∈K̄nti′+1−siκ
\Knti′+1−siκ

Ânsiκ,xl(φ
′, k)

)
,

Ĝn
siκ,xl

(φ, k) :=
φ(X̄

xl,(k),n
ti′+1−siκ)

F̄ (ti′+1 − siκ − T nk−)
,

Ânsiκ,xl(φ
′, k) :=

∑j◦
j=1 aj,ξnk (X̄

xl,(k),n
Tnk

)ϕj(φ
′(siκ + T nk , X̄

xl,(k),n
Tk

))

pξnk ρ(δnk )
.

For m ≥ 0, (v̂m(siκ, ·))i<NT /κ is extended to X by a simple barycentric
linearization, and (v̂m(·, x))x∈X is extended to [0, T ] by setting v̂m(t, x) :=
v̂m(s(i+1)κ, x) if t ∈ (siκ, s(i+1)κ]. In particular, each function v̂m is computed
on a time grid that is κ times rougher than the one used to construct the
Euler scheme of the branching system.
In practice, we proceed slightly differently than the Picard iteration in the
form described in Section 2.4. We shall instead use a mixed Picard iteration
and we drop the index m for more clarity. First, we set v̂(sj, ·) = v̂(T, ·)
for j > NT − κ. Then, one can compute v̂(sNT−κ, ·) as above, based on
y, and set v̂(sj, ·) = v̂(sNT−κ, ·) for NT − κ ≥ j > NT − 2κ. This allows
to compute immediately, v̂(sNT−2κ, ·), since it only requires the knowledge
of v̂(sj, ·) for NT ≥ j > NT − 2κ. We then set v̂(sj, ·) = v̂(sNT−2κ, ·) for
NT − 2κ ≥ j > NT − 3κ, from which we can compute v̂(sNT−3κ, ·). We go
on this way. The estimation v̂(sj, ·) corresponds to a unique Picard iteration
for NT ≥ j > NT − 2κ. But, around T , we expect to be very precise
with only one, as y is based on the terminal condition. The estimation
v̂(sj, ·) corresponds to a mix between a unique and two Picard iterations for
NT − κ ≥ j > NT − 2κ, and so on. We therefore increase automatically the
number of Picard iterations when we go further from the terminal horizon.

In Figure 4, we plot the solution x 7→ cos(x) and the confidence interval ob-
tained by computing the mean estimated value over 100 independent estima-
tions ± twice the standard deviation computed over these 100 estimations,
for N = 103, NX = 31, NT = 50, κ = 10 and Nh = 1. As can be seen,
the algorithm is already quite efficient with only a rather small number of
simulations. Figure 5 provides the same curves in the case N = 10.103.
In Figure 6 and Figure 7, we consider the case T = 2 with Nh = 2, NT = 140
and NX = 47. We use N = 103 and N = 10.103 simulations, respectively.
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Figure 4: T = Nh = 1 with N = 103 - Crosses: cos function. Dotted lines:
mean of estimations ± 2 standard deviation computed over the estimated
values.

Figure 5: T = Nh = 1 with N = 10.103 - Crosses: cos function. Dotted lines:
mean of estimations ± 2 standard deviation computed over the estimated
values.
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Figure 6: T = Nh = 2 with N = 103 - Crosses: cos function. Dotted lines:
mean of estimations ± 2 standard deviation computed over the estimated
values.

Figure 7: T = Nh = 2 with N = 10.103 - Crosses: cos function. Dotted lines:
mean of estimations ± 2 standard deviation computed over the estimated
values.

A Appendix

A.1 Technical lemmas

Lemma A.1. The ordinary differential equation η′(t) =
∑`◦

`=0 2C`◦η(t)` with
initial condition η(0) = M > 0 has a unique solution on [0, h◦] for

h◦ :=
(`◦ − 1)(1−M)+ + (1 ∨M)−(`◦−1)

(`◦ + 1)(`◦ − 1)2C`◦
. (A.1)20



Moreover, it is bounded on [0, h◦] by

Mh◦ := max
(

1,
(
(1∨M)1−`◦+(`◦−1)(1−M)+−h◦`◦(`◦−1)2C`◦

)(1−`◦)−1
)
. (A.2)

Consequently, one has, for all t ∈ [0, h◦],

E
[( ∏

k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)]
≤ η(t) ≤ Mh◦ . (A.3)

Proof. i) We first claim that∫ Mh◦

M

dy

2C`◦(1 + y + · · ·+ y`◦)
≥ h◦. (A.4)

Then, for every t ∈ [0, h◦], there is some constant M(t) ≤ Mh◦ < ∞ such
that ∫ M(t)

M

dy

2C`◦(1 + y + · · ·+ y`◦)
= t =

∫ t

0

ds.

This means that (M(t))t∈[0,h◦] is a bounded solution (and hence the unique
solution) of η′(t) =

∑`◦
`=0 2C`◦η(t)` with initial condition η(0) = M > 0. In

particular, it is bounded by Mh◦ .
ii) Let us now prove (A.4). Notice that yk ≤ 1 ∨ y`◦ for any y ≥ 0 and
k = 0, · · · , `◦. Then, it is enough to prove that∫ Mh◦

M

(
1 ∧ 1

y`◦

)
dy ≥ h◦(`◦ + 1)2C`◦ . (A.5)

By direct computation, the l.h.s. of (A.5) equals

(Mh◦ −M)1{Mh◦≤1} +
(

(1−M)+ +
1

`◦ − 1

(
(1 ∨M)1−`◦ −M1−`◦

h◦

))
1{Mh◦>1}.

When h◦ satisfies (A.1), it is easy to check that (A.5) holds true.
iii) We now prove (A.3). Recall that K̄nt denotes the collection of all particles
in K̄t of generation n. Set

χnt :=
( ∏
k∈∪nj=1K

j
t

M

F̄ (t− Tk−)

)( ∏
k∈∪nj=1(K̄jt\K

j
t )

2C`◦
pξkρ(δk)

)( ∏
k∈K̄n+1

t

η(t− Tk−)
)
.
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Since K̄nt has only finite number of particles, the random variable χnt is uni-
formly bounded. Then by exactly the same arguments as in (A.6) and (A.7)
below, and by repeating this argument over n, one has

η(t) = M +

∫ t

0

`◦∑
`=0

2C`◦η(s)`ds = E
[
χ1
t

]
= E

[
χnt
]
, ∀n ≥ 1.

It follows by Fatou Lemma that

E
[( ∏

k∈Kt

M

F̄ (t− Tk−)

)( ∏
k∈K̄t\Kt

2C`◦
pξkρ(δk)

)]
= E

[
lim
n→∞

χnt
]
≤ lim

n→∞
E[χnt ] = η(t).

For completeness, we provide here the proof the representation formula of
Proposition 2.1 and of the technical lemma that was used in the proof of
Proposition 2.6.

Proposition A.2. The representation formula of Proposition 2.1 holds.

Proof. We only provide the proof on [tNh−1, T ], the general result is obtained
by induction. It is true by construction when m is equal to 0. Let us now fix
m ≥ 1.
First, Lemma A.1 shows that the random variable V m

t,x is integrable.
Next, Set (1)+ := {(1, j), j ≤ `◦} ∩ K̄T and define Kt(1) := Kt ∩ (1)+ and
K̄t(1) := K̄t∩ (1)+. For ease of notations, we write Xx := Xx,((1)). Then, for
all (t, x) ∈ [tNh−1, T ]× Rd,

E[V m
t,x] = E

[
g(Xx

T−t)

F̄ (T − t)
1{T(1)≥T−t}

]
+ E

[
1{T(1)<T−t}

∑j◦
j=1 aj,ξ(1)(X

x
T(1)

)ϕj(v
m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
Rm
t,x

]
where

Rm
t,x :=

( ∏
k∈KT−t(1)

Gt,x(k)
)( ∏

k∈K̄T−t(1)\KT−t(1)

Amt,x(k)
)

satisfies

E[Rm
t,x|FT(1) ] =

∏
k∈(1)+

vm
(
T(1), X

t,x
T(1)

)
=
[
vm(T(1), X

x
T(1)

)
]ξ(1) ,
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by (2.16). On the other hand, (2.15) and (2.16) imply

E
[
g(Xx

T−t)

F̄ (T − t)
1{T(1)≥T−t}

]
= E[g(Xx

T−t)] (A.6)

and

E

[
1{T(1)<T−t}

∑j◦
j=1 aj,ξ(1)(X

x
T(1)

)ϕj(v
m−1(t+ T(1), X

x
T(1)

))

pξ(1) ρ(δ(1))
[vm(T(1), X

x
T(1)

)]ξ(1)

]

= E

[∫ T−t

0

∑j◦
j=1 aj,ξ(1)(X

x
s )ϕj(v

m−1(t+ s,Xx
s ))

pξ(1)
[vm(s,Xx

s )]ξ(1)ds

]

= E

[∫ T−t

0

j◦∑
j=1

∑
`≤`◦

aj,`(X
x
s )ϕj(v

m−1(t+ s,Xx
s ))[vm(s,Xx

s )]`ds

]

= E
[∫ T−t

0

f`◦(X
x
s , v

m(t+ s,Xx
s ), vm−1(t+ s,Xx

s ))ds

]
. (A.7)

Combining the above implies that

vm(t,Xt) = E
[
g(XT ) +

∫ T

t

f`◦(Xs, v
m(s,Xs), v

m−1(s,Xs))ds
∣∣∣Ft] ,

and the required result follows by induction. �

Lemma A.3. Let (xi, yi)i≤I be a sequence of real numbers. Then,∣∣∣∣∣
I∏
i=1

xi −
I∏
i=1

yi

∣∣∣∣∣ ≤∑
i∈I

(
|xi − yi|

∏
j 6=i

max(|xj|, |yj|)
)
.

Proof. It suffices to observe that
I∏
i=1

xi −
I∏
i=1

yi = (x1 − y1)
I∏
i=2

xi + y1
( I∏
i=2

xi −
I∏
i=2

yi
)
,

and to proceed by induction. �

Proposition A.4. Let c1, c2, c3 ≥ 0, and let (uim)m≥0,i≥0 be a sequence such
that

uim ≤ c1u
i
m−1 + c2u

i+1
m + c3 for m ≥ 1, i < Nh.

23



Then

uim ≤cm1 ui0 +

Nh−i∑
i′=1

 m∑
j1=1

j1∑
j2=1

· · ·
ji′−1∑
ji′=1

cm1 c
i′

2u
i+i′

0


+ c3

 m∑
i=1

ci1 +

Nh−i∑
i′=2

( m∑
j1=1

j1∑
j2=1

· · ·
ji′−1∑
ji′=1

c
m−ji′
1 ci

′−1
2

) .

Proof. We have

uim ≤(c1)mui0 +
m∑
j=1

(c1)m−j(c2u
i+1
m + c3).

The required result then follows from a simple induction. �

A.2 More on the error analysis for the abstract numer-
ical approximation

The regression error will depend on the regularity of vm. Here we prove
that vm(t, x) is Hölder in t and Lipschitz in x under additional conditions,
and provide some estimates on the corresponding coefficients. Given φ :
[0, T ]× Rd → R, denote

[φ]ti := sup
(t,x)6=(t′,x′)∈[ti,ti+1]×X

|φ(t, x)− φ(t′, x′)|
|t− t′| 12 + |x− x′|

.

Since (µ, σ) is assumed to be Lipschitz, it is clear that there exists LX > 0
such that for all (t, x), (t′, x′) ∈ [0, T ]×X,

‖Xx
t −Xx′

t′ ‖L2 ≤ LX

(√
|t′ − t|+ |x′ − x|

)
. (A.8)

Proposition A.5. Suppose that x 7→ g(x) and x 7→ f`◦(x, y, y
′) are uniformly

Lipschitz with Lipschitz constants Lg and Lf . Let β and λ1, λ2 > 0 such that
L2

λ22
T < 1 and β ≥ 2L1 + Lfλ

2
1 + L2λ

2
2, then for all m ≥ 1 and i ≤ Nh,

[vm]ti ≤ Lv := (1 + LX)LX

√(
L2
g +

Lf
βλ2

1

)
eβT/

(
1− L2

λ2
2

T
)

+ 2(1 + `◦)C`(1 ∨ (Mh◦)
`◦)
√
h◦.
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Proof. For ease of notations, we provide the proof for t = 0 only.
i) Let x1, x2 ∈ Rd and Y m,1 := vm(·, Xx1), Y m,2 := vm(·, Xx2), and denote
∆Y m := Y m,1−Y m,2, ∆X := Xx1−Xx2 , where Xx1 (resp. Xx2) denotes the
solution of SDE (2.1) with initial condition X0 = x1 (resp. X0 = x2). Using
the same arguments as in the proof of Theorem 2.3, it follows that, for any
β ≥ 2L1 + Lfλ

2
1 + L2λ

2
2, one has

E[eβt(∆Y m+1
t )2] ≤ E[eβT (∆Y m+1

T )2] +
Lf
λ2

1

E
[ ∫ T

t

eβs|∆Xs|2ds
]

+
L2

λ2
2

E
[ ∫ T

t

eβs(∆Y m
s )2ds

]
(A.9)

and then

E
[ ∫ T

0

eβt(∆Y m+1
t )2dt

]
≤ TE[eβT (∆Y m+1

T )2] + T
Lf
λ2

1

E
[ ∫ T

0

eβs|∆Xs|2ds
]

+ T
L2

λ2
2

E
[ ∫ T

0

eβt(∆Y m
t )2dt

]
≤ TeβT

(
L2
g +

Lf
βλ2

1

)
L2
X |x1 − x2|2

+ T
L2

λ2
2

E
[ ∫ T

0

eβt(∆Y m
t )2dt

]
.

Since L2

λ22
T < 1, this induces that

E
[ ∫ T

0

eβt(∆Y m+1
t )2dt

]
≤

TeβT
(
L2
g +

Lf
βλ21

)
L2
X |x1 − x2|2

1− L2

λ22
T

.

Plugging the above estimates into (A.9), it follows that

(∆Y m
0 )2 ≤ L̂2

v|x1 − x2|2, with L̂2
v :=

(
L2
g +

Lf
βλ21

)
L2
Xe

βT

1− L2

λ22
T

.

ii) For the Hölder property of vm, it is enough to notice that for t ≤ h◦,

|vm(0, x)− vm(t, x)| ≤ E
[
|vm(t,Xx

t )− vm(t, x)|+
∫ t

0

|f(Xx
s , Y

m
s , Y

m−1
s )|ds

]
≤ L̂vLX

√
t+ 2(1 + `◦)C`(1 ∨ (Mh◦)

`◦)t,
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where the last inequality follows from the Lipschitz property of vm in x and
the fact that Y m is uniformly bounded byMh◦ . We hence conclude the proof.
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