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taflin@eisti.fr

August 21, 2010

Abstract

Motivated by applications to bond markets, we propose a multivariate framework
for discrete time financial markets with proportional transaction costs and a countable
infinite number of tradable assets. We show that the no-arbitrage of second kind
property (NA2 in short), introduced by [17] for finite dimensional markets, allows to
provide a closure property for the set of attainable claims in a very natural way, under
a suitable efficient friction condition. We also extend to this context the equivalence
between NA2 and the existence of multiple (strictly) consistent price systems.
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1 Introduction

Motivated by applications to bonds markets, for which it is adknowledged that all possible

maturities have to be taken into account, many papers have been devoted to the study of

financial models with infinitely many risky assets, see e.g. [1], [4], [5] or [8] and the references

therein. To the best of our knowledge, models with proportional transaction costs have not

been discussed so far. This paper is a first attempt to treat such situations in a general

framework.

As a first step, we restrict to a discrete time setting where a countable infinite number of

financial assets is available.

1



Following the modern literature on financial models with proportional transaction costs,

see [12] for a survey, financial strategies are described here by RN-valued (Ft)t≥0-adapted

processes ξ = (ξt)t≥0, where (Ft)t≥0 is a given filtration that models the flow of available

information, and each component ξit of ξt = (ξit)i≥1 ∈ RN describes the changes in the

position on the financial asset i induced by trading on the market at time t.

When the number of financial assets is finite, say d, one can view each component ξit as

the amount of money invested in the asset i or as a number of units of asset i held in the

portfolio.

The main advantage of working in terms of units is that it is numéraire free, see the dis-

cussions in [19] and [16]. In such models, the self-financing condition is described by a cone

valued process K̂ = (K̂t)t≥0 which incorporates bid-ask prices. Namely, a financial strat-

egy is said to satisfy the self-financing condition if ξt ∈ −K̂t P − a.s. for all t ≥ 0, where

−K̂t(ω) := {y ∈ Rd : yi ≤
∑

i 6=j(a
ji − aijπijt (ω)),∀ i ≤ d, for some a = (aij)i,j≥1 ∈ Rd×d

with non-negative entries}. In the above formulation, πijt stands for the number of units of

asset i required in order to buy one unit of asset j at time t. The self-financing condition

then just means that the changes ξt in the portfolio can be financed (in the large sense) by

passing exchange orders (aij)i,j≥1 on the market, i.e. aij ≥ 0 represents the number of units

of asset j that are obtained against aijπijt units of asset i.

Under the so-called efficient friction assumption, namely πijt π
ji
t > 1 for all i, j and t ≤ T ,

and under suitable no arbitrage conditions (e.g. the strict no-arbitrage condition of [15] or

the robust no-arbitrage condition of [19], see also [16]), one can show that there exists a

martingale Ẑ = (Ẑt)t≤T such that, for all t ≤ T , Ẑt lies in the interior of the (positive) dual

cone K̂ ′t of K̂t, which turns out to be given by

K̂ ′t(ω) = {z ∈ Rd : 0 ≤ zj ≤ ziπijt (ω), i, j ≤ d} .

The martingale Ẑ has then the usual interpretation of being associated to a fictitious fric-

tionless market which is cheaper than the original one, i.e. Ẑj
t /Ẑ

i
t < πijt , and such that

the classical no-arbitrage condition holds, i.e. Ẑ is a martingale. This generalizes to the

multivariate setting the seminal result of [11].

The existence of such a martingale can then be extended to the continuous setting, see [10]

for a direct approach in a one-dimensional setting and [9] for a multivariate extension based

on a discrete time approximation, which in turns allows to prove that the set of attainable

claims is closed is some sense, see e.g. Lemma 12 and the proof of Theorem 15 in [3], see also

[2] and [7]. Such a property is highly desirable when one is interested by the formulation of a

dual representation for the set of super-hedgeable claims, or by existence results in optimal

portfolio management, see the above papers and the references therein.

The aim of this paper is to propose a generalized version of the above results to the context

of discrete time models with a countable infinite number of assets, with the purpose of
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providing later a continuous time version.

When the number of assets is countable infinite, the first difficulty comes from the notion

of interior associated to the sequence of dual cones (K̂ ′t)t≤T . Indeed a natural choice would

be to define K̂t(ω) as a subset of l1, the set of elements x = (xi)i≥1 ∈ RN such that

|x|l1 :=
∑

i≥1 |xi| < ∞, so as to avoid having an infinite global position in a subset of

financial assets, see [21] for a related criticism on frictionless continuous time models. In

this case, K̂ ′t should be defined in l∞, the set of elements x = (xi)i≥1 ∈ RN such that

|x|l∞ := supi≥1 |xi| < ∞. But, for the topology induced by | · |l∞ , the sets K̂ ′s(ω) have no

reason to have a non-empty interior, except under very strong conditions on the bid-ask

matrices (πijt (ω))i,j.

We therefore come back to the original modelisation of [15] in which financial strategies

are described through amounts of money invested in the different risky assets. Namely, we

assume that the bid-ask matrix (πijt )i,j takes the form ((1+λijt )Sjt /S
i
t)i,j where Skt stands for

the price, in some numéraire, of the risky asset k and λijt is a positive coefficient (typically

less than 1) interpreted as a proportional transaction cost. The changes ξt in the portfolio

du to trading at time t, now labeled in amounts of money evaluated in the numéraire, thus

take values in the set −Kt where Kt(ω) := {(Sit(ω)yi)i≥1, y ∈ K̂t(ω)}. Viewed as a subset

of l1, Kt(ω) has a dual cone K ′t(ω) ⊂ l∞ which takes the form

K ′t(ω) := {z ∈ l∞ : 0 ≤ zj ≤ zi(1 + λijt (ω)), i, j ≥ 1} ,

and whose interior in l∞ is now non-empty under mild assumptions, e.g. if λijt (ω) ≥ ε(ω)

a.s. for all i, j ≥ 1 for some random variable ε taking strictly positive values.

This approach, although not numéraire free, allows to bound the global amount invested

in the different subsets of assets, by viewing Kt as a subset of l1, while leaving open the

possibility of finding a process Z such that such Zt lies in the interior of K ′t a.s., i.e. such

that Ẑ := ZS still satisfies Ẑj
t /Ẑ

i
t < πijt for all i, j.

We shall see below that, under a suitable no-arbitrage condition, one can actually choose Z

in such a way that ZS is a martingale, thus recovering the above interpretation in terms of

arbitrage free fictitious market. Moreover, we shall show that the set of terminal wealths

induced by financial strategies defined as above is indeed closed in a suitable sense, see

Theorem 3.2 and Theorem 3.1. This means that we do not need to consider an additional

closure operation in order to build a nice duality theory or to discuss optimal portfolio

management problems, as it is the case in frictionless markets (cf. [20] and [21] for a

comparison with continuous time settings).

Another difficulty actually comes from the notion of no-arbitrage to be used in such a

context. First, we should note that various, a-priori not equivalent, notions of no-arbitrage

opportunities can be used in models with proportional transaction costs. We refer to [12]

for a complete presentation and only mention one important point: the proofs of the closure
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properties, of the set of attainable claims, obtained in [15] and [19], under the strict no-

arbitrage and the robust no-arbitrage property, heavily rely on the fact that the boundary

of the unit ball is closed in Rd (for the pointwise convergence). This is no more true, for

the pointwise convergence, when working in l1 viewed as a subspace of RN with unit ball

defined with | · |l1 . In particular, it does not seem that they can be reproduced in our infinite

dimensional setting.

However, we shall show that the notion of no-arbitrage of second kind (in short NA2),

recently introduced by [17] under the label “no-sure profit in liquidation value”, is perfectly

adapted. It says that the terminal value VT of a wealth process can not take values a.s. in KT

if the wealth process at time t, Vt, does not already take values a.s. in Kt, for t ≤ T . Note

that Vt ∈ Kt if and only if −Vt ∈ −Kt. Since Vt+(−Vt) = 0, this means that Kt is the set of

position holdings at time t that can be turned into a zero position, after possibly throwing

away non-negative amounts of financial assets, i.e. Kt is the set of “solvable” positions at

time t. Hence, the NA2 condition means that we can not end up with a portfolio which is

a.s. solvable if this was not the case before, which is a reasonable condition.

Under this condition, we shall see that a closure property can be proved under the only

assumption that K ′t has a.s. a non-empty interior, for all t ≤ T , which is for instance the

case if ε ≤ λijt (ω) ≤ ε−1 a.s. for all i, j ≥ 1 and t ≤ T , for some ε > 0. We shall also

extend to our framework the PCE (Prices Consistently Extendable) property introduced in

[17], which we shall call MSCPS (Multiple Strictly Consistent Price System) to follow the

terminology of [6].

The rest of the paper is organized as follows. We first conclude this introduction with a

list of notations that will be used throughout paper. The model and our key assumptions

are presented in Section 2. Our main results are reported in Section 3. The proofs of the

closure properties are collected in Section 4, in which we also prove a dual characterization

for the set of attainable claims and discuss the so-called B-property. The existence of a

Multiple Strictly Consistent Price System is proved in Section 5. The last section discusses

elementary properties of cones in infinite dimensional spaces and under which conditions

our key assumption, Assumption 2.1 below, holds.

Notations: We identify the set of R-valued maps on N with the topological vector space

(hereafter TVS) RN, with elements of the form x = (xi)i≥1. The set RN is endowed with

its canonical product topology, also called the topology of pointwise convergence: (xn)n≥1

in RN converges pointwise to x ∈ RN if xin → xi for all i ≥ 1. We set M = RN2
, whose

elements are denoted by a = (aij)i,j≥1, define M+ as the subset of M composed by elements

with non-negative components, and use the notation M1
+ (resp. Mf,+) to denote the set of

elements a in M+ such that
∑

i,j≥1 a
ij < ∞ (resp. only a finite number of the aij’s are not

equal to 0).
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For p ∈ [1,∞) (resp. p = ∞), we denote by lp (resp. l∞) the set of elements x ∈ RN such

that |x|lp = (
∑

i≥1 |xi|p)1/p < ∞ (resp. |x|l∞ = supi≥1 |xi| < ∞). For the natural ordering,

lp+ is the closed cone of positive elements x ∈ lp, i.e. xi ≥ 0 for all i. Given x, y ∈ RN, we

write xy for (x1y1, x2y2, . . .) ∈ RN, x/y for (x1/y1, x2/y2, . . .) ∈ RN and x · y for
∑

i≥1 x
iyi

whenever it is well defined. To j ∈ N, we associate the element ej of RN satisfying ejj = 1

and eij = 0 for i 6= j. We shall also use the notation 1 = (1, 1, . . .).

We define cf as the space of finite real sequences, and c0 as the closed subspace of elements

x ∈ l∞ such that limi→∞ x
i = 0. In the following, we shall use the notation µ to denote

an element of (0,∞)N such that 1/µ ∈ l1. To such a µ, we associate the Banch space l1(µ)

(resp. the set l1+(µ)) of elements x ∈ RN such that xµ ∈ l1 (resp. xµ ∈ l1+). The Banach

space c0(1/µ) is defined accordingly: x ∈ c0(1/µ) iff x/µ ∈ c0. Recall that l1 (resp. l1(µ) is

the topological dual of c0 (resp. c0(1/µ)).

For a normed space (E, || · ||E), we define the natural distance dE(x, y) := ||x− y||E, denote

by dE(x,A) (resp. dE(B,A)) the distance between x (resp. the set B ⊂ E) and the set

A ⊂ E.

We shall work on a complete probability space (Ω,F ,P) supporting a discrete-time filtration

F = (Ft)t∈T with T := {0, . . . , T} for some integer T > 0. Without loss of generality, we

assume that FT = F .

Given a real locally convex TVS E, with topological dual E ′, and a σ-subalgebra G ⊂ F ,

we denote by Ew the linear space E endowed with the weak topology (i.e. the σ(E,E ′)

topology), B(Ew) stands for the corresponding Borel σ-algebra, and we write L0(E,G) to

denote the collection of weakly G-measurable E-valued random variables. A subset B of

Ω×E is said to be weakly G-measurable if B ∈ G ⊗B(Ew). When (E, ‖ · ‖E) is a separable

Banach space, the elements of L0(E,G) are indeed strongly measurable (cf. Sect. IV.2

of [22]). For 1 ≤ p ≤ ∞, we then use the standard notations Lp(E,G) for the elements

X ∈ L0(E,G) such that E [‖X‖pE] < ∞ if 1 ≤ p < ∞, and ‖X‖E is essentially bounded if

p = ∞. In the case of the non-separable space l∞, the elements X ∈ L0(l∞,G) still have

a G-measurable norm |X|l∞ . We therefore also use the notation Lp(l∞,G) as defined above,

although this space does not have all the usual “nice properties” of Lp-spaces.

Any inequality between random variables or inclusion between random sets has to be taken

in the P− a.s. sense.

2 Model formulation

2.1 Financial strategies and no-arbitrage of second kind

We consider a financial market in discrete time with proportional transaction costs sup-

porting a countable infinite number of tradable assets. The evolution of the asset prices is
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described by a (0,∞)N-valued F-adapted process S = (St)t∈T. All over this paper, we shall

impose the following technical condition:

St/Ss ∈ L1(l∞,F) for all s, t ∈ T . (2.1)

Similar conditions are satisfied in continuous time models without transaction costs, cf.

Theorem 2.2 of [8].

Remark 2.1 Note that one could simply assume that St/Ss ∈ l∞ P − a.s. for all s, t ∈ T,
which is a natural condition, and replace the original measure P by P̃ defined by dP̃/dP =

exp
(
−
∑

s,t∈T |St/Ss|l∞
)
/ E

[
exp

(
−
∑

s,t∈T |St/Ss|l∞
)]

, which is equivalent and for which

(2.1) holds.

The transaction costs are modeled as a M+-valued adapted process λ = (λt)t≤T . It means

that buying one unit of asset j against units of asset i at time t costs πijt := (Sjt /S
i
t)(1 +λijt )

units of asset i.

Throughout the paper, we shall assume that

λiit = 0 and (1 + λijt )(1 + λjkt ) ≥ (1 + λikt ) P− a.s. for all i, j, k ≥ 1 and t ∈ T. (2.2)

and that

sup
t∈T,i,j≥1

λijt <∞, P− a.s. . (2.3)

Note that these conditions have a natural economic interpretation. The first is equivalent

to πiit = 1 and πijt π
jk
t ≥ πikt for all i, j, k ≥ 1 and t ≤ T , compare with [19].

A portfolio strategy is described as a RN-valued adapted process ξ = (ξ)t≤T satisfying at

any time t ∈ T

ξit ≤
∑
j≥1

(
aji − aij(1 + λijt )

)
∀ i ≥ 1 P− a.s. , for some a ∈ L0(M+,Ft),

whenever this makes sense, or equivalently

−ξt ≥
∑
i 6=j

aij
(
(1 + λijt )ei − ej

)
P− a.s. , for some a ∈ L0(M+,Ft). (2.4)

As explained in the introduction, ξit should be interpreted as the additional net amount of

money transferred at time t to the account invested in asset i after making transactions

on the different assets. The quantity aji should be interpreted as the amount of money

transferred to the account i by selling aji(1 + λjit )/Sjt units of asset j. The above inequality

means that we allow the investor to throw away money from the different accounts.
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In order to give a mathematical meaning to the above expressions, let us define the random

convex cones K̃t, t ∈ T, as the convex cones generated by elements of finite length in l1+ and

the set of vectors on the r.h.s. of (2.4) obtained by finite sums:

K̃t(ω) =

{
x ∈ l1 : x =

∑
i 6=j≥1

aij
(
(1 + λijt (ω))ei − ej

)
+
∑
i≥1

biei for some a ∈Mf,+, b ∈ cf ∩ l1+

}
,

and define the set of admissible strategies as

A := {ξ = (ξt)t∈T F-adapted : ξt ∈ −Kt for all t ∈ T} ,

where Kt(ω) denotes the l1-closure of K̃t(ω) for t ≤ T .

Remark 2.2 Note that, by construction, Kt(ω) is a closed convex cone in l1 of vertex 0

satisfying l1+ ⊂ Kt(ω) and such that Kt(ω) ∩ cf is dense in Kt(ω).

For ease of notations, we also define

ATt := {ξ ∈ A : ξs = 0 for s < t}, t ∈ T.

To an admissible strategy ξ ∈ A, we associate the corresponding portfolio process V ξ corre-

sponding to a zero initial endowment:

V ξ
t :=

t∑
s=0

ξsSt/Ss , t ∈ T. (2.5)

The i-th component corresponds to the amount of money invested in the i-th asset at time t.

Note that the additional amount of money ξis invested at time s in the i-th asset corresponds

to ξis/S
i
s units of the i-th asset, whose value at time t is (ξis/S

i
s)S

i
t .

We then define the corresponding sets of terminal portfolio values

X T
t :=

{
V ξ
T : ξ ∈ ATt

}
, t ∈ T.

We can now define our condition of no-arbitrage of the second kind, which is similar to the

one used in [17] and [6] for finite dimensional markets. It simply says that a trading strategy

can not ensure to end up with a solvable position at time T if the position was not already

P− a.s. solvent at previous times t ≤ T .

Condition 2.1 (NA2) For all t ∈ T,

η ∈ L0(l1,Ft) \ L0(Kt,Ft) ⇒ (ηST/St + X T
t ) ∩ L0(KT ,FT ) = ∅.

Remark 2.3 For later use, note that it follows from NA2 that X T
0 ∩ L0(KT ,FT ) = {0}

whenever Kt is P− a.s. proper (i.e. Kt∩ (−Kt) = {0}) for all t ≤ T . Indeed, fix a nontrivial

ξ ∈ A and suppose that V ξ
T ∈ L0(KT ,FT ). Since ξ 6= 0, there is a smallest t∗ such that

ξt∗ 6= 0 (as a random variable). It follows that V ξ
T = ξt∗ST/St∗ + g for some g ∈ X T

t∗+1. The

condition NA2 then implies that ξt∗ ∈ L0(Kt∗ ,Ft∗). However ξ ∈ A, so ξt∗ ∈ L0(−Kt∗ ,Ft∗).
Since Kt∗ ∩ (−Kt∗) = {0}, this leads to a contradiction.
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2.2 The efficient friction assumption

In this paper, we shall assume that a version of the so-called Efficient friction assumption

holds. In finite dimensional settings, it means that λijt + λjit > 0 for all i 6= j and t ≤ T , or

equivalently that Kt is a.s. proper (i.e. Kt ∩ (−Kt) = {0}), or that the positive dual of each

Kt has P− a.s. non-empty interior, for all t ≤ T , see [15].

In our infinite dimensional setting, the positive dual cone of Kt(ω) is defined as

K ′t(ω) := {z ∈ l∞ : z · x ≥ 0 for all x ∈ Kt(ω)} , t ∈ T,

or, more explicitly,

K ′t(ω) =
{
z ∈ l∞ : 0 ≤ zj ≤ zi(1 + λijt (ω)), i, j ≥ 1

}
, t ∈ T , (2.6)

and the above mentioned condition could naively read

essinf(λijt (ω) + λjit (ω)) > 0, (2.7)

where the essinf is taken over ω ∈ Ω, t ∈ T and i 6= j. However, it is not sufficient in order

to ensure that K ′t has a.s. a non-empty interior, as shown in Remark 6.1 below.

We shall therefore appeal to a generalized version of the Efficient Friction (in short EF)

assumption of [15] which is directly stated in terms of the random cones K ′t in l∞. Theorem

2.1 below provides a natural condition under which it is satisfied.

Assumption 2.1 (EF) The M+-valued adapted process λ, satisfying (2.2) and (2.3), has

the property that for all t ∈ T and P−a.s. ω the dual cone K ′t(ω) has an interior point θt(ω)

such that θt ∈ L0(l∞,Ft).

It is easy to find sufficient conditions on the transactions costs λ such that the Efficient Fric-

tion Assumption 2.1 is satisfied. The following result is a direct consequence of Proposition

6.1 reported in Section 6 below.

Theorem 2.1 Assume that

essinf λijt (ω) > 0. (2.8)

where the essinf is taken over ω ∈ Ω, t ∈ T and i 6= j. Then the Efficient Friction Assumption

2.1 is satisfied.

Remark 2.4

1. If the condition (2.8) is replaced by the weaker one (2.7) used in finite dimensional

settings, then Theorem 2.1 is no longer true. See Remark 6.1 for a counter-example.
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2. There are λ giving rise to EF not covered by Theorem 2.1. One such case is given by

λ defined by λij = 1 for all i 6= j except λ12 = 0. In fact for this case Lemma 6.3 gives

that (3/2, 1, 1, . . .) ∈ int(K ′t).

3. Under EF, Kt(ω) is P− a.s. normal (see Section 6), for all t ∈ T. In particular, Kt(ω)

is P− a.s. a proper cone.

4. Under EF, for all ξ ∈ L0(l∞,Ft), dl∞(ξ, ∂K ′t) is a real Ft-measurable r.v., where

∂K ′t(ω) is the border of K ′t(ω) (see Section 6).

5. The choice of the spaces has to be done with some care. For instance, if the λij’s are

time independent and uniformly bounded by some constant c > 0, and if K̃ and K are

defined in lp with 1 < p < ∞, instead of l1, then K ′ = {0} and K = lp. In fact, with

p−1 + q−1 = 1, y ∈ K ′ if and only if y ∈ lq and 0 ≤ yj ≤ yi(1 + λij) for all i 6= j ≥ 1.

In particular, yj

1+c
≤ yi for i 6= j ≥ 1, so that y /∈ lq whenever there exists j ≥ 1 such

that yj > 0. This shows that K ′ = {0}, which then implies that K = lp.

3 Main results

In this section, we state our main results. The proofs are collected in the subsequent sections.

From now on, we denote by L0
t,b the subset of random variables g ∈ L0(l1,F) bounded from

below in the sense that

g + ηST/St ∈ KT for some η ∈ L0(l1+,Ft) . (3.1)

In the following, a subset B ⊂ L0
t,b is said to be t-bounded from below if there exists c ∈

L0(R+,Ft) (called a lower bound) such that any g ∈ B satisfies (3.1) for some η ∈ L0(l1+,Ft)
such that |η|l1 ≤ c.

Our first main result is a Fatou-type closure property for the sets X T
t in the following sense:

Definition 3.1 Let (gn)n≥1 be a sequence in L0(l1,F), which converges P − a.s. pointwise

to some g ∈ L0(l1,F) and fix t ≤ T .

We say that (gn)n≥1 is t-Fatou convergent with limit g if {gn : n ≥ 1} is a subset of L0
t,b

which is t-bounded from below.

We say that a subset B of L0(l1,F) is t-Fatou closed, if, for any sequence (gn)n≥1 in B,

which t-Fatou converges to some g ∈ L0(l1,F), we have g ∈ B.

Theorem 3.1 Assume that NA2 and EF hold. Then X T
t is t-Fatou closed, for all t ∈ T.
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The above Fatou closure property can then be translated in a ∗-weak closure property of

the set of terminal portfolio holding labeled in time-t values of the assets, i.e. StX T
t /ST =

{StVT/ST , VT ∈ X T
t }. Recall that µ denotes any element of RN such that 1/µ ∈ l1+.

Theorem 3.2 Assume that NA2 and EF hold. Then, (StX T
t /ST ) ∩ L∞(l1(µ), F) is

σ(L∞(l1(µ), F), L1(c0(1/µ), F))-closed for all t ∈ T.

Remark 3.1 Note that we use the spaces l1(µ) and c0(1/µ), with µ ∈ (0,∞)N such that

1/µ ∈ l1, in the above formulation instead of the more natural ones l1 and c0. The reason is

that bounded sequences (xn)n≥1 in l1(µ) have components satisfying |xin| ≤ c1/µi for some

c > 0 independent of i and n and where 1/µ ∈ l1+. In particular, x + c/µ ∈ l1+. This allows

to appeal to the Fatou closure property of Theorem 3.1, see the proof of Theorem 3.2 in

Section 4. We shall actually see in Remark 4.1 below that the above closure property can

not be true in general if we consider the (more natural) σ(L∞(l1, F), L1(c0, F))-topology.

By using standard separation arguments, Theorem 3.2 allows as usual to characterize the

set of attainable claims in terms of natural dual processes.

In models with proportional transaction costs, they consist in elements of the setsMT
t (K ′ \

{0}) of RN-valued F-adapted processes Z on Tt := {t, t+ 1, . . . , T} such that Zs ∈ K ′s \ {0},
for all s ∈ Tt, and ZS is a RN-valued martingale on Tt, t ≤ T . Following the terminology

of [19], elements of the form ZS with Z ∈ MT
t (K ′ \ {0}) are called consistent price system

(on Tt).

Theorem 3.3 Assume that NA2 and EF hold. Fix t ∈ T. Then, MT
t (K ′ \ {0}) 6= ∅.

Moreover, for any g ∈ L0(l1,FT ) such that g + ηST/St ∈ L0(l1+,F) for some η ∈ L0(l1+,Ft),

we have:

g ∈ X T
t ⇔ E [ZT · g | Ft] ≤ 0 for all Z ∈MT

t (K ′ \ {0}) .

We note that the above conditional expectation E [ZT · g | Ft] is well defined as a R∪{∞}-
valued Ft-measurable r.v. In fact g+ηST/St ∈ L0(l1+,F) implies that ZT ·g ≥ −ZT ·(ηST/St)
where η/St ∈ L0(l1,Ft) and ZTST ∈ L1(l∞,F) by definition.

Following arguments used in [17] and [6], one can also prove that the so-called B condition

holds under NA2.

Condition 3.1 (B) The following holds for all t ∈ T and ξ ∈ L0(l1,Ft):

Zt · ξ ≥ 0 ∀ Z ∈MT
t (K ′ \ {0}) ⇒ ξ ∈ Kt.

Theorem 3.4 NA2 ⇔ (B and MT
0 (K ′ \ {0}) 6= ∅).
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It finally implies the existence of Strictly Consistent Price Systems, i.e. elements of the sets

MT
t (intK ′) of processes Z ∈ MT

t (K ′ \ {0}) such that Zs ∈ intK ′s, for all s ∈ Tt. The

NA2 condition actually turns out to be equivalent to the existence of a sufficiently big

sets of consistent price systems, which is referred to as the Many Consistent Price Systems

(MCPS) and Many Strictly Consistent Price Systems (MSCPS) properties.

Condition 3.2 We say that the condition MCPS (resp. MSCPS) holds if:

For all t ∈ T and η ∈ L0(intK ′t,Ft) such that ηSt ∈ L1(l∞,Ft), there exists Z ∈MT
t (K ′\{0})

(resp. Z ∈MT
t (intK ′)) such that Zt = η.

Theorem 3.5 Assume that EF holds. Then, the three conditions NA2, MCPS and

MSCPS are equivalent.

4 Closure properties and duality

We start with the proof of our closure properties which are the main results of this paper.

4.1 Efficient frictions and Fatou closure property

The key idea for proving the closure property of Theorem 3.1 is the following direct conse-

quence of the EF Assumption 2.1.

Corollary 4.1 Suppose that EF holds. Then, for all t ∈ T, there exists α ∈ L0(R+,Ft)
such that

|ξ|l1 ≤ α|η|l1 , ∀ (ξ, η) ∈ L0(−Kt,Ft)× L0(Kt,Ft) such that ξ + η ∈ Kt.

Proof According to the EF Assumption 2.1 there exists θt ∈ L0(l∞,Ft) such that θt(ω) is

an interior point of K ′t(ω) for P-a.e. ω ∈ Ω. Define

α(ω) := 8|θt(ω)|l∞
(

1

dl∞(θt(ω), ∂K ′t(ω))

)2

,

Then α ∈ L0(R+,Ft) by 4. of Remark 2.4. We observe that ξt(ω) ∈ (Kt(ω) − ηt(ω)) ∩
(ηt(ω) −Kt(ω)), according to the hypotheses and the fact that Kt + Kt = Kt. Lemma 6.1

and Lemma 6.2, with C = Kt(ω), f0 = θt(ω), x = ξt(ω), y = ηt(ω) and b = 1/2, then apply,

which proves the corollary with the above defined α. 2

As an almost immediate consequence of the above corollary, we can now obtain under NA2

the following important property of sequential relative compactness of lower bounded subsets

(see (3.1)) of

X T
t,b := X T

t ∩ L0
t,b .

11



Corollary 4.2 Assume that EF and NA2 hold. Fix t ∈ T and let (ξn)n≥1 be a sequence

in ATt such that (V ξn

T )n≥1 is a sequence in X T
t,b which is t-bounded from below. Then,

(i) (ξnt )n≥1 is P− a.s. bounded in l1.

(ii) There is a sequence (nk)k≥1 in L0(N,Ft) such that (ξnkt )k≥1 converges pointwise P− a.s.

to some ξt ∈ L0(−Kt,Ft).

Proof Let c ∈ L0(R+,Ft) be a lower bound for (V ξn

T )n≥1 so that (V ξn

T , ηn) satisfy (3.1) in

place of (g, η), for all n ≥ 1, where the sequence (ηn)n≥1 in L0(l1+,Ft) satisfies supn≥1 |ηn|l1 ≤
c.

(i). We then have V ξn

T + ηnST/St = (ηn + ξnt )ST/St + (V ξn

T − ξnt ST/St) ∈ KT where V ξn

T −
ξnt ST/St ∈ X T

t+1, recall (2.5). Hence, NA2 implies that ηn+ξnt ∈ Kt. The claim then follows

from Corollary 4.1, l1+ ⊂ Kt and the fact that supn≥1 |ηn|l1 ≤ c, which imply supn≥1 |ξnt |l1 ≤
αc for some α ∈ L0(R+,Ft).
(ii). It follows in particular from the above claim that |(ξnt )i| ≤ αc for all n, i ≥ 1. For i = 1,

we can then construct a Ft-measurable sequence (n1
k)k≥1 ∈ L0(N,Ft) such that ((ξ

n1
k

t )1)k≥1

converges P−a.s. and is also P−a.s. uniformly bounded in l1, see e.g. [13]. Iterating this pro-

cedure on the different components, we obtain after κ steps a sequence (nκk)k≥1 ∈ L0(N,Ft)
such that ((ξ

nκk
t )i)k≥1 converges P − a.s. for all i ≤ κ. It follows that the sequence (ξ

nkk
t )k≥1

converges P − a.s. pointwise to some Ft-measurable random variable ξt with values in RN.

Since |ξnt |l1 is P− a.s. uniformly bounded, ξt ∈ l1 P− a.s. 2

We can now conclude the proof of Theorem 3.1 by appealing to an inductive argument.

Proof of Theorem 3.1. If t = T, the result is an immediate consequence of Corollary

4.2. We now assume that it holds for some 0 < t + 1 ≤ T and show that this implies that

it holds for t as well. Let (gn)n≥1 be a sequence in X T
t which is t-Fatou convergent with

limit g ∈ L0(l1,FT ). Then, by definition, there exist c ∈ L0(l1,Ft) and ηn ∈ L0(l1+,Ft)
such that |ηn|l1 ≤ c and gn + ηnST/St ∈ KT for all n ≥ 1. Let the sequence (ξn)n≥1 in

ATt be such that V n
T = gn for all n ≥ 1, where V n = V ξn . It then follows from Corollary

4.2 that we can find a sequence (nk)k≥1 in L0(N,Ft) such that (ξnkt )k≥1 is P− a.s. bounded

in l1 and converges pointwise P − a.s. to some ξt ∈ L0(−Kt,Ft). Clearly, (ξnk)k≥1 is a

sequence in ATt since (nk)k≥1 is Ft-measurable, and V nk
T = gnk where the later converges

P− a.s. pointwise to g as k →∞. Moreover, gnk − ξ
nk
t ST/St = V nk

T − ξ
nk
t ST/St ∈ X T

t+1 and

(gnk − ξ
nk
t ST/St) + (ηnk + ξnkt )ST/St ∈ L0(KT ,FT ). Since (ηnk + ξnkt )k≥1 is P− a.s. bounded

in l1, and (gnk − ξ
nk
t ST/St)k≥1 converges P− a.s. pointwise to g − ξtST/St ∈ X T

t+1, the fact

that X T
t+1 is (t + 1)-Fatou closed, this implies that g − ξtST/St ∈ X T

t+1 and therefore that

g ∈ X T
t . 2
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4.2 Weak closure property and the dual representation of attain-

able claims

We now turn to the proof of Theorem 3.2 which will allow us to deduce the dual repre-

sentation of Theorem 3.3 by standard separation arguments. It is an easy consequence of

Theorem 3.1 once the suitable spaces have been chosen.

Proof of Theorem 3.2. Fix t ∈ T and set F = L1(c0(1/µ),F), so that F ′ = L∞(l1(µ),F),

where we recall that 1/µ ∈ l1+. Let B1 denote the unit ball in F ′ and define the set

Θ := (StX T
t /ST ) ∩B1.

By Krein-Šmulian’s Theorem, (c.f. Corollary, Ch. IV, Sect. 6.4 of [18]), it suffices to show

that Θ is σ(F ′, F )-closed. To see this, let (hα)α∈I be a net in Θ which converges σ(F ′, F )

to some h ∈ B1. After possibly passing to convex combinations, we can then construct a

sequence (fn)n≥1 in Θ which convergences P− a.s. pointwise to h. In fact, this follows from

Lemma 4.1 below with E = (L1(R,F))N. This implies that the sequence (fnST/St)n≥1 in

X T
t converges to hST/St P − a.s. pointwise. Since fn ∈ B1, we have fn + 1/µ ∈ l1+, and

therefore fnST/St + (1/µ)ST/St ∈ KT P − a.s. This shows that the sequence (fnST/St)n≥1

is t-Fatou convergent with limit hST/St ∈ L0(l1,F). It thus follows from Theorem 3.1 that

hST/St ∈ X T
t and therefore that h ∈ Θ. 2

To complete the proof of Theorem 3.2, we now state the following technical Lemma which

was used in the above arguments.

Lemma 4.1 Let E and F be locally convex TVS, with topological duals E ′ and F ′ and let

T(E) be the topology of E. Suppose F ′ ⊂ E, E ′ ⊂ F and that E is metrizable. If (xα)α∈I

is a net in F ′, with convex hull J and converging in the σ(F ′, F ) topology to x, then there

exists a sequence (yn)n≥1 in J, which is T(E) convergent to x.

Proof: Since F ′ ⊂ E and E ′ ⊂ F, the topology on F ′ induced by σ(E,E ′) is weaker than

the σ(F ′, F ) topology. The net (xα)α∈I then also converges in the σ(E,E ′) topology, so

x ∈ J̄ the σ(E,E ′)-closure of J. Since J̄ is also T(E)-closed (c.f. Corollary 2, Ch II, Sect.

9.2 of [18]) and (E,T(E)) is metrizable, it now follows that there exists a sequence in J

which is T(E)-convergent to x. 2

From now on, we follow the usual ideas based on the Hahn-Banach separation theorem. For

ease of notations, we set X̃ T
0 = (S0X T

0 /ST ) ∩ L∞(l1(µ),F), and let X̃ T
s,0 denote the set of

elements of the form −αeiSi0/Sitχ{Sit≥ε} or α(ej − (1 +λijt )ei)S0/Stχ{Sjt∧Sit≥ε}
for some t ≤ T ,

i, j ≥ 1, ε > 0 and α ∈ L∞(R+,Ft). Note that

X̃ T
s,0 ⊂ X̃ T

0 . (4.1)

Proposition 4.1
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1. Suppose that EF and NA2 hold. Then, for all η ∈ L∞(l1(µ),F) \ X̃ T
0 , there exists

Y ∈ L1(c0(1/µ),F) such that

E [Y ·X] ≤ 0 < E [Y · η] for all X ∈ X̃ T
0 .

2. Suppose that 0 6= Y ∈ L1(c0(1/µ),F) and that for all X ∈ X̃ T
s,0

E [Y ·X] ≤ 0.

Then Zt := E [Y | Ft]S0/St satisfies ZtSt = E [STZT | Ft] and Zt ∈ L0(K ′t,Ft) \ {0}
for all t ∈ T.

Proof In this proof, we use the notations F := L1(c0(1/µ),F) and F ′ := L∞(l1(µ),F).

1. The set X̃ T
0 being convex and σ(F ′, F )-closed, by Theorem 3.2, it follows from the Hahn-

Banach separation theorem that we can find Y ∈ F such that

sup
X∈X̃T0

E [Y ·X] < E [Y · η] .

Since X̃ T
0 is a cone that contains 0, we clearly have

sup
X∈X̃T0

E [Y ·X] = 0 < E [Y · η] . (4.2)

2. First note that E [Y | Ft] ∈ F, so that Z is well-defined as a RN-valued process, and that

(4.2) implies ZT 6= 0 as a random variable. Moreover, the fact that the left-hand side in-

equality of the Proposition holds for −αeiSi0/Sitχ{Sit≥ε} and α(ej−(1+λijt )ei)S0/Stχ{Sjt∧Sit≥ε}
,

for all t ≤ T , i, j ≥ 1, ε > 0 and α ∈ L∞(R+,Ft), implies that Zt := E [Y | Ft]S0/St =

E [STZT | Ft] /St satisfies 0 ≤ Zj
t ≤ Zi

t(1 + λijt ), i, j ≥ 1, for all t ∈ T. Hence, Zt ∈ K ′t by

(2.6). Finally, P [Z = ZT 6= 0] > 0 implies that P [Zt 6= 0] > 0 for t < T . 2

Remark 4.1 Note that the statement of Theorem 3.2 can not be true in general if we

consider the weak topology σ(L∞(l1,F), L1(c0,F)) on (StX T
t /ST ) ∩ L∞(l1, F) instead of

σ(L∞(l1(µ), F), L1(c0(1/µ), F)) on (StX T
t /ST ) ∩ L∞(l1(µ), F) . Indeed, if S0X T

t /ST ∩
L∞(l1, F) was closed in σ(L∞(l1,F), L1(c0,F)), then the same arguments as in the proof

of Proposition 4.1 above would imply the existence of a random variable ZT such that ZT ∈
K ′T \{0} and ZTST/S0 ∈ c0. Recalling (2.6), this would imply that 0 ≤ Zj

T ≤ (1+λijT )Zi
T for

all i, j ≥ 1 and Zi
TS

i
T/S

i
0 → 0 P−a.s. as i→∞. Since Z1

T is not identically equal to 0, this can

not hold, except if SiT/S
i
0 → 0 as i→∞ on a set of non-zero measure, which is in contradic-

tion with (2.1). The closure property stated in terms of σ(L∞(l1(µ),F), L1(c0(1/µ),F)) does

obviously not lead to such a contradiction since (2.3) and (2.1) imply that ZTST/S0 ∈ l∞

so that (Zi
TS

i
T/S

i
0)/µi → 0 P− a.s. as i→∞, whenever 1/µ ∈ l1.
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Corollary 4.3 Suppose that EF and NA2 hold. Then, MT
t (K ′ \ {0}) 6= ∅ for all t ∈ T.

Proof It follows from NA2 that e1 ∈ L∞(l1(µ),F) \ X̃ T
0 . Using Proposition 4.1 and (4.1)

then implies that there exists Y ∈ L1(c0(1/µ),F) such that

E [Y ·X] ≤ 0 < E [Y · e1] for all X ∈ X̃ T
s,0 . (4.3)

Let Y denote the set of random variables Y ∈ L1(c0(1/µ),F) satisfying the left-hand side of

(4.3) for all X ∈ X̃ T
s,0. We claim that there exists Ỹ ∈ Y such that a := supY ∈Y P [Y 1 > 0] =

P
[
Ỹ 1 > 0

]
. To see this, let (Yn)n≥1 be a maximizing sequence. It follows from Proposition

4.1 that E [Yn] ∈ K ′0 and Y i
n ≥ 0 for all i ≥ 1. Moreover, we can assume that P [Y 1

n > 0] > 0.

We can then choose (Yn)n≥1 such that E [Y 1
n ] = 1. Recalling (2.3)-(2.6), this implies that

there exists c > 0 such that 0 ≤ E [Y i
n] ≤ (1 + c)E [Y 1

n ] = (1 + c) for all i ≥ 1. Using

Komlos Lemma, a diagonalization argument and Fatou’s Lemma, we can then assume,

after possibly passing to convex combinations, that (Yn)n≥1 converges P− a.s. pointwise to

some Y ∈ L1(R+,F)N. Set Ỹ :=
∑

n≥1 2−nYn. It follows from the monotone convergence

theorem that it satisfies the left-hand side of (4.3) for all X ∈ X̃ T
s,0. Moreover, P

[
Ỹ 1 > 0

]
≥

P [Y 1
n > 0] → a so that P

[
Ỹ 1 > 0

]
= a. We now show that P

[
Ỹ 1 > 0

]
= 1. If not, there

exists A ∈ F with P [A] > 0 such that Ỹ 1 = 0 on A. Since e1χA ∈ L∞(l1(µ),F) \ X̃ T
0 , by

NA2, it follows from Proposition 4.1 that we can find Y ∈ L1(c0(1/µ),F) such that such

that

E [Y ·X] ≤ 0 < E [Y · e1χA] for all X ∈ X̃ T
0 .

By (4.1), Y + Ỹ ∈ Y and P
[
Y 1 + Ỹ 1 > 0

]
> P

[
Ỹ 1 > 0

]
since E [Y · e1χA] > 0 implies that

P [{Y 1 > 0} ∩ A] > 0, a contradiction. To conclude the proof it suffices to observe that Z

defined by Z̃t := E
[
Ỹ | Ft

]
S0/St satisfies Z̃tSt = E

[
ST Z̃T | Ft

]
and Z̃t ∈ L0(K ′t,Ft) \ {0}

for all t ∈ T, by Proposition 4.1 again. Moreover, (2.6) and P
[
Ỹ 1 > 0

]
= 1 implies that

P
[
Ỹ i > 0

]
= 1 for all i ≥ 1. This shows that Z̃t ∈ L0(K ′t \ {0},Ft) for all t ∈ T. 2

The statement of Theorem 3.3 is then deduced from Proposition 4.1 and the following

standard result.

Lemma 4.2 Fix ξ ∈ ATt and Z ∈MT
t (K ′ \ {0}), for some t ≤ T . If V ξ

T + ηST/St ∈ KT for

some η ∈ L0(l1,Ft), then

Zs ·V ξ
s−1Ss/Ss−1 ≥ Zs ·V ξ

s ≥ E
[
Z(s+1)∧T · V ξ

(s+1)∧T | Fs
]
≥ −Zs ·ηSs/St , for all t ≤ s ≤ T ,

with the convention V ξ
−1/S−1 = 0.

Proof Note that the left-hand side inequality just follows from the fact that ξs ∈ −Ks

while Zs ∈ K ′s, and the definition of V ξ in (2.5). We now prove the two other inequalities.
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For s = T , it follows from the fact that ZT ∈ K ′T and V ξ
T + ηST/St ∈ KT . Assuming that it

holds for t < s + 1 ≤ T , we have Zs+1 · V ξ
s+1 ≥ −Zs+1 · ηSs+1/St. On the other hand, the

already proved above left-hand side inequality implies Zs+1 ·V ξ
s+1 ≤ Zs+1 ·V ξ

s Ss+1/Ss. Since,

E [Zs+1Ss+1 | Fs] = ZsSs by definition ofMT
t (K ′ \ {0}), this shows that the above property

holds for s as well. 2

We now turn to the proof of Theorem 3.3. The basic argument is standard, up to additional

technical difficulties related to our infinite dimensional setting.

Proof of Theorem 3.3. The fact that MT
t (K ′ \ {0}) 6= ∅ for all t ∈ T follows from

Corollary 4.3. We now fix g ∈ L0
t,b. In view of Lemma 4.2, it is clear that

g ∈ X T
t ⇒ E [ZT · g | Ft] ≤ 0 for all Z ∈MT

t (K ′ \ {0}) .

It remains to prove the converse implication. We therefore assume that

E [ZT · g | Ft] ≤ 0 for all Z ∈MT
t (K ′ \ {0}), (4.4)

and show that g ∈ X T
t .

(i) The case where S0g/ST ∈ L∞(l1(µ),F) is handled by very standard arguments based on

Proposition 4.1 and Corollary 4.3. We omit the proof.

(ii) We now turn to the case where g ∈ L0(l1(µ),F) is such that g + ηST/St ∈ KT for some

η ∈ L0(l1+(µ),Ft). We first construct a sequence (gn)n≥1 defined as gn := (g1{|S0g/ST |l1(µ)≤n}−
η(ST/St)1{|S0g/ST |l1(µ)>n})1{|S0η/St|l1(µ)≤n}. Since (4.4) holds, g − gn ∈ KT on {|S0η/St|l1(µ) ≤
n} ∈ Ft and ZT ∈ K ′T for Z ∈MT

t (K ′ \{0}), we have E [ZT · gn | Ft] 1{|S0η/St|l1(µ)≤n} ≤ 0 for

all Z ∈ MT
t (K ′ \ {0}) for all n ≥ 1. Moreover, S0gn/ST ∈ L∞(l1(µ),F) for n ≥ 1. It then

follows from (i) that the sequence (gn)n≥1 belongs to X T
t . Moreover, gn + ηST/St ∈ KT for

all n ≥ 1. Hence, (gn)n≥1 t-Fatou converges to g. Appealing to the t-Fatou closure property

of Theorem 3.1 thus implies that g ∈ X T
t .

(iii) We then consider the case where g ∈ L0
t,b and is such that g− := ((gi)−)i≥1 satisfies−g−+

ηST/St ∈ l1+(µ) for some η ∈ L0(l1+(µ),Ft). We now define the sequence (gn)n≥1 by gin :=

gi1{gi≤n/(2iµi)} for i ≥ 1. It satisfies the requirement of (ii) above and is t-Fatou convergent

to g since gn + ηST/St ≥ −g− + ηST/St ∈ l1+(µ) ⊂ KT . Moreover, E [ZT · gn | Ft] ≤ 0 for

all Z ∈ MT
t (K ′ \ {0}) since gin ≤ gi for all i ≥ 1 and (4.4) holds. By (ii), this implies that

gn ∈ X T
t for all n ≥ 1. Since X T

t is t-Fatou closed, by Theorem 3.1, this implies that g ∈ X T
t .

(iv) We now turn to the case where g ∈ L0(l1,F) and g+ηST/St ∈ l1+ for some η ∈ L0(l1+,Ft).
Let M̄T

t denote the subset of elements Z ∈ MT
t (K ′ \ {0}) such that Z1

t = 1, fix ε > 0, and

note that (4.4) implies that

E [ZT · (g − εe1ST/St) | Ft] ≤ −ε for all Z ∈ M̄T
t , (4.5)
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since Z ∈ M̄T
t implies E [Z1

TS
1
T/S

1
t | Ft] = Z1

t = 1. Let gn be defined by gin := gi1{gi≥0 or i<n},

i ≥ 1. Note that, for all Z ∈ M̄T
t ,

E [ZT · (gn − g) | Ft] ≤ E

[∑
i≥n

Zi
T (gi)− | Ft

]
≤ E

[∑
i≥n

Zi
Tη

iSiT/S
i
t | Ft

]
=
∑
i≥n

ηiZi
t ,

where the second inequality comes from the fact that g+ηST/St ∈ l1+ implies (gi)− ≤ ηiSiT/S
i
t

for all i ≥ 1. Now observe that (2.3) and (2.6) imply that 0 ≤ Zi
t ≤ (1 + ct) for all i ≥ 1 and

Z ∈ M̄T
t , for some ct ∈ L0(R,Ft). It then follows from the above inequalities, (4.5) and the

fact that η ∈ l1 that

lim sup
n→∞

ess sup
Z∈M̄T

t

E [ZT · (gn − εe1ST/St) | Ft] ≤ −ε .

We can then find a sequence (nε)ε>0 in L0(N,Ft) such that nε →∞ P− a.s. as ε→ 0 and

E [ZT · (gnε − εe1ST/St) | Ft] ≤ 0 for all Z ∈ M̄T
t .

Moreover, gnε−εe1ST/St satisfies the conditions of (iii) above with ηnε := (ηi1i≤nε)i≥1 +εe1,

recall (2.1), and therefore belongs to X T
t for all ε > 0. We conclude again by using the fact

that X T
t is t-Fatou closed, by Theorem 3.1, and that gnε + ηST/St ∈ l1+ ⊂ KT for all ε > 0.

2

We conclude this section with the proof of Theorem 3.4.

Proof of Theorem 3.4. We follow the arguments of [6] which we adapt to our context.

Let us first fix an arbitrary g ∈ (ξST/St + X T
t ) ∩KT . In view of Lemma 4.2 applied with

η = ξ, one has −Zt · ξ ≤ E [ZT · g | Ft] ≤ 0 for all Z ∈ MT
t (K ′ \ {0}). It then follows from

B that ξ ∈ Kt.

We now prove the converse assertion. Let us consider ξ ∈ L0(l1,Ft) such that Zt · ξ ≥ 0 for

all Z ∈MT
t (K ′ \{0}). We can then find α ∈ L0(l1+,Ft) such that −ξ+α ∈ l1+. By definition

of MT
t (K ′ \ {0}), we have 0 ≤ Zt · ξ = E [ZT · ξST/St | Ft] for all Z ∈ MT

t (K ′ \ {0}).
Moreover, −ξ + α ∈ l1+ implies −ξST/St + αST/St ∈ l1+, according to (2.1). It then follows

from Theorem 3.3 applied to g = −ξST/St that −ξST/St ∈ X T
t . Hence, 0 ∈ ξST/St + X T

t ,

which by NA2 implies that ξ ∈ Kt. 2

5 On the existence of multiple consistent price systems

We split the proof of Theorem 3.5 in three parts. It follows from ideas introduced in [17]

and [6] which we adapt to our context.

Theorem 5.1 Assume that EF holds. Then, NA2 ⇒ MCPS.
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Proof We divide the proof in several points. In this proof, we use the notations F :=

L1(c0(1/µ),F) and F ′ := L∞(l1(µ),F). From now on, we fix η ∈ L0(intK ′t,F) such that

ηSt ∈ L1(l∞,Ft). We set G′ = R+η, which is the dual cone of G = {y : y ∈ l1, y · x ≥
0 ∀ x ∈ G′}. We also set Θ := (−L0(G,Ft) + X T

t St/ST ) ∩ F ′.
1. We first show that Θ is σ(F ′, F )-closed. Let B1 be the unit ball in F ′. Arguing as in

the proof of Theorem 3.2, it suffices to show that, for any sequence (hn)n≥1 ⊂ Θ ∩ B1 that

converges P−a.s. to some h, we have h ∈ Θ. Let (ζn, Vn)n≥1 ⊂ −L0(G,Ft)×X T
t be such that

ζn+VnSt/ST = hn for all n ≥ 1. Since hn ∈ B1, we have |hin| ≤ 1/µi for all i ≥ 1 and therefore

hn+1/µ ∈ l1+ with 1/µ ∈ l1+. It follows that (ζn+1/µ)ST/St+Vn = hnST/St+(1/µ)ST/St ∈
KT , which, by NA2, implies that ζn + 1/µ ∈ Kt. Since η ∈ L0(intK ′t,Ft), we can find

ε ∈ L0((0, 1),Ft) such that ηn := η − ε(1ζin≥0 − 1ζin<0)i≥1 ∈ K ′t for all n ≥ 1. It follows

that 0 ≤ ηn · (ζn + 1/µ) ≤ −ε|ζn|l1 + η · ζn + (η + ε1) · 1/µ. On the other hand, we have

η ·ζn ≤ 0 by definition of G and G′. This shows that (|ζn|l1)n≥1 is P−a.s. uniformly bounded.

After possibly passing to (Ft-measurable random) subsequences, see the arguments used

in the proof of Corollary 4.2, we can then assume that (ζn)n≥1 converges P − a.s. in the

product topology to some ζ ∈ L0(l1,Ft). Moreover, we can find (αn)n≥1 ⊂ L0(l1+,Ft)
satisfying ess supn |αn|l1 < ∞ and such that −ζn + αn ∈ l1+ for all n ≥ 1. The identity

Vn = hnST/St− ζnST/St then leads to Vn + (1/µ+αn)ST/St ∈ KT since −ζn +αn ∈ l1+ and

hn + 1/µ ∈ l1+. We conclude by appealing to Theorem 3.1.

2. We now show that Θ ∩ L0(RN
+,F) = {0}. Fix (ζ, V ) ∈ (−L0(G,Ft) × X T

t ) such that

ζ+V St/ST ∈ Θ∩L0(RN
+,F). Then ζST/St +V ∈ L0(l1+,F), so that ζ ∈ Kt by NA2. Since

η ∈ intK ′t, this implies that η · ζ > 0 on {ζ 6= 0}. On the other hand, the definition of G

and G′ leads to η · ζ ≤ 0. This shows that ζ = 0. An induction argument, based on NA2

and the fact that Ks ∩ (−Ks) = 0 for all s ∈ T, then implies that V = 0.

3. We can now conclude the proof. By the Hahn-Banach separation theorem, the fact that

Θ is a convex σ(F ′, F )-closed cone, that Θ ∩ L0(RN
+,F) = {0} and a standard exhaustion

argument, we can find Y ∈ F such that E [Y · h] ≤ 0 for all h ∈ Θ, and Y i > 0 for all

i ≥ 1. Defining the process Z by Zs := E [Y St | Fs] /Ss for t ≤ s ≤ T , we obtain Zi > 0

for all i ≥ 1. Using the fact that −L0(G,Ft) ∩ F ′ ⊂ Θ, we also obtain that Zt ∈ G′. From

the fact that X T
t St/ST ∩ F ′ ⊂ Θ, we then deduce, as in the proof of Proposition 4.1, that

Zs ∈ K ′s, for t ≤ s ≤ T . Since Zt ∈ G′, we can find a non-negative Ft-measurable α such

that Zt = αη. Since Zt 6= 0, it follows that α > 0 P − a.s. Thus, (Zs/α)t≤s≤T satisfies the

required result. 2

Lemma 5.1 Assume that EF holds. Then, MCPS ⇔ MSCPS.

Proof As in [6], we use a finite recursion from time T to time 0 to prove that MCPS

⇒ MSCPS. Let MSCPS(t) be the statement in MSCPS for t ≤ T given. Suppose that

18



MCPS is true. Then MSCPS(T ) is trivially satisfied.

We now suppose that MSCPS(s + 1) is true for some 0 ≤ s < T . Then, there ex-

ists an element X̃ ∈ MT
s+1(intK ′). Since X̃s+1Ss+1 ∈ L1(l∞,F), we can define X̃s :=

E
[
X̃s+1Ss+1 | Fs

]
/Ss and Xt := X̃t/(1 + |X̃s|l∞) for s ≤ t ≤ T. Then 0 < |Xs|l∞ < 1

and X restricted to the interval (s, T ] belongs to MT
s+1(intK ′).

Fix η ∈ L0(intK ′s,Fs), let d be its distance to the border of K ′s and set α = (1 ∧ d)/2. It

follows from formula (6.2) of Lemma 6.3 below that α is Fs-measurable. Since |Xs|∞ < 1,

we have

η − αXs ∈ L0(intK ′s,Fs). (5.1)

Let us now choose η such that ηSs ∈ L1(l∞,Fs). Then ηSs − αXsSs ∈ L1(l∞,Fs), and

MCPS implies that there exists Y ∈ MT
s (K ′ \ {0}) such that Ys = η − αXs. In view of

(5.1), Ys ∈ L0(intK ′s,Fs).
For s ≤ t ≤ T, define Zt = Yt + αXt. Then Zs = η ∈ L0(intK ′s,Fs). Since, for s + 1 ≤
t ≤ T, Yt ∈ L0(K ′t \ {0},Ft) and Xt ∈ L0(intK ′t,Ft), and since α > 0, it follows that

Zt ∈ L0(intK ′t,Ft) for such t. Hence Z ∈MT
s (intK ′), so MSCPS(s) is true. 2

Proof of Theorem 3.5. In view of the above results, it remains to show that MCPS ⇒
NA2. Fix ξ ∈ L0(l1,Ft) \ L0(Kt,Ft) such that (ξST/St + X T

t ) ⊂ L0(KT ,FT ). Without

loss of generality, we can assume that ξ ∈ L∞(l1,Ft), since otherwise we could replace ξ by

ξ/|ξ|l1 and use the fact that X T
t /|ξ|l1 = X T

t , recall that K is a cone valued process. It then

follows from Lemma 4.2 that 0 ≥ −Zt ·ξ for all Z ∈MT
t (K ′ \{0}). By definition of MCPS,

this implies that η · ξ ≥ 0 for all η ∈ L∞(intK ′t,Ft). This shows that ξ ∈ Kt P− a.s. 2

6 Elementary properties of K and K ′

For ease of notations, we restrict in this section to the case where λ is deterministic and

constant in time. We therefore omit the time index in λ, K and K ′. We set Λ := (1 + λ).

In this section, by a cone is meant a convex cone C of vertex 0 ∈ C, and (E, ‖ · ‖E) denotes

a Banach space with canonical bilinear form 〈· , ·〉. We recall that a cone C in E, is said to

be normal if there exists k ≥ 1 such that

‖x‖E ≤ k‖x+ y‖E ∀ x, y ∈ C. (6.1)

We start with two easy abstract Lemmas which emphasizes the role plaid by the fact that

the sets Kt(ω) are normal cones with dual cones K ′t(ω) having non-empty interior, under

EF.

The purpose of the first result is also to have an explicit expression of the constant k, used

to establish measurability properties of the random cones Kt and K ′t.
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Lemma 6.1 Let C be a cone in the Banach space E and suppose that the dual cone C ′ has

an interior point f0. Then C is a normal cone and one can choose k = 4||f0||E′/dE′(f0, ∂C
′)

in (6.1).

Proof Let d = dE′(f0, ∂C
′) and let B̄(a, r) denote the closed ball in E ′ of radius r > 0

centered at a. For x ∈ E, we define

p(x) = sup{|〈f , x〉| : f ∈ B̄(f0, d)}.

Substitution of f = f0 + dg, g ∈ B̄(0, 1) into this definition and the fact that d ≤ ||f0||E′
give that p(x) ≤ ||f0||E′||x||E + d||x||E ≤ 2||f0||E′ ||x||E. On the other hand, we have

||x||E = sup{|〈g , x〉| : g ∈ B̄(0, 1)},

which for g = (f − f0)/d ∈ B̄(0, 1) with f ∈ B̄(f0, d) similarly provides

||x||E ≤ sup{1

d
|〈f , x〉|+ 1

d
|〈f0 , x〉| : f ∈ B̄(f0, d)} ≤ 2

d
p(x).

Hence p(·) and || · ||E are equivalent norms: For all x ∈ E

d

2
||x||E ≤ p(x) ≤ 2||f0||E′||x||E.

For x, y ∈ C, it follows directly from the definition of p and the fact that B̄(f0, d) ⊂ C ′ that

p(x+ y) ≥ p(x). Then by the equivalence of the norms, for all x, y ∈ C,

||x||E ≤
2

d
p(x) ≤ 2

d
p(x+ y) ≤ 4

d
||f0||E′||x+ y||E,

which concludes the proof by comparing with (6.1). 2

Lemma 6.2 Let C be a cone in the Banach space E and suppose that f0 is an interior point

of the dual cone C ′. Then, there exists a > 0 such that for all x, y ∈ E

x ∈ (C − y) ∩ (y − C) ⇒ ‖x‖E ≤ a〈f0 , y〉 .

Moreover (since C is a normal cone), for any k ≥ 1 satisfying (6.1) and any b ∈ (0, 1), one

can choose

a = k/(b dE′(f0, ∂C
′)).

Proof One observes that x ∈ (C − y) ∩ (y − C) iff z+ := x+ y ∈ C and z− := y − x ∈ C.
Since C is normal according to Lemma 6.1, it follows that, for ε = ±,

‖zε‖E ≤ k‖z+ + z−‖E = 2k‖y‖E.
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Then

‖x‖E =
1

2
‖z+ − z−‖E ≤

1

2
(‖z+‖E + ‖z−‖E) ≤ 2k‖y‖E.

Since f0 is an interior point of C ′, there exists r > 0, such that f0 − rg ∈ C ′ for all g ∈ E ′

such that ‖g‖E′ ≤ 1. For r > 0 sufficiently small, we thus have

‖y‖E = sup
‖g‖E′≤1

|〈g , y〉| = sup
‖g‖E′≤1

〈g , y〉 = sup
g∈Ay
〈g , y〉 =

1

r
sup
g∈Ay

(〈f0 , y〉+〈rg−f0 , y〉) ≤
1

r
〈f0 , y〉,

where Ay denotes the set of elements g ∈ E ′ satisfying ‖g‖E′ ≤ 1 and 〈g , y〉 ≥ 0, and the

last inequality follows from f0 − rg ∈ C ′ while y ∈ C. This shows that the inequality of the

lemma is satisfied with a = 2k/r. One can choose r = b dE′(f0, ∂C
′)) with b ∈ (0, 1), which

gives the stated choice of a. 2

Lemma 6.3 Assume that there exists some c > 0 such that λii = 0 and 0 ≤ λij ≤ c for all

i 6= j ≥ 1. Then, u is an interior point of K ′ (in l∞) if and only if δu > 0 where

δu := inf
i 6=j

(
uiΛij − uj

)
.

Moreover, suppose that the interior of K ′ is non-empty. Then u ∈ ∂K ′ iff δu = 0, u ∈ l∞\K ′

iff δu < 0 and the distance between a point u ∈ l∞ and the border ∂K ′ is

dl∞(u, ∂K ′) =

∣∣∣∣inf
i 6=j

1

1 + Λij

(
uiΛij − uj

)∣∣∣∣ . (6.2)

Proof By definition, u ∈ intK ′ iff ∃ r > 0 such that u + B̄(0, r) ⊂ K ′, where B̄(0, r)

denotes the closed ball in l∞ centered at 0 and with radius r. Equivalently, z = u+ |u|l∞r′ε
satisfies (2.6) for all ε ∈ B̄(0, 1), where r′ = r/|u|l∞ and u 6= 0. For given i 6= j, choosing

ε = −ei + ej leads to

r′|u|l∞(1 + Λij) ≤ uiΛij − uj. (6.3)

In particular, δu ≥ r′|u|l∞ > 0 if u ∈ intK ′. Conversely, if δu > 0, then we can find r′ > 0

such that (6.3) holds. This implies that

uj + |u|l∞r′ ≤ (ui − |u|l∞r′)Λij, i, j ≥ 1 ,

so that u+ |u|l∞r′ε ∈ K ′ for all ε ∈ B̄(0, 1), i.e. u ∈ intK ′.

In the sequel of the proof, suppose that intK ′ is non-empty. According to (2.6), u ∈ K ′ iff

δu ≥ 0 and we have proved that u ∈ intK ′ iff δu > 0. So it follows that u ∈ l∞ \K ′ iff δu < 0

and that u ∈ ∂K ′ iff δu = 0.

It remains to prove (6.2). Let d denote the right-hand side of (6.2). Suppose first that

δu > 0. For all δ > 0 we can choose i 6= j such that 1
1+Λij

(uiΛij − uj) < d + δ. Then,
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δu+(d+δ)(−ei+ej) < 0, so u + (d + δ)(−ei + ej) /∈ K ′. This shows that dl∞(u, ∂K ′) ≤ d.

Conversely, for all ε ∈ B̄(0, 1) δu+dε ≥ 0, so u + dε ∈ K ′. Hence, d ≤ dl∞(u, ∂K ′) which

proves (6.2), when δu > 0. Proceeding similarly, we obtain for the case δu < 0 that δu+dε ≤ 0

for all ε ∈ B̄(0, 1), and that for all δ > 0 there exists i 6= j such that δu+(d+δ)(ei−ej) > 0. To

conclude the proof we note that (6.2) gives dl∞(u, ∂K ′) = 0, when δu = 0. 2

Proposition 6.1 Assume that there exists some c > 0 such that λii = 0 and 0 ≤ λij ≤ c

for all i 6= j ≥ 1. Then, the following assertions

1. ∃ ε > 0 such that λij ≥ ε ∀ i 6= j,

2. 1 is an interior point of K ′,

3. K is a normal cone,

4. K ′ has the generating property, i.e. l∞ = K ′ −K ′,

5. ∃ ε > 0 such that λij + λji ≥ ε ∀ i 6= j,

satisfy: 1. ⇔ 2. ⇒ 3. ⇔ 4. ⇒ 5.

Proof The equivalence of 1. and 2. is a direct consequence of Lemma 6.3. The equivalence

between 3. and 4. is standard, cf. Chap. V, Sect.3.5 of [18].

In the rest of the proof, we shall use the following notations:

fij := Λijei − ej for i 6= j ≥ 1 , x :=
∑
i 6=j

aijfij and y :=
∑
i 6=j

bijfij

where a, b ∈Mf,+ will be given by the context.

We now prove that 1. implies 3. Since x =
∑

i 6=j(Λ
ijaij−aji)ei and |fij|l1 = Λij + 1, we have∑

i 6=j

(Λij − 1)aij ≤ |x|l1 ≤
∑
i 6=j

(Λij + 1)aij ≤ (2 + c)
∑
i 6=j

aij.

Then, according to the above inequality,

ε
∑
i 6=j

aij ≤ |x|l1 ≤ (2 + c)
∑
i 6=j

aij.

Similarly,

ε
∑
i 6=j

(aij + bij) ≤ |x+ y|l1 .

Combining the above inequalities leads to

|x|l1 ≤ (2 + c)
∑
i 6=j

aij ≤ (2 + c)
∑
i 6=j

(aij + bij) ≤ 2 + c

ε
|x+ y|l1 .
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It then follows that

|x|l1 ≤
2 + c

ε
|x+ y|l1 ,

for all x, y ∈ K, which proves that K is normal.

It remains to prove that 3. implies 5. Let us assume that the condition 3. is satisfied. Let

x and y be defined as above with a, b ∈ Mf,+ such that bij = aji for all i, j ≥ 1, and set

dij := aij + bij = aij + aji, so that dij = dji, and x+ y =
∑

i 6=j d
ij(Λij − 1)ei. Then,

|x+ y|l1 =
∑
i 6=j

dij(Λij − 1) =
1

2

∑
i 6=j

dij(λij + λji) =
∑
i 6=j

aij(λij + λji) .

Since K is normal, there is k ≥ 1, independent on x and y, such that |x|l1 ≤ k|x + y|l1 ,
which, combined with the previous inequality, implies

|x|l1 ≤ k
∑
i 6=j

aij(λij + λji).

Considering the case where x = fmn for some m 6= n, then leads to 2 +λmn ≤ k(λmn+λnm).

It follows that λmn+λnm ≥ 2/k, which, by arbitrariness of (m,n), proves that 5. is satisfied.

2

Remark 6.1 Assertion 5. of Proposition 6.1 does not imply that K is normal (assertion 3),

or equivalently that K ′ has the generating property 4. Since intK ′ 6= ∅ implies that K ′ has

the generating property, this shows that 5. does no imply that intK ′ 6= ∅. An example is

given by the case where λij = 1 for i < j and λij = 0 for i ≥ j.

Indeed, assume that λ satisfies the above condition, let x ∈ l∞ be defined by x = (1, 0, 1, 0, . . .)

and suppose that it can be written as x = y1 − y2, for some y1, y2 ∈ K ′. First note that the

definition of λ implies that

0 ≤ yj ≤ yi ≤ 2yj for j < i whenever y ∈ K ′. (6.4)

In view of the left-hand side of (6.4) and the identity x = y1 − y2, we should then have

y2n−1
1 = a2n−1 + n, y2n

1 = a2n + n, y2n−1
2 = a2n−1 + n− 1 and y2n

2 = a2n + n for n ≥ 1, where

(an)n≥1 is an increasing non-negative sequence. On the other hand, the right-hand side of

(6.4) implies that 0 ≤ yi ≤ 2y1 for i > 1. This leads to a contradiction, therefore showing

x /∈ K ′ −K ′, i.e. that the generating property is not satisfied.
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[17] Rásonyi M. Arbitrage under transaction costs revisited. In Optimality and Risk -

Modern Trends in Mathematical Finance, ed.: F. Delbaen, M. Rásonyi, Ch. Stricker.

Springer, 2009.

[18] Schaefer H.H. Topological Vector Spaces. 2nd ed. Springer, 1999.

[19] Schachermayer W. The Fundamental Theorem of Asset Pricing under Proportional

Transaction Costs in Finite Discrete Time. Mathematical Finance, 14(1), 19-48,

2004.

[20] Taflin, E.: Bond Market Completeness and Attainable Contingent Claims, Fin. Stoch.

9, 429–452 (2005). Preprint

http://arxiv.org/abs/math.OC/0402364

[21] Taflin E. Generalized bond portfolios: Pitfalls and counter examples. To appear in

Annals of Applied Probability, 2009.

[22] Yosida K. Functional Analysis. Grundlehren der mathematischen Wissenschaften,

Band 123, 4th. ed., Spriner-Verlag, 1974.

25


