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Abstract

We provide an obstacle version of the Geometric Dynamic Programming Principle of Soner and

Touzi [23] for stochastic target problems. This opens the doors to a wide range of applications,

particularly in risk control in finance and insurance, in which a controlled stochastic process has to

be maintained in a given set on a time interval [0, T ]. As an example of application, we show how

it can be used to provide a viscosity characterization of the super-heging cost of American options

under portfolio constraints, without appealing to the standard dual formulation from mathematical

finance. In particular, we allow for a degenerate volatility, a case which does not seem to have been

studied so far in this context.
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1 Introduction

A stochastic target problem can be described as follows. Given a set of controls A, a family of d-
dimensional controlled processes Zν0,z with initial condition Zν0,z(0) = z and a Borel subset G of Rd,
find the set V (0) of initial conditions z for Zν0,z such that Zν0,z(T ) ∈ G P−a.s. for some ν ∈ A.
Such a problem appears naturally in mathematical finance. In such applications, Zν0,x,y = (Xν

0,x, Y
ν
0,x,y)

typically takes values in Rd−1 × R, Y ν0,x,y stands for the wealth process, ν corresponds to the financial
strategy, Xν

0,x stands for the price process of some underlying financial assets, and G is the epigraph E(g)
of some Borel map g : Rd−1 → R. In this case, V (0) = {(x, y) ∈ Rd−1 × R : ∃ ν ∈ A s.t. Y ν0,x,y(T ) ≥
g(Xν

0,x(T )) P−a.s.}, which, for fixed values of x, corresponds to the set of initial endowments from
which the European claim of payoff g(Xν

0,x(T )) paid at time T can be super-replicated.
In the mathematical finance literature, this kind of problems has usually been treated via the so-called
dual formulation approach, which allows to reduce this non-standard control problem into a stochastic
control problem in standard form, see e.g. [16] and [18].
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However, such a dual formulation is not always available. This is the case when the dynamics of the
underlying financial assets Xν depends on the control ν in a non-trivial way. This is also the case for
certain kind of models with portfolio constraints, see e.g. [21] for Gamma constraints. Moreover, it
applies only in mathematical finance where the duality between super-hedgeable claims and martingale

measures can be used, see [16]. In particular, it does not apply in most problems coming from the
insurance literature, see e.g. [4] for an example.

In [22] and [23], the authors propose to appeal to a new dynamic programming principle, called geo-

metric, which is directly written on the stochastic target problem:

V (t) = {z ∈ Rd : ∃ ν ∈ A s.t. Zνt,z(θ) ∈ V (θ) P−a.s.} for all θ ∈ T[t,T ] , (1.1)

where V (θ) extends the definition of V (0) to the non trivial time origin θ and T[t,T ] denotes the set of
stopping times taking values in [t, T ].

Since then, this principle has been widely used in finance and insurance to provide PDE characterizations
to super-hedging type problems, see also [24] for an application to mean curvature flows. Recent results
of [7] also allowed to extend this approach to the case where the condition P

[
Zν0,z(T ) ∈ G

]
= 1 is

replaced by the weaker one P
[
Zν0,z(T ) ∈ G

]
≥ p, for some fixed p ∈ [0, 1]. Similar technologies are used

in [6] to study optimal control problems under stochastic target or moment constraints.

Surprisingly, it seems that no obstacle version of this geometric dynamic programming principle has
been studied so far. By obstacle version, we mean the following problem: find the set V (0) of initial
conditions z for Zν0,z such that Zν0,z(t) ∈ G(t) ∀ t ∈ [0, T ] P−a.s. for some ν ∈ A. Here, t 7→ G(t) is now
a set valued map, “obstacle”, taking values in the collection of Borel subsets of Rd.
The main aim of this paper is to extend the geometric dynamic programming principle to this setting.
We shall show in Section 2 that the counterpart of (1.1) for obstacle target problems is given by:

V (t) = {z ∈ Rd : ∃ ν ∈ A s.t Zνt,z(τ ∧ θ) ∈ G
τ,θ⊕

V P− a.s ∀ τ ∈ T[t,T ]} for all θ ∈ T[t,T ] , (1.2)

where

G

τ,θ⊕
V := G(τ) 1τ≤θ + V (θ) 1τ>θ .

In Section 3, we provide an example of application in mathematical finance. Namely, we study the
problem of super-hedging an American option under portfolio constraints. The problem of super-
hedging financial options under constraints has been widely studied since the seminal works of Cvitanic̀
and Karatzas [11] and Broadie et al. [9]. From a practical point of view, it is motivated by two
important considerations: 1. constraints may be imposed by a regulator, 2. imposing constraints avoids
the well-know phenomenon of explosion of the hedging strategy near the maturity when the payoff is
discontinuous, see e.g. [20].
Recently, this problem has been further studied by [5] who considered the problem of super-hedging
under constraints for barrier type options in a general Markovian setting, thus extending previous results
of [20]. A similar analysis has been carried out by [14] for American options and by [15] for perpetual
American barrier options both within a Black and Scholes type financial model.
Our analysis can be compared to [25] who considered European type options, and the proofs are actually
very close once the dynamic programming (1.1) is replaced by (1.2). The main difference here comes
from the fact that we do not impose that the volatility matrix is invertible, an assumption which was
also crucial in [5], [9], [11], [14], [15] and [25]. This introduces new technical difficulties which we tackle
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in this particular context but could be transported without major difficulties to the cases discussed in
the above quoted papers.
In order to separate the difficulties, we shall restrict to the case where the controls take values in a
given convex compact set. The case of unbounded control sets can be handled by using the technology
developed in [7].

We conclude this introduction with some notations that will be used all over this paper.

Notations. From now on, we let (Ω,F ,P) be a probability space endowed with a filtration F := (Ft)t≤T
for some fixed time horizon T > 0. It is assumed to satisfy the usual assumptions.
Given 0 ≤ s ≤ t ≤ T , we denote by T[s,t] the set of [s, t]-valued stopping times. We simply write T
for T[0,T ]. For any θ ∈ T , we let Lpd(θ) be the set of all p-integrable Rd-valued random variables which
are measurable with respect to Fθ. For ease of notations, we set Lpd := Lpd(T ). We denote by S the
set of (θ, ξ) ∈ T × L2

d such that ξ ∈ L2
d(θ). Observe that S := [0, T ] × Rd ⊂ S. We denote by H0

d

the set of all Rd-valued cad-lag progressively measurable processes. Inequalities or inclusion between
random variables or random sets have to be taken P−a.s. In case of processes, they should be considered
Leb×P-a.e., where Leb is the Lebesgue measure on [0, T ]. Any element x of Rd is identified to a column
vector whose i-th component is denoted by xi and Euclidean norm is |x|, diag [x] is the diagonal matrix
whose i-th diagonal element is xi. Transposition is denoted by ′. Given x, ρ ∈ Rd we set xρ := (xiρi)i≤d,
eρ := (eρ

i

)i≤d and xρ :=
∏d
i=1(xi)ρ

i

, whenever the operations are well defined. We denote by Br(x)
the open ball of radius r > 0 and center x. For a set A ⊂ Rd, we note int(A) its interior and ∂A its
boundary. Given a smooth map ϕ on [0, T ]×Rd, we denote by ∂tϕ its partial derivatives with respect to
its first variable, and by Dϕ and D2ϕ is partial gradient and Hessian matrix with respect to its second
variable. For a locally bounded map v on [0, T ]× (0,∞)d, we set

v∗(t, x) := lim inf
(s, z) → (t, x)

(s, z) ∈ [0, T ) × (0,∞)d

v(s, z) and v∗(t, x) := lim sup
(s, z) → (t, x)

(s, z) ∈ [0, T ) × (0,∞)d

v(s, z)

for (t, x) ∈ [0, T ]× (0,∞)d.

2 The obstacle geometric dynamic programming principle

The obstacle stochastic problem consists in describing the set of initial conditions on Zν such that
Zν(τ) ∈ G(τ) for all stopping time τ ≤ T :

V (t) := {z ∈ Rd : ∃ ν ∈ A s.t Zνt,z(τ) ∈ G(τ) for all τ ∈ T[t,T ]} , t ≤ T .

Before to state our main result, we now make precise the definitions of the involved quantities. We also
recall the natural assumptions that were used in [23] and introduce a new assumption which will allow
us to extend their result to our framework: the right-continuity assumption on the target G.

2.1 Standing Assumptions

We start with a regularity assumption on the map G which is specific to our obstacle stochastic target
problem.

On the target. The map G is a measurable set-valued map from [0, T ] to the set BRd of Borel sets of
Rd. It is assumed to be right-continuous in the following sense:
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G. Right-continuity of the target. For all sequence (tn, zn)n of [0, T ]×Rd such that (tn, zn)→ (t, z), we
have

tn ≥ tn+1 and zn ∈ G(tn) ∀ n ≥ 1 =⇒ z ∈ G(t) .

We now turn to assumptions that are similar to the one introduced in [23]. Note however that our
formulation of the assumption Z2 below is slightly different from the corresponding one in [23]. The
reason for this is that the assumption made in [23] is in general not satisfied when the controls are not
of Markovian type. We propose here a weaker version which allows to consider a larger class of control
processes. It is the analog of Assumption A4-a introduced in the context of optimal control problems
in standard form in [8].

On the set admissible controls. Given a Borel subset U of an Euclidean space, we denote by U the
set of all progressively measurable processes ν : [0, T ]× Ω→ U .
The set of admissible controls A is defined as a given Borel subset of U which satisfies the following two
conditions:
A1. Stability under concatenation at stopping times: For all ν1, ν2 ∈ A and θ ∈ T ,

ν11[0,θ) + ν21[θ,T ] ∈ A.

A2. Stability under measurable selection: For any θ ∈ T and any measurable map φ : (Ω,F(θ)) →
(A,BA), there exists ν ∈ A such that

ν = φ on [θ, T ]× Ω, Leb× P− a.e.,

where BA is the set of all Borel subsets of A.

Remark 2.1 The previous assumptions are natural in optimal control, see e.g. [17], and already appear
in Soner and Touzi [23]. The assumption A2 holds whenever A is a separable metric space, see Lemma
2.1 in [23].

On the state process. The controlled state process is a map from S ×A into a subset Z of H0
d

(θ, ξ, ν) ∈ S ×A 7→ Zνθ,ξ ∈ Z .

The state process is assumed to satisfy the following conditions, for all (θ, ξ) ∈ S and ν ∈ A:
Z1. Initial condition: Zνθ,ξ = 0 on [0, θ) and Zνθ,ξ(θ) = ξ.
Z2. Consistency with deterministic initial data: Fix a bounded Borel function f . Then, for P−a.s.
every ω ∈ Ω, there exists ν̃ω ∈ A such that

E
[
f(s ∨ θ, Zνθ,ξ(s ∨ θ)) | Fθ

]
(ω) = E

[
f(s ∨ θ(ω), Z ν̃ωθ(ω),ξ(ω)(s ∨ θ(ω)))

]
for all s ∈ [0, T ] .

Z3. Flow property: For τ ∈ T such that θ ≤ τ P-a.s.:

Zνθ,ξ = Zντ,µ on [τ, T ] , where µ := Zνθ,ξ(τ).

Z4. Causality: Let τ be defined as in Z3 and fix ν1, ν2 ∈ A. If ν1 = ν2 on [θ, τ ], then

Zν1θ,ξ = Zν2θ,ξ on [θ, τ ] .

Z5. Measurability: For any u ≤ T , the map

(t, z, ν) ∈ S ×A 7→ Zνt,z(u)

is Borel measurable.
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Remark 2.2 It follows from the regularity assumption G and the right-continuity of the paths of Zνt,z
that V can be alternatively described as:

V (t) = {z ∈ Rd : ∃ ν ∈ A s.t Zνt,z(s) ∈ G(s) for all s ∈ [t, T ] P−a.s.} , t ≤ T .

2.2 The Obstacle Geometric Dynamic Programming Principle

We can now state the main result of this section which extends Theorem 3.1. in Soner and Touzi [23].

Theorem 2.1 Suppose that the assumptions Z1− Z5, A1−A2 and G are satisfied. Fix t ≤ T and
θ ∈ T[t,T ]. Then

V (t) = {z ∈ Rd : ∃ ν ∈ A s.t. Zνt,z(τ ∧ θ) ∈ G
τ,θ⊕

V ∀ τ ∈ T[t,T ]} ,

where

G

τ,θ⊕
V := G(τ) 1τ≤θ + V (θ) 1τ>θ .

The above result states that not only Zνt,z(τ) ∈ G(τ) for all τ ∈ T[t,T ] but also that Zνt,z(θ) should belong
to V (θ), the set of initial data ξ such that G(θ, ξ) 6= ∅, where

G(t, z) := {ν ∈ A : Zνt,z(τ) ∈ G(τ) for all τ ∈ T[t,T ]} , (t, z) ∈ S .

To conclude this section, let us discuss some particular cases. In the discussions below, we assume that
the conditions of Theorem 2.1 hold.

Example 2.1 (One sided constraint) Let Zνt,x,y be of the form (Xν
t,x,y, Y

ν
t,x,y) where Xν

t,x,y takes
values in Rd−1 and Y νt,x,y takes values in R. Assume further that:

• G(t) := {(x, y) ∈ Rd−1 ×R : y ≥ g(t, x)), for some Borel measurable map g : [0, T ]×Rd−1 7→ R.

• The sets Γ(t, x) := {y ∈ R : (x, y) ∈ V (t)} are half spaces, i.e.: y1 ≥ y2 and y2 ∈ Γ(t, x)⇒ y1 ∈
Γ(t, x), for any (t, x) ∈ [0, T ]× Rd−1.

Note that the last condition is satisfied if Xν does not depend on the initial condition y and when
y 7→ Y νt,x,y is non-decreasing.

In this case, the associated value function

v(t, x) := inf Γ(t, x) , (t, x) ∈ [0, T ]× Rd−1

completely characterizes the (interior of the) set V (t) and a version of Theorem 2.1 can be stated in
terms of the value function v:

(DP1) If y > v(t, x), then there exists ν ∈ A such that

Y νt,x,y(θ) ≥ v(θ,Xν
t,x,y(θ)) for all θ ∈ T[t,T ] .

(DP2) If y < v(t, x), then ∃ τ ∈ T[t,T ] such that

P
[
Y νt,x,y(θ ∧ τ) > v(θ,Xν

t,x,y(θ))1θ<τ + g(τ,Xν
t,x,y(τ))1θ≥τ

]
< 1

for all θ ∈ T[t,T ] and ν ∈ A.

Note that, by definition of v we have v ≥ g, which explains why the constraints Y νt,x,y(τ) ≥ g(τ,Xν
t,x,y(τ))

needs not to appear in (DP1).
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Example 2.2 (Two sided constraint) Let Zνt,x,y be as in Example 2.1. Assume that G satisfies:

• G(t) := {(x, y) ∈ Rd−1 × R : g(t, x) ≤ y ≤ ḡ(t, x))}, for some Borel measurable maps g, ḡ :
[0, T ]× Rd−1 7→ R satisfying g ≤ ḡ on [0, T ]× Rd−1.

• The sets Γ(t, x) := {y ∈ R : (x, y) ∈ V (t)} are convex, i.e.: λ ∈ [0, 1] and y1, y2 ∈ Γ(t, x) ⇒
λy1 + (1− λ)y2 ∈ Γ(t, x), for any (t, x) ∈ [0, T ]× Rd−1.

In this case, the associated value functions

v(t, x) := inf Γ(t, x) and v̄(t, x) := sup Γ(t, x) , (t, x) ∈ [0, T ]× Rd−1

completely characterize the (interior of the) set V (t) and a version of Theorem 2.1 can be stated in
terms of these value functions:

(DP1) If y ∈ (v(t, x), v̄(t, x)), then there exists ν ∈ A such that

v(θ,Xν
t,x,y(θ)) ≤ Y νt,x,y(θ) ≤ v̄(θ,Xν

t,x,y(θ)) for all θ ∈ T[t,T ] .

(DP2) If y /∈ [v(t, x), v̄(t, x)], then ∃ τ ∈ T[t,T ] such that

P
[
Y νt,x,y(θ ∧ τ) ∈ (v, v̄) (θ,Xν

t,x,y(θ))1θ<τ +
(
g, ḡ
)

(τ,Xν
t,x,y(τ))1θ≥τ

]
< 1 ,

for all θ ∈ T[t,T ] and ν ∈ A.

2.3 Proof of Theorem 2.1

The proof follows from similar arguments as the ones used in Soner and Touzi [23], which we adapt to
our context.

Given t ∈ [0, T ], we have to show that V (t) = V̄ (t) where

V̄ (t) := {z ∈ Rd : ∃ν ∈ A s.t Zνt,z(τ ∧ θ) ∈ G
τ,θ⊕

V for all τ ∈ T[t,T ]} ,

for some θ ∈ T[t,T ].

We split the proof in several Lemmas. From now on, we assume that the conditions of Theorem 2.1
hold.

Lemma 2.1 V (t) ⊂ V̄ (t).

Proof. Fix z ∈ V (t) and ν ∈ G(t, z), i.e. such that Zνt,z(τ) ∈ G(τ) for all τ ∈ T[t,T ]. In view of Z3, we
have Zνθ,ξ(ϑ ∨ θ) ∈ G(ϑ ∨ θ) for all ϑ ∈ T[t,T ], where ξ := Zνt,z(θ). Since Zνθ,ξ is right-continuous and G

satisfies the right-continuity property G, it follows that Zνθ,ξ(s ∨ θ) ∈ G(s ∨ θ) for all s ∈ [t, T ] P−a.s.
Hence,

1 = P
[
Zνθ,ξ(s ∨ θ) ∈ G(s ∨ θ) | Fθ

]
for all s ∈ [t, T ] .

We now apply Z2 to deduce that, for P-almost every ω ∈ Ω, there exists ν̃ω ∈ A such that

1 = P
[
Z ν̃ωθ(ω),ξ(ω)(s ∨ θ(ω)) ∈ G(s ∨ θ(ω))

]
for all s ∈ [t, T ] .

Using the right-continuity of Z ν̃ωθ(ω),ξ(ω) and G again, we then deduce that, for P-almost every ω ∈ Ω,
Z ν̃ωθ(ω),ξ(ω)(s ∨ θ(ω))(ω̃) ∈ G(s ∨ θ(ω)) for all s ∈ [θ(ω), T ] for P-almost every ω̃ ∈ Ω. Recalling Remark
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2.2, this shows that ξ = Zνt,z(θ) ∈ V (θ) P−a.s. Since we already know that Zνt,z(τ) ∈ G(τ) for all
τ ∈ T[t,T ], this shows that z ∈ V̄ (t). 2

It remains to prove the opposite inclusion.

Lemma 2.2 V̄ (t) ⊂ V (t).

Proof. We now fix z ∈ V̄ (t) and ν ∈ A such that

Zνt,z(θ ∧ τ) ∈ G
τ,θ⊕

V P− a.s for all τ ∈ T[t,T ] . (2.1)

1. We first work on the event set {θ < τ}. On this set, we have Zνt,z(θ) ∈ V (θ) and therefore

(θ, Zνt,z(θ)) ∈ D := {(t, z) ∈ S : z ∈ V (t)}.

Let BD denote the collection of Borel subsets of D. Applying Lemma 2.3 below to the measure induced
by (θ, Zνt,z(θ)) on S, we can construct a measurable map φ : (D,BD)→ (A,BA) such that

Z
φ(θ,Zνt,z(θ))

θ,Zνt,z(θ) (ϑ) ∈ G(ϑ) for all ϑ ∈ T[θ,T ] ,

i.e.
φ(θ, Zνt,z(θ)) ∈ G(θ, Zνt,z(θ)) .

In view of A2, we can then find ν1 ∈ A such that ν1 = φ(θ, Zνt,z(θ)) on [θ, T ] Leb×P-a.e. It then follows
from A1 that

ν̂ := ν1[0,θ) + ν11[θ,T ] ∈ A .

Moreover, according to Z3 and Z4, we have

Z ν̂t,z(τ) = Z
φ(θ,Zνt,z(θ))

θ,Zνt,z(θ) (τ) ∈ G(τ) on {θ < τ} .

2. Let ν̂ be defined as above and note that, by (2.1), we also have

Z ν̂t,z(τ) = Zνt,z(τ) ∈ G
τ,θ⊕

V = G(τ) on {τ ≤ θ} .

3. Combining the two above steps shows that ν̂ ∈ G(t, z) and therefore z ∈ V (t). 2

It remains to prove the following result which was used in the previous proof.

Lemma 2.3 For any probability measure µ on S, there exists a Borel measurable function φ : (D,BD)→
(A,BA) such that

ϕ(t, z) ∈ G(t, z) for µ− a.e. (t, z) ∈ D .

Proof. Set B := {(t, z, ν) ∈ S ×A : ν ∈ G(t, z)}. It follows from Z5 that the map (t, s, ν) ∈ S ×A →
Zνt,z(r) is Borel measurable, for any r ≤ T . Then, for any bounded continuous function f , the map
ψrf : (t, s, ν) ∈ S × A → E[f(Zνt,z(r))] is Borel measurable. Since G(r) is a Borel set, the map 1G(r) is
the limit of a sequence of bounded continuous functions (fn)n≥1. Therefore, ψr1G(r)

= limn→∞ ψrfn is a
Borel function. This implies that Br is a Borel set, where, for θ ∈ T[t,T ],

Bθ := {(t, s, ν) ∈ S ×A : ψθ1G(t, z, ν) ≥ 1} = {(t, s, ν) ∈ S ×A : Zνt,z(θ) ∈ G(θ)} .

Since B =
⋂
θ∈T[t,T ]

Bθ, appealing to the right-continuous assumption G and the right-continuity of
Zνt,z, we deduce that B =

⋂
r≤T, r∈Q B

r. This shows that B is a Borel set and therefore an analytic
subset of S ×A, see [3].
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Applying the Jankov-von Neumann Theorem (see [3] Proposition 7.49), we then deduce that there exists
an analytically measurable function φ : D → A such that

ϕ(t, z) ∈ G(t, z) for all (t, z) ∈ D .

Since an analytically measurable map is also universally measurable, the required result follows from
Lemma 7.27 in [3]. 2

3 Application to American option pricing under constraints

In this section, we explain how the obstacle geometric dynamic programming principle of Theorem 2.1
can be used to relate the super-hedging cost of an American option to a suitable class of PDEs, in a
Markovian setting.

More precisely, we shall consider a Brownian diffusion type financial market with portfolio strategies
constrained to take values in a convex compact set. We note that the case of an unbounded set of
controls can also be handled by following the ideas introduced in [7]. Similarly, jumps could be added
to the dynamics without major difficulties, see [4].

On the other hand, we shall allow for a possibly degenerate diffusion coefficient, a case which has not
been studied so far in this literature. We therefore take this opportunity to explain how it can be
treated, which is of own interest and could be transposed to other hedging problems under constraints,
e.g. for plain vanilla European options or for barrier options.

3.1 The financial model

From now on, we assume that the filtration F := (Ft)t≤T is generated by a standard d-dimensional
Brownian motion W .

We consider a Markovian model of financial market composed of a non-risky asset, which price process
is normalized to unity, and d risky assets X = (X1, ..., Xd) whose dynamics are given by the stochastic
differential equation

dX(s) = diag [X(s)]µ(X(s))ds+ diag [X(s)]σ(X(s))dWs . (3.1)

Here µ : Rd → Rd and σ : Rd → Md, the set of d × d-matrices. Time could be introduced in the
coefficients without difficulties, under some additional regularity assumptions. We deliberately choose
a time homogeneous dynamics to alleviate the notations.

Given x ∈ (0,∞)d, we denote by Xt,x the solution of the above equation on [t, T ] satisfying Xt,x(t) = x.
In order to garantee the existence and uniqueness of a strong solution to (3.1), we assume that

(µ, σ) is bounded and x ∈ Rd+ 7→ (diag [x]σ(x),diag [x]µ(x)) is Lipschitz continuous. (3.2)

Importantly, we do not assume that σ is uniformly elliptic nor invertible, as in e.g. [2], [5] or [25].

A financial strategy is described by a d-dimensional predictable process π = (π1, ..., πd). Each compo-
nent stands for the proportion of the wealth invested in the corresponding risky asset. In this paper,
we restrict to the case where the portfolio strategies are constrained to take values in a given compact
convex set K ⊂ Rd:

π ∈ K Leb× dP− a.e , with 0 ∈ K ⊂ Rd, convex and compact.
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We denote by A the set of such strategies.

To an initial capital y ∈ R+ and a financial strategy π, we associate the induced wealth process Y πt,x,y
defined as the solution on [t, T ] of

dY (s) = Y (s)π′sdiag [Xt,x(s)]−1
dXt,x(s) = Y (s)π′sµ(Xt,x(s))ds+ Y (s)π′sσ(Xt,x(s))dWs , (3.3)

with Y (t) = y.

3.2 The super-hedging problem and the dynamic programming principle

The option is described by a locally bounded map g defined on [0, T ]× Rd+ and satisfying

g ≥ 0 and g is continuous on [0, T ]× (0,∞)d . (3.4)

The buyer receives the payoff g (τ,Xt,x(τ)) when he/she exercises the option at time τ ≤ T .

The super-hedging cost is thus defined as

v(t, x) := inf
{
y ∈ R+ : ∃ π ∈ A s.t Y πt,x,y(τ) ≥ g(τ,Xt,x(τ)) ∀ τ ∈ T[t,T ]

}
. (3.5)

Remark 3.1 Note that v(t, x) coincides with the lower bound of the set {y ∈ R+ : (x, y) ∈ V (t)}
where

V (t) := {(x, y) ∈ (0,∞)d × R+ : ∃ π ∈ A s.t. Zπt,x,y(τ) ∈ G(τ) ∀ τ ∈ T[t,T ]},

with Zπt,x,y and G defined as

Zπt,x,y := (Xt,x, Y
π
t,x,y) and G(t) := {(x, y) ∈ Rd+ × R+ : y ≥ g(t, x)} .

Also notice that A satisfies the condition A1 of Section 2.1. Since A is a separable metric space, see
e.g. Section 2.5 in [23], it also satisfies A2, see Remark 2.1 of Section 2.1. The assumptions Z1 and
Z3− Z5 trivially hold for Zπt,x,y. Moreover, the continuity assumption (3.4) implies that G(t) satisfies
the right-continuity condition G of Section 2.1. To see that Z2 also holds, we now view (Ω,F ,F,P)
as the d-dimensional canonical filtered space equipped with the Wiener measure. We denote by ω or
ω̃ a generic point. The Brownian motion is thus defined as W (ω) = (ωt)t≥0. For ω ∈ Ω and r ≥ 0,
we denote ωr := ω.∧r and Tr(ω) := ω.+r − ωr. For (θ, ξ) ∈ S, π ∈ A, s ∈ [0, T ] and a bounded Borel
function, we have:

E
[
f(s ∨ θ, Zπθ,ξ(s ∨ θ)) | Fθ

]
(ω) =

∫
f

(
s ∨ θ(ω), Zπ(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),ξ(ω) (s ∨ θ(ω))(ω̃)
)
dP(ω̃) .

= E
[
f
(
s ∨ θ(ω), Z π̃ωθ(ω),ξ(ω)(s ∨ θ(ω))

)]
where, for fixed ω ∈ Ω, π̃ω : ω̃ ∈ Ω 7→ π(ωθ(ω) + Tθ(ω)(ω̃)) can be identified to an element of A.

It follows from the above Remark that the obstacle geometric dynamic programming principle of The-
orem 2.1 applies to v, compare with Example 2.1.

Corollary 3.1 Fix (t, x, y) ∈ [0, T ]× (0,∞)d × R+.
(DP1). If y > v(t, x), then there exists π ∈ A such that

Y πt,x,y(θ) ≥ v(θ,Xt,x(θ)) for all θ ∈ T[t,T ] .

(DP2) If y < v(t, x), then ∃ τ ∈ T[t,T ] such that

P
[
Y πt,x,y(θ ∧ τ) > v(θ,Xt,x,y(θ))1θ<τ + g(τ,Xt,x,y(τ))1θ≥τ

]
< 1

for all θ ∈ T[t,T ] and π ∈ A.
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3.3 PDE characterization of the super-replication cost

In this section, we show how the dynamic programming principle of Corollary 3.1 allows to provide a
PDE characterization of the super-hedging cost v. We start with a formal argument.

The first claim (DP1) of the geometric dynamic programming principle can be formally interpreted as
follow. Set y := v(t, x) and assume that v is smooth. Assuming that (DP1) of Corollary 3.1 holds
for y = v(t, x), we must then have, at least at a formal level, dY πt,x,y(t) ≥ dv(t,Xt,x(t)), which can be
achieved only if π′tµ(x)v(t, x)− Lv(t, x) ≥ 0 and v(t, x)π′σ(x) = (Dv)′(t, x)diag [x]σ(x), where

Lv(t, x) := ∂tv(t, x) + (Dv)′(t, x)diag [x]µ(x) +
1
2

Trace
[
diag [x]σ(x)σ′(x)diag [x]D2v(t, x)

]
.

Moreover, we have by definition v ≥ g on [0, T )× (0,∞)d. Thus, v should be a supersolution of:

Hϕ(t, x) := min{ sup
π∈Nϕ(t,x)

(π′µ(x)ϕ(t, x)− Lϕ(t, x)) , ϕ− g} = 0 , (3.6)

where, for a smooth function ϕ, we set Nϕ(t, x) := N(x, ϕ(t, x), Dϕ(t, x)) with

N(x, y, p) := {π ∈ K : yπ′σ(x) = p′ diag [x]σ(x)} , for (x, y, p) ∈ (0,∞)d × R+ × Rd ,

and we use the usual convention sup ∅ = −∞.
Note that the supersolution property implies that N v 6= ∅, in the viscosity sense. We shall show in
Lemma 3.2 below that, for (x, y, p) ∈ (0,∞)d × R+ × Rd,

N(x, y, p) 6= ∅ ⇐⇒ M(x, y, p) ≥ 0 , (3.7)

where
M(x, y, p) := inf

ρ∈K̃x
{δx(ρ)y − ρ′diag [x] p}

with

δx(ρ) := sup {π̃′ρ, π̃ ∈ Kx} , Kx :=
{
π̃ ∈ Rd : π̃′σ(x) = π′σ(x) for some π ∈ K

}
,

and
K̃x :=

{
ρ ∈ Rd : |ρ| = 1 and δx(ρ) <∞

}
.

Hence, v should be a supersolution of

min{Hϕ , Mϕ} = 0 , (3.8)

where Mϕ(t, x) := M(x, ϕ(t, x), Dϕ(t, x)), the possible identity M(x, v(t, x), Dv(t, x)) = 0 which is
equivalent to v(t, x)−1diag [x]Dv(t, x) ∈ ∂Kx, see [19], reflecting the fact that the constraint is binding.

Remark 3.2 Note that

K = Kx and δx(ρ) = δ(ρ) where δ(ρ) := sup {π′ρ : π ∈ K} , when σ(x) is invertible. (3.9)

Since Nϕ(t, x) is a singleton, when σ is invertible, we then retrieve a formulation similar to [5] and [22].

Moreover, the minimality condition in the definition of v should imply that v actually solves (in some
sense) the partial differential equation (3.8), with the usual convention sup ∅ = −∞.

We shall first prove that v is actually a viscosity solution of (3.8) in the sense of discontinuous viscosity
solutions. In order to prove the subsolution property, we shall appeal to the additional regularity
assumption:
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Assumption 3.1 Fix (x0, y0, p0) ∈ (0,∞)d × (0,∞) × Rd such that y−1
0 diag [x0] p0 ∈ int(Kx0). Set

π0 ∈ N(x0, y0, p0). Then, for all ε > 0, there exists an open neighborhood B̄ of (x0, y0, p0) and a locally
Lipschitz map π̂ such that

|π̂(x0, y0, p0)− π0| ≤ ε

and
π̂(x, y, p) ∈ N(x, y, p) on B̄ ∩

(
(0,∞)d × (0,∞)× Rd

)
.

Remark 3.3 In the case where σ is invertible, it corresponds to Assumption 2.1 in [7].

Theorem 3.1 Assume that v is locally bounded. Then, v∗ is a viscosity supersolution of (3.8) on
[0, T ) × (0,∞)d. If moreover Assumption 3.1 holds, then v∗ is a viscosity subsolution of (3.8) on
[0, T )× (0,∞)d.

Not surprisingly, the constraint Mv ≥ 0 should propagate to the boundary point t = T which implies
that the boundary condition should be written in terms of the solution of the partial differential equation

min {φ(x)− g(T, x) , Mφ(x)} = 0 . (3.10)

Theorem 3.2 Assume that v is locally bounded. Then, v∗(T, ·) is a viscosity supersolution on (0,∞)d

of (3.10). Assume further that Assumption 3.1 holds, then v∗(T, ·) is a viscosity subsolution on (0,∞)d

of (3.10).

We conclude by establishing a comparison result for (3.8)-(3.10) which implies that v is continuous on
[0, T ) × (0,∞)d, with a continuous extension to [0, T ] × (0,∞)d, and is the unique viscosity solution
(3.8)-(3.10) in a suitable class of functions. To this purpose, we shall need the following additional
assumptions:

Assumption 3.2 There exists γ̄ ∈ K ∩ [0,∞)d, λ > 1 and C, cK > 0 such that:
(i) λγ̄ ∈ Kx for all x ∈ (0,∞)d,
(ii) |g(t, x)| ≤ C (1 + xγ̄) for all (t, x) ∈ [0, T ]× (0,∞)d,
(iii) δx(ρ) ≥ cK for all x ∈ (0,∞)d and ρ ∈ K̃x,
(iv) for all x, y ∈ (0,∞)d and ρ ∈ K̃x, we can find ρ̃ ∈ K̃y satisfying |ρ−ρ̃| ≤ C|x−y| and δy(ρ̃)−δx(ρ) ≤
ε(x, y), where ε is a continuous map satisfying ε(z, z) = 0 for all z ∈ (0,∞)d.
Moreover,
(v) Either
(v.a.) There exists L > 0 such that, for all (x, x̄, y, ȳ, p, p̄) ∈ (0,∞)2d × R2

+ × R2d: π ∈ N(x, y, p) 6= ∅,
N(x̄, ȳ, p̄) 6= ∅ and |x− x̄| ≤ L−1 =⇒ ∃ π̄ ∈ N(x̄, ȳ, p̄) s.t.

|yπ′µ(x)− ȳπ̄′µ(x̄)| ≤ L|p′diag [x]µ(x)− p̄′diag [x̄]µ(x̄)| .

or
(v.b.) For all p, q ∈ Rd and x ∈ (0,∞)d: p′σ(x) = q′σ(x) =⇒ p′µ(x) = q′µ(x).

Theorem 3.3 Let Assumptions 3.1 and 3.2 hold. Then, v∗ = v∗ is continuous on [0, T ] × (0,∞)d

and is the unique viscosity solution of (3.8)-(3.10) in the class of non-negative functions satisfying the
growth condition (ii) of Assumption 3.2.
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Remark 3.4 1. The first condition holds whenever λγ̄ ∈ K.
2. The condition (ii) implies that

∃ C > 0 s.t. |v(t, x)| ≤ C (1 + xγ̄) ∀ (t, x) ∈ [0, T ]× (0,∞)d, (3.11)

which in particular shows that v is locally bounded. Indeed, let π ∈ A be defined by πs = γ̄ for all
t ≤ s ≤ T . Since σ is bounded, one easily checks from the dynamics of the processes Xt,x and Y πt,x,1
that

1 +
d∏
i=1

(Xi
t,x(u))γ̄

i

≤ C

(
1 +

d∏
i=1

(xi)γ̄
i

)
Y πt,x,1(u) for all u ∈ [t, T ] ,

where C > 0 depends only on |γ̄| and the bound on |σ|. Then, after possibly changing the value of the
constant C, (ii) of Assumption 3.2 implies

g(u,Xt,x(u)) ≤ C
(
1 + xγ̄

)
Y πt,x,1(u) for all u ∈ [0, T ] .

Since yY πt,x,1 = Y πt,x,y for y > 0, we deduce (3.11) from the last inequality.
3. The condition (iii) is implied by 0 ∈ int(K). Indeed, if 0 ∈ int(K), then δx ≥ δ where the later is
uniformly strictly positive, see [19].
4. The condition (iv) is trivially satisfied if δx = δ for all x ∈ (0,∞)d, which is the case when σ is
invertible.
5. The condition (v) is trivially satisfied when σ is invertible. The condition (v.b.) is natural in the
case 0 ∈ int(K) as, in this case, it is equivalent to π′σ(x) = 0 ⇒ π′µ(x) ≤ 0 for all π ∈ K, which is
intimately related to the minimal no-arbitrage condition: π ∈ A and Yt,x,yπ′σ(Xt,x) = 0 Leb×P-a.e. on
[t, T ] ⇒ Yt,x,yπ

′µ(Xt,x) ≤ 0 Leb×P-a.e. on [t, T ].

3.4 The “face-lift” phenomenon

When σ is invertible, it can be shown under mild assumptions, see Section 3.5.4 below, that the unique
viscosity solution of (3.10), in a suitable class, is given by ĝ(T, ·) where

ĝ(t, x) := sup
ρ∈Rd

e−δ(ρ)g(t, xeρ) .

A standard comparison theorem, see Section 3.5.4 below, then implies that the boundary condition of
Theorem 3.2 can actually be written in v∗(T, ·) = v∗(T, ·) = ĝ(T, ·). This is the so-called “face-lift”
procedure which was already observed by [9] in the context of European option pricing, see also [2], [4],
[5] or [12]. Similarly, one could replace g by ĝ in the definition of Hϕ by using (3.7).
In our general context, where σ is not assumed to be invertible anymore, the solution of the PDE

min {φ(x)− g(t0, x) , Mφ(x)} = 0

has a more complex structure. Standard optimal control arguments actually show that it should be
related to the deterministic control problem

ǧ(t0, x) := sup
(ρ,τ)∈L0

1(Leb)×R+

e−
R τ
0 δχρx(s)(ρs)dsg(t0, χρx(τ))

where L0
1(Leb) denotes the set of measurable functions ρ = (ρs)s≥0 on R+ satisfying |ρt| = 1 for all

t ≥ 0 and, for ρ ∈ L0
1(Leb), the process χρx is the solution of

χ(t) = x+
∫ t

0

diag [χ(s)] ρsds , t ≥ 0 .
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Note that, in the case where σ is invertible, (3.9) implies that it can be rewritten in

sup
(ρ,τ)∈L0

1(Leb)×R+

e−
R τ
0 δ(ρs)dsg(t0, χρx(τ))

which value function is easily seen to coincide with ĝ(t0, ·) by using the fact that δ is convex and
homegenous of degree one, and g ≥ 0.

We now make precise the above discussion in the two following Corollaries. The first one actually states
that g can be replaced by ǧ in the definition of H and in the terminal condition.

Corollary 3.2 Let Assumption 3.1 and (i)-(iv) of Assumption 3.2 hold. Assume further that:
(i) For each x ∈ (0,∞)d, the map t ∈ [0, T ] 7→ ǧ(t, x) is continuous.
(ii) The map x ∈ (0,∞)d 7→ sup{δx(ρ), ρ ∈ K̃x} is locally bounded.
Then, v is a discontinuous viscosity solution on [0, T )× (0,∞)d of

min{ sup
π∈Nϕ(t,x)

(π′µ(x)ϕ(t, x)− Lϕ(t, x)) , Mϕ(t, x) , ϕ(t, x)− ǧ(t, x)} = 0 (3.12)

and satisfies the boundary condition

v∗(T, ·) = v∗(T, ·) = ǧ(T, ·) . (3.13)

If moreover, (v) of Assumption 3.2 hold, then it is the unique viscosity solution of (3.12)-(3.13), in the
class of non-negative functions satisfying the growth condition (3.11).

In the case where σ is invertible, the above discussion already shows that ĝ = ǧ. If moreover µ and σ are
constant, we can actually interpret the super-hedging cost as the hedging price of an American option
with payoff ĝ, without taking the portfolio constraints into account. This phenomenon was already
observed for plain vanilla or barrier european options, see e.g. [5] and [9]. It follows from the fact
that, when the parameters are constant, the gradient constraint imposed at T by the terminal condition
v(T, ·) = ĝ propagates into the domain. It is therefore automatically satisfied and we retrieve the result
of Corollary 1 in [9].

Corollary 3.3 Let the conditions of Theorem 3.3 hold. Assume further that µ and σ are constant and
that σ is invertible. Then, ǧ = ĝ and

v(t, x) = sup
τ∈T[t,T ]

EQ [ĝ(τ,Xt,x(τ))] (3.14)

where Q ∼ P is defined by

dQ
dP

:= e−
1
2 |σ
−1µ|2T+(σ−1µ)′WT .

Remark 3.5 Since σ is constant and invertible, the condition that µ is constant could be relaxed,
under mild assumptions, by performing a suitable initial change of measure.

3.5 Proof of the PDE characterization

From now on, we assume that v is locally bounded.
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3.5.1 The supersolution property

We start with the supersolution property of Theorem 3.1 and Theorem 3.2.

Lemma 3.1 The map v∗ is a viscosity supersolution of Hϕ = 0 on [0, T )× (0,∞)d.

Proof. Note that v ≥ g by definition. Since g is continuous, this implies that v∗ ≥ g. It thus suffices
to show that v∗ is a supersolution of

sup
π∈Nϕ(t,x)

(π′µ(x)ϕ(t, x)− Lϕ(t, x)) = 0 .

The proof follows from similar arguments as in [22], the main difference comes from the fact that σ is
not assumed to be non-degenate which only modifies the terminal argument of the above paper. We
therefore only sketch the proof and focus on the main difference. Fix (t0, x0) ∈ [0, T ) × (0,∞)d and
let ϕ be a smooth function such that (t0, x0) achieves a strict minimum of v∗ − ϕ on [0, T ) × (0,∞)d

satisfying (v∗−ϕ)(t0, x0) = 0. Let (tn, xn)n≥1 be a sequence in [0, T )×(0,∞)d that converges to (t0, x0)
and such that

v(tn, xn)→ v∗(t0, x0) as n→∞.

We have
y0 := ϕ(t0, x0) = v∗(t0, x0) = lim

n→∞
v(tn, xn) .

Set
yn := v(tn, xn) +

1
n
.

Since yn > v(tn, xn), it follows from (DP1) of Corollary 3.1 that we can fin πn ∈ A such that, for any
stopping time τn ∈ T[tn,T ], we have

Y πntn,xn,yn(τn) ≥ v(τn, Xtn,xn(τn)) .

Since v ≥ v∗ ≥ ϕ, it follows that

Y πntn,xn,yn(τn) ≥ v(τn, Xtn,xn(τn)) ≥ ϕ(τn, Xtn,xn(τn)) .

Set Yn := Y πntn,xn,yn , Xn := Xtn,xn . It follows from the previous inequality and Ito’s Lemma that

0 ≤ yn +
∫ τn

tn

Yn(s)π′n(s)σ(Xn(s))dWs +
∫ τn

tn

Yn(s)π′n(s)µ(Xn(s))ds

−ϕ(tn, xn)−
∫ τn

tn

Lϕ(s,Xn(s))ds−
∫ τn

tn

(Dϕ)′(s,Xn(s))diag [Xn(s)]σ(Xn(s))dWs

which can be written as

0 ≤ βn +
∫ τn

tn

Yn(s)π′n(s)µ(Xn(s))− Lϕ(s,Xn(s))ds+
∫ τn

tn

ψ(s,Xn(s), Yn(s), πn(s))dWs, (3.15)

where βn := yn − ϕ(tn, xn) and

ψ : (s, x, y, π)→ (yπ′ − (Dϕ)′(s, x)diag [x])σ(x) .

By choosing a suitable sequence of stopping times (τn)n, introducing a well-chose sequence of change of
measures as in Section 4.1 of [22] and using the Lipschitz continuity assumption (3.2) and the fact that
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K is convex and compact, we deduce from the previous inequality and exactly the same arguments as
in [22] that, for all κ > 0,

0 ≤ sup
π∈K

(ϕ(t0, x0)π′µ(x0)− Lϕ(t0, x0) + κ|ψ(t0, x0, y0, π)|2) .

Recalling that K is compact and ψ is continuous, we obtain by sending κ to ∞ that

ϕ(t0, x0)π′µ(x0)− Lϕ(t0, x0) ≥ 0 and |ψ(t0, x0, y0, π)|2 = 0 for some π ∈ K .

Noting that

0 = ψ(t0, x0, y0, π) = (y0π
′ − (Dϕ)′(t0, x0) diag [x0])σ(x0)⇒ π ∈ Nϕ(t0, x0) ,

we finally obtain
sup

π∈Nϕ(t0,x0)

(ϕ(t0, x0)π′µ(x0)− Lϕ(t0, x0)) ≥ 0 .

2

As explained in Section 3.3, we now use the fact that Nϕ(t, x) 6= ∅ if and only if Mϕ(t, x) ≥ 0.

Lemma 3.2 Fix (x, y, p) ∈ (0,∞)d × R+ × Rd. Then, N(x, y, p) 6= ∅ if and only if M(x, y, p) ≥ 0. If
moreover y > 0, then y−1diag [x] p ∈ int(Kx) if and only if M(x, y, p) > 0.

Proof. For y > 0, N(x, y, p) 6= ∅ ⇔ y−1diag [x] p ∈ Kx ⇔M(x, y, p) ≥ 0 since Kx is a closed convex set,
see [19], and similarly, for y > 0, y−1diag [x] p ∈ int(Kx) if and only if M(x, y, p) > 0. We now consider
the case y = 0. Since 0 ∈ K ⊂ Kx, we have δx ≥ 0. Hence, N(x, 0, p) 6= ∅ ⇔ 0 σ(x) = p′diag [x]σ(x) ⇔
ε−1p′diag [x] ∈ Kx for each ε > 0 ⇔ M(x, ε, p) ≥ 0 for each ε > 0 ⇔ M(x, 0, p) ≥ 0. 2

As a corollary of Lemma 3.1 and the previous Lemma, we obtain:

Corollary 3.4 The map v∗ is a viscosity supersolution of Mϕ = 0 on [0, T )× (0,∞)d.

We now turn to the boundary condition at t = T .

Lemma 3.3 The map v∗(T, )̇ is a viscosity supersolution of min{v∗(T, ·)−g(T, ·) ,Mφ} = 0 on (0,∞)d.

Proof. The fact that v∗(T, ·) ≥ g(T, ·) follows from the continuity of g and the fact that v ≥ g on
[0, T )× (0,∞)d by definition. Let φ be a smooth function and x0 ∈ (0,∞)d be such that x0 achieves a
strict minimum of v∗(T, ·)−φ and v∗(T, x0)−φ(x0) = 0. Let (sn, ξn)n be a sequence in [0, T )× (0,∞)d

satisfying :

(sn, ξn) −→ (T, x0) , sn < T and v∗(sn, ξn) −→ v∗(T, x0) .

For all n ∈ N and k > 0, we define :

ϕkn(t, x) := φ(x)− k

2
|x− x0|2 + k

T − t
T − sn

.

Notice that 0 ≤ (T − t)(T − sn)−1 ≤ 1 for t ∈ [sn, T ], and therefore :

lim
k→0

lim sup
n→∞

sup
(t,x)∈[sn,T ]×Br(x0)

|ϕkn(t, x)− φ(x)| = 0 , (3.16)
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where r > 0 is such that Br(x0) ⊂ (0,∞)d. Next, let (tkn, x
k
n) be a sequence of local minimizers of

v∗−ϕkn on [sn, T ]×Br(x0) and set ekn := (v∗−ϕkn)(tkn, x
k
n). Following line by line the arguments of the

proof of Lemma 20 in [4], one easily checks that, after possibly passing to a subsequence :

for all k > 0 , (tkn, x
k
n) −→ (T, x0) , (3.17)

for all k > 0 , tkn < T for sufficiently large n , (3.18)

v∗(tkn, x
k
n) −→ v∗(T, x0) = φ(x0) as n→∞ and k → 0 . (3.19)

Notice that (3.17) and a standard diagonalization argument implies that we may assume that xkn ∈
(Br(x0)) for all n ≥ 1 and k > 0. It then follows from (3.18) that, for all k > 0, (tkn, x

k
n) is a sequence

of local minimizers of v∗ − ϕkn on [sn, T ) × Br(x0). Also, notice that (3.16), (3.17) and (3.19) imply

for all k > 0 , Dϕkn(tkn, x
k
n) = Dφ(xkn)− k(xkn − x0)→ Dφ(x0) , (3.20)

and lim
k→0

lim
n→∞

ekn = 0 . (3.21)

It then follows from Theorem 3.1, recall the convention sup ∅ = −∞, (3.18) and the fact that (tkn, x
k
n)

is a local minimizer for v∗ − ϕkn that, for sufficiently large n, we can find πkn ∈ K such that

v∗(tkn, x
k
n)(πkn)′σ(xkn) = Dϕkn(tkn, x

k
n)′diag

[
xkn
]
σ(xkn) .

Since K is compact, we can assume that πkn → π ∈ K as n→∞ and then k → 0. Taking the limit as
n → ∞ and then as k → 0 in the previous inequality, and using (3.17), (3.19), (3.20), as well as the
continuity of x 7→ diag [x]σ(x) thus implies that

v∗(T, x0)π′σ(x0) = Dφ(x0)′diag [x0]σ(x0) .

Appealing to Lemma 3.2 then implies the required result. 2

3.5.2 The subsolution property

We now turn to the subsolution property of Theorem 3.1 and Theorem 3.2.

Lemma 3.4 Under Assumption 3.1, the map v∗ is a viscosity subsolution of min{Hϕ , Mϕ} = 0 on
[0, T )× (0,∞)d.

Proof. Fix (t0, x0) ∈ [0, T )× (0,∞)d and let ϕ be a smooth function such that (t0, x0) achieves a strict
maximum of v∗ − ϕ on [0, T )× (0,∞)d satisfying (v∗ − ϕ)(t0, x0) = 0. We assume that

min

{
sup

π∈Nϕ(t0,x0)

(ϕ(t0, x0)π′µ(x0)− Lϕ(t0, x0)) , ϕ(t0, x0)− g(t0, x0) , Mϕ(t0, x0)

}
:= 2ε > 0 ,

and work towards a contradiction. Note that v∗(t0, x0) = ϕ(t0, x0) > 0 since g ≥ 0. In view of Lemma
3.2, this implies that ϕ(t0, x0)−1diag [x0]Dϕ(t0, x0) ∈ int(Kx0). It then follows from Assumption 3.1
that we can find r > 0 and a Lipschitz continuous map π̂ such that

min {yπ̂(x, y,Dϕ(t, x))′µ(x)− Lϕ(t, x) , y − g(t, x)} > ε

and π̂(x, y,Dϕ(t, x)) ∈ N(x, y,Dϕ(t, x)) for (t, x, y) ∈ Br(t0, x0)×Br(ϕ(t, x)) . (3.22)

Let (tn, xn)n be a sequence in Br(t0, x0) such that v(tn, xn)→ v∗(t0, x0) and set yn := v(tn, xn)− n−1

so that yn > 0 for n large enough. Without loss of generality, we can assume that yn ∈ Br(ϕ(tn, xn))
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for each n. Let (Xn, Y n) denote the solution of (3.1) and (3.3) associated to the Markovian control
π̂(Xn, Y n, Dϕ(·, Xn)) and the initial conditions (Xn(tn), Y n(tn)) = (xn, yn). Note that these processes
are well defined on [tn, τn] where

τn := inf {t ≥ tn : (t,Xn(t)) /∈ Br(t0, x0) or |Y n(t)− ϕ(t,Xn(t))| ≥ r} .

Moreover, it follows from the definition of (t0, x0) as a strict maximum point of v∗ − ϕ that

(v∗ − ϕ)(τn, Xn(τn)) < −ζ or |Y n(τn)− ϕ(τn, Xn(τn))| ≥ r (3.23)

for some ζ > 0. Since v∗ ≤ ϕ, applying Itô’s Lemma to Y n − ϕ(·, Xn), recalling (3.22) and using a
standard comparison Theorem for stochastic differential equations shows that

Y n(τn)− v(τn, Xn(τn)) ≥ Y n(τn)− ϕ(τn, Xn(τn)) ≥ r on {|Y n(τn)− ϕ(τn, Xn(τn))| ≥ r} .

The same arguments combined with (3.23) also implies that

Y n(τn)− v(τn, Xn(τn)) ≥ yn − ϕ(tn, xn) + ζ on {|Y n(τn)− ϕ(τn, Xn(τn))| < r} .

Since yn − ϕ(tn, xn)→ 0, combining the two last assertions shows that Y n(τn)− v(τn, Xn(τn)) > 0 for
n large enough. Moreover, it follows from (3.22) that Y n > g(·, Xn) on [tn, τn]. Since yn < v(tn, xn),
this contradicts (DP2) of Corollary 3.1. 2

Lemma 3.5 Let Assumption 3.1 hold. Fix x0 ∈ (0,∞)d and assume that there exists a smooth function
φ such that Mφ(x0) > 0 and x0 achieves a strict local maximum of v∗(T, ·) − φ. Then, v∗(T, x0) ≤
g(T, x0).

Proof. Without loss of generality, we may assume that v∗(T, x0)−φ(x0) = 0. Assume that v∗(T, x0) >
g(T, x0). Note that this implies that φ(x0) > 0. Since g is continuous and Mφ(x0) > 0, it follows from
Lemma 3.2 and Assumption 3.1 that we can find r, η > 0 and a Lipschitz continuous map π̂ such that

π̂(x, y,Dϕ(t, x)) ∈ N(x, y,Dϕ(t, x)) , ϕ(t, x)−g(t, x) ≥ η for (t, x, y) ∈ [T−r, T ]×Br(x0)×Br(ϕ(t, x))
(3.24)

where ϕ(t, x) := φ(x) + |x− x0|4 +
√
T − t for (t, x) ∈ [0, T ]× (0,∞)d. Since ∂tϕ→ −∞ as t→ T and

K is compact, we also have, after possibly changing r > 0,

yπ̂(x, y,Dϕ(t, x))′µ(x)− Lϕ(t, x) ≥ η for (t, x, y) ∈ [T − r, T ]×Br(x0)×Br(ϕ(t, x)) . (3.25)

Let (tn, xn)n be a sequence in [0, T ]×(0,∞)d such that v(tn, xn)→ v∗(tn, xn) and let (t̂n, x̂n) be a strict
maximum point of v∗ − ϕ on [tn − n−1, T ]× (0,∞)d. Arguing as in Section 5.2 of [4], one easily checks
that t̂n < T and that (t̂n, x̂n)→ (t0, x0). Let (Xn, Y n) denote the solution of (3.1) and (3.3) associated
to the Markovian control π̂(Xn, Y n, Dϕ(·, Xn)) and the initial conditions (Xn(t̂n), Y n(t̂n)) = (x̂n, ŷn).
Note that these processes are well defined on [t̂n, τn] where

τn := inf
{
t ≥ t̂n : (t,Xn(t)) /∈ Br(t0, x0) or |Y n(t)− ϕ(t,Xn(t))| ≥ r

}
.

Applying Itô’s Lemma to Y n−ϕ(·, Xn) and arguing as in the proof of Lemma 3.4, we then deduce that
(3.24) and (3.25) lead to a contradiction to (DP2) of Corollary 3.1. 2
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3.5.3 A comparison result

We now prove Theorem 3.3. This is a consequence of the following comparison result and the growth
property for v which was derived in Remark 3.4.

Proposition 3.1 Let Assumption 3.2 hold. Let V (resp. U) be a non-negative lower-semicontinuous
(resp. upper-semicontinuous) locally bounded map on [0, T ] × (0,∞)d satisfying (3.11). Assume that
V (resp. U) is a supersolution (resp. subsolution) of (3.8) on [0, T ) × (0,∞)d such that V (T, ·) (resp.
U(T, ·)) is a supersolution (resp. subsolution) of (3.10) on (0,∞)d. Then, V ≥ U on [0, T ]× (0,∞)d.

Proof. 1. As usual, we first fix κ > 0 and introduce the functions Ũ(t, x) := eκtU(t, x), Ṽ (t, x) :=
eκtV (t, x) and g̃(t, x) := eκtg(t, x), so that the function Ṽ (resp. Ũ) is a viscosity supersolution (resp.
subsolution) of H̃ϕ = 0, where for a smooth function ϕ

H̃ϕ(t, x) := min{ sup
π∈Nϕ(t,x)

(π′µ(x)ϕ(t, x) + κϕ(t, x)− Lϕ(t, x)) , ϕ(t, x)− g̃(t, x)} . (3.26)

Let λ > 1 and γ̄ ∈ (0,∞)d be as in Assumption 3.2. Let β be defined by β(t, x) = eτ(T−t) (1 + xλγ̄
)
,

for some τ > 0 to be chosen below, and observe that the fact that δx ≥ 0 and λγ̄ ∈ Kx for all x ∈ (0,∞)d

implies that

Mβ(t, x) = inf
ρ∈K̃x

(
δx(ρ) + xλγ̄ [δx(ρ)− ρ′(λγ̄)]

)
eτ(T−t) ≥ 0 ∀ (t, x) ∈ [0, T ]× (0,∞)d . (3.27)

Moreover, one easily checks, by using the fact that µ and σ are bounded, and K is compact, that we
can choose τ large enough so that, on [0, T ]× (0,∞)d,

min
{
−2L|Dβ(t, x)′diag [x]µ(x)|+ κβ(t, x)− Lβ(t, x), κβ(t, x)− ∂tβ(t, x)− 1

2
Tr
[
a(x)D2β(t, x)

]}
≥ 0

(3.28)
where a(z) := diag [z]σ(z)σ(z)′diag [z], and L is as in (v.a) of Assumption 3.2 if it holds and L = 0
otherwise.
2. In order to show that U ≤ V , we argue by contradiction. We therefore assume that

sup
[0,T ]×(0,∞)d

(U − V ) > 0 (3.29)

and work towards a contradiction.
2.1. Using the growth condition on Ũ and Ṽ , and (3.29), we deduce that

0 < 2m := sup
[0,T ]×(0,∞)d

(Ũ − Ṽ − 2αβ) <∞ (3.30)

for α > 0 small enough. Fix ε > 0 and let f be defined on (0,∞)d by

f(x) =
d∑
i=1

(xi)−2 . (3.31)

Arguing as in the proof of Proposition 6.9 in [5], see also below for similar arguments, we obtain that

Φε := Ũ − Ṽ − 2(αβ + εf)

admits a maximum (tε, xε) on [0, T ]× (0,∞)d, which, for ε > 0 small enough, satisfies

Φε(tε, xε) ≥ m > 0 , (3.32)
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as well as

lim sup
ε→0

ε (|f(xε)|+ |diag [xε]Df(xε)|+ |Lf(xε)|) = 0 . (3.33)

2.2. For n ≥ 1 and ζ ∈ (0, 1), we then define the function Ψε
n,ζ on [0, T ]× (0,∞)2d by

Ψε
n,ζ(t, x, y) := Θ(t, x, y)− ε(f(x) + f(y))− ζ(|x− xε|2 + |t− tε|2)− n2|x− y|2 ,

where

Θ(t, x, y) := Ũ(t, x)− Ṽ (t, y)− α (β(t, x) + β(t, y)) .

It follows from the growth condition on Ũ and Ṽ that Ψε
n,ζ attains its maximum at some (tεn, x

ε
n, y

ε
n)

∈ [0, T ]× (0,∞)2d. Moreover, the inequality Ψε
n,ζ(t

ε
n, x

ε
n, y

ε
n) ≥ Ψε

n,ζ(tε, xε, xε) implies that

Θ(tεn, x
ε
n, y

ε
n) ≥ Θ(tε, xε, xε)− 2εf(xε)

+ n2|xεn − yεn|2 + ζ
(
|xεn − xε|2 + |tεn − tε|2

)
+ ε (f(xεn) + f(yεn)) .

Using the growth property of Ũ and Ṽ again, we deduce that the term on the second line is bounded
in n so that, up to a subsequence,

xεn, y
ε
n −−−−→

n→∞
x̄ε ∈ (0,∞)d and tεn −−−−→

n→∞
t̄ε ∈ [0, T ] .

Sending n→∞ in the previous inequality and using the maximum property of (tε, xε), we also get

0 ≥ Φε(t̄ε, x̄ε)− Φε(tε, xε)

≥ lim sup
n→∞

(
n2|xεn − yεn|2 + ζ

(
|xεn − xε|2 + |tεn − tε|2

))
,

which shows that

(a) n2|xεn − yεn|2 + ζ
(
|xεn − xε|2 + |tεn − tε|2

)
−−−−→
n→∞

0 ,

(b) Ũ(tεn, x
ε
n)− Ṽ (tεn, y

ε
n) −−−−→

n→∞

(
Ũ − Ṽ

)
(tε, xε) ≥ m+ 2αβ(tε, xε) + 2εf(xε) > 0 ,

where we used (3.32) for the last assertion.
3.1. Assume that, after possibly passing to a subsequence, tεn = T , for all n ≥ 1. Then, Ishii’s Lemma,
see e.g. [1], and the viscosity property of U(T, ·) and V (T, ·) imply that

min
{
M
(
xεn, Ũ(T, xεn), pεn

)
, Ũ(T, xεn)− g̃(T, xεn)

}
≤ 0

min
{
M
(
yεn, Ṽ (T, yεn), qεn

)
, Ṽ (T, yεn)− g̃(T, yεn)

}
≥ 0 ,

where

pεn := 2n2(xεn − yεn) + 2ζ(xεn − xε) + αDβ(tεn, x
ε
n) + εDf(xεn)

qεn := 2n2(xεn − yεn)− αDβ(tεn, y
ε
n)− εDf(yεn) .

Assuming that, after possibly passing to a subsequence, Ũ(T, xεn) ≤ g̃(T, xεn) for all n ≥ 1, we get a
contradiction to (b) since Ṽ (T, yεn) ≥ g̃(T, yεn) so that passing to the limit, recall (a) and the fact that
g is continuous, implies Ũ(T, xε) ≤ g̃(T, xε) ≤ Ṽ (T, xε).
We can therefore assume that Ũ(T, xεn) > g̃(T, xεn) for all n. Using the two above inequalities, we then
deduce that

0 ≥M
(
xεn, Ũ(T, xεn), pεn

)
−M

(
yεn, Ṽ (T, yεn), qεn

)
,
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which implies that we can find ρ̂xεn ∈ K̃xεn
such that for all ρεn ∈ K̃yεn

we have

0 ≥ δxεn(ρ̂xεn) [Θ(tεn, x
ε
n, y

ε
n)− ε(f(xεn) + f(yεn)] +

(
δxεn(ρ̂xεn)− δyεn(ρεn)

) (
Ṽ (T, yεn) + αβ(yεn) + εf(yεn)

)
+ αM (xεn, β(xεn), Dβ(tεn, x

ε
n)) + εM (xεn, f(xεn), f(xεn))

+ αM (yεn, β(yεn), Dβ(tεn, y
ε
n)) + εM (yεn, f(yεn), f(yεn))

− 2ζ(ρ̂xεn)′diag [xεn] (xεn − xε)− 2n2
(
(ρ̂xεn)′diag [xεn]− (ρεn)′diag [yεn]

)
(xεn − yεn)

In view of (iv) of Assumption 3.2 and (a) above, we can choose ρεn such that, for some C > 0,

|ρ̂xεn − ρ
ε
n| ≤ C|xεn − yεn| and δxεn(ρ̂xεn)− δyεn(ρεn) ≥ −ε(xεn, yεn)→ 0 .

Using (a), (b), (iii) of Assumption 3.2, the fact that Ṽ , β, f ≥ 0, (3.27) and (3.33), the previous inequality
applied to ε > 0 small enough and n large enough leads to

0 ≥ cK(m/2)

which contradicts (3.32).
3.2. In view of the above point, we can now assume, after possibly passing to a subsequence, that
tεn < T for all n ≥ 1. From Ishii’s Lemma, see Theorem 8.3 in [10], we deduce that, for each η > 0,
there are real coefficients bε1,n, bε2,n and symmetric matrices X ε,ηn and Yε,ηn such that(

bε1,n, p
ε
n,X ε,ηn

)
∈ P̄+

Ō Ũ(tεn, x
ε
n) and

(
−bε2,n, qεn,Yε,ηn

)
∈ P̄−Ō Ṽ (tεn, y

ε
n) ,

see [10] for the standard notations P̄+
Ō and P̄−Ō , where

pεn := 2n2(xεn − yεn) + 2ζ(xεn − xε) + αDβ(tεn, x
ε
n) + εDf(xεn)

qεn := 2n2(xεn − yεn)− αDβ(tεn, y
ε
n)− εDf(yεn) ,

and bε1,n, bε2,n, X ε,ηn and Yε,ηn satisfy
bε1,n + bε2,n = 2ζ(tεn − tε)− ατ (β(tεn, x

ε
n) + β(tεn, y

ε
n))(

X ε,ηn 0
0 −Yε,ηn

)
≤ (Aεn +Bεn) + η(Aεn +Bεn)2

(3.34)

with

Aεn :=

(
2n2Id + 2ζId −2n2Id

−2n2Id 2n2Id

)
, Bεn :=

(
αD2β(tεn, x

ε
n) + εD2f(xεn) 0
0 αD2β(tεn, y

ε
n) + εD2f(yεn)

)
,

and Id stands for the d× d identity matrix.

3.2.a. Assume that, after possibly passing to a subsequence, either N(xεn, Ũ(tεn, x
ε
n), pεn) = ∅ or

M
(
xεn, Ũ(tεn, x

ε
n), pεn

)
≤ 0. It then follows from Lemma 3.2 that, in both cases, M

(
xεn, Ũ(tεn, x

ε
n), pεn

)
≤

0. Since the supersolution property of Ṽ ensures that M
(
yεn, Ṽ (tεn, y

ε
n), qεn

)
≥ 0, arguing as in Step 2.2.

above leads to a contradiction. Similarly, we can not have U(tεn, x
ε
n) ≤ g(tεn, y

ε
n) along a subsequence

since V ≥ g and g is continuous, recall (a) and (b).
We can then assume that N(xεn, Ũ(tεn, x

ε
n), pεn) 6= ∅, M

(
xεn, Ũ(tεn, x

ε
n), pεn

)
> 0 and U(tεn, x

ε
n) > g(tεn, x

ε
n)

for all n ≥ 1, after possibly passing to a subsequence. It then follows from the super- and subsolution
properties of Ṽ and Ũ , see Step 1., the fact that K is compact and Lemma 3.2 that there exists
π(xεn), π(yεn) ∈ K such that

π(xεn) ∈ N(xεn, Ũ(tεn, x
ε
n), pεn) and π(yεn) ∈ N(yεn, Ṽ (tεn, y

ε
n), qεn) (3.35)
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and, recall (3.34),

κ
(
Ũ(tεn, x

ε
n)− Ṽ (tεn, y

ε
n)
)
≤ −Ũ(tεn, x

ε
n)π(xεn)′µ(xεn) + Ṽ (tεn, y

ε
n)π(yεn)′µ(yεn) + bε1,n + bε2,n

+ µ̄(xεn)′pεn − µ̄(yεn)′qεn +
1
2

Tr [a(xεn)X ε,ηn − a(yεn)Yε,ηn ]

≤ −Ũ(tεn, x
ε
n)π(xεn)′µ(xεn) + Ṽ (tεn, y

ε
n)π(yεn)′µ(yεn)

+ 2ζ(tεn − xε)− ατ (β(tεn, x
ε
n) + β(tεn, y

ε
n)) (3.36)

+ µ̄(xεn)′pεn − µ̄(yεn)′qεn +
1
2

Tr
[
Ξ(tεn, x

ε
n, y

ε
n)
(
Aεn +Bεn + η(Aεn +Bεn)2

)]
where σ̄(z) := diag [z]σ(z), µ̄(z) = diag [z]µ(z) and the positive semi-definite matrix Ξ(tεn, x

ε
n, y

ε
n) is

defined by

Ξ(xεn, y
ε
n) :=

(
σ̄(xεn)σ̄′(xεn) σ̄(yεn)σ̄′(xεn)
σ̄(xεn)σ̄′(yεn) σ̄(yεn)σ̄′(yεn)

)
.

3.2.b. We now assume that (v.a) of Assumption 3.2 holds. Then, for n large enough, we can choose
π(xεn) such that∣∣∣Ṽ (tεn, y

ε
n)π(yεn)′µ(yεn)− Ũ(tεn, x

ε
n)π(xεn)′µ(xεn)

∣∣∣ ≤ L|(qεn)′diag [yεn]µ(yεn)− (pεn)′diag [xεn]µ(xεn)| .

It then follows from (3.35) and (3.36) that

κ
(
Ũ(tεn, x

ε
n)− Ṽ (tεn, y

ε
n)
)
≤ L|(qεn)′diag [yεn]µ(yεn)− (pεn)′diag [xεn]µ(xεn)|

+ 2ζ(tεn − xε)− ατ (β(tεn, x
ε
n) + β(tεn, y

ε
n)) (3.37)

+ µ̄(xεn)′pεn − µ̄(yεn)′qεn +
1
2

Tr
[
Ξ(xεn, y

ε
n)
(
Aεn +Bεn + η(Aεn +Bεn)2

)]
.

Using (a)-(b), (3.28) and (3.33), we deduce that we can find C > 0 independent of (η, ζ) such that for
ε small and n large enough

κ
m

2
≤ κ

(
Ũ(tεn, x

ε
n)− Ṽ (tεn, y

ε
n)− (αβ + εf)(tεn, x

ε
n)− (αβ + εf)(tεn, y

ε
n)
)

≤ C(1 + ζ)θ(ε, n) +
1
2

Tr
[
Ξ(xεn, y

ε
n)
(
Aεn + η(Aεn +Bεn)2

)]
where θ(ε, n) is independent of (η, ζ) and satisfies

lim sup
ε→0

lim sup
n→∞

|θ(ε, n)| = 0 . (3.38)

Sending η → 0 in the previous inequality provides

κ
m

2
≤ C(1 + ζ)θ(ε, n) +

1
2

Tr [Ξ(xεn, y
ε
n)Aεn] ,

so that

κ
m

2
≤ C(1 + ζ)θ(ε, n) + ζTr [σ̄(xεn)σ̄′(xεn)] + n2 |diag [xεn]σ(xεn)− diag [yεn]σ(yεn)|2 .

Finally, using (a) and the Lipschitz continuity of the coefficients, we obtain by sending n to∞ and then
ζ to 0 in the last inequality that κm ≤ 0, which is the required contradiction and concludes the proof.

3.2.c. In the case where (v.b) of Assumption 3.2 holds. Then, (3.35) and (3.36) imply that

κ
(
Ũ(tεn, x

ε
n)− Ṽ (tεn, y

ε
n)
)
≤ 2ζ(tεn − xε)− ατ (β(tεn, x

ε
n) + β(tεn, y

ε
n))

+
1
2

Tr
[
Ξ(tεn, x

ε
n, y

ε
n)
(
Aεn +Bεn + η(Aεn +Bεn)2

)]
,

and the proof is concluded as in 3.2.b. above by using the fact that the right hand-side in the min in
of (3.28) is non-negative (instead of the left hand-side as above). 2
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3.5.4 Proof of the “face-lifted” representation

In this Section, we prove Corollary 3.2 and Corollary 3.3. We start with some preliminary results.

Lemma 3.6 Let (i)-(iv) of Assumption 3.2 hold. Fix t0 ∈ [0, T ] and let V (resp. U) be a lower-
semicontinuous (resp. upper-semicontinuous) viscosity supersolution (resp. subsolution) on (0,∞)d

of

min {Mφ , φ− g(t0, ·)} = 0 . (3.39)

Assume that U and V are non-negative and satisfy the growth condition (3.11). Then, U ≤ V on
(0,∞)d.

Proof. This follows from the same line of arguments as in Steps 1., 2. and 3.1. of the proof of
Proposition 3.1. 2

Lemma 3.7 Let (i)-(iv) of Assumption 3.2 hold. Then,
(i) There exists C > 0 such that

|ǧ(t, x)| ≤ C(1 + xγ̄) for all (t, x) ∈ [0, T ]× (0,∞)d . (3.40)

(ii) Assume further that the assumptions of Corollary 3.2 hold. Then, for each t0 ∈ [0, T ], ǧ(t0, ·)
is continuous on (0,∞)d and is the unique viscosity solution of (3.39) satisfying the growth condition
(3.40).

Proof. 1. Fix ρ ∈ L0
1(Leb) and τ ≥ 0. It follows from Assumption 3.2 that we can find C > 0 such

that

e−
R τ
0 δχρx(s)(ρs)dsg(t0, χρx(τ)) ≤ C

(
1 +

d∏
i=1

(xi)γ̄
i

e
R τ
0 γ̄iρ̄isds

)
e−

R τ
0 δχρx(s)(ρs)ds ≤ C

(
1 + xγ̄

)
where we used the fact δχρx ≥ 0 since 0 ∈ Kz for all z ∈ (0,∞)d, and the fact that γ̄′ρ− δχρx(ρ) ≤ 0 since
γ̄ ∈ K ⊂ Kχρx .
2. We now prove that ǧ(t0, ·) is a (discontinuous) viscosity solution of (3.39). Let ǧ∗(t0, ·) (resp. ǧ∗(t0, ·))
be the lower-semicontinuous (resp. upper-semicontinuous) envelope of x 7→ ǧ(t0, x).
Note that ǧ(t0, ·) satisfies the dynamic programming principle

ǧ(t0, x) = sup
(ρ,τ)∈L0

1(Leb)×R+

e−
R τ∧h
0 δχρx(s)(ρs)ds (g(t0, χρx(τ))1τ≤h + ǧ(t0, χρx(h))1τ>h) , h > 0 . (3.41)

2.a. We start with the supersolution property. Note that ǧ ≥ g by construction (take ρ = 0 and τ = 0
in the definition of ǧ or in (3.41)). Let φ be a non-negative smooth function and let x0 ∈ (0,∞)d be
a strict minimum point of ǧ∗(t0, ·) − φ such that ǧ∗(t0, x0) − φ(x0) = 0. Let (xn)n be a sequence in
(0,∞)d such that ǧ(t0, xn)→ ǧ∗(t0, x0). Assume that

inf
ρ∈K̃x0

(δx0(ρ)φ(x0)− ρ′diag [x0]Dφ(x0)) < 0 .

It then follows from (iv) of Assumption 3.2 that we can find r,m > 0 and a Lipschitz continuous map
ρ̂ such that, for some η > 0,

δx(ρ̂(x)) ≤ η and δx(ρ̂(x))φ(x)− ρ̂(x)′diag [x]Dφ(x) < −m ∀ x ∈ Br(x0) . (3.42)

22



This implies that χ̂n defined as χρxn for the Markovian control ρ = ρ̂(χ̂n) satisfies

φ(xn) < e−
R hn
0 δχ̂n(s)(ρ̂(χ̂n(s)))ds (φ(χ̂n(hn))−mhn)

where
hn := inf{s ≥ 0 : χ̂n(s) /∈ Br(x0)} ∧ h

for some h > 0. Since x0 is a strict minimum point of ǧ∗(t0, ·)− φ, we can then find ζ > 0 such that

φ(xn) < e−
R hn
0 δχ̂n(s)(ρ̂(χ̂n(s)))ds (−ζ1hn<h + ǧ(t0, χ̂n(hn))−mhn) .

Using the left-hand side of (3.42), we then obtain

φ(xn) < e−
R hn
0 δχ̂n(s)(ρ̂(χ̂n(s)))dsǧ(t0, χ̂n(hn))− e−hη (ζ1hn<h +mh1hn=h) .

Since ǧ(t0, xn)− φ(xn)→ 0, this leads to a contradiction to (3.41) for n large enough.
2.b. We now turn to the subsolution property. Let φ be a non-negative smooth function and let
x0 ∈ (0,∞)d be a strict maximum point of ǧ∗(t0, ·)− φ such that ǧ∗(t0, x0)− φ(x0) = 0. Let (xn)n be
a sequence in (0,∞)d such that ǧ(t0, xn)→ ǧ∗(t0, x0). Assume that

min

{
inf

ρ∈K̃x0
(δx0(ρ)φ(x0)− ρ′diag [x0]Dφ(x0)) , φ(x0)− g(t0, x0)

}
> 0 . (3.43)

Since g ≥ 0, this implies that φ > 0 on Br(x0), for some r > 0. Moreover, the fact that K̃x0 is compact
implies that, after possibly changing r > 0, we can find ε > 0 such that φ(x) − ε > 0 on Br(x0) and
M(x0, φ(x0)− ε,Dφ(x0)) > 0. In view of Lemma 3.2, this implies that (φ(x0)− ε)−1diag [x0]Dφ(x0) ∈
int(Kx0). It the follows from Assumption 3.1 that, after possibly changing r > 0, N(x, φ(x)−ε,Dφ(x)) 6=
∅ on Br(x0), which, by Lemma 3.2 again, implies that M(x, φ(x) − ε,Dφ(x)) ≥ 0 on Br(x0). Since
δx ≥ cK > 0, recall (iii) of Assumption 3.2, we deduce that M(x, φ(x), Dφ(x)) ≥ εcK on Br(x0). Using
Lemma 3.2, the continuity of g and (3.43), we finally obtain

min
{

inf
ρ∈K̃x

(δx(ρ)φ(x)− ρ′diag [x]Dφ(x)) , φ(x)− g(t0, x)
}
≥ m on Br(x0) (3.44)

for some m > 0. Moreover, it follows from Assumption (ii) of Corollary 3.2 that

sup{δx(ρ), ρ ∈ K̃x} ≤ η on Br(x0) (3.45)

for some η > 0.
We now consider a sequence (xn)n in (0,∞)d such that ǧ(t0, xn) → ǧ∗(t0, x0). Given ρ ∈ L0

1(Leb), we
set hn := inf{s ≥ 0 : χρxn(s) /∈ Br(x0)} ∧ h for some h > 0. Then, (3.44) and the fact that x0 is a
strict maximum point of ǧ∗(t0, ·)− φ implies that we can find ζ > 0 such that, for all τ ≥ 0,

φ(xn) ≥ e
−

R hn∧τ
0 δχρxn (s)(ρs)ds

(
φ(χρxn(hn ∧ τ)) +m(hn ∧ τ)

)
≥ e

−
R hn∧τ
0 δχρxn (s)(ρs)ds

(
ǧ(t0, χρxn(hn))1hn>τ + g(t0, χρxn(τ))1τ≤hn + ζ ∧m ∧ (mh)

)
.

Since φ(xn)− ǧ(t0, xn)→ 0, the above inequality combined with (3.45) leads to a contradiction to (3.41)
for n large enough, by arbitrariness of τ and ρ. 2

We can now conclude the proof of Corollary 3.2.
Proof of Corollary 3.2 The subsolution property follows from Theorem 3.1 and Theorem 3.2 since
ǧ ≥ g. As for the supersolution property, we note that Theorem 3.1 and Theorem 3.2 imply that, for
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fixed t0 ∈ [0, T ], v∗(t0, ·) is a supersolution of (3.39). It thus follows from Lemma 3.6 that v∗ ≥ ǧ. The
supersolution property then follows. To conclude, we note that the comparison result of Proposition
3.1 obviously still holds if we replace g by ǧ since ǧ is continuous with respect to its first variable by
assumption, and with respect to its second one by Lemma 3.7. 2

Proof of Corollary 3.3. The fact that ǧ = ĝ follows from the discussion at the beginning of Section
3.4. Note that the continuity of g implies that ĝ is continuous too. Also observe that the fact that σ is
invertible implies that, for a smooth function ϕ,

sup
π∈Nϕ(t,x)

(π′µ(x)ϕ(t, x)− Lϕ(t, x)) = −∂tϕ−
1
2

Trace
[
diag [x]σσ′diag [x]D2ϕ

]
. (3.46)

Let us now observe that the map w defined on [0, T ]× (0,∞)d by

w(t, x) := sup
τ∈T[t,T ]

EQ [ĝ(τ,Xt,x(τ))]

is a viscosity solution on [0, T )× (0,∞)d of

min
{
−∂tϕ−

1
2

Trace
[
diag [x]σσ′diag [x]D2ϕ

]
, ϕ− ĝ

}
= 0 . (3.47)

In particular, it is a subsolution of (3.12), recall (3.46). We next deduce from the definition of ĝ that,
for all ρ ∈ Rd,

w(t, xeρ) = sup
τ∈T[t,T ]

EQ [ĝ(τ,Xt,x(τ)eρ)] ≤ sup
τ∈T[t,T ]

EQ
[
eδ(ρ)ĝ(τ,Xt,x(τ))

]
= eδ(ρ)w(t, x) .

It follows that w(t, x) ≥ e−δ(ρ)w(t, xeρ) for all ρ ∈ Rd which implies that w is a viscosity supersolution
of Mϕ = 0. Hence, w is a supersolution of (3.12), recall (3.46). Finally, (3.40) and standard estimates
show that w satisfy the growth condition (3.11). It thus follows from Corollary 3.2 that v∗ = v∗ = w.
2
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