
A stochastic target approach for P&L matching problems

Bruno Bouchard

CEREMADE, Université Paris Dauphine
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Abstract

Within a Brownian diffusion Markovian framework, we provide a direct PDE characterization

of the minimal initial endowment required so that the terminal wealth of a financial agent (possibly

diminished by the payoff of a random claim) can match a set of constraints in probability. Such

constraints should be interpreted as a rough description of a targeted profit and loss (P&L) distri-

bution. This allows to give a price to options under a P&L constraint, or to provide a description of

the discrete P&L profiles that can be achieved given an initial capital. This approach provides an

alternative to the standard utility indifference (or marginal) pricing rules which is better adapted to

market practices. From the mathematical point of view, this is an extension of the stochastic target

problem under controlled loss, studied in Bouchard, Elie and Touzi (2009), to the case of multiple

constraints. Although the associated Hamilton-Jacobi-Bellman operator is fully discontinuous, and

the terminal condition is irregular, we are able to construct a numerical scheme that converges at

any continuity points of the pricing function.

Key words: Stochastic target problem, Discontinuous viscosity solutions, Quantile Hedging.
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1 Introduction

Option pricing (in incomplete financial markets or markets with frictions) and optimal management

decisions have to be based on some risk criterion or, more generally, on some choice of preferences. In

the academic literature, one usually models the attitude of the financial agents toward risk in terms of

an utility or loss function. However, practitioners have in general no idea of “their utility function”.

Even the choice of a loss function is somehow problematic. On the other hand, they have a rough

idea on the type of P&L they can afford, and indeed have as a target. This is the case for traders, for

hedge-fund managers,...

The aim of this paper is to provide a direct PDE characterization of the minimal initial endowment

required so that the terminal wealth of a financial agent (possibly diminished by the payoff of a random

claim) can match a set of constraints in probability. In practice, this set of constraints has to be viewed

as a rough description of a targeted P&L distribution.
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To be more precise, let us consider the problem of a trader who would like to hedge a European claim of

the form g(Xt,x(T )), where Xt,x models the evolution of some risky assets, assuming that their value is

x at time t. The aim of the trader is to find an initial endowment y and a hedging strategy ν such that

the terminal value of his hedging portfolio Y νt,x,y(T ) diminished by the liquidation value of the claim

g(Xt,x(T )) matches an a-priori distribution of the form

P
[
Y νt,x,y(T )− g(Xt,x(T )) ≥ −γi

]
≥ pi , i ≤ κ ,

where γκ ≥ · · · ≥ γ2 ≥ γ1 ≥ 0, for some κ ≥ 1. The minimal initial endowment required to achieve the

above constraints is given by:

v(t, x, p) := inf{y : ∃ ν s.t. Y νt,x,y(T ) ≥ ` and P
[
Y νt,x,y(T )− g(Xt,x(T )) ≥ −γi

]
≥ pi ∀ i ≤ κ}, (1.1)

where we used the notation p := (p1, . . . , pκ) and ` ∈ R is a given lower bound that is imposed in order

to avoid that the wealth goes too negative, even if it is with small probability.

In the case κ = 1, such a problem is referred to as the “quantile hedging problem”. It has been widely

studied by Föllmer and Leukert [11] who provided an explicit description of the optimal terminal wealth

Y νt,x,y(T ) in the case where the underlying financial market is complete. This result is derived from a

clever use of the Neyman-Pearson Lemma in mathematical statistics and applies to non-Markovian

frameworks. A direct approach, based on the notion of stochastic target problems, has then been

proposed by Bouchard, Elie and Touzi [6]. It allows to provide a PDE characterization of the pricing

function v, even in incomplete markets or in cases where the stock price process Xt,x can be influenced

by the trading strategy ν, see e.g. [5]. The problem (1.1) is a generalization of this work to the case of

multiple constraints in probability.

As in Bouchard, Elie and Touzi [6], the first step consists in rewriting the stochastic target problem

with multiple constraints in probability (1.1) as a stochastic target problem in the P−a.s. sense. This

is achieved by introducing a suitable family of d-dimensional bounded martingales {Pαt,p, α} and by

re-writing v as

v(t, x, p) = inf{y : ∃ (ν, α) such that Y νt,x,y(T ) ≥ ` and min
i≤κ

(
∆i(Xt,x(T ), Y νt,x,y(T ))− Pα,it,p (T )

)
≥ 0 },

(1.2)

where ∆i(x, y) := 1{y−g(x)≥−γi} and Pα,it,p denotes the i-th component of Pαt,p. As in [6], “at the

optimum” each process Pα,it,p has to be interpreted as the martingale coming from the martingale repre-

sentation of 1{Y νt,x,y(T )−g(Xt,x(T ))≥−γi}.

The above reduction allows to appeal to the Geometric dynamic programming principle (GDPP) of

Soner and Touzi [14], which leads to the PDE characterization stated in Theorem 2.1 below, with

suitable boundary conditions.

We shall however see that both the associated Hamilton-Jacobi-Bellman operator and the boundary

conditions are discontinuous, which leaves little hope to be able to establish a comparison result, and

therefore build a convergent numerical scheme directly based on this PDE characterization.

We therefore introduce a sequence of approximating problems that are more regular and for which we

can prove comparison. We show that they converge to the value function at any continuity point in

the p-variable, or, more precisely, to its right and left limits in the p-variable, depending on the chosen

approximating sequence.

In particular, we will show that it allows to approximate point-wise the relaxed problems:

v(t, x, p) := inf{y : ∀ε > 0 ∃νε s.t. Y ν
ε

t,x,y(T ) ≥ ` , P
[
Y ν

ε

t,x,y(T )− g(Xt,x(T )) ≥ −γi
]
≥ pi − ε ∀ i ≤ κ}

(1.3)
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and

v̄(t, x, p) := inf{y : ∃ ν s.t. Y νt,x,y(T ) ≥ ` , P
[
Y νt,x,y(T )− g(Xt,x(T )) ≥ −γi

]
> pi ∀ i ≤ κ}. (1.4)

The first value function v is indeed shown to be the left-limit in p of v, while v̄ is the right-limit in p

of v. In cases where v is continuous, then v̄ = v = v and our schemes converge to the original value

function. However the continuity of v in its p-variable seems are a-priori difficult to prove by lack of

convexity and strict monotonicity of the indicator function, and may fail in general. Still, one of the

two approximations can be chosen to solve practical problems.

In this paper, we restrict to the case where the market is complete but the amount of money that can

be invested in the risky assets is bounded. The incomplete market case could be discussed by following

the lines of the paper, but will add extra complexity. Since the proofs below are already complex, we

decided to restrict to the complete market case. The fact that the amount of money that can be invested

in the risky assets is bounded could also be relaxed. It does not really simplifies the arguments. On

the other hand, it is well-known that quantile hedging type strategies can lead to the explosion of the

number of risky asset to hold in the portfolio near the maturity. This is due to the fact that it typically

leads to hedging discontinuous payoffs, see the example of a call option in the Black-and-Scholes model

in [11]. In our multiple constraint case, we expect to obtain a similar behavior. The constraint on

the portfolio is therefore imposed to avoid this explosion, which leads to strategies that can not be

implemented in practice.

The rest of the paper is organized as follows. The P&L matching problem and its PDE characterization

are presented in Section 2. In Section 3, we describe the sequence of approximating problems and the

corresponding PDE characterizations. The proofs are collected in Section 4.

Notations: We denote by Mn,d the set of n × d matrices, Trace [M ] the trace of M ∈ Md,d =: Md

and M> its transposition. The i-th line of M ∈ Mn,d is denoted by M i·. We identify Rd to Md,1. For

x ∈ Rd, Br(x) is defined as the open ball of radius r > 0 and center x, and xI := (xi)i∈I for I ⊂ {1, .., d}.
For x, y ∈ Rd, we write x ≥ y for xi ≥ yi for all i ≤ d. We write diag [x] to denote the diagonal matrix

of Md who i-th diagonal element is xi. For a set A ⊂ R×Rd, we note int(A) its interior, Ā its closure,

∂A its boundary and ∂TA := {x ∈ Rd : (T, x) ∈ ∂A}. Any inequality between random variables should

be understood in the a.s. sense.

2 PDE characterization of the P&L matching problem

2.1 Problem formulation

Let W be a standard d-dimensional Brownian motion defined on a complete probability space (Ω,F ,P),

with d ≥ 1. We denote by F := {Ft}0≤t≤T the P-complete filtration generated by W on some time

interval [0, T ] with T > 0.

Given (t, x) ∈ [0, T ]× (0,∞)d, the stock price process Xt,x, starting from x at time t, is assumed to be

the unique strong solution of

X(s) = x+

∫ s

t

diag [X(r)]µ(X(r))dr +

∫ s

t

diag [X(r)]σ(X(r))dWr , (2.1)

where

x ∈ (0,∞)d 7→ diag [x] (µ(x), σ(x)) =: (µX(x), σX(x)) ∈ Rd ×Md
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is Lipschitz continuous and σ is invertible. All over this paper, we shall assume that there exists some

L > 0 such that

|µ|+ |σ|+ |σ−1| ≤ L on (0,∞)d . (2.2)

A financial strategy is described by an element ν of the set U of progressively measurable processes

taking values in some fixed subset U ⊂ Rd, each component νir at time r representing the amount of

money invested in the i-th risky asset r. Importantly, we shall assume all over this paper that

U is convex closed, its interior contains 0 and sup{|u|, u ∈ U} ≤ L . (2.3)

This (important) assumption will be commented in Remarks 2.1 below. In the above, we label by L

the different bounds because this constant will be used hereafter.

For sake of simplicity, we assume that the risk free interest rate is equal to zero. The associated wealth

process, starting with the value y at time t, is thus given by

Y (s) = y+

∫ s

t

ν>r diag [Xt,x(r)]
−1
dXt,x(r) = y+

∫ s

t

µY (Xt,x(r), νr)dr+

∫ s

t

σY (Xt,x(r), νr)dWr, (2.4)

where

µY (x, u) := u>µ(x) and σY (x, u) := u>σ(x) , (x, u) ∈ Rd+ × U .

The aim of the trader is to hedge an European option of payoff g(Xt,x(T )) at time T , where

g : (0,∞)d 7→ R is Lipschitz continuous. (2.5)

Here, the price is chosen so that the net wealth Y νt,x,y(T ) − g(Xt,x(T )) satisfies a P&L constraint.

Namely, given a collection of thresholds γ := (γi)i≤κ ∈ Rκ and of probabilities (pi)i≤κ ∈ [0, 1]κ, for

some κ ≥ 1, the price of the option is defined as the minimal initial wealth y such that there exists a

strategy ν ∈ U satisfying

P[Y νt,x,y(T ) ≥ gi(Xt,x(T ))] ≥ pi for all i ∈ {1, . . . , κ} =: K , (2.6)

where

gi := g − γi , i ∈ K . (2.7)

Obviously, we can assume without loss of generality that

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γκ . (2.8)

This means that the net hedging loss should not exceed −γi with probability more than pi. This

coincides with a constraint on the distribution of the P&L of the trader, in the sense that it should

match the constraints imposed by the discrete histogram associated to (γ, p). In order to avoid that

the wealth process goes too negative, even with small probability, we further impose that Y νt,x,y(T ) ≥ `
for some ` ∈ R−. The price is then defined, for (t, x, p) ∈ [0, T ]× (0,∞)d × [0, 1]κ, as:

v(t, x, p) := inf{y ≥ ` : ∃ν ∈ U s.t Y νt,x,y(T ) ≥ ` and P[Y νt,x,y(T ) ≥ gi(Xt,x(T ))] ≥ pi for i ∈ K} . (2.9)

Note that, after possibly changing g and γ, one can always reduce to the case where

g1 ≥ g2 ≥ · · · ≥ gκ ≥ ` . (2.10)

We further assume that g is bounded from above and that gκ > ` uniformly, which, after possibly

changing the constant L can be written as

`+ L−1 ≤ gκ ≤ g ≤ L . (2.11)
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Remark 2.1 The above criteria extends the notion of quantile hedging discussed in [11] to multiple

constraints in probability. In [11], it is shown that the optimal strategy associated to a quantile hedging

problem may lead to the hedging of a discontinuous payoff. This is in particular the case in the Black

and Scholes model when one wants to hedge a call option, only with a given probability of success.

This typical feature is problematic in practice as it leads to a possible explosion of the delta near the

maturity. This explains why we have deliberately imposed that U is compact, i.e. that the amount of

money invested in the stocks is bounded.

Remark 2.2 Since U is bounded, see (2.3), Y νt,x,y is a Qt,x-martingale for Qt,x ∼ P defined by

dQt,x
dP

= E
(∫ ·

t

−(µσ−1)(Xt,x(s))dWs

)
T

,

recall (2.2). The constraint Y νt,x,y(T ) ≥ ` thus implies that Y νt,x,y ≥ ` on [t, T ]. In particular, the

restriction to y ≥ ` is redundant. We write it only for sake of clarity.

2.2 Problem reduction and domain decomposition

As in [6], the first step consists in converting our stochastic target problem under probability constraints

into a stochastic target problem in standard form as studied in [15]. This will allow us to appeal to the

Geometric Dynamic Programming Principle to provide a PDE characterization of v. In our context,

such a reduction is obtained by adding a family of κ-dimensional martingales defined by

Pαt,p(s) = p+

∫ s

t

αrdWr, (t, p, α) ∈ [0, T ]× [0, 1]κ ×A,

where A is the set of predictable processes α in L2([0, T ],Mκ,d). Given (t, p) ∈ [0, T ]× [0, 1]κ, we further

denote by At,p the set of elements α ∈ A such that Pαt,p ∈ [0, 1]κ dt× dP-a.e. on [t, T ] and define

G(x, p) := inf{y ≥ ` : min
i∈K
{1{y≥gi(x)} − pi} ≥ 0}, (x, p) ∈ (0,∞)d × Rκ .

Note that

G(·, p) =∞ for p /∈ (−∞, 1]κ , and G(·, p1) ≥ G(·, p2) if pi1 ∨ 0 ≥ pi2 ∀ i ∈ K . (2.12)

Proposition 2.1 For all (t, x, p) ∈ [0, T ]× (0,∞)d × [0, 1]κ,

v(t, x, p) = inf{y ≥ ` : Y νt,x,y(T ) ≥ G(Xt,x(T ), Pαt,p(T )) for some (ν, α) ∈ U ×At,p}, (2.13)

= inf{y ≥ ` : Y νt,x,y(T ) ≥ G(Xt,x(T ), Pαt,p(T )) for some (ν, α) ∈ U ×A} . (2.14)

Proof. The proof follows from the same arguments as in [6]. We provide it for completeness. We fix

(t, x, p) ∈ [0, T ] × (0,∞)d × [0, 1]κ, set v := v(t, x, p) for ease of notations, and denote by w1 and w2

the right-hand side of (2.13) and (2.14) respectively. The fact that w1 ≥ w2 is obvious. Conversely, if

Y νt,x,y(T ) ≥ G(Xt,x(T ), Pαt,p(T )) for some (ν, α) ∈ U × A, then (2.12) implies that Pα,it,p (T ) ≤ 1 for all

i ∈ K. Since Pαt,p is a martingale, it takes values in (−∞, 1]κ on [t, T ]. Moreover, we can find α̃ ∈ A
such that P α̃,it,p (T ) = 0 on Ai := {min[t,T ] P

α,i
t,p ≤ 0} and P α̃,it,p (T ) = Pα,it,p (T ) on Aci for i ∈ K. It follows

from the above discussion and the martingale property of P α̃t,p that it takes values in [0, 1]κ on [t, T ],

so that α̃ ∈ At,p. Since P α̃,it,p (T ) ≤ Pα,it,p (T ) ∨ 0, the inequality Y νt,x,y(T ) ≥ G(Xt,x(T ), Pαt,p(T )) together

with (2.12) imply that Y νt,x,y(T ) ≥ G(Xt,x(T ), P α̃t,p(T )). This shows that w2 ≥ w1, so that w2 = w1. It

remains to show that v = w2. The inequality w2 ≥ v is an immediate consequence of the martingale

property of Pαt,p. On the other hand, for y > v, we can find ν ∈ U such that p̄i := P[Y νt,x,y(T ) ≥
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gi(Xt,x(T ))] ≥ pi for all i ∈ K. Set p̄ := (p̄i)i∈K. Then, the martingale representation theorem implies

that we can find α ∈ A such that Pα,it,p̄ (T ) = 1{Y νt,x,y(T )≥gi(Xt,x(T ))} for each i ∈ K. We conclude by

observing that Pα,it,p̄ (T ) ≥ Pα,it,p (T ) for each i ∈ K. 2

Remark 2.3 As in [6], the new controlled process Pαt,p should be interpreted as the martingale with

components given by (P[Y νt,x,y(T ) ≥ gi(Xt,x(T )) | Fs])s∈[t,T ], at least when the controls ν and α are

optimal. This is rather transparent in the above proof. The fact that we can restrict to the set of

controls At,p is therefore clear since a conditional probability should take values in [0, 1].

Remark 2.4 Note that α ∈ At,p implies that αi· ≡ 0 for all i ∈ K such that pi ∈ {0, 1}, since Pαt,p is a

martingale.

The representation (2.14) coincides with a stochastic target problem in standard form but with un-

bounded controls as studied in [6], unbounded referring to the fact that α can not be bounded a-priori

since it comes from the martingale representation theorem. In particular, a PDE characterization of

the value function v in the parabolic interior of the domain

D := [0, T )× (0,∞)d × (0, 1)κ

follows from the general results of [6]. The main difference comes from the fact that the constraints

Pα,i ∈ [0, 1] introduce boundary conditions that have to be discussed separately. In order to deal with

these boundary conditions, we first divide the closure of the domain D̄ into different regions corre-

sponding to its parabolic interior D and the different boundaries associated to the level of conditional

probabilities. Namely, given

Pκ := {(I, J) ∈ K2 : I ∩ J = ∅ and I ∪ J ⊂ K},

we set, for (I, J) ∈ Pκ,

DIJ := [0, T )× (0,∞)d ×BIJ , (2.15)

where

BIJ := {p ∈ [0, 1]κ : pi = 0 for i ∈ I, pj = 1 for j ∈ J, and 0 < pl < 1 for l /∈ I ∪ J} .

Then,

[0, T )× (0,∞)d × [0, 1]κ = ∪(I,J)∈PκDIJ .

The interpretation of the partition is the following. For (t, x, p) ∈ D, any pi takes values in (0, 1) so

that Pα,it,p is not constrained locally at time t by the state constraints which appears in (2.13), namely

Pα,it,p ∈ [0, 1]. This means that the control αi· can be chosen arbitrarily, at least locally around the initial

time t. When (t, x, p) ∈ DIJ with I ∪ J 6= ∅, then there is at least one i ≤ κ such that pi = 0 or pi = 1.

In this case the state constraints Pα,it,p ∈ [0, 1] on [t, T ] imposes to choose αi· = 0 on [t, T ], see Remark

2.4. Hence, letting πIJ be the operator defined by

p ∈ [0, 1]κ 7→ πIJ(p) = (pi1i/∈I∪J + 1i∈J)i∈K (2.16)

for (I, J) ∈ Pκ, we have

v = vIJ := v(·, πIJ(·)) on D̄IJ , (2.17)

where, for (t, x, p) ∈ D̄,

vIJ(t, x, p) = inf{y ≥ ` : Y νt,x,y(T ) ≥ G(Xt,x(T ), Pαt,πIJ (p)(T )) for some (ν, α) ∈ U ×AIJt,πIJ (p)} (2.18)
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with

AIJt,πIJ (p) :=
{
α ∈ At,p : αi· = 0 for all i ∈ I ∪ J

}
,

recall Remark 2.4.

In the rest of the paper, we shall write (I, J) ∈ Pkκ when (I, J) ∈ Pκ and |I|+ |J | = k, k ≤ κ. We shall

also use the notations (I ′, J ′) ⊃ (I, J) when I ′ ⊃ I and J ′ ⊃ J . If in addition, (I ′, J ′) 6= (I, J), then we

will write (I ′, J ′) ) (I, J).

Remark 2.5 It is clear that v and each vIJ , (I, J) ∈ Pκ, are non-decreasing with respect to their

p-parameter. In particular, vIJ′ ≥ vIJ ≥ vI′J for (I ′, J ′) ⊃ (I, J).

Remark 2.6 Since gi ≥ gj for i ≤ j, it would be natural to restrict to the case where pi ≤ pj for i ≤ j.
From the PDE point of view, this would lead to the introduction of boundary conditions on the planes

for which pi = pj for some i 6= j. Since this restriction does not appear to be necessary in our approach,

we deliberately do not use this formulation. From the pure numerical point of view, one could however

use the fact that v(·, p) = v(·, p̂) where p̂ is defined by p̂j = maxi≤j p
j for i ≤ κ.

Remark 2.7 Note that, as defined above on D̄IJ , the function vIJ depends on its p-parameters only

through the components (pl)l/∈I∪J . However, for ease of notations, we shall always use the notation

vIJ(·, p) instead of a more transparent notation such as vIJ(t, x, (pl)l/∈I∪J). Similarly, a test function

on D̄IJ depends on the p-parameter only through (pl)l/∈I∪J .

Remark 2.8 Note that, for any J ⊂ K,

vJcJ = inf{y ≥ ` : Y νt,x,y(T ) ≥ gJ(Xt,x(T )) for some ν ∈ U},

where

gJ := max
j∈J

gj ∨ ` (2.19)

coincides with the super-hedging price of the payoff gJ(Xt,x(T )), while

vK∅ = inf{y ≥ ` : 1{Y νt,x,y(T )≥maxi≤κ gi(Xt,x(T ))} ≥ 0 and Y νt,x,y(T ) ≥ ` for some ν ∈ U} = ` .

2.3 PDE characterization

As already mentioned, stochastic target problems of the form (2.18) have been studied in [6] which

provides a PDE characterization of each value function vIJ on DIJ . In order to state it, we first need

to introduce some additional notations. For ease of notations, we set

µX,P :=

(
µX

0κ

)
and σX,P (·, a) :=

(
σX

a

)
for a ∈Mκ,d ,

where 0κ := (0, . . . , 0) ∈ Rκ.

Given (I, J) ∈ Pκ and ε > 0, we then define

F εIJ := sup
(u,a)∈NεIJ

Lu,a,

where, for (u, a) ∈ U ×Mκ,d and θ := (x, q,Q) ∈ Θ := (0,∞)d × Rd+κ ×Md+κ,d+κ,

Lu,a(θ) := µY (x, u)− µX,P (x)>q − 1

2
Trace

[
(σX,Pσ

>
X,P )(x, a)Q

]
,
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and

N ε
IJ := {(u, a) ∈ U ×AIJ : |N u,a| ≤ ε}

with

N u,a(x, q) := σY (x, u)− q>σX,P (x, a) and AIJ := {a ∈Mκ,d : ak· = 0 for k ∈ I ∪ J} .

The main result of [6] states that vIJ is a discontinuous viscosity solution of the PDE

min{ϕ− ` , −∂tϕ+ F 0
IJ(·, Dϕ,D2ϕ)} = 0 on DIJ ,

where, for a smooth function ϕ : (t, x, p) ∈ [0, T ]×Rd×Rκ, Dϕ and D2ϕ stand for the gradient and the

Hessian matrix with respect to (x, p), and ∂tϕ stands for the time derivative. The label “discontinuous

viscosity solution” means that it has be stated in terms of the upper- and lower-semicontinuous envelopes

of v, see Definition 2.2 below, and that we need to relax the operator F 0
IJ , which may not be continuous,

by considering the upper- and lower-semicontinuous envelopes F ∗IJ and FIJ∗

F ∗IJ(θ) := lim sup
(θ′, ε′) → (θ, 0)

(θ′, ε′) ∈ Θ × R+

F ε
′

IJ(θ′) and FIJ∗(θ) := lim inf
(θ′, ε′) → (θ, 0)

(θ′, ε′) ∈ Θ × R+

F ε
′

IJ(θ′) .

This leads to a system, hereafter called (S), of PDEs, each stated on a sub-domain DIJ , with appropriate

boundary conditions, see Theorem 2.2 and Corollary 2.1 below.

Before defining precisely what we mean by a solution of (S), we need to introduce an extra technical

object to which we will appeal when we define the notion of subsolution.

Definition 2.1 Given (I, J) ∈ Pκ and (t, x, p) ∈ DIJ , we denote by CIJ(t, x, p) the set of C1,2 functions

ϕ with the following property: for all ε > 0, all open set B such that (x,Dϕ(t, x, p)) ∈ B and N0
IJ 6= ∅

on B, and all (ũ, ã) ∈ N0
IJ(x,Dϕ(t, x, p)), there exists an open neighborhood B′ of (x,Dϕ(t, x, p)) and

a locally Lipschitz map (û, â) such that |(û, â)(x,Dϕ(t, x, p))− (ũ, ã)| ≤ ε and (û, â) ∈ N0
IJ on B′.

Remark 2.9 Fix (I, J) ∈ Pκ such that there exists i ∈ K \ (I ∪ J). Let ϕ be a smooth function such

that Dpiϕ 6= 0 on a neighborhood of (t, x, p) ∈ D̄. Then, (u, a) ∈ N0
IJ(x,Dϕ(t, x, p)) is equivalent to

ai· =

σY (x, u)−Dxϕ(t, x, p)>σX(x)−
∑

j /∈I∪J∪{i}

aj·Dpjϕ(t, x, p)

 /Dpiϕ(t, x, p).

Since Dpiϕ 6= 0 on a neighborhood of (t, x, p), this readily implies that ϕ ∈ CIJ(t, x, p).

A viscosity solution of (S) is then defined as follows.

Definition 2.2 (i) Given a locally bounded map V defined on D̄ and (I, J) ∈ Pκ, we define VIJ :=

V (·, πIJ(·)) and

V ∗IJ(t, x, p) := lim sup
(t′, x′, p′) → (t, x, p)

(t′, x′, p′) ∈ DIJ

VIJ(t′, x′, p′) and VIJ∗(t, x, p) := lim inf
(t′, x′, p′) → (t, x, p)

(t′, x′, p′) ∈ DIJ

VIJ(t′, x′, p′) ,

for (t, x, p) ∈ DIJ .

(ii) We say that V is a discontinuous viscosity supersolution of (S) if VIJ∗ is a viscosity supersolution

of

min
{
ϕ− ` , −∂tϕ+ F ∗IJ(·, Dϕ,D2ϕ)

}
= 0 on DIJ , (2.20)
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for each (I, J) ∈ Pκ.

(iii) We say that V is a discontinuous viscosity subsolution of (S) if V ∗IJ is a viscosity subsolution of

min
{
ϕ− ` , −∂tϕ+ FIJ∗(·, Dϕ,D2ϕ)

}
= 0 if ϕ ∈ CIJ , on DIJ , (2.21)

for each (I, J) ∈ Pκ.

(iv) We say that V is a discontinuous viscosity solution of (S) if it is both a discontinuous super- and

subsolution of (S).

We can now state our first result which is a direct Corollary of Theorem 2.1 in [6].

Theorem 2.1 The function v is a discontinuous viscosity solution of (S).

Proof. The above result is an immediate consequence of Theorem 2.1 in [6]. Note that we replaced

their condition Assumption 2.1 by the condition ϕ ∈ CIJ , which is equivalent, in the statement of the

subsolution property, see Remark 2.9. 2

Remark 2.10 Fix (I, J) ∈ Pκ such that I ∪ J = K. Then, (u, a) ∈ Nε
IJ(x,Dϕ(t, x, p)) implies that

|u>σ(x)−Dxϕ(t, x, p)>diag [x]σ(x)| ≤ ε .

Since u ∈ U and σ(x) is invertible by assumption, one easily checks that (2.20) implies

diag [x]Dxϕ(t, x, p) ∈ U , (2.22)

recall the usual convention sup ∅ = −∞. This is the classical gradient constraint that appears in

super-hedging problems with constraints on the strategy, see e.g. [9], where it is written in terms of

proportions of the wealth invested in the risky assets.

Remark 2.11 Let ϕ be a smooth function. If Dpiϕ(t, x, p) = 0 for i /∈ I ∪ J , then Nε
IJ(x,Dϕ(t, x, p))

takes the form Uε×Mκ,d for some Uε ⊂ U , ε > 0. Thus the optimization over a ∈Mκ,d in the definition

of F εIJ is performed over an unbounded set. On the other hand, if Dpiϕ(t, x, p) > 0 for i /∈ I ∪ J , then

the same arguments as in Remark 2.9 imply that at least one line of a is given by the other ones. In

particular, for |I|+ |J | = κ−1, the sequence of sets (Nε
IJ(x,Dϕ(t, x, p)))0≤ε≤1 is contained in a compact

subset of U ×Mκ,d. This implies that F ∗IJ 6= FIJ∗ in general.

As already mentioned the main difficulty comes from the boundary conditions. We first state the space

boundary condition in the p-variable.

Theorem 2.2 Fix (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ⊃ (I, J), we have

(i) vIJ∗ is viscosity supersolution of

min
{
ϕ− ` , −∂tϕ+ F ∗IJ′(·, Dϕ,D2ϕ)

}
= 0 on DIJ′ ,

(ii) v∗IJ(t, x, p) ≤ v∗I′J′(t, x, p), for (t, x, p) ∈ D̄IJ ∩ [0, T ]× (0,∞)d ×BI′J′ .

Proof. It is proved by the same arguments as in the proofs of Proposition 4.2 and Proposition 4.4

below. 2

We now discuss the boundary condition as t approaches T .

In the case where I ∪ J = K with |J | > 0, the map vIJ coincides with the super-hedging problem

associated to the payoff gJ as defined in (2.19), recall Remark 2.8. One could therefore expect that
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vIJ(T−, ·) = gJ . However, as usual, see e.g. [9], the terminal condition for vIJ is not the natural one

since the gradient constraint that appears implicitly in (2.21), see Remark 2.10, should propagate up to

the time boundary. The natural boundary condition should be given by the smallest function φ above

gJ that satisfies the associated gradient constraint diag [x]Dxφ ∈ U . This leads to the introduction of

the “face-lifted” version of gJ defined by:

ĝJ(x) := sup
ζ∈Rd

[gJ(xeζ)− δU (ζ)] , (2.23)

where

δU (ζ) := sup
u∈U

u>ζ , ζ ∈ Rd (2.24)

is the support function of the convex closed set U and xeζ = (xieζ
i

)i≤d.

When I ∪ J 6= K, the above mentioned gradient constraint does not appear anymore in (2.21), see e.g.

Remark 2.9, and the terminal boundary condition can be naturally stated in terms of

Ĝ(x, p) := inf{y ≥ ` : y ≥ gi(x)10<pi<1 + ĝi(x)1pi=1, for all i ∈ K}

= max
i∈K

(
`1pi=0 + gi(x)10<pi<1 + ĝi(x)1pi=1

)
. (2.25)

Corollary 2.1 v∗(T, ·) ≥ Ĝ∗ and v∗(T, ·) ≤ Ĝ∗ on (0,∞)d × [0, 1]κ.

Proof. It is a consequence of Proposition 3.2 and Theorem 3.1 below. 2

Remark 2.12 In the case of κ = 1 and g1 ≥ ` = 0, it is shown in [11] and [6] that the terminal condition

should be face-lifted with respect to the p-variable when the set U in which controls take values is Rd.
This follows from the convexity of the value function in its p-variable. Namely, the terminal condition

as t → T is then given by p1g1. Corollary 2.1 shows that it is no more the case when we restrict to a

compact set U .

Remark 2.13 Combining Theorem 2.1, Theorem 2.2 and Corollary 2.1 provides a PDE characteriza-

tion of the value function v. However, the following should be noted:

1. It is clear that Ĝ∗ < Ĝ∗ for some p ∈ ∂[0, 1]κ.

2. The boundary conditions induced by Theorem 2.2 may not lead to vIJ∗ ≥ v∗IJ on the boundary

in the p-variable.

3. The operator FIJ in (2.20) and (2.21) is in general discontinuous when I ∪ J 6= K, see Remark

2.11 above.

This prevents us from proving a general comparison result for super- and sub-solutions of (S). We are

therefore neither able to prove that v is the unique solution of (S) in a suitable class, nor to prove the

convergence of standard finite difference numerical schemes. In order to surround this difficulty, we

shall introduce in the following Section a sequence of convergent approximating problems which are

more regular and for which convergent schemes can be constructed.
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Figure 1: Function ∆i
λ(x, ·)

3 The approximating problems

3.1 Definition and convergence properties

Set Λ := (0, (L−1 ∧ 1)/2)κ. Our approximating sequence (vλ)λ∈Λ is a sequence of value functions

associated to regularized stochastic target problems with controlled loss. Namely, for λ ∈ Λ, we set

vλ(t, x, p) := inf{y ≥ ` : ∃ν ∈ U s.t Y νt,x,y(T ) ≥ ` and E[∆i
λ(Xt,x(T ), Y νt,x,y(T ))] ≥ pi for i ∈ K},

where

∆i
λ(x, y) =



0 if y < `
λi(y−`)

gi(x)−2λi−` if ` ≤ y < gi(x)− 2λi

λi + (1−2λi)(y−gi(x)+2λi)
λi if gi(x)− 2λi ≤ y < gi(x)− λi

(1− λi) + λi(y−gi(x)+λi)
ĝi(x)−gi(x)+λi if gi(x)− λi ≤ y < ĝi(x)

1 if y ≥ ĝi(x)

(3.1)

is well-defined for λ ∈ Λ = (0, (L−1 ∧ 1)/2)κ as in Figure 1, recall (2.7), (2.8) and (2.11).

The convergence (vλ)λ∈Λ as λ ↓ 0 is an immediate consequence of the linearity of Y ν with respect to

its initial condition.

Proposition 3.1 For all λ ∈ Λ and (t, x, p) ∈ [0, T ]× (0,∞)d × [0, 1]κ,

vλ(t, x, p⊕ λ) + 2 max
i≤κ

λi ≥ v(t, x, p) ≥ vλ(t, x, p	 λ)−max
i≤κ

λi , (3.2)
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where

p⊕ λ := (((pi + λi) ∧ 1) ∨ 0)i≤κ and p	 λ := (((pi − λi) ∧ 1) ∨ 0)i≤κ .

Proof. This follows easily from the linearity of Y ν with respect to its initial condition and the fact

that

1{y−gi(x)+2λi≥0} + λi ≥ ∆i
λ(x, y) ≥ 1{y−gi(x)+λi≥0} − λi, for (y, x) ∈ R× (0,∞)d.

2

As an immediate consequence, we deduce that the sequences (vλ(·, ·⊕λ))λ∈Λ and (vλ(·, ·	λ))λ∈Λ allows

to approximate v at any continuity points in its p-variable. More precisely, the following holds.

Corollary 3.1 For all (t, x, p) ∈ [0, T ]× (0,∞)d × [0, 1]κ,

v(t, x, p−) = lim inf
λ↓0

vλ(t, x, p	 λ) and v(t, x, p+) = lim sup
λ↓0

vλ(t, x, p⊕ λ), (3.3)

where

v(·, p−) := lim
ε↓0

v(·, p	 ε1κ) and v(·, p+) := lim
ε↓0

v(·, p⊕ ε1κ)

with 1κ = (1, . . . , 1) ∈ Rκ.

Proving the continuity in its p-variable of the initial value function v by probabilistic arguments, and

therefore the point-wise convergence of our approximation seems very difficult, and is beyond the scope of

this paper. A standard approach could be to derive the continuity of v by using its PDE characterization

and by applying a suitable comparison theorem which would imply that v∗ = v∗. As explained in Section

2.3, this also does not seem to be feasible.

Note however that the right- and left-limits of v in its p-variable have interpretations in terms of natural

relaxed version of the original problem (2.9):

v(t, x, p) := inf{y : ∀ε > 0 ∃νε ∈ U s.t. Y ν
ε

t,x,y(T ) ≥ ` , P
[
Y ν

ε

t,x,y(T )− g(Xt,x(T )) ≥ −γi
]
≥ pi − ε ∀ i ≤ κ},

and

v̄(t, x, p) := inf{y : ∃ ν ∈ U s.t. Y νt,x,y(T ) ≥ ` , P
[
Y νt,x,y(T )− g(Xt,x(T )) ≥ −γi

]
> pi ∀ i ≤ κ}.

Proposition 3.2 For all (t, x, p) ∈ [0, T ]× (0,∞)d × (0, 1)κ,

v(t, x, p+) = v̄(t, x, p) ≥ v(t, x, p) = v(t, x, p−) .

Proof. It is obvious that v̄ ≥ v ≥ v. Moreover, any y > v(t, x, p + ε1κ) for some ε > 0, satisfies

y ≥ v̄(t, x, p). Hence, for ε > 0 small enough, v(t, x, p+ ε1κ) ≥ v̄(t, x, p), so that v(t, x, p+) ≥ v̄(t, x, p).

Similarly, y > v(t, x, p) implies y ≥ v(t, x, p−ε1κ), for any ε > 0 small enough, and therefore v(t, x, p) ≥
v(t, x, p−). 2

3.2 PDE characterization of the approximating problems

The reason for introducing the sequence approximating problems (vλ)λ∈Λ is that they are more regular:

1. ∆λ is Lipschitz continuous:

|∆i
λ(x, y + h)−∆i

λ(x, y)| ≤ Cλ|h|, for (x, y, h) ∈ (0,∞)d × R× R. (3.4)

where

Cλ := max
i∈K

max{λi/(L−1 − 2λi) , 1/λi , 1} , (3.5)

recall (2.8) and (2.11).
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2. Its inverse with respect to its y-variable is Lipschitz continuous too. Hence, the natural boundary

condition at T is given by a continuous function

Gλ(x, p) := inf{y ≥ ` : min
i∈K

(∆i
λ(x, y)− pi) ≥ 0} , for (x, p) ∈ (0,∞)d × [0, 1]κ . (3.6)

Item 2. above will allow us to prove that the boundary condition as t → T is indeed given by the

continuous function Gλ, compare with 1. of Remark 2.13.

Proposition 3.3 The function vλ satisfies

vλ∗(T, ·) = vλ∗ (T, ·) = Gλ on (0,∞)d × [0, 1]κ. (3.7)

Proof. See Section 4 below. 2

Item 1. above induces a gradient constraint on vλ with respect its p-variable, showing that it is strictly

increasing with respect to this variable, in a suitable sense, which will allow us to prove a comparison

result for the related PDE, compare with Remark 2.11 and 3. of Remark 2.13. We could not obtain this

for the original problem by lack of continuity and local strict monotonicity of the indicator function.

More precisely, we shall prove in Section 4.2 below the following.

Proposition 3.4 Set

% := 4L2(T ∨ 1) . (3.8)

Fix (I, J) ∈ Pκ \Pκκ and assume that ι ≥ 0 is such that vλ∗IJ (t, x, p) > vλ∗JcJ(t, x, p)+ ι. Let ϕ be a smooth

function such that (t, x, p) achieves a maximum of vλ∗IJ − ϕ. Then,∑
i/∈I∪J

Dpiϕ ≥
ι

Cλ(ι+ %)
=: $λ(ι) , (3.9)

where Cλ is defined as in (3.5).

Note that the above can be translated in terms of the operator Mλ
IJ defined as:

(y, z, qp) ∈ R× R× Rκ 7→Mλ
IJ(y, z, qp) := max

ι≥0
min{y − z − ι , $λ(ι)−

∑
i/∈I∪J

qip} .

Corollary 3.2 Fix (I, J) ∈ Pκ \ Pκκ . Then vλ∗IJ is a viscosity subsolution on DIJ of

Mλ
IJ(ϕ, vλ∗JcJ , Dpϕ) = 0 .

In view of Theorem 2.1 in [6], this implies that vλ is a discontinuous viscosity solution of the system

(Sλ) defined as follows, where we use the convention

Mλ
IJ = −∞ for I ∪ J = K . (3.10)

Definition 3.1 Let V be a locally bounded map defined on D̄.

(i) We say that V is a discontinuous viscosity supersolution of (Sλ) if, for each (I, J) ∈ Pκ, VIJ∗ is a

viscosity supersolution on DIJ of

Hλ∗
IJ [ϕ, VJcJ∗] := max

{
min

{
ϕ− ` , −∂tϕ+ F ∗IJ(·, Dϕ,D2ϕ)

}
, Mλ

IJ(ϕ, VJcJ∗, Dpϕ)
}

= 0 . (3.11)

(ii) We say that V is a discontinuous viscosity subsolution of (Sλ) if, for each (I, J) ∈ Pκ, V ∗IJ is a

viscosity subsolution on DIJ of

Hλ
IJ∗[ϕ, V

∗
JcJ ] := max

{
min

{
ϕ− ` , −∂tϕ+ FIJ∗(·, Dϕ,D2ϕ)

}
, Mλ

IJ(ϕ, V ∗JcJ , Dpϕ)
}

= 0 . (3.12)

(iv) We say that V is a discontinuous viscosity solution of (Sλ) if it is both a discontinuous super- and

subsolution of (Sλ).
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Remark 3.1 The convention (3.10) means that a supersolution of (3.11) (resp. a subsolution of (3.12))

for I ∪ J = K is indeed a supersolution of (2.20) (resp. a subsolution of (2.21)).

Remark 3.2 Note that a viscosity supersolution of (2.20) on DIJ is also a viscosity supersolution of

(3.11) on DIJ . As already argued,

vλ is a discontinuous solution of (S) (3.13)

by Theorem 2.1 in [6], so that Corollary 3.2 implies that it is a discontinuous solution of (Sλ). From

the supersolution point of view, the latter characterization is weaker. Still we shall use it because, first,

it is sufficient and, second, we shall appeal to it when discussing the convergence of a finite difference

approximation scheme below.

Combining the above results, we obtain:

Theorem 3.1 The function vλ is a discontinuous viscosity solution of (Sλ). Moreover, it satisfies

vλ∗(T, ·) = vλ∗ (T, ·) = Gλ on (0,∞)d × [0, 1]κ. (3.14)

The fact that the above Theorem allows to characterize uniquely vλ is a consequence of the following

comparison result, in the viscosity sense.

Theorem 3.2 (i) Let V be a bounded function on [0, T )× (0,∞)d× [0, 1]κ which is non-decreasing with

respect to its last parameter. Assume that V is a discontinuous viscosity supersolution of (Sλ) such that

V∗(T, ·) ≥ Gλ and VIJ∗ ≥ VI′J′∗ on ∂DIJ ∩DI′J′ for all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ) (I, J).

Then, V ≥ vλ on D̄.

(ii) Let V be a bounded function on [0, T )× (0,∞)d × [0, 1]κ which is non-decreasing with respect to its

last parameter. Assume that V is a discontinuous viscosity subsolution of (Sλ) such that V ∗(T, ·) ≤ Gλ

and V ∗IJ ≤ V ∗I′J′ on ∂DIJ ∩DI′J′ for all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ) (I, J). Then, V ≤ vλ

on D̄.

Proof. See Section 4.4 below. 2

Combining the above results leads to the following characterization.

Theorem 3.3 The function vλ is continuous and is the unique bounded discontinuous viscosity solution

of the system (Sλ) in the class of bounded discontinuous solutions V which are non-decreasing in their

last variable and satisfy V∗(T, ·) = V ∗(T, ·) = Gλ, V ∗IJ ≤ V ∗I′J′ and VIJ∗ ≥ VI′J′∗ on ∂DIJ ∩DI′J′ for

all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ) (I, J).

3.3 Finite differences approximation

In this section, we construct an explicit finite difference scheme and prove its convergence.

3.3.1 PDE reformulation

We first reformulate the PDEs associated to vλ in a more tractable way, which will allow us to define

naturally a monotone scheme. To this purpose, we introduce the support function δU associated to the

closed convex (and bounded) set U as in (2.24). Since 0 ∈ intU , δU characterizes U in the following

sense

u ∈ intU iff min
|ζ|=1

(δU (ζ)− ζ>u) > 0 and u ∈ U iff min
|ζ|=1

(δU (ζ)− ζ>u) ≥ 0 ,
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see e.g. [13].

Moreover (u, a) ∈ N ε
IJ(x, q) with q> = (q>x , q

>
p ), if and only if there exists ξε ∈ Rd such that |ξε| ≤ ε for

which

u> = ū(x, a, q)> + ξεσ(x)−1 ∈ U and a ∈ AIJ ,

where

ū(x, q, a)> := q>x diag[x] + q>p aσ(x)−1.

It follows that

−r + F ∗IJ(x, q,Q) ≥ 0 iff K̄∗IJ(x, r, q,Q) ≥ 0 and − r + FIJ∗(x, q,Q) ≤ 0 iff K̄IJ∗(x, r, q,Q) ≤ 0

where K̄∗IJ and K̄IJ∗ are the upper- and lower-semicontinuous envelopes of

K̄IJ(x, r, q,Q) := sup
a∈AIJ

min
{
−r + Lū(x,q,a),a(x, q,Q) , Ra(x, q)

}
with

Ra(x, q) := inf
|ζ|=1

Ra,ζ(x, q) and Ra,ζ(x, q) := δU (ζ)− ζ>ū(x, q, a) .

Remark 3.3 For later use, note that, for q> = (q>x , q
>
p ),

Lū(x,q,a),a(x, q,Q) = q>p aσ(x)−1µ(x)− 1

2
Ξa(x,Q) =: L̄a(x, qp,Ξ

a(x,Q)).

where

Ξa(x,Q) := Trace
[
σX,Pσ

>
X,P (x, a)Q

]
,

does not depend on qx.

It follows that V is a viscosity supersolution of (3.11) if and only if it is a viscosity supersolution of

H̄λ∗
IJ [ϕ, VJcJ∗] := max

{
min

{
ϕ− ` , K̄∗IJ(·, ∂tϕ,Dϕ,D2ϕ)

}
, Mλ

IJ(ϕ, VJcJ∗, Dpϕ)
}

= 0 , (3.15)

and that V is a viscosity subsolution of (3.12) if and only if it is a viscosity subsolution of

H̄λ
IJ∗[ϕ, V

∗
JcJ ] := max

{
min

{
ϕ− ` , K̄IJ∗(·, ∂tϕ,Dϕ,D2ϕ)

}
, Mλ

IJ(ϕ, V ∗JcJ , Dpϕ)
}

= 0. (3.16)

3.3.2 Scheme construction

We now define a monotone finite difference scheme for the formulation obtained in the previous section.

In the following, we write h to denote an element of the form h = (h0, h1, h2) ∈ (0, 1)3.

a. The discretization in the time variable.

Given n0 ∈ N, we first introduce a discretization time-step h0 := T/n0 together with a grid

Th := {(T − (n0 − i)h0), i = 0, . . . , n0}.

The time derivative is approximated as usual by

∂ht [ϕ](t, x, p) := h−1
0 (ϕ(t+ h0, x, p)− ϕ(t, x, p)) .

b. The discretization in the space variable.

The grids in the space variables are defined as

Xh
cX := {e−cX+(n−i)h1 , i = 0, . . . , nX}d and Ph := {1− (n− i)h1, i = 0, . . . , nP }κ ,
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for some cX , n ∈ N and where h1 := 1/n, (nX , nP ) := n(2cX , 1).

Note that the space discretization in the x variable amounts to performing a logarithmic change of vari-

able. Taking this into account, the first order derivatives with respect to x and p are then approximated

as follows, with {ei}i≤d (resp. {`j}j≤κ) denoting the canonical basis of Rd (resp. Rκ):

∂L,hp,j [ϕ, a](t, x, p) := h−1
1

{
ϕ(t+ h0, x, p⊕ h1`j)− ϕ(t, x, p) if µ>(aσ−1(x))>`j ≤ 0

ϕ(t, x, p)− ϕ(t+ h0, x, p	 h1`j) if µ>(aσ−1(x))>`j > 0

∂R,hx,i [ϕ, ζ](t, x, p) := h−1
1 diag [x]

−1

{
ϕ(t+ h0, x⊕̂h1ei, p)− ϕ(t, x, p) if e>i ζ ≥ 0

ϕ(t, x, p)− ϕ(t+ h0, x	̂h1ei, p) if e>i ζ < 0

∂R,hp,j [ϕ, a, ζ](t, x, p) := h−1
1

{
ϕ(t+ h0, x, p⊕ h1`j)− ϕ(t, x, p) if `>j aσ

−1(x)ζ ≥ 0

ϕ(t, x, p)− ϕ(t+ h0, x, p	 h1`j) if `>j aσ
−1(x)ζ < 0

∂M,h
p,j [ϕ](t, x, p) := h−1

1 (ϕ(t+ h0, x, p⊕ h1`j)− ϕ(t, x, p)),

where the operators ⊕ and 	 are given in Proposition 3.1 and

x⊕̂y := ((xiey
i

) ∨ e−cX ) ∧ ecX )i≤d and x	̂y := ((xie−y
i

) ∨ e−cX ) ∧ ecX )i≤d, for (x, y) ∈ (0,∞)d ×Rd.

We denote by ∂L,hp , ∂K,hx , ∂K,hp and ∂M,h
p the corresponding vectors.

As for the second order term, we use the Camilli and Falcone approximation [7], in order to ensure

that the scheme is monotone. Namely, we first introduce an approximation parameterized by h2 > 0 of

Trace
[
σ(X,P )σ

>
(X,P )(x, a)D2ϕ(t+ h0, x, p)

]
as follows

∆̃h[ϕ, a](t, x, p)

:= h−1
2

d∑
i=1

(
ϕ(t+ h0, x⊕̂

√
h2σ

·i(x), p⊕
√
h2a
·i) + ϕ(t+ h0, x	̂

√
h2σ

·i(x), p	
√
h2a
·i)− 2ϕ(t+ h0, x, p)

)
−h−1

1

d∑
i=1

|σ·i(x)|2
(
ϕ(t0, x, p)− ϕ(t+ h0, x	̂h1ei, p)

)
(3.17)

where σ·i and a·i denote the i-th column of σX and a.

Note that the above approximation of the second order term requires the computation of the approxi-

mated value function at points outside of the grid. It therefore requires an interpolation procedure. In

this paper, we use a local linear interpolation based on the Coxeter-Freudenthal-Kuhn triangulation,

see e.g. [12]. It consists in first constructing the set of simplices {Sj}j associated to the regular tri-

angulation of ln[e−cX , ecX ]d × [0, 1]κ with the set of vertices ln Xh
cX ×Ph. Here the ln operator means

that we take the ln component-wise, recall that we use a logarithmic scale. In such a way, we can then

provide an approximating function belonging to the set Sh of the functions which are continuous in

[e−cX , ecX ]d × [0, 1]κ and piecewise affine inside each simplex Sj (in ln scale for the x-variable). More

precisely, each point (y, p) ∈ [−cX , cX ]d × [0, 1]κ can be expressed as a weighted combination of the

corners of the simplex Sj it lies in. We can thus write

(y, p) =
∑

ζ∈lnXh
cX
×Ph

ω(y, p | ζ)ζ,

where ω is a non negative weighting function such that∑
ζ∈lnXh

cX
×Ph

ω(y, p |ζ) = 1.
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Given a map ϕ defined on Th×Xh
cX×Ph , we then approximate it at (t, x, p) ∈ Th×[e−cX , ecX ]d×[0, 1]κ

by

ϕ(t, x, p) :=
∑

(ζX ,ζP )∈lnXh
cX
×Ph

ω(lnx, p | ζ)ϕ(t, eζX , ζP )

in which the exponential is taken component by component.

This leads to the approximation of ∆̃h[ϕ, a](t, x, p) by

∆h[ϕ, a](t, x, p) := h−1
2

d∑
i=1

∑
(ζX ,ζP )∈lnXh

cX
×Ph

ω(xih+, p
i
h+[a] |(ζX , ζP ))ϕ(t+ h0, e

ζX , ζP )

+h−1
2

d∑
i=1

∑
(ζX ,ζP )∈lnXh

cX
×Ph

ω(xih−, p
i
h−[a] |(ζX , ζP ))ϕ(t+ h0, e

ζX , ζP )

−2dh−1
2 ϕ(t+ h0, x, p)

−h−1
1

d∑
i=1

|σ·i(x)|2
(
ϕ(t+ h0, x, p)− ϕ(t+ h0, x	̂h1ei, p)

)
where

xih+ := x⊕̂
√
h2σ

·i(x) , pih+[a] := p⊕
√
h2a
·i, and xih− := x	̂

√
h2σ

·i(x) , pih−[a] := p	
√
h2a
·i.

c. The approximated operator.

Given ā > 0, we then approximate H̄λ
IJ by Ĥh,cX ,ā

IJ defined as

Ĥh,cX ,ā
IJ [ϕ,ψ] := max

{
min

{
ϕ− ` , sup

a∈AāIJ
K̂a
hϕ

}
, M̂ IJ

h [ϕ,ψ]

}
with

AāIJ := {a ∈ AIJ : |a| ≤ ā}, M̂ IJ
h [ϕ,ψ] := M IJ(ϕ,ψ, ∂M,h

p [ϕ])

and

K̂a
hϕ := min

{
−∂L,ht ϕ+ L̄a(·, ∂L,hp ϕ,∆L,h[ϕ, a]) , min

|ζ|=1
Ra,ζ(·, ∂R,hx [ϕ, ζ], ∂R,hp [ϕ, a, ζ])

}
.

The resolution is done as follows:

(i). For (I, J) ∈ Pκκ , we define wā,cX ,hIJ ∈ Sh as the solution of
wā,cX ,hIJ (T, ·) = Gλ(·, πIJ) on Xh

cX ×Ph

max{wā,cX ,hIJ − L , Ĥh,cX ,ā
IJ [wā,cX ,hIJ , 0]} = 0 on Th

− ×Xh
cX− ×Ph

wā,cX ,hIJ = ĝJ on Th
− × (Xh

cX \Xh
cX−)×Ph

.

where we use the notations

Th
− := {(T − (n0 − i)h0), i = 0, . . . , n0 − 1} and Xh

cX− := {e−cX+(n−i)h1 , i = 1, . . . , nX − 1}d .

(ii). We then proceed by backward induction on |I|+ |J |. Once wā,cX ,hI′J′ ∈ Sh constructed for (I ′, J ′) ∈
P lκ for all l ≥ k, for some 1 ≤ k ≤ κ, we define wā,cX ,hIJ for (I, J) ∈ Pk−1

κ as the solution of
wā,cX ,hIJ (T, ·) = Gλ(·, πIJ) on Xh

cX ×Ph

(wā,cX ,hIJ − wā,cX ,hJcJ ) ∧max{wā,cX ,hIJ − L , Ĥh,cX ,ā
IJ [wā,cX ,hIJ , wā,cX ,hJcJ ]} = 0 on (Th

− ×Xh
cX− ×Ph) ∩DIJ

wā,cX ,hIJ = Gλ(·, πIJ) on (Th
− × (Xh

cX \Xh
cX−)×Ph) ∩DIJ

wā,cX ,hIJ = wā,cX ,hI′J′ on (Th
− ×Xh

cX− ×Ph) ∩ ∂DIJ ∩DI′J′ for (I ′, J ′) ) (I, J)

.
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One easily checks that

|∆̃h[ϕ, a](t, x, p)−∆h[ϕ, a](t, x, p)| ≤ O(h1/h2), (3.18)

which implies that the numerical scheme is monotone and consistent whenever

h0 = o(h1) and h1 = o(h2). (3.19)

3.3.3 Convergence of the approximating scheme

The convergence of the scheme is obtained as h = (h0, h1, h2) → 0 and cX → ∞, with the convention

(3.19), and then ā→∞. We therefore define the relaxed semi-limits, for (t, x, p) ∈ D̄IJ , (I, J) ∈ Pκ,

w̄ā∗IJ(t, x, p) := lim sup
(t′, x′, p′) → (t, x, p)

h → 0, cX → ∞

wā,cX ,hIJ (t′, x′, p′) , w̄āIJ∗(t, x, p) := lim inf
(t′, x′, p′) → (t, x, p)

h → 0, cX → ∞

wā,cX ,hIJ (t′, x′, p′)

and

w̄∗IJ(t, x, p) := lim sup
(t′, x′, p′) → (t, x, p)

ā → ∞

wā∗IJ(t′, x′, p′) , w̄IJ∗(t, x, p) := lim inf
(t′, x′, p′) → (t, x, p)

ā → ∞

wāIJ∗(t
′, x′, p′) ,

in which the limits are taken along sequences of points (t′, x′, p′) ∈ D̄IJ and h satisfying (3.19). Note

that wā,cX ,hIJ takes values in [`, L], so that the above are well-defined and bounded. Moreover, it is

convergent:

Theorem 3.4 For all (I, J) ∈ Pκ, w̄∗IJ = w̄IJ∗ = vλIJ on D̄IJ .

Proof. See Section 4.5 below. 2

We conclude this section with some numerical illustration in the Black and Scholes model, where the

stock price X is defined as

Xt,x(s) = x+

∫ s

t

Xt,x(r)dWr for s ∈ [t, 1],

the payoff g(X) = (K −X)+ with the strike price K = 3, the thresholds γ = {γ1, γ2} = {0, 0.5}.

Example 3.1 We study the case U = [−1, 1].

Then, the “face-lifted” version of g is defined by

ĝ(x) =


3− x if x ∈ (0, 1]

2− ln(x) if x ∈ [1, e2]

0 if x ≥ e2

.

Taking λ = 1/32 and ` = −1, the Figure 2 plots an estimated value of vλ(0, x, p1, p2) when we fix x = e.

Example 3.2 When U = [−5, 5], the “face-lifted” version of g is equal to g on R+. The Figure 3 plots

an estimated value of vλ(0, x, p1, p2) when we take λ = 1/32, ` = −1 and x = 1. In the Figure 4, we

describe its graph when p2 = 0 in the same setting.
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Figure 2: vλ with U = [−1, 1]

4 Proof of the PDE characterizations and of the convergence

result

In this section, we collect the proofs of Proposition 3.3, Proposition 3.4, Theorem 3.2, Theorem 3.3 and

Theorem 3.4. We start with the boundary conditions in time and in the space variable p. We first recall

the geometric dynamic programming principle of [14], see also [15] and [16], to which we will appeal to

prove the boundary conditions. We next report the proof of the supersolution properties in subsection

4.1.2, and that of the subsolution properties in subsection 4.1.1. The gradient estimates in the viscosity

sense and the corresponding comparison result are proved in next subsection.

4.1 Boundary conditions

In the following, T[s,t] denotes the set of [s, t]-valued stopping times.

Corollary 4.1 Fix (t, x, p) ∈ D̄IJ .

(GDP1) If y ≥ ` and (ν, α) ∈ U ×AIJ are such that ∆λ(Xt,x, (T ), Y νt,x,y(T )) ≥ Pαt,p(T ) then

Y νt,x,y(θ) ≥ vλIJ(θ,Xt,x(θ), Pαt,p(θ)) , for all θ ∈ T[t,T ] .
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Figure 3: vλ with U = [−5, 5]

(GDP2) For y < vλIJ(t, x, p), θ ∈ T[t,T ] and (ν, α) ∈ U ×A,

P
[
Y νt,x,y(θ) > vλIJ(θ,Xt,x(θ), Pαt,p(θ))

]
< 1.

4.1.1 Boundary condition for the upper-semicontinuous enveloppe

We start with the boundary condition as t→ T .

Proposition 4.1 For all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ⊃ (I, J), we have

vλ∗IJ (T, ·) ≤ Gλ on (0,∞)d × B̄I′J′ .

Proof.

Step 1. We first show that the required result is true if I ∪ J = K. Note that, in this case, I ′ = I and

J ′ = J . Then,

vλIJ = w := inf{y ≥ ` : ∃ ν ∈ U s.t. Y ν·,y(T ) ≥ ĝJ(X·(T ))} .

Hence, it suffices to show that

w∗(T, ·) ≤ ĝJ , (4.1)

where w∗(T, x) := limε→0 sup{w(t′, x′) : (t′, x′) ∈ (T − ε, T ] × Bε(x′)}. We only sketch the proof of

(4.1) as it follows from the same arguments as in [3], up to obvious modifications. In the following, we

let (tn, xn)n be a sequence in [0, T )× (0,∞)d such that (tn, xn)→ (T, x) and w(tn, xn)→ w∗(T, x).
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Figure 4: U=[-5,5] and p2 = 0

It follows from the dual formulation of [10] that, for each n ≥ 1, we can find a predictable process ϑn

with values in Rd such that

Hϑn

n := E
(
−
∫ ·
tn

σ−1
X (µX − ϑns )(Xn(s))dWs

)
T

∈ L1(P) ,

where Xn := Xtn,xn , and

w(tn, xn) ≤ E

[
Hϑn

n (T )

(
gJ(Xn(T ))−

∫ T

tn

δU (ϑns )ds

)]
+ n−1 .

Since δU is homogeneous of degree 1 and convex, this implies that

w(tn, xn) ≤ E

[
Hϑn

n (T )

(
gJ(Xn(T ))− δU (

∫ T

tn

ϑns )ds

)]
+ n−1

so that, by definition of ĝJ in (2.23),

w(tn, xn) ≤ E
[
Hϑn

n (T )ĝJ(Zϑ
n

n (T ))
]

+ n−1 ,

where Zn := Xne
−

∫ ·
tn
ϑns ds. It remains to prove that

lim sup
n→∞

E
[
Hϑn

n (T )ĝJ(Zϑ
n

n (T ))
]
≤ ĝJ(x) .
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To show this, it suffices to follow line by line the arguments contained after the equation (6.7) in the

proof of Proposition 6.7 in [3].

Step 2. We now consider the case I ∪ J 6= K. We assume that

y0 := vλ∗IJ (T, x, p) > Gλ(x, p) (4.2)

and work towards a contradiction. It follows from Step 1 that ĝJ′(x) ≥ vλ∗J′cJ′(T, x). In view of (4.2)

and (3.6), this leads to vλ∗IJ (T, x, p) > vλ∗J′cJ′(T, x). Hence, there exists a sequence (tn, xn, pn)n ⊂ DIJ

which converges to (T, x, p) such that vλIJ(tn, xn, pn)→ vλ∗IJ (T, x, p) and

vλ∗J′cJ′(tn, xn, pn) < vλ∗J′cJ′(T, x, p) + ε < yn for all n ≥ 1, for some ε > 0,

where yn := vλIJ(tn, xn, pn)− n−1. We can then find νn ∈ U such that

Yn(T ) ≥ ĝJ′(Xn(T )) ≥ ` ,

where (Xn, Yn) := (Xtn,xn , Y
νn
tn,xn,yn). Moreover, since ∆l

λ is strictly increasing on {(x′, y′) : ∆l
λ(x′, y′) ∈

(0, 1)} and y0 > Gλ(x, p), we have ∆l
λ(x, y0) > pl for l /∈ I ′ ∪ J ′. Since (Xn(T ), Yn(T )) → (x, y0) in

law, up to a subsequence, because U is bounded and by the Lipschitz continuity of (µX , σX), we de-

duce that E[∆l
λ(Xn(T ), Yn(T ))] ≥ pln for l /∈ I ′ ∪ J ′, and n large enough. Finally, Yn(T ) ≥ ` so that

E[∆l
λ(Xn(T ), Yn(T ))] ≥ 0 for l ∈ I ′. This contradicts the fact that yn < vλIJ(tn, xn, pn). 2

We now turn to the boundary condition in the p-variable, i.e. as p→ ∂BIJ .

Proposition 4.2 For all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ⊃ (I, J), we have

vλ∗IJ ≤ vλ∗I′J′ on DI′J′ .

Proof. Since vλ is non-decreasing with respect to each variable pi, i ≤ k, we have vλIJ ≤ vλIJ′ for

J ′ ⊃ J . Hence it suffices to show the result for J = J ′. We also assume that I ′ 6= I, since otherwise

there is nothing to prove. Moreover, we claim that it is enough to show that

vλ∗IJ ≤ v̄I
′

IJ := max
{
vλ∗(I∪K)J : K ⊂ I ′ \ I, K 6= ∅

}
on DI′J′ . (4.3)

Indeed, if the above holds, then there exists K̂1 ⊂ I ′ \ I such that K̂1 6= ∅ and vλ∗IJ ≤ vλ∗
(I∪K̂1)J

. If

K̂1 ∪ I = I ′, the result is proved. If not, then applying the same result to I ∪ K̂1 instead of I implies

that there exists K̃1 ⊂ I ′ \ (I ∪ K̂1) such that K̂2 = K̃1 ∪ K̂1 strictly contains K̂1 and for which

vλ∗IJ ≤ vλ∗
(I∪K̂2)J

. The result then follows by iterating this procedures so as to construct an increasing

sequence of sets K̂n ⊂ I ′ \ I such that I ∪ K̂n = I ′ for a finite n.

We proceed in three steps.

Step 1. We first show that for any smooth function ϕ̃ on D̄ and (t̃, x̃, p̃) ∈ DI′J such that Dpi ϕ̃(t̃, x̃, p̃) 6=
0 for some i ∈ (I ∪ J)c and

max
D̄IJ

(strict)(vλ∗IJ − ϕ̃) = (vλ∗IJ − ϕ̃)(t̃, x̃, p̃) = 0, (4.4)

we have

min{ϕ̃− v̄I
′

IJ , −∂tϕ̃+ FIJ∗ϕ̃}(t̃, x̃, p̃) ≤ 0.

Assume to the contrary that there exists η > 0 s.t.

min{ϕ̃− v̄I
′

IJ ,−∂tϕ̃+ FIJ∗ϕ̃}(t̃, x̃, p̃) ≥ 2η. (4.5)
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In view of Remark 2.9, this implies that there exists ε > 0 and a locally Lipschitz map (û, â) such that

min{ϕ̃− v̄I
′

IJ , −∂tϕ̃+ L(û,â)(·,Dϕ̃)(·, Dϕ̃,D2ϕ̃)}(t, x, p) ≥ η, (4.6)

(û, â)(x,Dϕ̃(t, x, p)) ∈ N0
IJ(x,Dϕ̃(t, x, p)), (4.7)

for all (t, x, p) ∈ B := Bε(t̃, x̃, p̃) ∩ D̄IJ .

Let (tn, xn, pn) be a sequence in B that converges to (t̃, x̃, p̃) such that

vλIJ(tn, xn, pn)→ vλ∗I′J′(t̃, x̃, p̃)

and set yn := vλIJ(tn, xn, pn)− n−1 so that

γn := yn − ϕ̃(tn, xn, pn)→n→∞ 0.

We denote by (Xn, Pn, Y n) the solution of the (2.1)-(2.4) associated to the initial condition (tn, xn, pn)

and the Markovian control

(νn, αn) = (û, â)(Xn, Dϕ̃(·, Xn, Pn))

and define the stopping time

θn := θn1 ∧ θn2,

where

θn1 := inf{s ≥ tn : min
i∈I′\I

Pn,i(s) = 0} , θn2 := inf{s ≥ tn : (s,Xn(s), Pn(s)) /∈ B ∩DIJ}.

Note that, since (t̃, x̃, p̃) achieves a strict local maximum of vλ∗IJ − ϕ̃, we have

vλ∗IJ − ϕ̃ ≤ −ζ on ∂B = ∂(B ∩DIJ), for some ζ > 0.

Using (4.6), we then deduce that

Y n(θn)− γn ≥ ϕ̃(θn, X
n(θn), Pn(θn))

≥
(
v̄I
′

IJ(θn, X
n(θn), Pn(θn)) + η

)
1θn=θn1 +

(
vλ∗IJ (θn, X

n(θn), Pn(θn)) + ζ
)
1θn<θn1 .

We now observe that, by definition of θn1 and θn2, (θn2, X
n(θn2), Pn(θn2)) ∈ DIJ and therefore

vλIJ(θn, X
n(θn), Pn(θn)) = vλ(θn, X

n(θn), Pn(θn)) on {θn < θn1}. On the other hand, letting K be

the random subset of I ′ \ I such that Pn,i(θn1) = 0 for i ∈ K, we have v̄I
′

IJ(θn, X
n(θn), Pn(θn)) ≥

vλ(I∪K)J(θn, X
n(θn), Pn(θn)) = vλ(θn, X

n(θn), Pn(θn)) on {θn = θn1}. It then follows from the previ-

ous inequality that

Y n(θn)− γn ≥ vλ(θn, X
n(θn), Pn(θn)) + ζ ∧ η .

Since γn → 0, this leads to a contradiction to GDP2 for n large.

Step 2. The rest of the proof is similar to the proof of Section 6.2 in [6]. We provide the main arguments

for completeness. It remains to show that, for any smooth function ϕ̄ and (t̃, x̃, p̃) ∈ DI′J so that

max
D̄I′J

(strict)(vλ∗IJ − ϕ̄) = vλ∗IJ (t̃, x̃, p̃)− ϕ̄(t̃, x̃, p̃) = 0 , (4.8)

we have

ϕ̄(t̃, x̃, p̃) ≤ v̄I
′

IJ(t̃, x̃, p̃) .
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We argue by contradiction and assume that

ϕ̄(t̃, x̃, p̃) > v̄I
′

IJ(t̃, x̃, p̃). (4.9)

Given ρ > 0 and k ≥ 1, we define the modified test function

ϕk(t, x, p) := ϕ̄(t, x, p) + |x− x̃|4 + |t− t̃|2 +
∑
i/∈I∪J

|pi − p̃i|4 +
∑
i∈I′\I

ψk(1− pi) ,

where

ψk(z) := −kρ
∫ 1

z

e2k

ek(s+1) − e2k+1
ds, for all z ∈ R, (4.10)

Let (tk, xk, pk) ∈ D̄IJ be such that it maximizes of (vλ∗IJ − ϕk) on D̄IJ and observe that

−2ρk ≤ ψ′k ≤ −
ρk

2(e−1) , (4.11)

ψ
′′
< 0, (4.12)

limk→∞
(ψ′k(zk))2

|ψk”(zk)| = ρ, if (zk)k≥1 ⊂ (0, 1) is such that limk→∞ k(1− zk) = 0. (4.13)

Standard arguments then show that

(tk, xk, pk)→ (t̃, x̃, p̃) and kpk → 0,

see e.g. Step 2 in Section 6.1 of [6]. Note that (4.11) implies that Dpiϕk(tk, xk, pk) < 0 for i ∈ I ′ \ I,

for k large enough. It then follows from Step 1, (4.9) and (3.13) that

−∂tϕk(tk, xk, pk) + FIJ∗ϕk(tk, xk, pk) ≤ 0.

Then, there exist εk, qk ∈ Rd+κ and Ak ∈Md+κ such that

εk → 0

|(qk, Ak)− (Dϕk, D
2ϕk)(tk, xk, pk)| ≤ 1

k , (4.14)

−∂tϕk(tk, xk, pk) + F εkIJ (xk, pk, qk, Ak) ≤ 1
k .

Given an arbitrary u ∈ U , fix i0 ∈ I ′ \ I and αk ∈Mκ,d such that αj·k = 0 for j 6= i0 and

αi0·k :=
(
σY (xk, u)− qxk(tk, xk, pk)>σX(xk)

)
/qp

i0

k ,

where qxk stands for the first d components of qk and qp
i0

k stands for (by abuse of notations) the d+ i0

component of qk. Note that (u, αk) ∈ N0
IJ (xk, qk). Combined with the third inequality in (4.14), this

implies that

k−1 ≥ −∂tϕk(tk, xk, pk) + µY (xk, u)− µX(xk)>qxk −
1

2
Trace

[
σX(xk)σX(xk)>Axxk

]
−1

2
(αi0·k )2Ap

i0pi0

k − σX(xk)>Axp
i0

k αi0·k

where Axxk = (Aijk )i,j≤d, A
pi0pi0

k = Ad+i0 d+i0
k and Axp

i0

k = (Ai d+i0
k )i≤d. Sending k → ∞, using (4.11),

(4.13), the definition of αi0·k , (4.14) and recalling that Dpi0 ϕ̄ = 0 then leads to

0 ≥ −∂tϕ̄(t̃, x̃, p̃) + µY (x̃, u)− µX(x̃)>Dxϕ̄(t̃, x̃, p̃)− 1

2
Trace

[
σX(x̃)σX(x̃)>Dxxϕ(t̃, x̃, p̃)

]
+

1

2
ρ−1

∣∣σY (x̃, u)−Dxϕ(t̃, x̃, p̃)>σX(x̃)
∣∣2 .

Since ρ > 0 and u ∈ U are arbitrary, this implies that∣∣u>σ(x̃)−Dxϕ(t̃, x̃, p̃)>σX(x̃)
∣∣2 = 0 for all u ∈ U .

This leads to a contradiction since σ is assumed to be invertible. 2
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4.1.2 Boundary condition for the lower-semicontinuous envelope

We start with the boundary condition as t→ T .

Proposition 4.3 For all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ⊃ (I, J), we have

vλIJ∗(T, ·) ≥ Gλ on (0,∞)d × B̄I′J′ .

Proof. Fix (x, p) ∈ (0,∞)d × B̄I′J′ . Since vλIJ∗ ≥ `, the required result is trivial when p = 0. We

thus consider the case where p 6= 0, and fix l ∈ K such that that pl > 0. Let (tn, xn, pn)n ⊂ DIJ

be a sequence that converges to (T, x, p) and such that vλIJ(tn, xn, pn) → vλIJ∗(T, x, p). We define

yn := vλIJ(tn, xn, pn)+n−1 so that, for each n, there exists (νn, αn) ∈ U×Atn,pn satisfying yn+Yn(T ) ≥ `
and

E[∆l
λ(Xn(T ), Yn(T ))] ≥ pln ,

where (Xn, Yn) := (Xtn,xn , Y
νn
tn,xn,yn). Using the fact that U is bounded and that (µX , σX) is Lipschitz

continuous, one easily checks that, after possibly passing to a subsequence, (Xn(T ), Yn(T )) converges

to (x, vλIJ∗(T, x, p)) P−a.s. and in law. Since ∆λ is continuous, this implies that

∆l
λ(x, vλIJ∗(T, x, p)) ≥ pl > 0 .

By arbitrariness of l such that pl 6= 0, this leads to the required result. 2

In order to discuss the boundary condition in the p-variable, we follow [6] and first provide a supersolu-

tion property for vλIJ on the boundary D̄IJ ∩DI′J′ for (I ′, J ′) ⊃ (I, J). A more precise statement will

be deduced from the following one and the comparison result of Proposition 4.6 below, see Section 4.4.

Proposition 4.4 For all (I, J), (I, J ′) ∈ Pκ such that J ′ ⊃ J , vλIJ∗ is a supersolution on D̄IJ of

min{ϕ− `, −∂tϕ+ F ∗IJ′ϕ} ≥ 0 on DIJ′ . (4.15)

Proof. By definition, we have vλIJ∗ ≥ `. The rest of proof is divided in several steps.

Step 1. We first show that, for a smooth function ϕ̃ on D̄IJ and (t̃, x̃, p̃) ∈ D̄IJ ∩DIJ′ so that

min(strict)D̄IJ (vλ∗ − ϕ̃) = (vλ∗ − ϕ̃)(t̃, x̃, p̃) = 0, (4.16)

we have

max{ϕ̃− vJ
′

IJ , −∂tϕ̃+ F ∗IJ ϕ̃}(t̃, x̃, p̃) ≥ 0 ,

where

vλIJ∗ ≥ vJ
′

IJ := min
{
vλI(J∪K)∗ : K ⊂ J ′ \ J, K 6= ∅

}
. (4.17)

We argue by contradiction and assume that there exists ε, η > 0 such that

max{ϕ̃− vJ′IJ , −∂tϕ̃+ F ∗IJ ϕ̃}(t, x, p) ≤ −η, (4.18)

∀ (t, x, p) ∈ B := Bε(t̃, x̃, p̃) ∩ D̄IJ .

Note that, since (t̃, x̃, p̃) achieves a strict local minimum of vλIJ∗ − ϕ̃ on D̄IJ , we have

vλIJ∗ − ϕ̃ ≥ ζ on ∂B = ∂(B ∩DIJ), (4.19)

for some ζ > 0. Let (tn, xn, pn) be a sequence in B ∩DIJ that converges to (t̃, x̃, p̃) such that

vλIJ(tn, xn, pn)→ vλIJ∗(t̃, x̃, p̃)
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and set yn := vλIJ(tn, xn, pn) + n−1 so that

γn := yn − ϕ̃(tn, xn, pn)→ 0.

Since yn > vIJ(tn, xn, pn), there exists (νn, αn) ∈ U × Atn,pn such that ∆λ(Xn(T ), Y n(T )) ≥ Pn(T ),

where (Y n, Xn, Pn) := (Y ν
n

tn,xn,yn , Xtn,xn , P
αn

tn,xn).

Let us now define

θn := θn1 ∧ θn2

where

θn1 := inf{s ≥ tn : max
i∈J′\J

Pn,i(s) = 1} , θn2 := inf{s ≥ tn : (s,Xn(s), Pn(s)) /∈ B ∩DIJ}.

It then follows from GDP1 that

Y n(θn) ≥ vλ(θn, X
n(θn), Pn(θn)) .

We now observe that, by definition of θn1 and θn2, (θn, X
n2(θn2), Pn(θn2)) ∈ DIJ and therefore

vλIJ(θn, X
n(θn), Pn(θn)) = vλ(θn, X

n(θn), Pn(θn)) on {θn < θn1}.

On the other hand, letting K be the random subset of J ′ \ J such that Pn,i(θn1) = 1 for i ∈ K, we

have vJ
′

IJ(θn, X
n(θn), Pn(θn)) ≤ vλI(J∪K)(θn, X

n(θn), Pn(θn)) = vλ(θn, X
n(θn), Pn(θn)) on {θn = θn1}.

It then follows from the previous inequality that

Y n(θn) ≥ vλIJ(θn, X
n(θn), Pn(θn))1θn<θn1 + vJ

′

IJ(θn, X
n(θn), Pn(θn))1θn=θn1

.

We now appeal to (4.18) and (4.19) to deduce that

Y n(θn) ≥ ϕ̃(θn, X
n(θn), Pn(θn)) + ζ ∧ η .

The required contradiction then follows from the same arguments as in Section 5.1 of [6].

Step 2. We now show that for any smooth function ϕ̃ on D̄IJ and (t̃, x̃, p̃) ∈ D̄IJ ∩DIJ′ such that

min(strict)D̄IJ (vλ∗ − ϕ̃) = (vλ∗ − ϕ̃)(t̃, x̃, p̃) = 0, (4.20)

we have

max{ϕ̃− vλIJ′∗ , −∂tϕ̃+ F ∗IJ ϕ̃}(t̃, x̃, p̃) ≥ 0.

To see this, assume that

(−∂tϕ̃+ F ∗IJ ϕ̃)(t̃, x̃, p̃) < 0 . (4.21)

Then, it follows from Step 1 that vλIJ∗(t̃, x̃, p̃) = ϕ̃(t̃, x̃, p̃) ≥ vλI(J∪K1)∗(t̃, x̃, p̃) for some K1 ⊂ J ′ \ J such

that K1 6= ∅. If J ∪K1 = J ′, then this proves the required result. If not, then we use the fact that v

is non-decreasing in its pi components to deduce that vλIJ∗ ≤ vλI(J∪K1)∗. It follows that vλIJ∗(t̃, x̃, p̃) =

vλI(J∪K1)∗(t̃, x̃, p̃) and that (t̃, x̃, p̃) is also a minimum point of vλI(J∪K1)∗ − ϕ̃ on D̄I(J∪K1) ⊂ D̄IJ′ . In

view of Step 1, this implies that

max{ϕ̃− vJ
′

I(J∪K1) , −∂tϕ̃+ F ∗I(J∪K1)ϕ̃}(t̃, x̃, p̃) ≥ 0 ,

which, by (4.21) and the inequality F ∗I(J∪K1) ≤ F
∗
IJ , implies that ϕ̃(t̃, x̃, p̃) ≥ vλJ′I(J∪K1)(t̃, x̃, p̃). After at

most κ iterations of this argument, we finally obtain ϕ̃(t̃, x̃, p̃) ≥ vIJ′∗(t̃, x̃, p̃).
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Step 3. Repeating the arguments of Section 6.1 of [6], we then deduce from Step 2 that, for any smooth

function ϕ̃ on D̄IJ′ and (t̃, x̃, p̃) ∈ DIJ′ ∩ D̄IJ such that

min(strict)D̄IJ (vλIJ∗ − ϕ̃) = (vλIJ∗ − ϕ̃)(t̃, x̃, p̃) = 0, (4.22)

we have

max{ϕ̃− vλIJ′∗ , −∂tϕ̃+ F ∗IJ′ ϕ̃}(t̃, x̃, p̃) ≥ 0. (4.23)

If vλIJ∗(t̃, x̃, p̃) = ϕ̃(t̃, x̃, p̃) < vλIJ′∗(t̃, x̃, p̃) then

(−∂tϕ̃+ F ∗IJ′ ϕ̃)(t̃, x̃, p̃) ≥ 0 . (4.24)

Otherwise, vλIJ∗(t̃, x̃, p̃) = ϕ̃(t̃, x̃, p̃) = vλIJ′∗(t̃, x̃, p̃) so that (t̃, x̃, p̃) is a local minimizer of vλIJ′∗ − ϕ̃ on

D̄IJ ⊃ D̄IJ′ . In this case, we then deduce from (3.13) that (4.24) holds too. 2

4.2 Gradient estimates

In this section, we prove Proposition 3.4. It is based on the following growth estimate.

Proposition 4.5 Fix (I, J), (I ′, J ′) ∈ Pκ such that I ∪ J 6= K and J ⊂ J ′. Let (t, x, p) ∈ DIJ be such

that (vλIJ − vλI′J′)(t, x, p) > ι ≥ 0. Let % > 0 be defined as in (3.8). Then,

vλIJ(t, x, p)− vλIJ (t, x, p	 Cλδ(ι+ %)1IJ) ≥ δι for all 0 ≤ δ ≤ 1 , (4.25)

where 1IJ stands for (1{i/∈I∪J})i≤κ.

Proof. Fix (t, x, p) ∈ DIJ , y > vλIJ(t, x, p) and ι ≥ 0 such that vλIJ(t, x, p)− ι > vλI′J′(t, x, p). Then, we

can find ν ∈ U such that Y νt,x,y(T ) ≥ ` and E[∆i
λ(Xt,x(T ), Y νt,x,y(T ))] ≥ pi for all i ≤ κ, and ν′ ∈ U such

that Y ν
′

t,x,y−ι(T ) ≥ ` and Y ν
′

t,x,y−ι(T ) ≥ ĝj(Xt,x(T )) for all j ∈ J ′, recall (3.1). Set νδ := (1−δ)ν+δν′ ∈ U ,

recall that U is convex, and yδ := (1− δ)y + δ(y − ι) = y − δι.
Note that

Y νδt,x,yδ(T ) = (1− δ)Y νt,x,y(T ) + δY ν
′

t,x,y−ι(T ) ,

by (2.4). Combined with the above inequalities and the fact that pi = 1 for i ∈ J ⊂ J ′, this readily

implies that

Y νδt,x,yδ(T ) ≥ ` and Y νδt,x,yδ(T ) ≥ ĝi(Xt,x(T )) for i ∈ J . (4.26)

Since ∆i
λ is Cλ-Lipschitz with respect to y, see (3.4), we also have

E[∆i
λ(Xt,x(T ), Y νδt,x,yδ(T ))] = E[∆i

λ

(
Xt,x(T ), Y νt,x,y(T ) + δ(Y ν

′

t,x,y−ι(T )− Y νt,x,y(T ))
)

]

≥ E[∆i
λ(Xt,x(T ), Y νt,x,y(T ))]− CλδE

[
|Y ν

′

t,x,y−ι(T )− Y νt,x,y(T )|
]

≥ pi − CλδE
[
|Y ν

′

t,x,y−ι(T )− Y νt,x,y(T )|
]
, for i /∈ J ,

where

E
[
|Y ν

′

t,x,y−ι(T )− Y νt,x,y(T )|
]
≤ ι+ E

[∣∣∣∣∣
∫ T

t

(νs − ν′s)>µ(Xt,x(s))ds+

∫ T

t

(νs − ν′s)>σ(Xt,x(s))dWs

∣∣∣∣∣
]
.

Recalling (2.2) and (2.3), standard estimates imply that the right-hand side term is bounded by % as

defined in (3.8). Hence

E[∆i
λ(Xt,x(T ), Y νδt,x,yδ(T ))] ≥ pi − Cλδ (ι+ %) , for i /∈ J . (4.27)
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We now combine (4.26) and (4.27) to deduce that

yδ ≥ vλIJ (t, x, p	 Cλδ (ι+ %) 1IJ) .

By arbitrariness of y > vλIJ(t, x, p), this implies the required result. 2

Proof of Proposition 3.4. Fix (I, J) ∈ Pκ and (t, x, p) ∈ DIJ such that vλ∗IJ (t, x, p) > vλ∗JcJ(t, x, p) + ι

for some ι ≥ 0. Let ϕ be a smooth function and assume that (t, x, p) achieves the maximum of vλ∗IJ −ϕ.

Since vλIJ is non-decreasing with respect to its p-variable, and by definition of vλ∗JcJ , there exists

(tn, xn, pn) → (t, x, p) such that vλIJ(tn, xn, pn) → vλ∗IJ (t, x, p) and vλIJ(tn, xn, pn + Cλδ(ι + %)1IJ) >

vλJcJ(tn, xn, pn + Cλδ(ι + %)1IJ) + ι for δ > 0 small enough. By applying Proposition 4.5 at the point

(tn, xn, pn + Cλδ(ι+ %)1IJ) for (I ′, J ′) = (Jc, J), we deduce that

vλIJ(tn, xn, pn + Cλδ(ι+ %)1IJ)− vλIJ (tn, xn, pn) ≥ δι ,

and therefore

ϕ(t, x, p+ Cλδ(ι+ %)1IJ)− ϕ (t, x, p) ≥ δι .

Dividing by δ and sending δ to 0 leads to the required result for $ defined as in (3.9) above. 2

4.3 Comparison results

We first provide a comparison result for (Sλ). Additional technical improvements will be considered in

the next section to discuss the convergence of the numerical scheme defined in Section 3.3.

4.3.1 For the system of PDEs (Sλ)

Proposition 4.6 Let ψ1 ≥ ψ2 be two functions such that ψ1 and −ψ2 are lower-semicontinuous. Fix

(I, J) ∈ Pκ. Let V1 be a bounded lower-semicontinuous viscosity supersolution of

Hλ∗
IJ [ϕ,ψ1] = 0 on DIJ , (4.28)

and let V2 be a bounded upper-semicontinuous viscosity subsolution of

Hλ
IJ∗[ϕ,ψ2] = 0 on DIJ . (4.29)

Assume that V1 ≥ V2 on ∂DIJ . Assume further that either V1 ≥ ψ2 on DIJ or that (I, J) ∈ Pκκ . Then,

V1 ≥ V2 on D̄IJ .

Proof.

Part 1: (I, J) /∈ Pκκ . As usual, we first fix ρ > 0 and introduce the functions Ṽ1(t, x, p) := eρtV1(t, x, p)

and Ṽ2(t, x, p) := eρtV2(t, x, p). Arguing by contradiction, we assume that

sup
D̄IJ

(Ṽ2 − Ṽ1) =: m > 0.

and work towards a contradiction.

1. For n, k ≥ 1 and ε > 0, we then define the function Ψk
n,ε on [0, T ]× R2n × [0, 1]2κ by

Ψk
n,ε(t, x, y, p, q) := Ṽ2(t, x, p)− Ṽ1(t, y, q)−Θk

n,ε(t, x, y, p, q),
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where

Θk
n,ε(t, x, y, p, q) :=

n2

2
|x− y|2 +

k2

2
|p− q|2 + fε(x),

with

fε(x) := ε

|x|2 +
∑
i≤d

(xi)−1

 .

It follows from the boundedness of Ṽ2 and Ṽ1 that Ψk
n,ε achieves its maximum at some (tkn,ε, x

k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε) ∈

[0, T ]× (0,∞)2d × B̄2
IJ . Similarly, the map

(t, x, p, q) ∈ [0, T ]× (0,∞)d × B̄2
IJ 7→ Ṽ2(t, x, p)− Ṽ1(t, x, q)− k2

2
|p− q|2 − fε(x)

achieves a maximum at some (tkε , x
k
ε , p

k
ε , q

k
ε ) ∈ [0, T ]× (0,∞)d × B̄2

IJ . Moreover, the inequality

Ψk
n,ε(t

k
n,ε, x

k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε) ≥ Ψk

n,ε(t
k
ε , x

k
ε , x

k
ε , p

k
ε , q

k
ε )

implies that

Ṽ2(tkn,ε, x
k
n,ε, p

k
n,ε)− Ṽ1(tkn,ε, y

k
n,ε, q

k
n,ε) ≥ Ṽ2(tkε , x

k
ε , p

k
ε)− Ṽ1(tkε , x

k
ε , q

k
ε )− k2

2
|pkε − qkε |2 − fε(xkε)

+
n2

2
|xkn,ε − ykn,ε|2 +

k2

2
|pkn,ε − qkn,ε|2 + fε(x

k
n,ε).

Using the boundedness of Ṽ2 and Ṽ1 again together with the fact that B̄IJ is compact, we deduce that

the term on the second line is bounded in n so that, up to a subsequence,

(tkn,ε, x
k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε)→ (t̄kε , x̄

k
ε , x̄

k
ε , p̄

k
ε , q̄

k
ε ) as n→∞,

for some (t̄kε , x̄
k
ε , p̄

k
ε , q̄

k
ε ) ∈ [0, T ]× (0,∞)d × B̄2

IJ . By sending n→∞ in the previous inequality, we also

obtain

Ṽ2(tkε , x
k
ε , p

k
ε)− Ṽ1(tkε , x

k
ε , q

k
ε )− k2

2
|pkε − qkε |2 − fε(xkε)

≤ Ṽ2(t̄kε , x̄
k
ε , p̄

k
ε)− Ṽ1(t̄kε , x̄

k
ε , q̄

k
ε )− k2

2
|p̄kε − q̄kε |2 − fε(x̄kε)− lim inf

n→∞

n2

2
|xkn,ε − ykn,ε|2.

It then follows from the maximum property at (tkε , x
k
ε , p

k
ε , q

k
ε ) that the last term on the right-hand side

converges to 0 and that we can assume, without loss of generality, that (t̄kε , x̄
k
ε , p̄

k
ε , q̄

k
ε ) = (tkε , x

k
ε , p

k
ε , q

k
ε ),

i.e.

(tkn,ε, x
k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε) −−−−→

n→∞
(tkε , x

k
ε , x

k
ε , p

k
ε , q

k
ε ) and n2|xkn,ε − ykn,ε|2 −−−−→

n→∞
0. (4.30)

It follows from similar arguments that we could choose (xkε)ε>0 such that, up to a subsequence,

fε(x
k
ε) −−−→

ε→0
0 and (tkε , p

k
ε , q

k
ε ) −−−→

ε→0
(tk, pk, qk), (4.31)

and

lim
ε→0

lim
n→∞

Ψk
n,ε(t

k
n,ε, x

k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε) = sup

[0,T ]×(0,∞)d×[0,1]2κ
Ψk

0,0(t, x, x, p, q) ≥ m. (4.32)

For later use, note that the left-hand side in (4.31) together with the definition of (µX , σX) and the fact

that (µ, σ) is bounded implies

|Dxfε(x
k
ε)>µX(xkε)|+ |Dxfε(x

k
ε)>σX(xkε)|+ |Trace

[
σXσ

>
X(xkε)D2

xfε(x
k
ε)
]
| −−−→
ε→0

0. (4.33)
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Similarly, we must have

lim
k→∞

k2|pk − qk|2 = 0. (4.34)

Since V1(T, ·) ≥ V2(T, ·), the above implies that we can not have tkn,ε = T along a subsequence. Since

V2 ≥ V1 on ∂DIJ , we obtain a similar contradiction if, up to a subsequence, (tkn,ε, x
k
n,ε, p

k
n,ε)ε,k,n ∈ ∂DIJ

or (tkn,ε, y
k
n,ε, q

k
n,ε)ε,k,n ∈ ∂DIJ for all ε, n, k. We can therefore assume from now on that tkn,ε < T ,

(tkn,ε, x
k
n,ε, p

k
n,ε)ε,k,n /∈ ∂DIJ and (tkn,ε, y

k
n,ε, q

k
n,ε)ε,k,n /∈ ∂DIJ for all k, n, ε.

2. For ease of notations, we now set zkn,ε := (tkn,ε, x
k
n,ε, y

k
n,ε, p

k
n,ε, q

k
n,ε). From Ishii’s Lemma, see Theorem

8.3 in [8], we deduce that, for each η > 0, there are real coefficients akn,ε, b
k
n,ε and symmetric matrices

X kn,ε and Ykn,ε such that (
akn,ε, D(x,p)Θ

k
n,ε(z

k
n,ε),X kn,ε

)
∈ P̄+Ṽ2(tkn,ε, x

k
n,ε, p

k
n,ε)

and
(
−bkn,ε,−D(y,q)Θ

k
n,ε(z

k
n,ε),Ykn,ε

)
∈ P̄−Ṽ1(tkn,ε, y

k
n,ε, q

k
n,ε) ,

see [8] for the standard notations P̄+ and P̄−, where

DxΘk
n,ε(z

k
n,ε) = n2(xkn,ε − ykn,ε) +Dxfε(x

k
n,ε), DpΘ

k
n,ε(z

k
n,ε) = k2(pkn,ε − qkn,ε) (4.35)

−DyΘk
n,ε(z

k
n,ε) = n2(xkn,ε − ykn,ε), −DqΘ

k
n,ε(z

k
n,ε) = k2(pkn,ε − qkn,ε) (4.36)

and akn,ε, b
k
n,ε, X kn,ε and Ykn,ε satisfy

akn,ε + bkn,ε = 0(
X kn,ε 0

0 −Ykn,ε

)
≤ Akn,ε + η(Akn,ε)

2.
(4.37)

with

Akn,ε :=


n2Id +D2

xfε(x
k
n,ε) 0 −n2Id 0

0 k2Iκ 0 −k2Iκ

−n2Id 0 n2Id 0

0 −k2Iκ 0 k2Iκ

 ,

where Id and Iκ stand for the d× d and κ× κ identity matrices.

We now study different cases:

Case 1. If, up to a subsequence, Mλ
IJ(V1(tkn,ε, y

k
n,ε, q

k
n,ε), ψ1(tkn,ε, y

k
n,ε, q

k
n,ε),−e−ρt

k
n,εDqΘ

k
n,ε(z

k
n,ε)) ≥ 0,

then there exists ιkn,ε ≥ 0 such that

min{V1(tkn,ε, y
k
n,ε, q

k
n,ε)− ψ1(tkn,ε, y

k
n,ε, q

k
n,ε)− ιkn,ε , e−ρt

k
n,ε$(ιkn,ε) +

∑
i/∈I∪J

DqiΘ
k
n,ε(z

k
n,ε)} ≥ 0 . (4.38)

If, up to a subsequence, V2(tkn,ε, x
k
n,ε, p

k
n,ε)−ψ2(tkn,ε, x

k
n,ε, p

k
n,ε) ≤ ιkn,ε, we obtain a contradiction by using

(4.38), the fact that ψ1 ≥ ψ2, ψ1 and −ψ2 are lower-semicontinuous, and by (4.30), (4.31), (4.32) and

(4.34).

We then assume that

V2(tkn,ε, x
k
n,ε, p

k
n,ε)− ψ2(tkn,ε, x

k
n,ε, p

k
n,ε) > ιkn,ε.

Then, there exists ι̃kn,ε > ιkn,ε satisfying

V2(tkn,ε, x
k
n,ε, p

k
n,ε)− ψ2(tkn,ε, x

k
n,ε, p

k
n,ε) > ι̃kn,ε,
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so that, by the subsolution property of V2,

eρt
k
n,ε$(ι̃kn,ε)−

∑
i/∈I∪J

DpiΘ
k
n,ε(z

k
n,ε) ≤ 0.

Since DpiΘ
k
n,ε(z

k
n,ε) = −DqiΘ

k
n,ε(z

k
n,ε) by (4.35) and (4.36), (4.38) implies that $(ι̃kn,ε) ≤ $(ιkn,ε). Since

ι̃kn,ε > ιkn,ε and $ is strictly increasing, recall (3.9), this leads to a contradiction.

From now on, we assume that

Mλ
IJ(V1(tkn,ε, y

k
n,ε, q

k
n,ε), ψ1(tkn,ε, y

k
n,ε, q

k
n,ε),−e−ρt

k
n,εDqΘ

k
n,ε(z

k
n,ε)) < 0 . (4.39)

Case 2. If, up to a subsequence,

V2(tkn,ε, x
k
n,ε, p

k
n,ε) ≤ ` ∨ ψ2(tkn,ε, x

k
n,ε, p

k
n,ε).

It follows from the supersolution property of V1 that V1(tkn,ε, y
k
n,ε, q

k
n,ε) ≥ `. Since we also have V1 ≥ ψ2

by assumption, passing to the limit leads to a contradiction as above.

Case 3. From now on, we can therefore assume that V2(tkn,ε, x
k
n,ε, p

k
n,ε) > ` ∨ ψ2(tkn,ε, x

k
n,ε, p

k
n,ε), (4.39)

holds. In particular, the subsolution property of V2 and (4.35)-(4.36) imply that∑
i/∈I∪J

DpiΘ
k
n,ε(z

k
n,ε) = −

∑
i/∈I∪J

DqiΘ
k
n,ε(z

k
n,ε) ≥ $(ῑkn,ε) > 0 (4.40)

where

ῑkn,ε := (V2 − ψ2)(tkn,ε, x
k
n,ε, p

k
n,ε)/2 > 0 .

For later use, note that

lim inf
ε→0

lim inf
n→∞

ῑkn,ε > 0 (4.41)

since otherwise, we would get a contradiction to (4.32) as above since V1 ≥ ψ2 by assumption.

The inequality (4.40) implies that there must exist some ikn,ε /∈ I ∪ J such that

D
p
ikn,ε

Θk
n,ε(z

k
n,ε) = −D

q
ikn,ε

Θk
n,ε(z

k
n,ε) ≥ $(ῑkn,ε)/κ > 0 (4.42)

recall (4.35)-(4.36). Let us now fix (ukn,ε, α
k
n,ε) ∈ U ×AIJ such that

(ukn,ε, α
k
n,ε) ∈ N

1/n
IJ (ykn,ε,−e−ρt

k
n,εDyΘk

n,ε(z
k
n,ε),−e−ρt

k
n,εDqΘ

k
n,ε(z

k
n,ε)) (4.43)

i.e.

(ukn,ε)
>σ(ykn,ε) = −e−ρt

k
n,εDyΘk

n,ε(z
k
n,ε)
>σX(ykn,ε)− e−ρt

k
n,εDqΘ

k
n,ε(z

k
n,ε)
>αkn,ε + ξkn,ε

for some

ξkn,ε ∈ Rd such that |ξkn,ε| ∈ [−n−1, n−1] . (4.44)

Using (4.35)-(4.36) and (4.42), we see that ᾱkn,ε defined as

(ᾱkn,ε)
·i := (αkn,ε)

·i for i 6= ikn,ε
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and

D
p
ikn,ε

Θk
n,ε(z

k
n,ε)(ᾱ

k
n,ε − αkn,ε)·i

k
n,ε := eρt

k
n,ε(ukn,ε)

>(σ(xkn,ε)− σ(ykn,ε)) (4.45)

−DxΘk
n,ε(z

k
n,ε)
>(σX(xkn,ε)− σX(ykn,ε))

−Dxfε(x
k
n,ε)
>σX(xkn,ε) + eρt

k
n,εξkn,ε ,

satisfies (ukn,ε, ᾱ
k
n,ε) ∈ N0

IJ(xkn,ε, e
−ρtkn,εDxΘk

n,ε(z
k
n,ε), e

−ρtkn,εDpΘ
k
n,ε(z

k
n,ε)).

Using the super- and subsolution properties of V1 and V2, we can then choose (ukn,ε, α
k
n,ε) such that

− 1

n
≤ bkn,ε + ρṼ1(tkn,ε, y

k
n,ε, q

k
n,ε)

+eρt
k
n,εµY (ykn,ε, u

k
n,ε) + µX(ykn,ε)

>DyΘk
n,ε(z

k
n,ε)−

1

2
Trace

[
σX,Pσ

>
X,P (ykn,ε, α

k
n,ε)Ykn,ε

]
,

and

1

n
≥ −akn,ε + ρṼ2(tkn,ε, x

k
n,ε, p

k
n,ε)

+eρt
k
n,εµY (xkn,ε, u

k
n,ε)− µX(xkn,ε)

>DxΘk
n,ε(z

k
n,ε)−

1

2
Trace

[
σX,Pσ

>
X,P (xkn,ε, ᾱ

k
n,ε)X kn,ε

]
.

Hence,

− 2

n
≤ bkn,ε + akn,ε − ρ(Ṽ2(tkn,ε, x

k
n,ε, p

k
n,ε)− Ṽ1(tkn,ε, y

k
n,ε, q

k
n,ε))

−eρt
k
n,ε(µY (xkn,ε, u

k
n,ε)− µY (ykn,ε, u

k
n,ε)) + µX(xkn,ε)

>DxΘk
n,ε(z

k
n,ε) + µX(ykn,ε)

>DyΘk
n,ε(z

k
n,ε)

+
1

2
Trace

[
σX,Pσ

>
X,P (xkn,ε, ᾱ

k
n,ε)X kn,ε − σX,Pσ>X,P (ykn,ε, α

k
n,ε)Ykn,ε

]
.

Using (4.37), and then letting η → 0,

− 2

n
≤ −ρ(Ṽ2(tkn,ε, x

k
n,ε, p

k
n,ε)− Ṽ1(tkn,ε, y

k
n,ε, q

k
n,ε))

−eρt
k
n,εuk>n,ε(µ(xkn,ε)− µ(ykn,ε)) + n2(µ>X(xkn,ε)− µ>X(ykn,ε))(x

k
n,ε − ykn,ε)

+Dxfε(x
k
ε)>µX(xkε) +

1

2
Trace

[
σX(xkn,ε)σX(xkn,ε)

>D2
xfε(x

k
n,ε)
]

+
n2

2
Trace

[
(σX(xkn,ε)− σX(ykn,ε))(σX(xkn,ε)− σX(ykn,ε))

>]
+
k2

2
‖αkn,ε − ᾱkn,ε‖2 .

We now send n → ∞ and then ε → 0 in the above inequality, and deduce from (4.30), (4.31), (4.33),

(4.45),(4.32), (4.41), (4.42), (4.44) and the Lipschitz continuity of (µX , σX) that

0 ≤ −ρm ,

which contradicts the fact that ρ,m > 0.

Part 2: We now consider the case I ∪ J = K. Part of the arguments being similar as in Part 1, we

only sketch them.

Step 1. In the case I∪J = K, we can work as if V1 and V2 do not depend on p. Indeed, a ∈ AIJ implies

a = 0, so that the derivatives in p do not appear in the operator. Moreover, recalling the convention

(3.10) and the discussion of Section 3.3.1, we see that a function w is a viscosity supersolution (resp.

subsolution) of (2.20) (resp. (2.21)) if and only if it is a viscosity supersolution (resp. subsolution) of

min
{
ϕ− ` , −∂tϕ+ F̄IJ(·, Dϕ,D2ϕ) ; R(x, q)

}
= 0 on DIJ , (4.46)

32



where

F̄IJ(x, q,Q) := Lq
>diag[x],0(x, q,Q)

and

R(x, q) := inf
|ζ|≤1

(δU (ζ)− ζ>diag[x]q) .

Note that here we do not need to consider the semicontinuous envelopes of the operator since the

unbounded control a does not play any role and U is bounded.

Given ρ > 0, we set Ṽ1(t, x) := eρtV1(t, x) and Ṽ2(t, x) := eρtV2(t, x). We now choose u ∈ intU ∩
(−∞, 0)d, which is possible since 0 ∈ intU by assumption, δ ∈ (0, 1) and define

Ṽδ := (1− δ)Ṽ1 + δψ

where, for some ε > 0,

ψ(x) := εe
∑
i≤d u

ixi .

Note that, since diag[x]ψ(x) is bounded on (0,∞)d, intU is convex and contains 0, we can choose ε > 0

small enough so that

0 < υ ≤ δU (ζ)− ζ>e−ρtdiag[x]ψ(x)u = δU (ζ)− ζ>e−ρtdiag[x]Dxψ(x) (4.47)

where υ > 0 does not depend on ζ and (t, x) ∈ [0, T ]× (0,∞)d.

In order to show that V2 ≤ V1, we argue by contradiction. We therefore assume that

sup
[0,T ]×(0,∞)d

(
Ṽ2 − Ṽδ

)
=: 2m > 0, (4.48)

for δ small enough, and work towards a contradiction.

Using the boundedness of Ṽ2 and Ṽδ, and (4.48), we deduce that

Φε := Ṽ2 − Ṽδ − fε,

where fε is defined as in Part 1, admits a maximum (tε, xε) on [0, T ]× (0,∞)d, which, for ε > 0 small

enough, satisfies

Φε(tε, xε) ≥ m > 0 . (4.49)

Without loss of generality, we can choose (xε)ε>0 such that

fε(xε) −−−→
ε→0

0 , (4.50)

which implies (see Part 1)

|Dxfε(xε)
>diag[xε]|+ |Dxfε(xε)

>µX(xε)|+ |Dxfε(xε)
>σX(xε)|+ |Trace

[
σXσ

>
X(xε)D

2
xfε(xε)

]
| −−−→
ε→0

0.

(4.51)

For n ≥ 1, we then define the function Ψε
n on [0, T ]× (0,∞)2d by

Ψε
n(t, x, y) := Ṽ2(t, x)− Ṽδ(t, y)− fε(x)− n2

2
|x− y|2 .

It follows again from the boundedness of Ṽ2 and Ṽδ that Ψε
n attains its maximum at some (tεn, x

ε
n, y

ε
n)

∈ [0, T ] × (0,∞)2d. Moreover, the same arguments as in Part 1 imply that, up to a subsequence and

after possibly changing (tε, xε)ε>0,

xεn, y
ε
n −−−−→

n→∞
xε ∈ (0,∞)d , tεn −−−−→

n→∞
tε , (4.52)
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and

n2|xεn − yεn|2 −−−−→
n→∞

0 , (4.53)

Ṽ2(tεn, x
ε
n)− Ṽδ(tεn, yεn) −−−−→

n→∞

(
Ṽ − Ṽδ

)
(tε, xε) ≥ m+ fε(xε) > 0 . (4.54)

By similar arguments as in Part 1, we can not have tεn = T , up to a subsequence. We can then assume

from now on that tεn < T for all ε, n.

Step 2. Since tεn < T and (xεn, y
ε
n) ∈ (0,∞)2d, see (4.52), we can appeal to Ishii’s Lemma to deduce

that, for each η > 0, there are real coefficients bε1,n, bε2,n and symmetric matrices X ε,ηn and Yε,ηn such

that (
bε1,n, p

ε
n,X ε,ηn

)
∈ P̄+Ṽ2(tεn, x

ε
n) and

(
−bε2,n, qεn,Yε,ηn

)
∈ P̄−Ṽδ(tεn, yεn) ,

where

pεn := n2(xεn − yεn) +Dfε(x
ε
n) , qεn := n2(xεn − yεn) , (4.55)

and bε1,n, bε2,n, X ε,ηn and Yε,ηn satisfy
bε1,n + bε2,n = 0(

X ε,ηn 0

0 −Yε,ηn

)
≤ Aεn + η(Aεn)2

(4.56)

with

Aεn :=

(
2n2Id +D2fε(x

ε
n) −2n2Id

−2n2Id 2n2Id

)
.

We now study in different cases:

Case 1. If, up to a subsequence, Ṽ2(tεn, x
ε
n) ≤ `eρtεn , then we get a contradiction for n large and δ small,

since Ṽ1(tεn, y
ε
n) ≥ `eρtεn and ψ ≥ 0 ≥ `eρtεn .

Case 2. If, up to a subsequence, R(xεn, e
−ρtεnpεn) > 0, then we must have

ρṼ2(tεn, x
ε
n)− bε1,n + F̄IJ(xεn, p

ε
n,X ε,ηn ) ≤ 0 .

Since ψ, x ∈ (0,∞)d 7→ (diag[x]Dxψ(x),diag[x]2D2
xψ(x)) and (µ, σ) are bounded, one easily checks that

the supersolution property of V1 implies that

ρṼδ(t
ε
n, y

ε
n) + bε2,n + F̄IJ(yεn, q

ε
n,Yε,ηn ) ≥ O(δ) .

Standard arguments based on (4.51), (4.52), (4.53), (4.54) and (4.56) then leads to a contradiction for

δ > 0 small enough, after sending η → 0, n→∞ and then ε→ 0.

Case 3. We can now assume that R(xεn, e
−ρtεnpεn) ≤ 0 . By the supersolution property of V1, we have

R

(
yεn, e

−ρtεn q
ε
n − δDyψ(yεn)

1− δ

)
≥ 0 .

We can then find ζεn such that |ζεn| = 1 and

0 ≥
(
eρt

ε
nδU (ζεn)− (ζεn)>diag[xεn]pεn − eρt

ε
nδU (ζεn) + (ζεn)>diag[yεn]qεn

)
+δeρt

ε
n

(
δU (ζεn)− (ζεn)>e−ρt

ε
ndiag[yεn]Dyψ(yεn)

)
.

In view of (4.47) and (4.55), this implies that

(ζεn)>
(
diag[xεn − yεn]n2(xεn − yεn) + diag[xεn]Dxfε(x

ε
n)
)

= (ζεn)> (diag[xεn]pεn − diag[yεn]qεn) ≥ υδeρt
ε
n .

Using (4.51), (4.52), (4.53) and (4.55), this leads to a contradiction as n→∞ and then ε→ 0. 2
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4.3.2 Additional technical results for the convergence of the finite differences scheme

We start with a simple remark concerning the PDEs obtained in the interior of the domains in Section

3.3.3.

Remark 4.1 (i) The result of Proposition 4.6 still holds if V1 is a supersolution on D̄IJ of

(ϕ− w) ∧max{ϕ− ω , Hλ∗
IJ [ϕ,ψ1]} = 0 on DIJ ,

and V2 is a subsolution on D̄IJ of

(ϕ− w) ∧max{ϕ− ω , Hλ
IJ∗[ϕ,ψ2]} = 0 on DIJ ,

for some continuous map w,ω. In this case, the proof of Proposition 4.6 can be easily modified by

studying simple additional cases. In the case where w ≥ ψ2 = ψ1, the assumption V1 ≥ ψ2 on DIJ in

not necessary anymore in Proposition 4.6, since it is induced by the super-solution property of V1.

(ii) Obviously, the result of Proposition 4.6 still holds if V1 is a supersolution on D̄IJ of

max{ϕ− ω , Hλ∗
IJ [ϕ,ψ1]} = 0 on DIJ ,

and V2 is a subsolution on D̄IJ of

max{ϕ− ω , Hλ
IJ∗[ϕ,ψ2]} = 0 on DIJ ,

for some continuous map ω.

(iii) Note that in the two above cases, we can replace Hλ∗
IJ by H ā∗

IJ defined as Hλ∗
IJ but with AāIJ instead

of AIJ , ā > 0. The proof follows line by line the one of Proposition 4.6, up to the study of simple

additional cases as mentioned in (i) and (ii) above.

We now discuss the boundary condition as t→ T .

Lemma 4.1 Fix (I, J) ∈ Pκ.

(i) Let V1 be a supersolution on D̄IJ of

max{ϕ− L , min
{
ϕ− ` , −∂tϕ+ F ā∗IJ (·, Dϕ,D2ϕ)

}
,Mλ

IJ(ϕ, vλJcJ , Dpϕ) , ϕ−Gλ} = 0

on {T} × (0,∞)d × B̄IJ .

Then, V1 is a supersolution on D̄IJ of

max{Mλ
IJ(ϕ, vλJcJ , Dpϕ) , ϕ−Gλ} = 0 on {T} × (0,∞)d × B̄IJ .

(ii) Let V2 be a subsolution on D̄IJ of

min{max
{
ϕ− L , min

{
ϕ− ` , −∂tϕ+ FIJ∗(·, Dϕ,D2ϕ)

}
,Mλ

IJ(ϕ, vλJcJ , Dpϕ)
}
, ϕ−Gλ} = 0

on {T} × (0,∞)d × B̄IJ .

Then, V2 ≤ Gλ on {T} × (0,∞)d × B̄IJ .

Proof. The proof is standard. We start with item (i). Given a test function ϕ such that (T, x0, p0) ∈
{T}× (0,∞)d× B̄IJ achieves a minimum of V1−ϕ on D̄IJ , we define ϕn(t, x, p) := ϕ(t, x, p)−n(T − t),
n ≥ 1. We assume that

max{ϕ− L , Mλ
IJ(ϕ, vλJcJ , Dpϕ) , ϕ−Gλ}(T, x0, p0) < 0 .
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Since (T, x0, p0) also achieves a minimum of V1 − ϕn, the supersolution property of V1 implies that

min
{
ϕ− ` , −n− ∂tϕ+ F ā∗IJ (·, Dϕ,D2ϕ)

}
(T, x0, p0) ≥ 0 .

Sending n→∞, we obtain a contradiction since F ā∗IJ (·, Dϕ,D2ϕ)(T, x0, p0) <∞, recall that U and AāIJ
are bounded. We finally use the fact that Gλ ≤ L, since g ≤ L by assumption.

We now discuss item (ii). By similar arguments as above, we first obtain that V2 is a subsolution on

D̄IJ of

min{max
{
ϕ− L , ϕ− ` , Mλ

IJ(ϕ, vλJcJ , Dpϕ)
}
, ϕ−Gλ} = 0 on {T} × (0,∞)d × B̄IJ .

We conclude by using the fact that Gλ ≥ `. 2

Lemma 4.2 Let V1 and V2 be as in Lemma 4.1 for some (I, J) ∈ Pκ. Assume that they take values

in [`, L]. Then, Gλ ≥ V2 on {T} × (0,∞)d × B̄IJ . If in addition (I, J) ∈ Pκκ , then Gλ ≤ V1 on

{T} × (0,∞)d × B̄IJ .

Proof. The fact that V2 ≤ Gλ on {T} × (0,∞)d × B̄IJ follows from Lemma 4.1. We now show that

V1 ≥ vλIJ on {T} × (0,∞)d × B̄IJ . To see this, note that V1(T, x, p) ≥ Gλ(x, p) implies V1(T, x, p) ≥
vλIJ(T, x, p) by Theorem 3.3. Recalling the convention (3.10), this concludes the proof for (I, J) ∈ Pκκ .

2

We finally discuss the boundary condition as p→ ∂BIJ .

Lemma 4.3 Fix (I, J) ∈ Pκ \ Pκκ and (I ′, J ′) ) (I, J).

(i) Let V1 be a bounded supersolution on D̄IJ of

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , H̄ ā∗

IJ [ϕ, vλJcJ ]
}
, ϕ− vλI′J′

}
= 0 on ∂DIJ ∩DI′J′

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , H̄ ā∗

IJ [ϕ, vλJcJ ]
}
, ϕ−Gλ

}
= 0 on {T} × (0,∞)d × (B̄IJ ∩BI′J′) .

Then, V1 is a bounded supersolution on D̄I′J′ of

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , H̄ ā∗

IJ′ [ϕ, v
λ
J′cJ′ ]

}
, ϕ− vλI′J′

}
= 0 on DI′J′

ϕ−Gλ = 0 on {T} × (0,∞)d ×BI′J′ ,

(ii) Let V2 be a bounded subsolution on D̄IJ of

min
{
ϕ− vλJcJ , max

{
ϕ− L , H̄λ

IJ∗[ϕ, v
λ
JcJ ]

}
, ϕ− vλI′J′

}
= 0 on ∂DIJ ∩DI′J′

min
{
ϕ− vλJcJ , max

{
ϕ− L , H̄λ

IJ∗[ϕ, v
λ
JcJ ]

}
, ϕ−Gλ

}
= 0 on {T} × (0,∞)d × (B̄IJ ∩BI′J′) .

Then, V2 ≤ vλI′J′ on DI′J′ and V2 ≤ Gλ on {T} × (0,∞)d ×BI′J′ .

Proof. (i) It follows from the same argument as in the proof of Lemma 4.1 that V1 is a bounded

supersolution on D̄IJ of

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , H̄ ā∗

IJ [ϕ, vλJcJ ]
}
, ϕ− vλI′J′

}
= 0 on D̄IJ ∩DI′J′ ,

max
{

(ϕ− vλIJ) ∧Mλ
IJ [ϕ, vλJcJ ] , ϕ−Gλ

}
= 0 on {T} × (0,∞)d × (B̄IJ ∩BI′J′) .

By following, up to minor modifications (related to the fact that their test function has a derivative in p

that converges to ∞, see also Step 2. of the proof of Proposition 4.2 for an adaptation to our context),

the arguments used in Section 6.1 of [6], we deduce that V1 is a bounded supersolution on D̄IJ of

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , −∂tϕ+ F̄ ā∗IJ′(·, Dϕ,D2ϕ)

}
, ϕ− vλI′J′

}
= 0 on D̄IJ ∩DI′J′ ,

ϕ−Gλ = 0 on {T} × (0,∞)d × (B̄IJ ∩BI′J′) .
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We conclude by using the fact that −∂tϕ+ F̄ ā∗IJ′(·, Dϕ,D2ϕ) ≤ H̄ ā∗
IJ′ [ϕ, v

λ
J′cJ′ ].

(ii) Since vλJcJ ≤ vλI′J′ on ∂DIJ ∩DI′J′ and vλJcJ ≤ Gλ on {T} × (0,∞)d × (B̄IJ ∩BI′J′), see Theorem

3.3 and recall that vλ is non-decreasing in p, V2 is indeed a bounded subsolution on D̄IJ of

min
{

max
{
ϕ− L , H̄λ

IJ∗[ϕ, v
λ
JcJ ]

}
, ϕ− vλI′J′

}
= 0 on ∂DIJ ∩DI′J′ ,

min
{

max
{
ϕ− L , H̄λ

IJ∗[ϕ, v
λ
JcJ ]

}
, ϕ−Gλ

}
= 0 on {T} × (0,∞)d × (B̄IJ ∩BI′J′) .

By the same argument as in the proof of Lemma 4.1, we then deduce that V2 is a bounded subsolution

on D̄IJ of

min
{

max
{
ϕ− L , H̄λ∗

IJ [ϕ, vλJcJ ]
}
, ϕ− vλI′J′

}
= 0 on DI′J′ ,

ϕ−Gλ = 0 on {T} × (0,∞)d ×BI′J′ .

We then argue as in Step 2. of the proof of Proposition 4.2 above to deduce that V2 ≤ vλI′J′ on DI′J′ .

2

4.4 Proof of Theorem 3.2

In order to complete the proof of Theorem 3.2, we first show that vλ is continuous on D̄.

Proposition 4.7 The function vλ is continuous on D̄.

Proof. We argue by induction.

Step 1. We first notice that vλIJ is continuous on D̄ for (I, J) ∈ Pκκ . This is a direct consequence of

Theorem 3.1 and Proposition 4.6.

Step 2. We now assume that vλIJ is continuous on D̄IJ if (I, J) ∈ Pκ−kκ for some 1 ≤ k < κ, and show

that this implies that it holds for (I, J) ∈ Pκ−k−1
κ .

By Step 1, we know that vλJcJ is continuous on D̄. Moreover, vλIJ∗ ≥ vλJcJ∗ = vλJcJ since vλ is non-

decreasing with respect to its p-variable. In view of Theorem 3.1 and Proposition 4.6, it thus suffices

to show that vλIJ∗ ≥ vλ∗IJ on ∂DIJ ∩ [0, T )× (0,∞)d × [0, 1]κ.

By Proposition 4.2 and our induction assumption, we have

vλ∗IJ ≤ vλ∗I′J′ = vλI′J′ on DI′J′ ,

for all (I, J), (I ′, J ′) ∈ Pκ such that (I ′, J ′) ) (I, J). Hence, it suffices to show that vλIJ∗ ≥ vλI′J′ on

DI′J′ .

We now fix (I ′, J ′) ∈ Pκ such that (I ′, J ′) ) (I, J). Since vλIJ′ ≥ vλI′J′ , it suffices to restrict to the case

I = I ′. By Proposition 4.4, vλIJ∗ is a viscosity supersolution of

min{ϕ− `, −∂tϕ̃+ F ∗IJ′ϕ} ≥ 0 on DIJ′ .

On the other hand, Step 1 and Theorem 3.1 imply that vλIJ′ is continuous on DIJ′ and is a viscosity

subsolution of

min{ϕ− `, −∂tϕ̃+ FIJ′∗ϕ} ≤ 0 on DIJ′ .

(i) First assume that I ∪ J ′ = K. Then, Theorem 3.1 and Proposition 4.6 imply that vλIJ∗ ≥ vλIJ′ on

D̄IJ′ .

(ii) We now assume that vλIJ∗ ≥ vλIJ′ on DIJ′ if |I| + |J ′| = n ∈ (κ − k, κ] and show that this implies

that the result also holds for |I|+ |J ′| = n− 1. Our recursion assumption implies that vλIJ∗ ≥ vλIJ′′ on

DIJ′′ for all J
′′ ⊃ J ′, J

′′ 6= J ′. Since vλIJ′ ≤ vλ
IJ′′

, we have vλIJ∗ ≥ vλIJ′ on ∂DIJ′ . Moreover, (i) above
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together with the fact that I ⊂ J ′c, since |I|+ |J ′| ≤ κ, imply that vλIJ∗ ≥ vλJ′cJ∗ = vλ
J′cJ′

on DIJ′ , On

the other hand, by Theorem 3.1 and our induction assumption, vλIJ′ is continuous and is a subsolution

on DIJ′ of

max
{

min
{
ϕ− ` , −∂tϕ+ FIJ′∗(·, Dϕ,D2ϕ)

}
, M IJ′

λ (ϕ, vλ
J′cJ′

, Dpϕ)
}

= 0

while, by Proposition 4.4, vλIJ∗ is a supersolution on DIJ′ of

max
{

min
{
ϕ− ` , −∂tϕ+ F ∗IJ′(·, Dϕ,D2ϕ)

}
, M IJ′

λ (ϕ, vλ
J′cJ′

, Dpϕ)
}

= 0 .

The fact that vλIJ∗ ≥ vλIJ′ is then a consequence of Proposition 4.6. 2

Proof of Theorem 3.2. We only prove item (i) of the theorem, the second one being proved similarly.

We argue by induction as in the above proof.

Step 1. The fact that VIJ ≥ vλIJ on D̄IJ when (I, J) ∈ Pκκ is an immediate consequence of Theorem

3.1 and Proposition 4.6.

Step 2. We now assume that VIJ ≥ vλIJ on D̄IJ if (I, J) ∈ Pκ−kκ for some 1 ≤ k < κ, and show that

this implies that it holds for (I, J) ∈ Pκ−k−1
κ .

By Step 1 and the fact that V is non-decreasing with respect to its p-parameter, we know that VIJ ≥
VJcJ ≥ vλJcJ which is upper-semicontinuous by Proposition 4.7. Moreover, we have by assumption that

VIJ∗ ≥ VI′J′∗ on ∂DIJ ∩DI′J′ for (I ′, J ′) ∈ Pκ such that I ′ ⊃ I and J ′ ⊃ J with (I ′, J ′) 6= (I, J), and

that VIJ∗(T, ·) ≥ Gλ. Since vλ is continuous by Proposition 4.7, our induction assumption then leads

to VIJ∗ ≥ vλIJ on ∂DIJ . The fact that VIJ ≥ vλIJ on D̄IJ is then a consequence of Theorem 3.1 and

Proposition 4.6. 2

4.5 Proof of Theorem 3.4

We first prove the convergence for (I, J) ∈ Pκκ .

Proposition 4.8 Fix (I, J) ∈ Pκκ . Then, w̄∗IJ ≤ vλIJ ≤ w̄āIJ∗ on D̄IJ . In particular,

w̄∗IJ = vλIJ = w̄IJ∗ on D̄IJ . (4.57)

Proof. 1. Recall that w̄∗IJ is well-defined and takes values in [`, L]. Moreover, the numerical scheme

defined above is monotone and consistent under (3.19), recall in particular (3.18). Arguing as in [2], it

follows that w̄∗IJ is a viscosity subsolution on D̄IJ of

max
{
ϕ− L , Hλ

IJ∗[ϕ, 0]
}

= 0 on DIJ

min
{

max
{
ϕ− L , Hλ

IJ∗[ϕ, 0]
}
, ϕ−Gλ

}
= 0 on {T} × (0,∞)d × B̄IJ .

Appealing to Lemma 4.2, the above operator can be reduced to

max
{
ϕ− L , Hλ

IJ∗[ϕ, 0]
}

= 0 on DIJ

ϕ−Gλ = 0 on {T} × (0,∞)d × B̄IJ .

The fact that w̄∗IJ ≤ vλIJ then follows from Theorem 3.3 and Remark 4.1.

2. By the same arguments and Lemma 4.2 again, we deduce that w̄āIJ∗ is a bounded viscosity superso-

lution on D̄IJ of

max
{
ϕ− L , H ā∗

IJ [ϕ, 0]
}

= 0 on DIJ

ϕ−Gλ = 0 on {T} × (0,∞)d × B̄IJ .
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Since (I, J) ∈ Pκκ , AIJ = {0} so that wāIJ∗ and H ā∗
IJ do not depend on ā. The fact that vλIJ ≤ w̄āIJ∗ =

w̄IJ∗ on D̄IJ then follows from Remark 4.1 and the fact that vλIJ is a subsolution of the latter, by

Theorem 3.3. 2

We now complete the proof by an induction argument.

Proposition 4.9 Fix (I, J) ∈ Pκ \ Pκκ . Then, w̄∗IJ ≤ vλIJ ≤ w̄āIJ∗ on D̄IJ . In particular, w̄∗IJ = vλIJ =

w̄IJ∗ on D̄IJ .

Proof. In view of Proposition 4.8, we can argue by induction. We therefore assume that

w̄āIJ∗ ≥ vλIJ ≥ w̄∗IJ on D̄IJ for all (I, J) ∈ Pkκ (4.58)

for some 1 ≤ k ≤ κ, and show that this implies that it holds for (I, J) ∈ Pk−1
κ as well.

1. By the same argument as in Proposition 4.8, Lemma 4.3, and (4.57), we first obtain that w̄∗IJ is a

bounded viscosity subsolution on D̄IJ of
(ϕ− vλJcJ) ∧max

{
ϕ− L , Hλ

IJ∗[ϕ, v
λ
JcJ ]

}
= 0 on DIJ

ϕ− vλI′J′ = 0 on DI′J′ ∪ ({T} × (0,∞)d ×BI′J′) , (I ′, J ′) ) (I, J)

ϕ−Gλ = 0 on {T} × (0,∞)d ×BIJ .
(4.59)

On the other hand, Theorem 3.3 implies that vλIJ is a supersolution of (4.59) on D̄IJ with Hλ∗
IJ in place

of Hλ
IJ∗, that vλIJ = vλI′J′ on ∂DIJ ∩D̄I′J′ and vλIJ(T, ·) = Gλ(T, ·) on (0,∞)d×B̄IJ . Finally, vλIJ ≥ vλJcJ

since it is non-decreasing in its p-parameter. The fact that w̄∗IJ ≤ vλIJ on D̄IJ then follows from Remark

4.1.

2. By the same reasoning, recall in particular Lemma 4.3 and the first assertion of Proposition 4.8,

w̄āIJ∗ is a bounded viscosity supersolution on D̄IJ of
(ϕ− vλJcJ) ∧max

{
ϕ− L , H ā∗

IJ [ϕ, vλJcJ ]
}

= 0 on DIJ

max
{

(ϕ− vλJcJ) ∧max
{
ϕ− L , H ā∗

IJ′ [ϕ, v
λ
J′cJ′ ]

}
, ϕ− vλI′J′

}
= 0 on DI′J′ , (I ′, J ′) ) (I, J)

ϕ−Gλ = 0 on {T} × (0,∞)d × B̄IJ
(4.60)

where vλJcJ = w̄ā∗JcJ = w̄āJcJ∗ and vλJ′cJ′ = w̄ā∗J′cJ′ = w̄āJ′cJ′∗ are continuous.

On the other hand, vλIJ is a subsolution of max
{
ϕ− L , Hλ

IJ∗[ϕ, v
λ
JcJ ]

}
= 0 on D̄IJ and satisfies the

boundary condition vλIJ = vλI′J′ on ∂DIJ ∩DI′J′ and vλIJ = Gλ on {T}× (0,∞)d× B̄IJ , recall Theorem

3.3. In view of Remark 4.1, and the fact that w̄āIJ∗ ≥ vλJcJ on DIJ and w̄āIJ∗ ≥ Gλ on {T}×(0,∞)d×B̄IJ ,

by its supersolution property, it only remains to prove that w̄āIJ∗ ≥ vλI′J′ on ∂DIJ ∩DI′J′ .

Since vλIJ′ ≥ vλI′J′ , it suffices to consider the case I = I ′. If (I, J ′) ∈ Pκκ , then the result follows from

Remark 4.1, Theorem 3.3 and the second and third equations in (4.60). Assuming that w̄āIJ∗ ≥ vλIJ′

on ∂DIJ ∩DIJ′ for (I, J ′) ∈ Pkκ with |I| + |J | + 2 ≤ k ≤ κ, then we deduce similarly that it holds for

(I, J ′) ∈ Pk−1
κ , since our induction assumption guarantees the required boundary conditions. 2
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