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Abstract

Within a Brownian diffusion Markovian framework, we provide a direct PDE characterization
of the minimal initial endowment required so that the terminal wealth of a financial agent (possibly
diminished by the payoff of a random claim) can match a set of constraints in probability. Such
constraints should be interpreted as a rough description of a targeted profit and loss (P&L) distri-
bution. This allows to give a price to options under a P&L constraint, or to provide a description of
the discrete P&L profiles that can be achieved given an initial capital. This approach provides an
alternative to the standard utility indifference (or marginal) pricing rules which is better adapted to
market practices. From the mathematical point of view, this is an extension of the stochastic target
problem under controlled loss, studied in Bouchard, Elie and Touzi (2009), to the case of multiple
constraints. Although the associated Hamilton-Jacobi-Bellman operator is fully discontinuous, and
the terminal condition is irregular, we are able to construct a numerical scheme that converges at

any continuity points of the pricing function.
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1 Introduction

Option pricing (in incomplete financial markets or markets with frictions) and optimal management
decisions have to be based on some risk criterion or, more generally, on some choice of preferences. In
the academic literature, one usually models the attitude of the financial agents toward risk in terms of
an utility or loss function. However, practitioners have in general no idea of “their utility function”.
Even the choice of a loss function is somehow problematic. On the other hand, they have a rough
idea on the type of P&L they can afford, and indeed have as a target. This is the case for traders, for
hedge-fund managers,...

The aim of this paper is to provide a direct PDE characterization of the minimal initial endowment
required so that the terminal wealth of a financial agent (possibly diminished by the payoff of a random
claim) can match a set of constraints in probability. In practice, this set of constraints has to be viewed

as a rough description of a targeted P&L distribution.



To be more precise, let us consider the problem of a trader who would like to hedge a European claim of
the form ¢g(X; ,(T)), where X; , models the evolution of some risky assets, assuming that their value is
x at time ¢t. The aim of the trader is to find an initial endowment y and a hedging strategy v such that

the terminal value of his hedging portfolio Y;”, ,(T) diminished by the liquidation value of the claim

t,x,y
9(X:,2(T)) matches an a-priori distribution of the form

P [Yrtl:z,y(T) - g(th(T)) > _71] > pi ) { <K )
where v* > ... > ~42 > ~! >0, for some x > 1. The minimal initial endowment required to achieve the
above constraints is given by:

v(t,z,p) :=infly: Jvst. Y,

(T) = ¢ and VY, (T) - g(X0u(T) = —] 2 p' Vi<r}, (L1)

where we used the notation p := (p,...,p") and £ € R is a given lower bound that is imposed in order
to avoid that the wealth goes too negative, even if it is with small probability.

In the case k = 1, such a problem is referred to as the “quantile hedging problem”. It has been widely
studied by Follmer and Leukert [11] who provided an explicit description of the optimal terminal wealth

YV

7z (T) in the case where the underlying financial market is complete. This result is derived from a

clever use of the Neyman-Pearson Lemma in mathematical statistics and applies to non-Markovian
frameworks. A direct approach, based on the notion of stochastic target problems, has then been
proposed by Bouchard, Elie and Touzi [6]. It allows to provide a PDE characterization of the pricing
function v, even in incomplete markets or in cases where the stock price process X; , can be influenced
by the trading strategy v, see e.g. [5]. The problem (1.1) is a generalization of this work to the case of
multiple constraints in probability.

As in Bouchard, Elie and Touzi [6], the first step consists in rewriting the stochastic target problem
with multiple constraints in probability (1.1) as a stochastic target problem in the P—a.s. sense. This
is achieved by introducing a suitable family of d-dimensional bounded martingales {P,, a} and by
re-writing v as

v(t,x,p) = inf{y : 3 (v, @) such that Y},

Vowl(T) = € and min (AN(X(T), Y, (T) = PGHT)) 2 0 },
- (1.2)

where A’(z,y) = 1{y_g)>—si} and Ptcfz’f denotes the i-th component of Pf,. As in [6], “at the

optimum” each process Pg{f has to be interpreted as the martingale coming from the martingale repre-

sentation of l{Y{fLy(T)*Q(Xt,z(T))Z*’Yi}'

The above reduction allows to appeal to the Geometric dynamic programming principle (GDPP) of

Soner and Touzi [14], which leads to the PDE characterization stated in Theorem 2.1 below, with

suitable boundary conditions.

We shall however see that both the associated Hamilton-Jacobi-Bellman operator and the boundary

conditions are discontinuous, which leaves little hope to be able to establish a comparison result, and

therefore build a convergent numerical scheme directly based on this PDE characterization.

We therefore introduce a sequence of approximating problems that are more regular and for which we

can prove comparison. We show that they converge to the value function at any continuity point in

the p-variable, or, more precisely, to its right and left limits in the p-variable, depending on the chosen

approximating sequence.

In particular, we will show that it allows to approximate point-wise the relaxed problems:

v(t,z,p) := inf{y : Ve > 0 I° s.t. Y;”;y(T) >0, P|YY,

t,x,y

(T) = g(Xix(T) > —+'| 2p' —¢ Vi< rk}
(1.3)



and
o(t,z,p) =infly: Jvst. VY, (T) >0, P [Yt”zy(T) —9(Xeo(T)) > =] >p' Vi<k} (14)

The first value function v is indeed shown to be the left-limit in p of v, while ¥ is the right-limit in p
of v. In cases where v is continuous, then ¥ = v = v and our schemes converge to the original value
function. However the continuity of v in its p-variable seems are a-priori difficult to prove by lack of
convexity and strict monotonicity of the indicator function, and may fail in general. Still, one of the

two approximations can be chosen to solve practical problems.

In this paper, we restrict to the case where the market is complete but the amount of money that can
be invested in the risky assets is bounded. The incomplete market case could be discussed by following
the lines of the paper, but will add extra complexity. Since the proofs below are already complex, we
decided to restrict to the complete market case. The fact that the amount of money that can be invested
in the risky assets is bounded could also be relaxed. It does not really simplifies the arguments. On
the other hand, it is well-known that quantile hedging type strategies can lead to the explosion of the
number of risky asset to hold in the portfolio near the maturity. This is due to the fact that it typically
leads to hedging discontinuous payoffs, see the example of a call option in the Black-and-Scholes model
in [11]. In our multiple constraint case, we expect to obtain a similar behavior. The constraint on
the portfolio is therefore imposed to avoid this explosion, which leads to strategies that can not be

implemented in practice.

The rest of the paper is organized as follows. The P&L matching problem and its PDE characterization
are presented in Section 2. In Section 3, we describe the sequence of approximating problems and the

corresponding PDE characterizations. The proofs are collected in Section 4.

Notations: We denote by M™% the set of n x d matrices, Trace [M] the trace of M € M%4 =: M
and M T its transposition. The i-th line of M € M™? is denoted by M*. We identify R? to M%!. For
x € R, B, () is defined as the open ball of radius r > 0 and center x, and =y := (z;);es for I C {1,..,d}.
For z,y € R?, we write x >y for 2° > y* for all i < d. We write diag [z] to denote the diagonal matrix
of M? who i-th diagonal element is 2*. For a set A C R x R?, we note int(A) its interior, A its closure,
OA its boundary and 07 A := {x € R?: (T,z) € JA}. Any inequality between random variables should
be understood in the a.s. sense.

2 PDE characterization of the P&L matching problem

2.1 Problem formulation

Let W be a standard d-dimensional Brownian motion defined on a complete probability space (Q, F,P),
with d > 1. We denote by F := {F; }o<i<r the P-complete filtration generated by W on some time
interval [0,T] with T" > 0.

Given (t,z) € [0,T] x (0,00)%, the stock price process X; ., starting from z at time ¢, is assumed to be

the unique strong solution of

X(s)=z+ /tS diag [X (r)] u(X (r))dr + /t5 diag [X ()] o(X (r))dW, , (2.1)

where
2 € (0,00)% = diag[z] (u(2), 0 () = (ux (2),0x(x)) € R? x M



is Lipschitz continuous and o is invertible. All over this paper, we shall assume that there exists some
L > 0 such that

lu| + lo| 4+ o7 <L on (0,00)%. (2.2)

A financial strategy is described by an element v of the set U of progressively measurable processes
taking values in some fixed subset U C RY, each component v at time r representing the amount of

money invested in the i-th risky asset r. Importantly, we shall assume all over this paper that
U is convex closed, its interior contains 0 and sup{|u|, u e U} < L. (2.3)

This (important) assumption will be commented in Remarks 2.1 below. In the above, we label by L
the different bounds because this constant will be used hereafter.
For sake of simplicity, we assume that the risk free interest rate is equal to zero. The associated wealth

process, starting with the value y at time ¢, is thus given by

Y(s) = y+/ v, diag (X0 (r)] " dX(r) = y+/ MY(Xt,x(T)vvr)dT+/ oy (Xia(r), ve)dWy, (2.4)
¢ t t
where
py (z,u) == u' p(z) and oy (z,u) :==u'o(z), (z,u) ERL x U .
The aim of the trader is to hedge an European option of payoff ¢(X; ,(T)) at time T, where
g:(0,00)¢ = R is Lipschitz continuous. (2.5)

Here, the price is chosen so that the net wealth Y,

(T) — g(X1,4(T)) satisfies a P&L constraint.
Namely, given a collection of thresholds v := (v%);<, € R" and of probabilities (p’);<, € [0,1]", for
some k > 1, the price of the option is defined as the minimal initial wealth y such that there exists a

strategy v € U satisfying
PY}, ,(T) > ¢" (X4 o(T))] > p' forall i€{l,....k} =K, (2.6)
where
di=g—~7,iek. (2.7)
Obviously, we can assume without loss of generality that
0<y <2< <y (2.8)

This means that the net hedging loss should not exceed —v' with probability more than p’. This
coincides with a constraint on the distribution of the P&L of the trader, in the sense that it should
match the constraints imposed by the discrete histogram associated to (7y,p). In order to avoid that
the wealth process goes too negative, even with small probability, we further impose that Y", ,(T') > ¢
for some ¢ € R_. The price is then defined, for (¢,z,p) € [0,T] x (0,00)? x [0,1]", as:

o(t,,p) :=inf{y >¢: v eU st Y, (T)>Land P[Y, (T) > g (X o(T))] > p' for i € K} . (2.9)
Note that, after possibly changing g and -, one can always reduce to the case where
> > >t >0 (2.10)

We further assume that ¢ is bounded from above and that g” > ¢ uniformly, which, after possibly

changing the constant L can be written as

(+ L '<g"<g<L. (2.11)



Remark 2.1 The above criteria extends the notion of quantile hedging discussed in [11] to multiple
constraints in probability. In [11], it is shown that the optimal strategy associated to a quantile hedging
problem may lead to the hedging of a discontinuous payoff. This is in particular the case in the Black
and Scholes model when one wants to hedge a call option, only with a given probability of success.
This typical feature is problematic in practice as it leads to a possible explosion of the delta near the
maturity. This explains why we have deliberately imposed that U is compact, i.e. that the amount of

money invested in the stocks is bounded.

Remark 2.2 Since U is bounded, see (2.3), Y/, 1s a Q¢ ;-martingale for Q;, ~ [P defined by

Qs _¢ ( / | —<ua-1><xt,w<s>>dWs)T :

t

recall (2.2). The constraint Y,

e y(T) > £ thus implies that Y;”, , > £ on [t,T]. In particular, the

restriction to y > ¢ is redundant. We write it only for sake of clarity.

2.2 Problem reduction and domain decomposition

As in [6], the first step consists in converting our stochastic target problem under probability constraints
into a stochastic target problem in standard form as studied in [15]. This will allow us to appeal to the
Geometric Dynamic Programming Principle to provide a PDE characterization of v. In our context,
such a reduction is obtained by adding a family of x-dimensional martingales defined by

P (s)=p+ / ardW,, (t,p,0) € [0,7] x [0,1]% x A,
t

where A is the set of predictable processes o in L%([0, 7], M*4). Given (t,p) € [0,7] x [0, 1]%, we further
denote by A;, the set of elements o € A such that P, € [0,1]* dt x dP-a.e. on [t,T] and define

G(z,p) :=1inf{y > ¢ : Iiréi]g{l{yzgi(m)} —pi} >0}, (x,p) € (O,oo)d x R .
Note that
G(,p) = oo for p & (—00,1]" , and G(-,p1) > G(-ps) if pi VO > ph Vie K. (2.12)

Proposition 2.1 For all (t,z,p) € [0,T] x (0,00)? x [0, 1]*,

o(t,z,p) = inf{y>0: Y, (T) > G(Xy.(T), P,(T)) for some (v,a) €U x Az}, (2.13)
= inf{y>¢: Y, (1) > G(X;.(T), P,(T)) for some (v,a) eU x A} . (2.14)

Proof. The proof follows from the same arguments as in [6]. We provide it for completeness. We fix
(t,z,p) € [0,T] x (0,00)¢ x [0,1]%, set v := v(t,z,p) for ease of notations, and denote by w; and wy
the right-hand side of (2.13) and (2.14) respectively. The fact that w; > ws is obvious. Conversely, if
Y/ y(T) 2 G(Xt2(T), P2, (T)) for some (v,a) € U x A, then (2.12) implies that Pt’fl’j(T) < 1 for all
i € K. Since Py, is a martingale, it takes values in (—oo,1]" on [¢,T]. Moreover, we can find & € A
such that P/ (T) = 0 on A; := {miny ) P} <0} and P,/ (T) = P (T) on A for i € K. Tt follows
from the above discussion and the martingale property of P, that it takes values in [0,1]" on [t,T],
so that & € Ay . Since PY(T) < PY(T) V0, the inequality Y)Y, ,(T') > G(Xy.4(T), P2,(T)) together
with (2.12) imply that Y}, (T') > G(X¢.(T), P,(T)). This shows that wp > wy, so that we = wy. It
remains to show that v = ws. The inequality ws > v is an immediate consequence of the martingale

property of Pf,. On the other hand, for y > v, we can find v € U such that ' := P[Y}, (T) >



g (Xt (T))] > p for all i € K. Set p := (p')iexc. Then, the martingale representation theorem implies

observing that Pt'f}gi (1) > Ptofl;i(T) for each i € K. O

Remark 2.3 As in [6], the new controlled process Py, should be interpreted as the martingale with
(T) > ¢"(X¢2(T)) | Fsl)sefe, 1), at least when the controls v and « are
optimal. This is rather transparent in the above proof. The fact that we can restrict to the set of

components given by (P[Y}", ,

controls A, , is therefore clear since a conditional probability should take values in [0, 1].

Remark 2.4 Note that a € A, ;, implies that o’ = 0 for all i € K such that p* € {0,1}, since P is a

martingale.

The representation (2.14) coincides with a stochastic target problem in standard form but with un-
bounded controls as studied in [6], unbounded referring to the fact that « can not be bounded a-priori
since it comes from the martingale representation theorem. In particular, a PDE characterization of

the value function v in the parabolic interior of the domain
D :=10,T) x (0,00)¢ x (0,1)"

follows from the general results of [6]. The main difference comes from the fact that the constraints
P>t € [0, 1] introduce boundary conditions that have to be discussed separately. In order to deal with
these boundary conditions, we first divide the closure of the domain D into different regions corre-
sponding to its parabolic interior D and the different boundaries associated to the level of conditional

probabilities. Namely, given
P.:={(I,J)eK*:InJ=0and TUJ C K},

we set, for (I,J) € Py,
Dry:=[0,T) x (0,00)" x Bry, (2.15)

where
Bry:={pec0,1]": pi=0foricl, p)=1forjeJ and0<p' <1forl¢ TUJ}.

Then,
[O,T) X (0,00)d X [0, 1]ﬁ = U(I,J)GP,;DIJ .

The interpretation of the partition is the following. For (¢,x,p) € D, any p® takes values in (0,1) so
that Ptcfz’,i is not constrained locally at time ¢ by the state constraints which appears in (2.13), namely
P{" € [0,1]. This means that the control a can be chosen arbitrarily, at least locally around the initial
time t. When (t,z,p) € Dy with I UJ # (), then there is at least one i < x such that p* =0 or p’ = 1.
In this case the state constraints Ptf}f € [0,1] on [t, T] imposes to choose a* = 0 on [t, T], see Remark
2.4. Hence, letting 775 be the operator defined by

p€0,1)" = m15(p) = (' Ligrus + Lics)iex (2.16)

for (I,J) € P, we have
v=wry:=v(,mrs(-)) on Dry, (2.17)

where, for (t,z,p) € D,

vr(tz,p) =inf{y > €: VY, (T) > G(Xt2(T), P, ) (T)) for some (v,a) € U X Af,{r”(p)} (2.18)



with

AL i ={a€A,a" =0forallieTUJ} ,
recall Remark 2.4.
In the rest of the paper, we shall write (I, J) € P¥ when (I,J) € P, and |I| + |J| = k, k < k. We shall
also use the notations (I’,J) D (I,J) when I’ D I and J’ D J. If in addition, (I, J') # (I, J), then we
will write (I, J') 2 (I, J).

Remark 2.5 It is clear that v and each vy, (I,J) € Py, are non-decreasing with respect to their
p-parameter. In particular, vry > vy > vy for (I, J') D (I, J).

Remark 2.6 Since g' > ¢/ for i < j, it would be natural to restrict to the case where p* < p? for i < j.
From the PDE point of view, this would lead to the introduction of boundary conditions on the planes
for which p* = p? for some i # j. Since this restriction does not appear to be necessary in our approach,
we deliberately do not use this formulation. From the pure numerical point of view, one could however
use the fact that v(-, p) = v(-, p) where p is defined by p/ = max;<; p’ for i < k.

Remark 2.7 Note that, as defined above on D;, the function v;; depends on its p-parameters only
through the components (pl)l¢ 7ug- However, for ease of notations, we shall always use the notation
vry(-,p) instead of a more transparent notation such as vy (¢, z, (pl)lﬂu]). Similarly, a test function

on D;; depends on the p-parameter only through (pl)l¢ TUJ-
Remark 2.8 Note that, for any J C K,

vjeg =infly >0: Y,

(T) > g(X¢,.(T)) for some v € U},
where
= A 2.19
gy = maxg (2.19)
coincides with the super-hedging price of the payoff g;(X; (1)), while

vep =Inf{y 2 01 Livy  (T)>maxi<, o' (X, o ()} 2 0 and Y7, (T) = £ for some v € U} = L.

2.3 PDE characterization

As already mentioned, stochastic target problems of the form (2.18) have been studied in [6] which
provides a PDE characterization of each value function v;; on Dyy. In order to state it, we first need

to introduce some additional notations. For ease of notations, we set

UX p = ( %X > and ox p(-,a) == < ox ) for a € M"9 |
K a

where 0,;, := (0,...,0) € R".
Given (I,J) € P, and € > 0, we then define

FIEJ = sup Lu’a7
(u,a)ENT ;

where, for (u,a) € U x M®? and 0 := (2,¢,Q) € O := (0,00)¢ x Rt x Mdtrdtr,

L44(8) =y (r,u) — pix. () T — 5 Trace [(ox.p0 %, p)(r,0) Q)]



and
Ni;:={(u,a) €U x Ary: |N"

<€}

with
Nz, q) := oy (z,u) — q ox p(r,a) and Ary:={acM>:a" =0for ke TUJ}.
The main result of [6] states that vy is a discontinuous viscosity solution of the PDE
min{p — ¢, —0yp + FY;(-, Do, D*p)} =0 on Dy,

where, for a smooth function ¢ : (t,z,p) € [0,T] x R x R*, Dy and D?¢ stand for the gradient and the
Hessian matrix with respect to (z,p), and Oyp stands for the time derivative. The label “discontinuous
viscosity solution” means that it has be stated in terms of the upper- and lower-semicontinuous envelopes
of v, see Definition 2.2 below, and that we need to relax the operator F¥;, which may not be continuous,
by considering the upper- and lower-semicontinuous envelopes F}; and Ff .

’ ’
Ff;(0):=  limsup  Fj;(0") and Fy;.(0) := lim inf F7 (0" .
(6’,5’)—>(9,0) 0", ") — (0,0)
(9’,5/)-’5(—)><R+ (9’,5’)6(—)><R+

This leads to a system, hereafter called (S), of PDEs, each stated on a sub-domain Dy, with appropriate
boundary conditions, see Theorem 2.2 and Corollary 2.1 below.

Before defining precisely what we mean by a solution of (S), we need to introduce an extra technical
object to which we will appeal when we define the notion of subsolution.

Definition 2.1 Given (I,J) € P, and (t,z,p) € D1y, we denote by Crs(t,x,p) the set of C12 functions
© with the following property: for all € > 0, all open set B such that (z, Do(t,x,p)) € B and NP, # 0
on B, and all (i,a) € N?,(x, Dp(t,x,p)), there exists an open neighborhood B’ of (z, Do(t,z,p)) and
a locally Lipschitz map (4, a) such that |(4,a)(z, Do(t,z,p)) — (4,a)| < e and (4,a) € NY, on B'.

Remark 2.9 Fix (I,J) € P, such that there exists i € K\ (I UJ). Let ¢ be a smooth function such
that D,i¢ # 0 on a neighborhood of (¢,z,p) € D. Then, (u,a) € NY,(z, Do(t,z,p)) is equivalent to

a/i. = UY(£>’U’) _Dw@(t7map)To-X(x) - Z aj‘DP“p(thap) /DP1¢(t?$7p)
G@10JU{i}
Since D, # 0 on a neighborhood of (¢, z,p), this readily implies that ¢ € Cr;(t,z,p).
A viscosity solution of (S) is then defined as follows.

Definition 2.2 (i) Given a locally bounded map V defined on D and (I,J) € P,, we define Vi; =
V(',W]J(~)) and

: / ! / . . / / /
Vit x,p) = lim sup Vigt', 2", p") and Vi (t,x,p) := lim inf Vig(t',z' p'),
' 2", p') > (t,2,p) (', 2", p") = (t,z,p)
(t',a',p') € Dy (t', 2", p") € Dy g

fOT’ (tax,p) € DIJ-
(ii) We say that V is a discontinuous viscosity supersolution of (S) if Vi, is a viscosity supersolution

of

min{p — ¢, 90+ F};(-,Dp,D*p)} =0 on Dy, (2.20)



for each (I,J) € Px.
(i) We say that V is a discontinuous viscosity subsolution of (S) if V}; is a viscosity subsolution of

min {p — ¢, =90+ Frs.(-,Dp,D*¢)} =0 if ¢ €Cry, on Dyy, (2.21)

for each (I,J) € Px.
(iv) We say that V is a discontinuous viscosity solution of (S) if it is both a discontinuous super- and

subsolution of (8S).
We can now state our first result which is a direct Corollary of Theorem 2.1 in [6].
Theorem 2.1 The function v is a discontinuous viscosity solution of (S).

Proof. The above result is an immediate consequence of Theorem 2.1 in [6]. Note that we replaced
their condition Assumption 2.1 by the condition ¢ € Cyj, which is equivalent, in the statement of the

subsolution property, see Remark 2.9. O

Remark 2.10 Fix (I,J) € P, such that JU J = K. Then, (u,a) € Nj;(z, Do(t, z,p)) implies that
|u'o(x) — Dyp(t, z,p) " diag[z] o(x)| < € .
Since u € U and o(x) is invertible by assumption, one easily checks that (2.20) implies
diag [z] Dyp(t,z,p) € U , (2.22)

recall the usual convention sup() = —oo. This is the classical gradient constraint that appears in
super-hedging problems with constraints on the strategy, see e.g. [9], where it is written in terms of

proportions of the wealth invested in the risky assets.

Remark 2.11 Let ¢ be a smooth function. If D,ip(t,2,p) = 0 for i ¢ I U J, then N ;(z, Do(t,z,p))
takes the form U, x M*® for some U, C U, € > 0. Thus the optimization over a € M* in the definition
of Ff; is performed over an unbounded set. On the other hand, if D,:¢(t,z,p) > 0 for i ¢ I U J, then
the same arguments as in Remark 2.9 imply that at least one line of a is given by the other ones. In
particular, for [I|+|J| = £ —1, the sequence of sets (N7 ;(z, Dp(t, x,p)))o<e<1 is contained in a compact
subset of U x M*9. This implies that Ff; # Frj. in general.

As already mentioned the main difficulty comes from the boundary conditions. We first state the space

boundary condition in the p-variable.

Theorem 2.2 Fiz (I,J),(I',J") € P, such that (I',J") D (I,J), we have

(i) vi g« is viscosity supersolution of
min {¢ — ¢, —0yp + F;‘J/(',Dcp,ngo)} =0 on Dy,
(ii) vy, (t,x,p) < v} 5 (t,2,p), for (t,x,p) € Dr;N[0,T] x (0,00)% x By .

Proof. It is proved by the same arguments as in the proofs of Proposition 4.2 and Proposition 4.4
below. O

We now discuss the boundary condition as ¢ approaches T'.
In the case where T U J = K with |J| > 0, the map vr; coincides with the super-hedging problem
associated to the payoff g; as defined in (2.19), recall Remark 2.8. One could therefore expect that



vrg(T—,-) = g;. However, as usual, see e.g. [9], the terminal condition for v;; is not the natural one
since the gradient constraint that appears implicitly in (2.21), see Remark 2.10, should propagate up to
the time boundary. The natural boundary condition should be given by the smallest function ¢ above
gy that satisfies the associated gradient constraint diag[z] D,¢ € U. This leads to the introduction of
the “face-lifted” version of g; defined by:

g (x) := sup [gs(ze®) — v (Q)] , (2.23)
CERI
where
Su(¢):==supu'(, (€R? (2.24)
uelU

is the support function of the convex closed set U and ze = (mieci)igd.
When I U J # K, the above mentioned gradient constraint does not appear anymore in (2.21), see e.g.

Remark 2.9, and the terminal boundary condition can be naturally stated in terms of

Ga,p) = inf{y>L:y>g"(2)locpics +§'(2)1pimy, for all i € K}
= max (010 + 9" (@) Locpicr + 3 (2)1pig) . (2.25)

Corollary 2.1 v,(T,-) > G, and v*(T,-) < G* on (0,00)% x [0,1]".
Proof. It is a consequence of Proposition 3.2 and Theorem 3.1 below. O

Remark 2.12 In the case of kK = 1 and g' > ¢ = 0, it is shown in [11] and [6] that the terminal condition
should be face-lifted with respect to the p-variable when the set U in which controls take values is R<.
This follows from the convexity of the value function in its p-variable. Namely, the terminal condition
as t — T is then given by p'g'. Corollary 2.1 shows that it is no more the case when we restrict to a

compact set U.

Remark 2.13 Combining Theorem 2.1, Theorem 2.2 and Corollary 2.1 provides a PDE characteriza-
tion of the value function v. However, the following should be noted:

1. Tt is clear that G, < G* for some p € 8[0,1]".

2. The boundary conditions induced by Theorem 2.2 may not lead to vy« > v7; on the boundary

in the p-variable.

3. The operator Fyy in (2.20) and (2.21) is in general discontinuous when I U J # K, see Remark
2.11 above.

This prevents us from proving a general comparison result for super- and sub-solutions of (S). We are
therefore neither able to prove that v is the unique solution of (S) in a suitable class, nor to prove the
convergence of standard finite difference numerical schemes. In order to surround this difficulty, we
shall introduce in the following Section a sequence of convergent approximating problems which are

more regular and for which convergent schemes can be constructed.
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i
Figure 1: Function Aj(x,-)
3 The approximating problems
3.1 Definition and convergence properties
Set A := (0,(L~! A 1)/2)%. Our approximating sequence (v*)yea is a sequence of value functions

associated to regularized stochastic target problems with controlled loss. Namely, for A € A, we set

VM t,z,p) = inf{y > ¢: v eU st Y, (T) > £ and E[AL (X, .(T), Y, (1))] > p' for i € K},

t,x,y
where
0 if y </
% . if f§y<gi(x)72/\i
Aj(wy) = § A CSRUREEIED i gi) —ox Sy < gila) - X (3.)

(=N)+ S5 i @) - XN <y <gi@)
1 if y=>4'(x)

is well-defined for A € A = (0, (L=' A 1)/2)" as in Figure 1, recall (2.7), (2.8) and (2.11).

The convergence (v*)aea as A | 0 is an immediate consequence of the linearity of Y with respect to

its initial condition.
Proposition 3.1 For all A € A and (t,x,p) € [0,T] x (0,00)? x [0,1]%,

VMt 2, p® ) + 2 max N> w(t,x,p) >0 Mt 2, pO N) — max A (3.2)
i<k i<k

11



where
p@®A:=(((p" +AX)A1)VO0)ick and pO X = (((p" = A) A1) V0)i<y -

Proof. This follows easily from the linearity of Y with respect to its initial condition and the fact

that
1{y—gi(z)+2)\i20} + A > AS\(.@ y) > 1{y—gi(at)+)\i20} - )‘i7 for (y7 33) eRx (07 Oo)d'
O
As an immediate consequence, we deduce that the sequences (v*(-,-@®\))aea and (v (-, -©N))ren allows

to approximate v at any continuity points in its p-variable. More precisely, the following holds.
Corollary 3.1 For all (t,z,p) € [0,7T] x (0,00)4 x [0, 1]%,

v(t,z,p—) = lilﬁionf v Mt,z,p© ) and v(t, z, p+) = limsup v (¢, z,p B \), (3.3)
A0

where
v(,p—) :=limv(,poely) and v(-,p+) :=limo(-,pDely)
el0 el0
with 1, = (1,...,1) € R".

Proving the continuity in its p-variable of the initial value function v by probabilistic arguments, and
therefore the point-wise convergence of our approximation seems very difficult, and is beyond the scope of
this paper. A standard approach could be to derive the continuity of v by using its PDE characterization
and by applying a suitable comparison theorem which would imply that v, = v*. As explained in Section
2.3, this also does not seem to be feasible.

Note however that the right- and left-limits of v in its p-variable have interpretations in terms of natural

relaxed version of the original problem (2.9):
v(t,z,p) :=inf{y : Ve > 0 I° € U s.t. Yt”;y(T) >¢, P [Yt”;y(T) —g9(X (1)) > —'yl} >p'—e Vi<k},
and
o(t,z,p) :=inf{y: IveU st. Y, (1) >0, PV}, (T)—g(X:2(T)) > =] >p' Vi<k}
Proposition 3.2 For all (t,z,p) € [0,T] x (0,00)% x (0,1)",
o(t, z, p+) = 0(t,z,p) > v(t,z,p) = v(t, z,p—) .

Proof. It is obvious that o > v > v. Moreover, any y > v(t,z,p + €1,) for some £ > 0, satisfies
y > 0(t,z,p). Hence, for € > 0 small enough, v(¢,z,p + el,) > (¢, x, p), so that v(t,z,p+) > (¢, z, p).
Similarly, y > v(¢, z, p) implies y > v(t,x,p—el,), for any € > 0 small enough, and therefore v(¢, z,p) >
v(t, z,p—). O

3.2 PDE characterization of the approximating problems

The reason for introducing the sequence approximating problems (v*)yex is that they are more regular:

1. A, is Lipschitz continuous:

\Ag\(m,y +h)— Az)\(x7y)| < Cy|h|, for (z,y,h) € (07oo)d x R x R. (3.4)
where
Cy = r_rg}é(max{)\i/(lfl — 2\, 1A 1}, (3.5)

recall (2.8) and (2.11).
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2. Its inverse with respect to its y-variable is Lipschitz continuous too. Hence, the natural boundary

condition at T is given by a continuous function
GMx,p) :=inf{y > ¢: %%(Aﬁ\(x,y) —p') >0}, for (z,p) € (0,00)% x [0,1]% . (3.6)
Item 2. above will allow us to prove that the boundary condition as ¢ — T is indeed given by the
continuous function G*, compare with 1. of Remark 2.13.
Proposition 3.3 The function v* satisfies
vM(T, ) = v)(T,-) = G* on (0,00) x [0,1]". (3.7)

Proof. See Section 4 below. O

Item 1. above induces a gradient constraint on v» with respect its p-variable, showing that it is strictly
increasing with respect to this variable, in a suitable sense, which will allow us to prove a comparison
result for the related PDE, compare with Remark 2.11 and 3. of Remark 2.13. We could not obtain this
for the original problem by lack of continuity and local strict monotonicity of the indicator function.

More precisely, we shall prove in Section 4.2 below the following.
Proposition 3.4 Set
0:=4L*(TV1). (3.8)

Fiz (I,J) € P, \'PE and assume that . > 0 is such that v3%(t, x,p) > vy, (t,x,p) +. Let p be a smooth

function such that (t,z,p) achieves a mazimum of U;‘; — . Then,

[2
Dyip>— " =: , 3.9
;J P2 G = (3.9)

where C is defined as in (3.5).

Note that the above can be translated in terms of the operator M}, defined as:

(y,2,qp) € R X R x R s M7, (y,2,q,) = r{lgg(min{y —z—t, wa(t) — Z 0}
= i¢Iug

Corollary 3.2 Fiz (I,.J) € P, \ PS. Then v}% is a viscosity subsolution on Dy of
MI)\J(%Oan;:Jvagp) =0.

In view of Theorem 2.1 in [6], this implies that v* is a discontinuous viscosity solution of the system

(S*) defined as follows, where we use the convention
M} = —ccfor IUJ =K . (3.10)

Definition 3.1 Let V be a locally bounded map defined on D.
(i) We say that V is a discontinuous viscosity supersolution of (S*) if, for each (I,J) € Py, Vis. is a

viscosity supersolution on Dy of
Hp5lp, Viess] = max {min {p — £, =0, + F7;(-, Dp,D*¢)} , Mps(, Viyesu, Dpp)} = 0. (3.11)

(ii) We say that V is a discontinuous viscosity subsolution of (S*) if, for each (I,J) € Py, V75 is a

viscosity subsolution on Dyj of
H;‘J* [0, Ve ;] := max {min {(p -0, 0o+ FIJ*(~,D<p,D2<p)} , MIAJ(QO, Vij,ngo)} =0. (3.12)
(iv) We say that V is a discontinuous viscosity solution of (S*) if it is both a discontinuous super- and

subsolution of (S*).

13



Remark 3.1 The convention (3.10) means that a supersolution of (3.11) (resp. a subsolution of (3.12))
for TUJ = K is indeed a supersolution of (2.20) (resp. a subsolution of (2.21)).

Remark 3.2 Note that a viscosity supersolution of (2.20) on Dy is also a viscosity supersolution of
(3.11) on Dyy. As already argued,

v* is a discontinuous solution of (S) (3.13)

by Theorem 2.1 in [6], so that Corollary 3.2 implies that it is a discontinuous solution of (S*). From
the supersolution point of view, the latter characterization is weaker. Still we shall use it because, first,
it is sufficient and, second, we shall appeal to it when discussing the convergence of a finite difference
approximation scheme below.

Combining the above results, we obtain:

Theorem 3.1 The function v* is a discontinuous viscosity solution of (S*). Moreover, it satisfies
VM(T, ) = v)(T,-) = G* on (0,00)% x [0, 1]". (3.14)

The fact that the above Theorem allows to characterize uniquely v is a consequence of the following
comparison result, in the viscosity sense.

Theorem 3.2 (i) Let V be a bounded function on [0,T) x (0,00)% x [0,1]* which is non-decreasing with
respect to its last parameter. Assume that V is a discontinuous viscosity supersolution of (S*) such that
Vi(T,") > G* and Vg > Vp i on OD1; 0 Dy for all (1,J),(I',J") € Py such that (I',J') 2 (I, J).
Then, V > v on D.

(ii) Let V be a bounded function on [0,T) x (0,00)¢ x [0,1]* which is non-decreasing with respect to its
last parameter. Assume that V is a discontinuous viscosity subsolution of (S*) such that V*(T,-) < G*
and Vi; <V}, on dDyy 0 Dy for all (1,J0),(I',J') € P, such that (I',J") 2 (I,J). Then, V < v*
on D.

Proof. See Section 4.4 below. O

Combining the above results leads to the following characterization.

Theorem 3.3 The function v* is continuous and is the unique bounded discontinuous viscosity solution
of the system (S*) in the class of bounded discontinuous solutions V which are non-decreasing in their
last variable and satisfy V. (T,-) = V*(T,:) = G*, V}; <V}, and Vige > Vg on D1y N Dyyr for
all (1, J),(I',J) € Py such that (I',J") 2 (I,J).

3.3 Finite differences approximation

In this section, we construct an explicit finite difference scheme and prove its convergence.

3.3.1 PDE reformulation

We first reformulate the PDEs associated to v» in a more tractable way, which will allow us to define
naturally a monotone scheme. To this purpose, we introduce the support function d;; associated to the
closed convex (and bounded) set U as in (2.24). Since 0 € intU, dy characterizes U in the following
sense

u € intU iff IICI\H—HI((SU(C) —¢"u) > 0and u e U iff \?\11—111(5[](() —¢"u) >0,
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see e.g. [13].
Moreover (u,a) € N, (x,q) with ¢" = (q, , q;), if and only if there exists £, € R? such that || < e for

which

u' =a(r,a,q)" +E&o(x)P €U and a € Apy,

where

1

)—r = q;diag[x] + q;aa(x)_ .

u(z,q,a

It follows that
_T+F}KJ($7QaQ) Z O lﬁ I_(;J(-/E,T,qu) Z 0 and - +FIJ*(xaq7Q) S 0 lﬁ RIJ*($7T7QaQ) S O
where K} ; and K1y, are the upper- and lower-semicontinuous envelopes of

RIJ(xaraq7Q) = Ssup min{_T+La(x7qa)7a(x7q7@)7 Ra(xaq)}

a€Ary

with

R(z,q) := il R*¢(z,q) and R"(z,q) := 0y(¢) — ¢ ulz,q.a).

Remark 3.3 For later use, note that, for ¢7 = (q;,qu),

LAz, q,Q) = gy ao(z) ™ u() - §:(m Q) = L*(x, 05, 5(x,Q))-

where
E%(x,Q) = Trace [ox,pox p(z,0)Q] ,

does not depend on g,.

It follows that V' is a viscosity supersolution of (3.11) if and only if it is a viscosity supersolution of
ﬁf‘j[(p, Ve yi] := max {min {<p — 0, K73 ;(-,0¢p, Dp, D2<p)} , MI)‘J(@, VJCJ*7Dp<p)} =0, (3.15)

and that V is a viscosity subsolution of (3.12) if and only if it is a viscosity subsolution of

]Tfj\J*[cp, Vie;] := max {min {gp — 0, Kr5.(-, 8t<p,D<p7D2<p)} , MIAJ(QO, Vch,ngo)} =0. (3.16)

3.3.2 Scheme construction

We now define a monotone finite difference scheme for the formulation obtained in the previous section.
In the following, we write h to denote an element of the form h = (hg, hq,h2) € (0,1)3.
a. The discretization in the time variable.

Given ng € N, we first introduce a discretization time-step hg := T'/ng together with a grid
Th .= {(T — (ng —i)ho), i=0,...,n0}.
The time derivative is approximated as usual by
0Pt  x,p) = hg ' (p(t + ho, x,p) — p(t,z,p)) -

b. The discretization in the space variable.

The grids in the space variables are defined as

X! = {emex T i =0, ny} and P" i= {1 — (n —i)hy, i =0,...,np}",
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for some cx,n € N and where hy := 1/n, (nx,np) :=n(2cx,1).
Note that the space discretization in the x variable amounts to performing a logarithmic change of vari-
able. Taking this into account, the first order derivatives with respect to x and p are then approximated

as follows, with {e; }i<q (vesp. {¢;};<x) denoting the canonical basis of R? (resp. R"):

aL’,h[sp a](t T p) hfl { (p(t+ hOJ«"ap@ hlgj) - (P(t,-'lf,p) if MT(GU_1<x))T£j <0
D,j ) IE)

p(t,z,p) = (t+ho,x,p© ;) if  pl(ao™'(2))74; >0
1. _ t + ho, x®hie;, p) — o(t, z, if e/¢>0

oMo Clltrp) = hi'dingle)t ) AT RomOhen D) b p) e o
@(t,x,p) - ()O(t + h0,$@h1€i,p) if €; C <0
ot + ho,z,p® hil;) —o(t,z,p) if Z}—aofl(x)( >0
o(t,z,p) —@(t + ho,z,p© hil;) if K;'—ao_l(x)( <0

hy H(@(t + ho, 2, p @ haly) — o(t, 2,p)),

R,h . _
8p,j [SO’GW g](t?‘r;p) = hl L {

M,h
ap,j [90] (t7 €, p)

where the operators @& and & are given in Proposition 3.1 and
@y = ((a:ieyi) Ve )N e™)cy and 28y = ((xie_yi) Ve )N e )iy, for (z,y) € (0,00)% x RY.

We denote by 657}1, ofh, aff’h and BIJJM”‘ the corresponding vectors.

As for the second order term, we use the Camilli and Falcone approximation [7], in order to ensure
that the scheme is monotone. Namely, we first introduce an approximation parameterized by hy > 0 of
Trace |:0(X7P)O'(TX7P)((E, a)D?o(t + ho, x,p)] as follows

d

h2_1 Z <90(t + hOaxé;\/hiQJ'i(x)ap 2 \/h72a.i) + Sp(t + ho,ﬂ?é\/@d'i(ﬂf),p S \/Eaz) - 290(t + h()axap))

1

AMp,a)(t, z,p)

—hi' Y o (@)]? (e(to, 2, p) — @(t + ho, Shyes, p)) (3.17)

s.
I M& -
- i

where o and a* denote the i-th column of ox and a.

Note that the above approximation of the second order term requires the computation of the approxi-
mated value function at points outside of the grid. It therefore requires an interpolation procedure. In
this paper, we use a local linear interpolation based on the Coxeter-Freudenthal-Kuhn triangulation,
see e.g. [12]. It consists in first constructing the set of simplices {S;}; associated to the regular tri-
angulation of Infe=¢X, e“X]4 x [0,1]* with the set of vertices In X" x P". Here the In operator means
that we take the In component-wise, recall that we use a logarithmic scale. In such a way, we can then
provide an approximating function belonging to the set S" of the functions which are continuous in
[e=ex,ecx]4 x [0,1]" and piecewise affine inside each simplex S; (in In scale for the z-variable). More
precisely, each point (y,p) € [—cx,cx]? x [0,1]% can be expressed as a weighted combination of the

corners of the simplex §; it lies in. We can thus write

wp = Y, wupl,

h h
CEMXh xP

where w is a non negative weighting function such that

> wyrplo) =1

CEXh xPh
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Given a map ¢ defined on T" x X?X xP" | we then approximate it at (¢, z,p) € T x[e~X, eX]¥x [0, 1]"
by

o(t,z,p) = > w(lnz,p | Q)p(t, e, Cp)

(CxCp)EMX] xPh

in which the exponential is taken component by component.

This leads to the approximation of A"[¢, a](t,z,p) by

d
AMga(tep)  =h'Y S wl@hephelal [(Cx.Cr)e(t + o, e, Cp)

i=1((x,¢p)€nXl xPh

d
+hyt Y > w(h_, ph_[a] |(Cxs CP)) ol + oy e, Cp)

=1 ({x ,CP)ElnXQ’X xPh

—2dh2_1<p(t + ho,x,p)

—hy 1Z|0 @(t + ho, x,p) — @(t + ho, 2Eh1€;,p))

where

xh+ fxea\ﬁcr ph+ fp@\ﬁa and i} .*m@\ﬁo ), ph_ *p@faz.

c. The approximated operator.

Given @ > 0, we then approximate H j\J by ﬂ?f" * defined as
Hy o, 9] = maX{min {w —(, sup ffﬁw} , Mff"[wb}}
a€Ag,;
with
Aty i={a€ Ay ¢ ol <@}, My [p, 9] == M (0, 9,8, [¢))

and
Rip o= win{-0F"p + L2050 A gl min B4, 085,00 gD}

The resolution is done as follows:
(i). For (I,J) € Pr, we define wf*" € S as the solution of

wiy h( ) =G, 7T1J) on X! xPph
max{wa sex,h H?ch [w?JCX7 , }} =0 on T}i % X?){f % PP
?ch,h_g on Th x (X! \X! )xP"

where we use the notations
T = {(T — (ng —i)hg), i =0,...,m09 — 1} and X(,x— = {676X+(n7i)h1, 1=1,...,nx — l}d .

(ii). We then proceed by backward induction on ||+ |J|. Once w?,’(ff’h € S" constructed for (I', J') €
PL for all | > k, for some 1 < k < k, we define w?’,cx’h for (I,.J) € PF¥~1 as the solution of

wiM(T, ) = G-y mrg) on X x PP
(w?fx’h w'}ff’ ) /\max{wa exsh ffﬁ}cx’a[w‘[ij,cx’h,wf_}’fj"h]} =0on (T" x X’g)ﬁ x P")N Dyy
) w?fx = G*(-,mr5) on (TP x (XQX \ngf) x P")N Dy
Wy = whS" on (Th x X x PM)YNADy; N Dy for (I',0') 2 (1, )
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One easily checks that
|A" [0, a](t, z, p) — AP[p, al(t, ,p)| < O(ha/ha), (3.18)
which implies that the numerical scheme is monotone and consistent whenever
ho = o(h1) and hy = o(hs). (3.19)

3.3.3 Convergence of the approximating scheme

The convergence of the scheme is obtained as h = (hg, h1,h2) — 0 and cx — oo, with the convention
(3.19), and then @ — co. We therefore define the relaxed semi-limits, for (¢,z,p) € Dy, (I,J) € Py,

—ax o . a,cx,hogr 10 —a o i a,cx,hgr 1
wIJ(tvxap) E hmsup Wy g (t y L 7p) ) wIJ*(taxap) i , ,hI/IllIlf Wy g (t y L 7p)
', 2, p) = (t, z,p) (t", x", p’) — (t, z, p)
h —0, cx — oo h — 0, cx — o
and
— % L . ax (4 — L s a P
wy (L, z,p) = lim sup wiy(t',a',p) , wryi(t,@,p) = liminf w2, p),
&' @', p') = (t, a,p) (", z",p") = (t,x, p)
a — oo

a — oo

in which the limits are taken along sequences of points (#',2’,p’) € Dy; and h satisfying (3.19). Note
that w?fx " takes values in [¢, L], so that the above are well-defined and bounded. Moreover, it is

convergent:
Theorem 3.4 For all (I,J) € Py, W}; = Wrjs = v;‘J on Dry.

Proof. See Section 4.5 below. O

We conclude this section with some numerical illustration in the Black and Scholes model, where the
stock price X is defined as

Xiz(s) =z +/ Xtz (r)dW, for s € [t, 1],
t

the payoff g(X) = (K — X) with the strike price K = 3, the thresholds v = {y!,v%} = {0,0.5}.

Example 3.1 We study the case U = [—1,1].
Then, the “face-lifted” version of g is defined by

3—xz if =xe(0,1]
gz)=4¢ 2—In(z) if zell,e? .
0 if x> e?

Taking X = 1/32 and £ = —1, the Figure 2 plots an estimated value of v*(0,x, p',p?) when we fir x = e.

Example 3.2 When U = [-5,5], the “face-lifted” version of g is equal to g on Ry. The Figure 3 plots
an estimated value of v(0,z,p', p?) when we take A = 1/32, £ = —1 and x = 1. In the Figure 4, we

describe its graph when p®> = 0 in the same setting.
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Figure 2: v* with U = [~1,1]

4 Proof of the PDE characterizations and of the convergence

result

In this section, we collect the proofs of Proposition 3.3, Proposition 3.4, Theorem 3.2, Theorem 3.3 and
Theorem 3.4. We start with the boundary conditions in time and in the space variable p. We first recall
the geometric dynamic programming principle of [14], see also [15] and [16], to which we will appeal to
prove the boundary conditions. We next report the proof of the supersolution properties in subsection
4.1.2, and that of the subsolution properties in subsection 4.1.1. The gradient estimates in the viscosity

sense and the corresponding comparison result are proved in next subsection.

4.1 Boundary conditions

In the following, 7} denotes the set of [s, t]-valued stopping times.

Corollary 4.1 Fiz (t,z,p) € Dr;.
(GDP1) Ify > £ and (v,a) €U x Ayy are such that A\(X¢ 4, (T),YY

t,x,y

(T)) > P2, (T) then

VY, (0) = v7(0, X 0(0), PR(0)),  for all 0 € Ty -
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Figure 3: v* with U = [-5, 5]
(GDP2) Fory <vy,(t,z,p), 0 € Tie) and (v, o) €U X A,

P Y ey

(0) > v7,(0, X¢.2(0), P2, (0))] < 1

4.1.1 Boundary condition for the upper-semicontinuous enveloppe
We start with the boundary condition as t — T

Ax

Proposition 4.1 For all (I,J),(I',J") € Py such that (I',J') D (I,J), we have
Urg
Proof.

(T, ) < G)\ on (0,oo)d X B]/J/.

Step 1. We first show that the required result is true if 7 U .J = K. Note that, in this case, I’ = I and
J' = J. Then,

vy =w:=inf{y>¢ : Iveldst. Y /(T) > jg,(X.(T))}
Hence, it suffices to show that

w* (Ta ) < gJ,
where w* (T, z) := lim._,q sup{w(t’, ')

(4.1)
(t',a") € (T —,T] x Be(2')}. We only sketch the proof of
(4.1) as it follows from the same arguments as in [3], up to obvious modifications. In the following, we
let (t,,2,)n be a sequence in [0,7) x (0,00)¢ such that (t,,z,) — (T,z) and w(t,,z,) — w*(T,z).
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Figure 4: U=[-5,5] and p?> =0

It follows from the dual formulation of [10] that, for each n > 1, we can find a predictable process ¥"

with values in R? such that

g (- [ ot - 02><Xn<s>>dWS)T e Li(E),

tn

where X,, := X, and

nsTn )

wty,z,) < E|H'(T) | gs(Xn(T)) — T6U(z9§)ds> +nt.

tn

Since dy is homogeneous of degree 1 and convex, this implies that

+n

HY'(T) (gJ(Xn<T)) — 6 /t 19;!)655)

so that, by definition of §; in (2.23),

w(tn, @) < E[H) (T)gs(Z0(T)] + 07",

where Z,, ;= X,,e” Jen 9595 1t remains to prove that

limsup B [HY(T)3, (20" (T))] < . (x) .

n—00
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To show this, it suffices to follow line by line the arguments contained after the equation (6.7) in the
proof of Proposition 6.7 in [3].
Step 2. We now consider the case I U J # K. We assume that

Yo := v3(T,z,p) > G*(z,p) (4.2)

and work towards a contradiction. It follows from Step 1 that g (z) > v} (T, x). In view of (4.2)
and (3.6), this leads to v%(T,z,p) > vk (T, ). Hence, there exists a sequence (t,, Zn,Pn)n C Di
which converges to (T, x,p) such that v}, (tn, Tn, pn) — v75(T, 2, p) and

V% 1 (b Ty D) < Vg (T, p) + € <y, for all n > 1, for some € > 0,
where y,, := v}‘J(tn7 Tp,Pn) —n L. We can then find v, € U such that

where (X,,,Yy) := (X4, 2,, Yy, 4. )- Moreover, since Al is strictly increasing on {(a/,y) : A} (2/,y/) €

(0,1)} and yo > Gz, p), we have AL (z,yo) > p! for I ¢ I' U J'. Since (X, (T),Yn(T)) — (x,y0) in
law, up to a subsequence, because U is bounded and by the Lipschitz continuity of (ux,ox), we de-
duce that E[AL (X,,(T),Yn(T))] > p, for I ¢ I’ U.J’, and n large enough. Finally, Y,,(T) > ¢ so that
E[AY (X, (T), Y, (T))] > 0 for I € I'. This contradicts the fact that y, < v};(tn, Tn,pn).- O

We now turn to the boundary condition in the p-variable, i.e. as p — 9By .
Proposition 4.2 For all (I,J),(I',J") € Py, such that (I',J") D (I,J), we have

v}y <y on Dy

* is non-decreasing with respect to each variable p?, i < k, we have v} 7 < vy 5 for

Proof. Since v
J' D J. Hence it suffices to show the result for J = J'. We also assume that I’ # I, since otherwise

there is nothing to prove. Moreover, we claim that it is enough to show that

’U;\; < ’U}j] = max {U(AI*UK)J : K C I’ \ I, K 7& @} on D]/.]/ . (43)
Indeed, if the above holds, then there exists Ky C I’ \ I such that K, # 0 and vy < v(/\I*Uf(l)J' If
K1 UI =TI, the result is proved. If not, then applying the same result to I U K; instead of I implies

that there exists K, C I’ \ (T U kl) such that Ky = K; U K; strictly contains K; and for which
Ak Ak

VI = Yok

sequence of sets K,, C I’ \ I such that I U K,, = I’ for a finite n.

We proceed in three steps.

Step 1. We first show that for any smooth function ¢ on D and (¢, &, p) € Dy s such that D, @(t,%,p) #

0 for some i € (I U J)¢ and

The result then follows by iterating this procedures so as to construct an increasing

max(strict) (v7; — @) = (v75 — @)(£,&,5) = 0, (4.4)
Dy

we have
mln{gf) — 17}], _6&5 + FIJ*@}(t: i7ﬁ) S O

Assume to the contrary that there exists n > 0 s.t.
min{@ — ok, 0@ + F1 7+ @} (L, &, p) > 2n. (4.5)
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In view of Remark 2.9, this implies that there exists € > 0 and a locally Lipschitz map (&, d) such that

min{@ — o, —9,¢ + LHVCPD (D, D?@) (1, w,p) >,
(ﬁ,d)(x,Dcﬁ(t,%p)) € NIOJ(Z»DQ(tvxvp))v (4'7)

for all (t,z,p) € B := B.(t,%,p) N Dy .

Let (tn,2n,pn) be a sequence in B that converges to (f,Z,p) such that
035 (bns Ty pn) — 075 (£, &, )
and set Yy, := v} (tn, Tn,pn) — n~ L so that
Yn = Yn — @(tn, Tn,y Prn) —n—oo 0.

We denote by (X™, P",Y"™) the solution of the (2.1)-(2.4) associated to the initial condition (¢, Zn, D)

and the Markovian control
", a™) = (4,a)(X", Dp(-, X", P™))

and define the stopping time
9n = 9n1 AN 0n2,

where

On1 :=1nf{s > t, : ‘n}ir\ll P"’i(s) =0}, O :=inf{s > t,: (s,X"(s),P"(s)) ¢ BNDys}.
el

Note that, since (¢, #,p) achieves a strict local maximum of v}5 — @, we have
vy — ¢ < —CondB=09(BND;y), forsome ¢ > 0.
Using (4.6), we then deduce that

Yn(en) —Tn

Y

B0, X" (6,), P (61))
(17 (0n, X7 (00), P (00)) + 1) Lo, 0, + (03500, X" (00), P"(02)) + ) Lo,<0,,

Y

We now observe that, by definition of 6,1 and 6,2, (02, X™(0n2), P"(0r2)) € Dr; and therefore
020, X(0,), P™(0,)) = v(0n, X"(0,), P"(0,)) on {0, < 0,1}. On the other hand, letting K be
the random subset of I’ \ I such that P™(6,;) = 0 for i € K, we have o1 ;(0,, X"(6,), P"(6,)) >
vf‘luK)J(Gn,X”(HnLP”(Gn)) = M0, X"(0,), P*(0,)) on {0, = 0,1 }. It then follows from the previ-
ous inequality that

Y™(0n) = > 0MOn, X™(0,), P"(0,)) +C A .
Since v, — 0, this leads to a contradiction to GDP2 for n large.

Step 2. The rest of the proof is similar to the proof of Section 6.2 in [6]. We provide the main arguments
for completeness. It remains to show that, for any smooth function ¢ and (£, %,p) € Dy s so that

max(strict) (v} — @) = v}5(t,,p) — @(f,%,p) =0, (4.8)
Dyry

we have

@(gai‘7ﬁ) S 6}](57'%’23) .
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We argue by contradiction and assume that
Given p > 0 and k > 1, we define the modified test function

it p) = @t w,p) + e —F + [t =17+ Y =5l + D k(1 —pi),

igIuJ i€ I\T
where . 20
Vi (z) == fkp/z st, for all z € R, (4.10)
Let (tg,zr,pr) € Drs be such that it maximizes of (v}j — ) on Dy and observe that
2ph < < — g, (4.11)
V' <0, (4.12)
limy_, o % = p, if (ze)r=1 C (0,1) is such that Timy_eo k(1 — 25) = 0. (4.13)

Standard arguments then show that
(te, @k, pr) — (£, %, p) and kpy, — 0,
see e.g. Step 2 in Section 6.1 of [6]. Note that (4.11) implies that D@ (tr, 2k, pr) < 0 for i € I' \ I,
for k large enough. It then follows from Step 1, (4.9) and (3.13) that
—0pn(t, Th, Pr) + Frye0k(tr, 21, p1) < 0.
Then, there exist ex, g € R4T* and A;, € M*t* such that
e — 0
(gk, Ax) — (Depr, D20 ) (1, e, p1)| < % (4.14)
— 0ok (thes Thes i) + Fr5 (@0, Prs G, Ak) <

Given an arbitrary u € U, fix ip € I’ \ I and o, € M™9 such that ozf; =0 for j # ig and

a0 = (oy (zk,u) — qF (tr, zpp) Tox (21)) /db
where ¢j; stands for the first d components of ¢;, and qzio stands for (by abuse of notations) the d + i
component of gx. Note that (u, o)) € NY; (2k, qx). Combined with the third inequality in (4.14), this
implies that

o1
Y > =0ty wr, pr) + py (wn,u) — px (o) T i — 5 Trace lox (wr)ox (zx) T AF"]

1 i\ 2 %0 10
_5(0420 )2ADP
where A%" = (AY); i<a, Aiiopio = Ao d¥io and Aipio = (AL4T0),.4. Sending k — oo, using (4.11),

(4.13), the definition of 0420', (4.14) and recalling that D,i,¢ = 0 then leads to

— Ux(xk)TAipio a?'

~ B _ o 1 B _ ~
0 = _675()5( y Ly ) + HY(xau) - /.tx(x)TD$§0(t,$,p) - §Trace I:O'X($)UX($)TDII()O(t,$,p)]
1 _ - ~ 2
+507" oy (@u) = Daip(t 2,) ox (7))
Since p > 0 and u € U are arbitrary, this implies that
‘uTa(i‘) - me(f,fc,]b')—rax(i“)‘z =0forallueU.

This leads to a contradiction since o is assumed to be invertible. O
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4.1.2 Boundary condition for the lower-semicontinuous envelope

We start with the boundary condition as ¢t — T'.

Proposition 4.3 For all (I,J),(I’,J") € Py, such that (I',J') D (I,J), we have
v75.(T,-) > G* on (0,00) x Bp y.

Proof. Fix (z,p) € (0,00)¢ x By y. Since v3;, > ¢, the required result is trivial when p = 0. We
thus consider the case where p # 0, and fix | € K such that that p! > 0. Let (t,,Zn,pn)n C Drs
be a sequence that converges to (T,z,p) and such that v};(tn, Zn,pn) — v7,,(T,2,p). We define

Yp 1= v}“,(tn7 T, Pn)+n "1 so that, for each n, there exists (v™, a™) € U x A, satisfying y,+ Y, (T) > ¢

nsPn

and
E[Al)\(Xn(T)vyn(T))] > pln )

n;Tn?

where (X,,,Y,) = (X; Y. ). Using the fact that U is bounded and that (ux,ox) is Lipschitz

continuous, one easily checks that, after possibly passing to a subsequence, (X,,(T),Y,(T)) converges

to (z,v7,,(T,z,p)) P—a.s. and in law. Since A* is continuous, this implies that
Al)\(J?,U;\J*(T?I,p)) 2 pl >0.

By arbitrariness of [ such that p' # 0, this leads to the required result. O

In order to discuss the boundary condition in the p-variable, we follow [6] and first provide a supersolu-
tion property for v3; on the boundary Dy; N Dy for (I',J') D (I,J). A more precise statement will
be deduced from the following one and the comparison result of Proposition 4.6 below, see Section 4.4.

Proposition 4.4 For all (I,J),(I,J') € P, such that J' D J, v};, is a supersolution on Dr; of
min{y — ¢, =0+ F7;0} >0 on  Dyy. (4.15)

Proof. By definition, we have v,, > £. The rest of proof is divided in several steps.
Step 1. We first show that, for a smooth function ¢ on D;; and (¢,%,p) € D;y N Dy so that

min(strict) p, , (02 — @) = (v2 — @)(£,&,5) = 0, (4.16)

we have
max{@ —vy;, 0+ Fi,;¢}(1,%,5) >0,

where
v}y, > QIJ;] := min {v;‘(JuK)* : KcJ'\J, K# (Z)} . (4.17)
We argue by contradiction and assume that there exists €, > 0 such that

max{} —v{; , —0,% + Fj;5}(t,z,p) < -, (4.18)
A4 (t,il?,p) € B:= Bs(ﬂi‘,ﬁ) ODIJ .

Note that, since (Z,Z, ) achieves a strict local minimum of v}, — ¢ on D, we have
v}y, — @ >CondB=08(BNDyy), (4.19)
for some ¢ > 0. Let (t,,x,, p,) be a sequence in B N Dy that converges to (£, &, p) such that

’U%J(tmxmpn) - U}\J*(ﬂ,ﬁﬁ)
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and set Yy, := V735 (tn, Tn,Pn) + 1L so that

Tn = Yn — @(tnvxmpn) — 0.
Since y™ > vr(tn, Tn,Pn), there exists (v, a") € U x Ay, p, such that Ay(X™(T),Y™(T)) > P™(T),
where (Y, X" P") := (Y}" Xi o, P

n

ny,Tn?

Let us now define
en = Gnl A 9n2

where

01 :=1inf{s > t, : ‘n‘ljai(JP"’i(s) =1}, Ope :=inf{s > t, : (s,X"(s),P"(s)) ¢ BN Dy;}.
e’

It then follows from GDP1 that
Y™ (0,) > v (0n, X™(0,), P"(0,)) .
We now observe that, by definition of 6,1 and 0,2, (6,, X"?(0,2), P"(0,2)) € Dr; and therefore
07 (O, X" (00), P™(02)) = 0™ (0, X" (01), P™(61)) on {0, < 01}

On the other hand, letting K be the random subset of J’ \ J such that P™!(0,;) = 1 for i € K, we
have y}’}(&n,X”(Qn),P”(Gn)) < v}\(JuK)(Hn,X”(Hn),P"(Qn)) = 00, X"(0,,), P"(6,,)) on {0,, = 0,1}

It then follows from the previous inequality that
Y™ (6n) 2 0750y X" (), P (00)) 16, <01 + 075 (6ns X (61), P™(0)) L0, =0,., -
We now appeal to (4.18) and (4.19) to deduce that
Y (0n) = @(On, X" (0n), P"(0n)) + ¢ A -
The required contradiction then follows from the same arguments as in Section 5.1 of [6].
Step 2. We now show that for any smooth function ¢ on Dy and (£,%,p) € Dry N Dy such that
min(strict) 5, (v} — @) = (v} — @)(£,7,5) = 0, (4.20)

we have

max{@ — v}, , —0yp + Fy;p}({E, &, p) > 0.

To see this, assume that
(_8t¢+F;J¢)(~v'i‘aﬁ) <0. (421)

Then, it follows from Step 1 that v}, (f,%,p) = ¢(f,%,p) > v;‘(JuKl)*(f,i",ﬁ) for some Ky C J'\ J such
that Ky # 0. If JU Ky = J’, then this proves the required result. If not, then we use the fact that v
is non-decreasing in its p’ components to deduce that v e < U}\(JU Ki)x: It follows that v} T (t,2,p) =
v;‘(JUKl)*(f,QE,ﬁ) and that (£, %,p) is also a minimum point of v;‘(JUKl)* — @ on Dy(jur,) € Dry. In
view of Step 1, this implies that

max{@ — v7;ux,) » —0P + Fi(jury) @} 2,5) >0,

which, by (4.21) and the inequality F;(JuKl) < Fy;, implies that 3(¢,7,p) > y}\(JJ/U}(l)(E, Z,p). After at
most  iterations of this argument, we finally obtain @(f,%,p) > vy« (t, %, p).
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Step 3. Repeating the arguments of Section 6.1 of [6], we then deduce from Step 2 that, for any smooth
function ¢ on D]J/ and ({, Z,p) € Dy N D]J such that

miH(StI‘iCt)DI‘] (v;\J* - SZ) = (U?J* - ()5) (Ev jaf)) = 07 (422)
we have

max{@ — v}, , —0:p + Fi @}, %,p) > 0. (4.23)

(=0 + Fr @) (t,3,5) > 0. (4.24)

Otherwise, v}, (,%,p) = ¢(t,%,p) = v}, (,%,P) so that (f,%,p) is a local minimizer of v}, — @ on
Dry D Dyyr. In this case, we then deduce from (3.13) that (4.24) holds too. O

4.2 Gradient estimates

In this section, we prove Proposition 3.4. It is based on the following growth estimate.

Proposition 4.5 Fiz (I,J),(I',J') € P, such that IUJ # K and J C J'. Let (t,x,p) € Dy be such
that (v}; — v} ;) (t,x,p) > 1> 0. Let o > 0 be defined as in (3.8). Then,

vyt x,p) — vy, (6, p © C\S(t+ 0)115) > 61 forall0< 5 <1, (4.25)
where 115 stands for (1ggrugy)i<y-

Proof. Fix (¢t,z,p) € D1j, y > v};(t,,p) and ¢ > 0 such that v}, (t,x,p) — ¢ > v}, (¢, x,p). Then, we
can find v € U such that ¥}",  (T) > ¢ and E[A} (X .(T), Y, ,(T))] > p* for all i <k, and v/ € U such
that Yt”;y_,(T) > Cand }Q’:;yy_L(T) > §9(X;.(T)) forall j € J', recall (3.1). Set vs := (1-8)v+6v' € U,
recall that U is convex, and ys := (1 — )y + d(y —¢) =y — de.

Note that

Y;l:;,yg (T) = (1 - 6)1/:‘,1,/1,1/(11) + 6YVt?x,y—L(T) )
by (2.4). Combined with the above inequalities and the fact that p’ = 1 for i € J C J’, this readily

implies that

Y2 (T) >0 and Y8, (T) > §(X.2(T)) fori € J . (4.26)

t,z,ys t,z,ys

Since A§ is Cy-Lipschitz with respect to y, see (3.4), we also have

E[A’S\ (Xt,:n (T)7 thl,):i,y(; (T))] = ]E[AZA (Xt,x (T)v Y;il,/x,y (T) + 5()/—15V:/c,y7L(T) - thl,lm,y(T))>}
> EIAL(X0a(T), Ve, (T))] = Cr0E [[¥, -, (T) = Y, (T)]]
> pi - CA&E |:|Ytl,/:;7y—L(T) - th,ux,y(T)@ ) for 4 ¢ J ’
where
/ T T
B (1YL, (1) = Yy DI] <+ B [ 00 = o) ThXealods + [ (0 = )oK ()Y ] .
t ¢

Recalling (2.2) and (2.3), standard estimates imply that the right-hand side term is bounded by g as
defined in (3.8). Hence

E[AN (X410 (T), Y2, (T)] = p' = C\6(t+0) , forigJ. (4.27)

t,x,ys
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We now combine (4.26) and (4.27) to deduce that
ys > v}, (6,2, p© O\ (L +0) 117) -

By arbitrariness of y > v;‘ ;(t,z,p), this implies the required result. O
Proof of Proposition 3.4. Fix (I,J) € P, and (¢,,p) € Dr; such that v3%(¢,z,p) > v}, (¢, 2,p) +¢
for some ¢ > 0. Let ¢ be a smooth function and assume that (¢, x, p) achieves the maximum of v} — ¢.
Since vf‘J is non-decreasing with respect to its p-variable, and by definition of vﬁi‘ 7, there exists
(tn,Tn,pn) — (t,x,p) such that U;‘J(tn,xn,pn) — v}\}‘(t,x,p) and vj\J(tn,xn,pn +Cho(t+ 0)11y) >

Ve ;(tny Ty P+ Cr0(L + 0)115) + ¢ for § > 0 small enough. By applying Proposition 4.5 at the point
(tns Tny P + CX6(t + 0)11 ) for (I',J) = (J¢, J), we deduce that

U}\J(tn, Ty P+ CXO(L+ 0)11 ) — U}\J (tn, T, pn) = 00,
and therefore
p(t,z,p+C\6(L +0)11) — ¢ (t,2,p) > L.

Dividing by ¢ and sending § to 0 leads to the required result for w defined as in (3.9) above. O

4.3 Comparison results

We first provide a comparison result for (S*). Additional technical improvements will be considered in

the next section to discuss the convergence of the numerical scheme defined in Section 3.3.

4.3.1 For the system of PDEs (S*)

Proposition 4.6 Let 11 > ¥y be two functions such that 11 and —is are lower-semicontinuous. Fix

(I,J) € Py. Let Vi be a bounded lower-semicontinuous viscosity supersolution of

Hp5[e, 4] =0 on Dy, (4.28)
and let Va be a bounded upper-semicontinuous viscosity subsolution of

Hpy.lp, 2] =0 on Dyy. (4.29)

Assume that Vi > Vo on Dyy. Assume further that either Vi > 19 on Dyy or that (I,J) € PE. Then,
V1 Z V2 on D[.],

Proof.
Part 1: (I,J) ¢ P Asusual, we first fix p > 0 and introduce the functions Vi (t, z, p) := e”*Vy (¢, z, p)
and Va(t,z, p) := e’*Vi(t, z, p). Arguing by contradiction, we assume that

sﬁup(ffg — Vi) =:m>0.
Diy

and work towards a contradiction.
1. For n,k > 1 and & > 0, we then define the function ¥¥ _on [0,T] x R?" x [0, 1]*~ by

\Ilfz,s(tvxvyapv Q) = VQ(tvxap) - Vl(ta yvq) - @ﬁ,s(tvxvyvpa q)v
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where

k n’ o K 2
@ms(t,m,y,p,q) = 7‘$7y| +?|p*Q| + fe(z),

with

fe(@)=c [ |z + D (')~

i<d

It follows from the boundedness of V5 and Vi that U% _ achieves its maximum at some (t£ _, 2% _ y% _ pk gk ) €
[0,T] x (0,00)%! x BZ,. Similarly, the map

_ . . k?
(taxap7q) € [O’T] X (0,00)d X B%J — ‘/Q(ta‘rap) - Vl(t7x7q) - ?|p7 Q|2 - fE(z)
achieves a maximum at some (¢, 2%, pk ¢¥) € [0, T] x (0,00)% x B?;. Moreover, the inequality

k k k k k k k
\II ( n svxn,sayn,svpn,HQn,s) > \II (t :L‘ :Ces’ps’qs)

implies that

V(t']fze’ ]:La’p’l::l,é) Vl(nsvynevqne) 2 VQ(t?vxlanplac)_Vl(t avq‘e)_ilpa_qd2 fe(xl;)
2

nok k k

+?‘mn,a - yn,5|2 + ?‘pn,a

>+ fE(fo,e)'

Using the boundedness of Vs and V4 again together with the fact that B;; is compact, we deduce that
the term on the second line is bounded in n so that, up to a subsequence,

k k k k k 7k =k =k =k -k
(tn ,E9 ns?yn,svpn,s’qn,s) - (tevxs’xwps?qs) as n — oo,

for some (£, 2%, pF, ¢*) € [0,T] x (0,00)? x BZ,. By sending n — oo in the previous inequality, we also
obtain

- - k2

k .k k k .k _k k k k
‘/Q(ths?ps)_Vl(ts7x€7qs)_?|ps _q5|2_f6(x5)
7k =k =k 5otk =k =k K e ke ~k Cooen? ko2
S‘/Q(t sﬂpa) Vl(tsﬂ‘rtqu)_?lpa _qal _fE(ivs)_hnn_l)l(gf?|xn,a_yn,e| .

It then follows from the maximum property at ( s, ps , qg) that the last term on the right-hand side
converges to 0 and that we can assume, without loss of generality, that (£%, 7% pF, ") = (t&, 2%, p¥, ¢F),

i.e.

(t’lI?LE’ ﬁsVyZ,wpr,s?qu,e) — (tk .’E msﬂpqus) and n | ~Yn s|2 — 0. (430)

n— 00 n—oo

It follows from similar arguments that we could choose (z%¥).~o such that, up to a subsequence,

fE('rIEC) — 0 and (t§7p§7Q¢§) — (tkvplﬁqkr)a (431)
e—0 e—0
and
lim lim Wy e(tlrcbav L, a7yn avpn evqn )= sup ‘Pg,o(taxamapa q) > m. (4.32)
e0n=o0 [0, % (0,00)4 x [0,1]2+

For later use, note that the left-hand side in (4.31) together with the definition of (ux,ox) and the fact
that (u,0) is bounded implies

| Do fe(al) " px (@f)] + | Do fe(2l) Tox (2£)] + [Trace [ox 0% (2£) D fe(2f)] | — 0. (4.33)

e—0

29



Similarly, we must have
lim &%|p — qx|? = 0. (4.34)
k—o0

Since Vi(T,-) > Va(T,-), the above implies that we can not have t% . = T along a subsequence. Since
Vo > Vi on 0Dj 5, we obtain a similar contradiction if, up to a subsequence, (t’fL o xk k Jeon € 0Dy

n, €7p7l g
or (tna,yng,qn Jekn € ODpy for all e,n,k. We can therefore assume from now on that t& . < T,

(tﬁe’ Ty s?pn,e)f:‘,k,n ¢ 0Dy, and ( n,evyn 57qn E)E k n ¢ 0Dy, for all k,n,e.

2. For ease of notations, we now set z,’i = (tF . zk o yk 8,pn ok ). From Ishii’s Lemma, see Theorem
bk

n,e’ n,g

n,e

8.3 in [8], we deduce that, for each n > 0, there are real coefficients ak
Xk _and yk such that

n,e

and symmetric matrices

( nsvD(xp)@ E(Z’Z,E)7X’I]’:l€) € ,P+Vv2(nsﬂ ns?pfrcl,s)
and (7bn7€’7D(1/7Q)65L,6(Z’nc,€)7y7’§,6) € P Vl( n,s’yﬁ,wqﬁ,s)?

see [8] for the standard notations P+ and P~, where

DO (zh.) = nP(an.—yh)+ Dafe(al ), DpOy (25.) = K*(0) . —an.)  (4.35)
_Dy@fl,a(zr]j,s) = 77‘2(1.51,5 - ny,a) D @k ( Zn 8) - kz(pn E qn 5) (436)
and ak _, bk o X,’fs and yk satisfy
ap.+05.=0
Xk 0 3 o (4.37)
< O _y::,e S ATL € J’» n(A'fL E)
with
n?ly + D3 fe(af ) 0 —n2ly 0
& 0 k21, 0 —k2I
An,e - 2 2 )
—-n Id 0 n Id 0
0 —k2I 0 k2

where I; and I,; stand for the d x d and k X k identity matrices.
We now study different cases:

_ ik
Case 1. If up to a SUbsequence MIJ(‘/I( sayn saqn 5) '(/)1( evyn e’qn e) —€ pt?L’aDq®7]YL7E<Z£,6)) Z 07

then there exists ¢ _ > 0 such that

n,e —
mln{vl(nsvynquns) ¢1(ns7yns?qns)_Lfl,s7 € ptnaw Z D @ )}20 (438)
i¢IuJ
If, up to a subsequence, Va(tf ., ak _ pk )—yo(th ok _ pk ) <F _ we obtain a contradiction by using
(4.38), the fact that 11 > 19, 11 and —1)2 are lower-semicontinuous, and by (4.30), (4.31), (4.32) and
(4.34).

We then assume that
ko ok k k k K k
V (tn ,E9 T s’pn,s) - wQ(tn,sv xn,eﬂpn,s) > Ln,s'

Then, there exists me > Lﬁ,a satisfying
ko ok ok koook ok
V(tn ,E)9 ns’pn,s) _wQ(tn,svmn,sﬂpn,s) > Ln €9
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so that, by the subsolution property of V5,

ehem(it )~ Y Dok () <

igIuJ

Since D, OF _(zF ) = —Di©%k _(z) ) by (4.35) and (4.36), (4.38) implies that w (i} ) < @w(ek ). Since
iy > _and w is strictly increasing, recall (3.9), this leads to a contradiction.

From now on, we assume that
MRy V() o0k 008 )y 1 (85 0 e 08 ), —e P72 Dy0 (25 ) < 0. (4.39)
Case 2. If, up to a subsequence,
Valt o e D) < LV a(th o2 2o D) ).

It follows from the supersolution property of V; that V3 (tffhe7 yﬁys, qu) > (. Since we also have Vi > 19
by assumption, passing to the limit leads to a contradiction as above.

Case 3. From now on, we can therefore assume that Va(t _, z¥ E,pn L) > LV ho(tE o Th Dk ), (4.39)
holds. In particular, the subsolution property of V4 and (4.35)-(4.36) imply that

S Dk () = — 3 D0k (k) = @it L) > 0 (4.40)

igIuJg igIuJg
where
(‘/2 - ¢2)( n,e? flE’p’I]?L,E)/2 >0.
For later use, note that
lim inf lim inf 7 ne >0 (4.41)

e—>0 n—oo

since otherwise, we would get a contradiction to (4.32) as above since V; > 19 by assumption.
The inequality (4.40) implies that there must exist some i e ¢ 1UJ such that

D ik Gﬁs(zﬁs):_D ik

p e ) ’ q'n-e

OF (28 ) > @@k )/k>0 (4.42)

recall (4.35)-(4.36). Let us now fix (uf _,af ) € U x A7 such that

€7

(uh ok ) € N} (yk o, —e PneD,0F (2 ), —e "D, 0k (2k ) (4.43)
i.e.
(Wh ) To(yh ) = —e e DOk (25 Tox(yh ) — e PneD0k (2F )Tak  +€k.
for some
% . € R such that [¢f | € [-n~',n7']. (4.44)

Using (4.35)-(4.36) and (4.42), we see that & _ defined as

(ay )= <aii7e>'i for i # il
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and

. k
Dy O (ep)@n . —ap)ime = e (uy ) (o (e ) —o(yn..)) (4.45)

~D,0k (5 )T (ox(ak ) —ox(yk.))
— Dy fe(ak ) Tox(ak )+ ertneh

satisfies (uf _,af ) € NP (ak _ e ~PtneD, Ok (zk ), e ~pty oD O (2 ).

Using the super- and subsolution properties of V1 and Va, we can then choose (ufw, afw) such that

1
_g < b p‘/l(nmyna’qna)

k X 1
+eptn'5/’by (yz,av ufw,e) + px (yvli,e)TDy@ﬁ,e(zrli,a) - iTrace [UX7PO-)T(7P(ny,E’ a]ri,e)ynk,e] )

and
1 k 7 k k k
" > —Qyp, o T+ pV2(tn,E’xn,E’pn,8)

k 1
+€ptn’auY(fo,a’qu,a) :uX( ) D, @k e( ) 5TI‘&C€ [UX7PO')T(,P($£€L,57 Ay e )X'rlzce} :

Hence,

2 e p(Valth ok b ) — TR o dh )
—ePtne (uy (e L ub ) — oy (UF ek )+ px () T DOk L(2E ) + ux (v )T DOk (k)
b3 Trace [ox,pok p(oh o, 0k XS, — oxpol oy ok V).

Using (4.37), and then letting n — 0,

2 k

_E < _p(V?(na’ ns7p§17€) Vl(navynavqna))

kT( k

:u(xn,s) - /’L(yfl,é)) + n2(:u’;r( (‘T'Ircz,s) - M;r((yrk;, s))(mﬁ e yfz,e)
D f () (o) + Trace [ox ok Jox (o ) T D2 (k)]

—ef “EU

2
n
+5 Trace [(ox (25,.) = ox () (ox (25.0) = ox ()]
k2 _
+3”a7]§,5 - an,s”2 .
We now send n — oo and then ¢ — 0 in the above inequality, and deduce from (4.30), (4.31), (4.33),
(4.45),(4.32), (4.41), (4.42), (4.44) and the Lipschitz continuity of (ux,ox) that

0 < —pm,
which contradicts the fact that p,m > 0.

Part 2: We now consider the case I UJ = K. Part of the arguments being similar as in Part 1, we
only sketch them.

Step 1. In the case TUJ = K, we can work as if V] and V5 do not depend on p. Indeed, a € Ajy implies
a = 0, so that the derivatives in p do not appear in the operator. Moreover, recalling the convention
(3.10) and the discussion of Section 3.3.1, we see that a function w is a viscosity supersolution (resp.

subsolution) of (2.20) (resp. (2.21)) if and only if it is a viscosity supersolution (resp. subsolution) of

min {¢ — €, =0, + Fr;(-, Dy, D*¢) ; R(x,q)} =0 on Dy, (4.46)
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where
Fry(x,q,Q) = L7 4#2le0(z ¢, Q)
and

R(z,q) := |§?§1(5U(<) — (" diag[z]q) .

Note that here we do not need to consider the semicontinuous envelopes of the operator since the

unbounded control a does not play any role and U is bounded.

Given p > 0, we set Vi(t,z) := eP'Vi(t,x) and Va(t,z) := e’*Va(t,2). We now choose u € intU N
(—00,0)¢, which is possible since 0 € intU by assumption, § € (0,1) and define

Vs = (1—0)V4 + 60
where, for some € > 0, .
P(x) = eeXiza'®

Note that, since diag[z]t(x) is bounded on (0, 00)%, intU is convex and contains 0, we can choose € > 0

small enough so that

0<v < 6y(Q) —¢TePtdiaglz|y(z)u = 6y (C) — ¢ e Ptdiag[z] Dytp(z) (4.47)
where v > 0 does not depend on ¢ and (¢,z) € [0,7] x (0,00)<.
In order to show that V5 < Vi, we argue by contradiction. We therefore assume that

sup (V2 - 175) —:2m > 0, (4.48)
[0,T] % (0,00)¢

for § small enough, and work towards a contradiction.
Using the boundedness of V3 and Vs, and (4.48), we deduce that

i ::‘72*‘757]067

where f. is defined as in Part 1, admits a maximum (¢, z.) on [0, 7] x (0, 00)%, which, for ¢ > 0 small

enough, satisfies
O (te,z.) > m>0. (4.49)

Without loss of generality, we can choose (x¢).>0o such that

fe(ze) >0, (4.50)
e—0
which implies (see Part 1)

|Dmf5(mE)Tdiag[xE]| + |Dacfe($s)TMX(xa)| + |Dwfa($8)T0'X(x8)| +[Trace [UXU)T((xE)Difa(xS)] | E) 0.
(4.51)
For n > 1, we then define the function W& on [0, 7] x (0, 00)%¢ by

~ ~ 2
Vit a,y) = Valt,a) = Vs(ty) — fola) = Sla — ol

It follows again from the boundedness of V4 and Vs that WS attains its maximum at some (5, x5, y5)
€ [0,T] x (0,00)2%. Moreover, the same arguments as in Part 1 imply that, up to a subsequence and

after possibly changing (¢, Zc)e>o0,

r'n

TV ot B € (0,000 St (4:52)
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and

n?|zs — ye |2 — 0, (4.53)
Va(t,@5) = Valts,uz) —— (V= V) (tey ) = m+ folwo) > 0. (4.54)

By similar arguments as in Part 1, we can not have ¢, =T, up to a subsequence. We can then assume
from now on that ¢;, < T for all €, n.

Step 2. Since t5 < T and (z5,y5) € (0,00)%9, see (4.52), we can appeal to Ishii’s Lemma to deduce
that, for each 7 > 0, there are real coefﬁcients bi s b5, and symmetric matrices X;;>7 and V" such
that

(05 o 25, X37) € PHVAR(L5,25)  and  (=b5,,,q5,V5") € P Vs(ts,u5)
where
P, = nP(x, —u5) + Dfe(a) , @ = nP(a5, —u5) (4.55)

and b5 ,, b5 ,,, X" and Vo satisfy

intb3, = 0
Xm0 (4.56)
( 0 _yen ) S AT n(A5)?

with
e ( 2, + D2 fo(z5) —2n2I, )

e —2n2Id 2n2Id

We now study in different cases:

Case 1. If, up to a subsequence, Vs (t5,25) < fef, then we get a contradiction for n large and & small,

since V; (t2,95) > Lertn and ¢ > 0 > LePln.
Case 2. If, up to a subsequence, R(x%, e—Ptipr) > 0, then we must have
PV2( n? n) b1n+FIJ( 2719;»)(;’77)§0

Since 1, x € (0,00)¢ + (diag[z] D, (z), diag[r]2D24(x)) and (i, o) are bounded, one easily checks that
the supersolution property of V4 implies that

pVs(t5,y5) + b5 + Fro(ys, 66, Vo) > O(5) .

Standard arguments based on (4.51), (4.52), (4.53), (4.54) and (4.56) then leads to a contradiction for
& > 0 small enough, after sending 7 — 0, n — oo and then € — 0.
Case 3. We can now assume that R(z¢, e ptnp ) < 0. By the supersolution property of V;, we have

R (y;g” e-pti Qn — ny;/}(yn)) 2 0.

We can then find (¢ such that |(5| =1 and
0 > (eMap(cE) — (¢o) dinglatlpf — by (CE) + (G dinglyg o)
+aet (8u(CE) — (Gi) Te " diaglyz| Dy (vi) ) -
In view of (4.47) and (4.55), this implies that
(¢) T (diagles, — yrln® (a5, — yi) + diagle} ] Dafe (7)) = (G7) T (diaglaflp;, — diaglyla) > woe™
Using (4.51), (4.52), (4.53) and (4.55), this leads to a contradiction as n — oo and then ¢ — 0. O
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4.3.2 Additional technical results for the convergence of the finite differences scheme

We start with a simple remark concerning the PDEs obtained in the interior of the domains in Section
3.3.3.

Remark 4.1 (i) The result of Proposition 4.6 still holds if V; is a supersolution on Dy of
(SO - w) /\ma‘X{SO —w, Hl)\j[@ard}l]} =0 on DIJa
and V4 is a subsolution on Dy of

(p —w) Amax{y —w, H}‘J*[<p7z/J2]} =0 on Dyy,

for some continuous map w,w. In this case, the proof of Proposition 4.6 can be easily modified by
studying simple additional cases. In the case where w > 15 = 1)1, the assumption V3 > ¥ on Dy in
not necessary anymore in Proposition 4.6, since it is induced by the super-solution property of V;.

(ii) Obviously, the result of Proposition 4.6 still holds if V; is a supersolution on Dy of

max{p —w, H}[p,¥1]} =0 on Dy,
and V5 is a subsolution on Dj; of

max{go—o.u Hf\l*[%?/)ﬂ} =0 on DI.]7

for some continuous map w.
(iii) Note that in the two above cases, we can replace H7y by H% defined as H7 but with A%, instead
of A;y, a > 0. The proof follows line by line the one of Proposition 4.6, up to the study of simple

additional cases as mentioned in (i) and (ii) above.

We now discuss the boundary condition as t — T'.

Lemma 4.1 Fiz (I,J) € Ps.
(i) Let Vi be a supersolution on Dy of

max{p — L, min {¢o — €, =90+ F{5(-, Do, D*0) } , M}, (0,0} 5, Dpip) , 0 — G} =0
on {T} x (0,00)¢ x By .

Then, Vi is a supersolution on Dy of
max{M7;(¢, v 7, Dpp) , o —G*} =0 on {T} x (0,00)% x By .
(i) Let Vi be a subsolution on Dyj of

min{max{gafL, mln{§07€7 7at<p+FIJ*('7D§07D2<p)}7MI)\J(9031U§CJ7D;D(P)} ’ 907G)\} =0
on {T} X (O,oo)d X BIJ .

Then, Vo < G* on {T} x (0,00)? x By .

Proof. The proof is standard. We start with item (i). Given a test function ¢ such that (7', zq, po) €
{T} x (0,00)% x Br; achieves a minimum of V; — ¢ on Dy, we define ¢, (t,z,p) := ¢(t,z,p) —n(T —t),
n > 1. We assume that

max{gp -L, MI/\J(QO’U‘/}CJaDp(P) y P — GA}(TWL'Ova) <0.
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Since (T, zg, po) also achieves a minimum of V; — ¢,,, the supersolution property of V; implies that
min {@ — ¢, —n = dp + F5 (-, D, D*¢) } (T, 0, p0) = 0.

Sending n — oo, we obtain a contradiction since F{¥ (-, Dy, D?@)(T, o, po) < 0o, recall that U and A9,
are bounded. We finally use the fact that G* < L, since g < L by assumption.

We now discuss item (ii). By similar arguments as above, we first obtain that V5 is a subsolution on
D[J of

min{max {¢ — L, ¢ — £, M};(¢,0)c;,Dpp)} , ¢ —G*} =0 on {T} x (0,00)* x By .
We conclude by using the fact that G > /. ]

Lemma 4.2 Let Vi and Vi be as in Lemma 4.1 for some (I,J) € P,. Assume that they take values
in [¢,L]. Then, G* > Vi on {T} x (0,00)? x Bry. If in addition (I,J) € P~, then G* < Vi on
{T} X (O,oo)d X BIJ.

Proof. The fact that Vo < G* on {T'} x (0,00)% x Br; follows from Lemma 4.1. We now show that
Vi > 0735 on {T} x (0,00)% x Byy. To see this, note that V;(T,x,p) > G*(x,p) implies V1 (T, x,p) >
v3;(T,z,p) by Theorem 3.3. Recalling the convention (3.10), this concludes the proof for (I,.J) € Px.

O

We finally discuss the boundary condition as p — 0By .

Lemma 4.3 Fiz (I,J) € P\ PF and (I',J') 2 (I,J).
(i) Let V; be a bounded supersolution on Dry of

max { (¢ — vye;) Amax{p — L, H[p,v) ]} , ¢ =0}y =0 on 9DryNDpy
max { (¢ — v)e;) Amax{p — L, H[p,v)e ]}, o =G} =0 on {T} x(0,00) x (BryNBry) .

Then, V} is a bounded supersolution on Dy of

max {(p — o) Amax {p — L, B3 ldes]} s o= vdyk =0 on Dy
0—G =0 on {T}x(0,00)¢xBpy ,

(ii) Let Va be a bounded subsolution on Dry of

min{cp—vf}”7 max {p — L, ﬁ}J*[¢,v§cJ]} ; go—v}\,J,} =0 on 0D yjNDpyp
min {¢ — v}, , max{p — L, H} . [p,v),]} , ¢ =G} =0 on {T}x(0,00)* x (Br;NBry).

Then, Vo < v}\,J, on Dyiyand Vo < G* on {T} x (0,00)* x B .

Proof. (i) It follows from the same argument as in the proof of Lemma 4.1 that V; is a bounded

supersolution on Dy of
max{(cp—vf}cJ)Amax{go—L, H?}[go,vﬁcj]} , gp—vj\,J,} =0 on D;;NDpy,
maX{(‘P - UE\J) A M?J[‘Pa”f}cﬂ y P G/\} =0 on {T}x (O,Oo)d X (BryNBry) .

By following, up to minor modifications (related to the fact that their test function has a derivative in p
that converges to oo, see also Step 2. of the proof of Proposition 4.2 for an adaptation to our context),
the arguments used in Section 6.1 of [6], we deduce that V; is a bounded supersolution on D7 of

max {(@ — ’U?]‘CJ) A max {(p — L, -0+ Ff},(.7 D, D2<p)} , P — 'U;\IJ/} =0on D;yNDpy,
©—G*=0on {T} x (0,00) x (Bys N Bpy) .
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We conclude by using the fact that —8,p + F%, (-, Dp, D%p) < H&%, [0, v 1]
(11) Since U?CJ < ’U;‘,J, on OD;; N Dy y and U?CJ < G* on {T} X (O, OO)d X (BIJ n B]/J/), see Theorem

3.3 and recall that v* is non-decreasing in p, V3 is indeed a bounded subsolution on D;; of

min {max {¢ — L, ﬂl)‘J*[go,vﬁcJ]} , <pfvf‘/J/} =0 on 9D yNDpy,
min {max {¢ — L, Hpplpov)esl s 9 =G =0 on  {T} x(0,00)* x (BryNBry).

By the same argument as in the proof of Lemma 4.1, we then deduce that V5 is a bounded subsolution
on Dyy of

min {max {¢ — L, H}}[p,v).,]} , ¢ —v}p} =0 on Dpy,
@—GA:O on {T}X(0,00)dXB[/J/.

We then argue as in Step 2. of the proof of Proposition 4.2 above to deduce that V5 < v},J, on Dy jr.
O

4.4 Proof of Theorem 3.2

In order to complete the proof of Theorem 3.2, we first show that v is continuous on D.
Proposition 4.7 The function v* is continuous on D.

Proof. We argue by induction.

Step 1. We first notice that v} ; is continuous on D for (I,J) € P£. This is a direct consequence of
Theorem 3.1 and Proposition 4.6.

Step 2. We now assume that v3; is continuous on Dy if (I,J) € PE~* for some 1 < k < k, and show
that this implies that it holds for (I,.J) € Pr=k~1.

A - 2 A A A A
By Step 1, we know that vj.; is continuous on D. Moreover, v7;, > Vjc;, = Vj.; since v

is non-
decreasing with respect to its p-variable. In view of Theorem 3.1 and Proposition 4.6, it thus suffices
to show that v}, > v7% on 0Dy N[0,T) x (0,00)% x [0, 1]*.

By Proposition 4.2 and our induction assumption, we have

vy <Ny = on Dy

for all (I,J),(I’,J’) € P, such that (I',J") 2 (I,J). Hence, it suffices to show that v3,, > v},; on
D[/JI.
We now fix (I’,J") € P, such that (I’,.J') 2 (I,J). Since v}, > v7 , it suffices to restrict to the case

I =1TI'. By Proposition 4.4, vf‘ 7« 18 a viscosity supersolution of
min{y — ¥, —0:¢p + F{;0} >0 on Dyj .

On the other hand, Step 1 and Theorem 3.1 imply that v} 5+ is continuous on Dy and is a viscosity
subsolution of
min{¢ — ¢, —0;¢p + Fryo} <0 on Dy .

(i) First assume that I U J’ = K. Then, Theorem 3.1 and Proposition 4.6 imply that v7;, > v}, on
D[J/.

(ii) We now assume that v3;, > v}, on Dy if |I| 4+ |J'| = n € (k — k, k] and show that this implies
that the result also holds for |I| + |J’| = n — 1. Our recursion assumption implies that v};, > v;‘J// on
D, for all A # J'. Since v}, < U?J,,, we have v}, > v7;, on dDry. Moreover, (i) above
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together with the fact that I C J'¢, since |I| + |J'| < &, imply that v}, > vJ cge = f]‘,c], on D7y, On

the other hand, by Theorem 3.1 and our induction assumption, v} 1+ is continuous and is a subsolution
on Dy of

max {min {(p -0, =0+ FIJ/*(~,D()07D2<p)} ; M)I\J’ (WU‘)}/UHDMP)} =0
while, by Proposition 4.4, U}J* is a supersolution on Dy j: of
max{min{ga—f, —0up + Fi (-, D, D) } <p, JCJ,,ngp)}zo.

The fact that v3,, > v3;, is then a consequence of Proposition 4.6. O

Proof of Theorem 3.2. We only prove item (i) of the theorem, the second one being proved similarly.
We argue by induction as in the above proof.

Step 1. The fact that V;; > v} ', on Dyy when (I,J) € Pr is an immediate consequence of Theorem
3.1 and Proposition 4.6.

Step 2. We now assume that V;j; > v}J on Dy if (I,J) € PE~* for some 1 < k < k, and show that
this implies that it holds for (I,.J) € Pr=F=1,

By Step 1 and the fact that V' is non-decreasing with respect to its p-parameter, we know that Vj; >
Viey > vﬁc s which is upper-semicontinuous by Proposition 4.7. Moreover, we have by assumption that
Vi« > Vipge on 0Dyry N Dy oy for (I/,J/) € P, such that I’ D I and J' D J with (I',J’) # (I, J), and
that V7. (T,-) > G*. Since v is continuous by Proposition 4.7, our induction assumption then leads
to Vige > v}\(, on 0Djy;. The fact that V;; > v}‘, on Dj; is then a consequence of Theorem 3.1 and
Proposition 4.6. O

4.5 Proof of Theorem 3.4
We first prove the convergence for (I, J) € Pr.
Proposition 4.8 Fiz (I,.J) € P£. Then, wi; <vy; <w?;, on Dyy. In particular,
Wy = v}, = Wi« on Dry . (4.57)

Proof. 1. Recall that wj; is well-defined and takes values in [¢, L]. Moreover, the numerical scheme
defined above is monotone and consistent under (3.19), recall in particular (3.18). Arguing as in [2], it

follows that w7 ; is a viscosity subsolution on Dry of
max{wav HI)\J*[QOvO}}:O on DIJ
min {max {¢ — L, HI)‘J*[QO,O]} , = GA} =0 on {T}x(0,00)%x Brs.
Appealing to Lemma 4.2, the above operator can be reduced to
max{cpr, H}J*[@,O]}:O on Djyy
0—G*=0 on {T}x(0,00)x Byy.

The fact that wy; < v% ; then follows from Theorem 3.3 and Remark 4.1.
2. By the same arguments and Lemma 4.2 again, we deduce that w¢;, is a bounded viscosity superso-
lution on Dy of

max {¢ — L, H{j[p,0]} =0 on Dy,
-G =0 on {T}x(0,00)x Byy.
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Since (I,J) € PE, Ary = {0} so that w?;, and H%: do not depend on a. The fact that v}, < w¢,, =
wry« on Dy then follows from Remark 4.1 and the fact that v} '; is a subsolution of the latter, by
Theorem 3.3. m|

We now complete the proof by an induction argument.

Proposition 4.9 Fiz (I,J) € P, \ P%. Then, wi; < v}; < w%,, on Dry. In particular, w}; = v}; =
Wy on Dpy.

Proof. In view of Proposition 4.8, we can argue by induction. We therefore assume that
w%;, > vy, > wh, on Dy for all (I,J) € PF (4.58)

for some 1 < k < &, and show that this implies that it holds for (I, J) € P*~1 as well.
1. By the same argument as in Proposition 4.8, Lemma 4.3, and (4.57), we first obtain that w}; is a

bounded viscosity subsolution on Dj; of

(o —v)ey) /\max{go - L, HIAJ*[cp,v?CJ]} =0on Dy
@ = =0o0n DpyU({T} x (0,00)¢ x Bpy), (I',J') 2 (I,J) (4.59)
-G =0o0n {T} x (0,00)% x By .

On the other hand, Theorem 3.3 implies that v}, is a supersolution of (4.59) on Dy with H3% in place
of Hp;,, that v}, = v}, on D ;N Dy y and v, (T, ) = GMT,-) on (0,00)% x By. Finally, v}; > v},
since it is non-decreasing in its p-parameter. The fact that @} ; < v}, on Dy then follows from Remark
4.1.

2. By the same reasoning, recall in particular Lemma 4.3 and the first assertion of Proposition 4.8,
w¢;, is a bounded viscosity supersolution on Dy of

(¢ —v)ey) Amax{p— L, H3[p,v).;]} =0on Dy
max {(¢ — v)e;) Amax{¢ — L, Hi;[p,v}e ]} , ¢ =03} =0o0n Dpy, (I',J) 2 (1,J) (4.60)
©—G*=0on {T} x (0,00)% x By

where v} ; = w3 ; = w4, ;, and v}, = W% ; = WY, ;,, are continuous.

On the other hand, v}, is a subsolution of max {¢ — L, H},,[p,v).,]} = 0 on Dy; and satisfies the
boundary condition v3; = v, ;, on Dy ;N Dy and v3; = G* on {T} x (0,00)? x By s, recall Theorem
3.3. In view of Remark 4.1, and the fact that w¢;, > v}.; on Dy and w%,, > G* on {T'} x(0,00)%x By,
by its supersolution property, it only remains to prove that w§,, > vj\,J/ on ODyy N Dy yr.

Since v}, > v}, 5, it suffices to consider the case I = I'. If (I,J’) € P, then the result follows from
Remark 4.1, Theorem 3.3 and the second and third equations in (4.60). Assuming that w%;, > v},
on Dy N Dy for (I,J') € P* with |I| 4+ |J| +2 < k < k, then we deduce similarly that it holds for
(I,J") € PE=1, since our induction assumption guarantees the required boundary conditions. O
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