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Abstract

We extend to cadlag weak Dirichlet processes the C%!-functional It6-Dupire’s formula of Bouchard,
Loeper and Tan (2021). In particular, we provide sufficient conditions under which a C%!-functional
transformation of a special weak Dirichlet process remains a special weak Dirichlet process. As opposed
to Bandini and Russo (2018) who considered the Markovian setting, our approach is not based on the
approximation of the functional by smooth ones, which turns out not to be available in the path-
dependent case. We simply use a small-jumps cutting argument.

1 Introduction

Let X = Xy + M + A be a cadlag semimartingale where M = M¢ + M? is a local martingale and A is
adapted and of bounded variations. Let uX denotes its jump measure and v¥ its compensator. Then,
given a C'12 function F : [0, 7] xR? — R, the It6’s formula ensures that (F(t, Xt))ielo,) s a semimartingale
with decomposition

t
F(t, X,) = F(O,X0)+/ Vo F (s, X )dM,
0
b P X ) = P ) 0 VaF (s X)) ). da)
]0,t] xR4
+1F

where

t t 1 t ) e
rf:/ 8tF(s,Xs)ds—|—/ VL F(s, X, )ddy+2 3 /ViinF(s,Xs_)d X7 X"
0 0 2197de 0

If we assume furthermore that F(-, X.) is a local martingale, then '’ = 0, and this formula only uses
the first derivative in space of F' and should be valid even if F is only C%!. In the Markovian setting,
we know from [IL 9] that it is indeed true for cadlag weak Dirichlet processes, even when F'(-, X.) is not
a local martingale, in which case I''” turns out to be an orthogonal process, which is even predictable if
X is special. In [4], the authors provide an extension of this result to the path-dependent case under the
condition that X has continuous path. Naturally, it uses the notion of Dupire’s derivative, see [12] [§].
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Such a decomposition appears to be a powerful tool in particular for using verification arguments
in optimal control problems, for which obtaining a C'2-type regularity for the value function may be
difficult, if even true. The situation is worse when it comes to considering path-dependent problems, for
which classical derivatives have to be replaced by the notion of Dupire’s derivatives, whose existence and
regularity are difficult to obtain. Versions of the above formula were actually already applied successfully
in [6l, 5, [4] in the context of risk hedging, under model uncertainty or in markets with price impacts. See [3]
for an application to BSDEs, or for a class of so-called m-approximate viscosity solutions of fully non-linear
parabolic path-dependent PDEs, for which C%!-regularity in the sense of Dupire can be obtained.

When, as in [4], X has continuous path, then it is immediate to conclude that I'" is predictable. Things
are a priori more complex if X has jumps. In this case, the above decomposition into a weak Dirichlet
process is not unique, and the orthogonal process I'f" can contain a purely discontinuous martingale part,
which makes the above decomposition useless for verification arguments. In the Markovian setting, [I]
uses an approximation argument on F' to show that it can actually be chosen to be predictable if X
is special. Namely, they construct a sequence of predictable processes (I'f"),>1 obtained by applying
It6’s formula to smooth approximations (F,),>1 of F, and then show that (I'¥),>; converges to T'f".
This argument could not be extended so far to the case where F' is path-dependent. The main reason is
that the vertical and horizontal Dupire’s derivatives do not commute, which renders the construction of
smooth (in the sense of Dupire) approximations a completely open problem, see e.g. [19].

In this paper, we follow a different and actually simpler route. First, we observe that the decomposition
can easily be deduced from [4] when X does not have small jumps. Then, we just approximate X by
removing its small jumps, and passing to the limit.

The rest of the paper is organized as follows. We first recall usefull results of the functionnal 1t6 calculus
and It6 calculus via regularization. Then, we state and demonstrate our version of the functionnal It6’s
formula for cadlag special weak Dirichlet processes. We conclude with a typical exemple of application.
Some (essentially known) technical results are collected in the Appendix for completeness.

2 Notations and definitions

All over this paper, we fix a time horizon 7' > 0 and let (Q, 7, (%).c(0,17, P) be a stochastic basis, i.e. a
filtered probability space such that the filtration (ﬁt)te[o,T] is right continuous.

2.1 Skorokhod space and path-dependent functionnals

Let D([0,T]) be the set of cadlag paths on [0, 7] taking values in R? and © := [0,T] x D([0,7]). For
(t,x) € ©, we define the (optional-) stopped path x;a € D([0,T]) by x;a := xLjg4 + x¢1p 7 and its
predictable version x;, € D([0,T]) by x;, := x1jg 4 + x¢— 1 77 For (£,x) € © and y € R%, we also define
the trajectory x @&, y by x1jg + (x¢ + y)l[t’T] and the trajectory xH; y by x4 + ylp 1)

We define on © the pseudo-distance de((t,x), (t',x")) = [t — | + |x},, — x¢a|, where || denotes the
uniform norm on D([0,77]). Considering the quotient space (©,~) defined by (¢,x) ~ (¢/,x’) whenever
t =1t and x4p = X}, (0,dg) is a complete metric space.

We say that F' : © — R is non-anticipative if F(t,x) = F(t,x) V(t,x) € ©. A non anticipative
function F : © — R is said continuous if it is continuous for (©,dg). The set of continuous non-
anticipative maps on © will be denoted C(0). We say that F is locally uniformly continuous if, for all
K > 0, there exists a modulus of continuity dx (F,) (i.e. a non-negative and non-decreasing function
defined on R4 that is continuous at 0 and vanishes at 0) such that

|F(t,x) = F(t,x)| < 0 (F, do((t,x), (¢, X)) (1)

for all (t,x), (t',x’) € © with ||x| Vv ||¥]| < K.



A functionnal F': © — R is said to be locally bounded if

sup  |F(t,x)| < 400, VK €Ry .
te0.T], |x|<K

We denote by Cfo’g(@) the set of non anticipative, locally uniformly continuous and locally bounded
functionnals.

We can now define the notion of differentiability for path-dependent functionals following the one
introduced by Dupire in [I2]: a non-anticipative function F': © — R is said to be vertically differentiable
at (t,x) € © if y € R? — F(t,x @ y) is differentiable at 0. In this case, we denote by Vi F(t,x)
this differential. We denote by C%!(©) the collection of non-anticipative functions F such that VyF is
well-defined and continuous on ©.

In this paper, for all path-dependent functionnal F' defined on © and (¢,x) € ©, we will use the
notations

Fy(x) := F(t,x) and Fi(x") := Fi(x;,)-

2.1.1 1It6’s calculus via regularization and weak Dirichlet processes

Let us recall here some definitions and facts on the It6 calculus via regularization developped by Russo
and Vallois [16], (17, I§]. See also Bandini and Russo [1] for the case of cadlag processes. For the rest of
the paper u.c.p. means uniform convergence in probability.

Definition 2.1. (i) Let X be a real valued cadlag process, and H be a process with paths in L'([0,T])
a.s. The forward integral of H w.r.t. X is defined by

t t

_ 1
| H.d X, = lmo | Hy(X(s4ent — Xs)ds, t>0,

whenever the limit exists in the sense of u.c.p.
We naturally extend the definition of the forward integral for two R%-valued processes X and H such that
X' is cadlag and H* has paths in L'([0,T]) for alli=1...d by

t d ot
/ H, d_XS:Z/ Hid= X! t>0,

whenever all those integrals exist.

(ii) Let X and Y be two real valued cadlag processes. The quadratic covariation [X,Y] is defined by

.1t
[Xa Y]t = 1{(% g 0 (X(s-i-e)/\t - Xs)(}/(S-FG)/\t - YZ?)d‘S? t>0,
whenever the limit exists in the sense of u.c.p.
In the following, we will use the notation [X, Y'Y = %f(f(X('ere)At — X)(Yispent — Ys)ds.
We naturally define the quadratic covariation matriz ([X,Y]")1<; j<q for two R%-valued cadlag processes
X andY by, for all1 <i,5 <d,
(X, Y]y) = [X, Y7, t>0,

whenever [ X, Y7 is well defined for all 1 <i,j < d.

(iii) We say that a R%-valued cadlag process X has finite quadratic variation, if its quadratic variation,
defined by [X] := [X, X]|, exists and is finite a.s.



Remark 2.2. When X is a (cadlag) semimartingale and H is a cadlag adapted process, fg Hy d X,
coincides with the usual It6’s integral fg Hs,_dXs. When X and Y are two semimartingales, [X,Y]
coincides with the usual bracket.

Definition 2.3. (i) We say that an adapted process A is orthogonal if [A, N] = 0 for any continuous local
martingale N .

(ii) An adapted process X is called a (resp. special) weak Dirichlet process if it has a decomposition of the
form X = Xo+ M + A, where M is a local martingale and A is an (resp. predictable) orthogonal process,
such that My = Ay = 0.

Remark 2.4. (i) An adapted process with finite variation is orthogonal. Consequently, a semimartingale
1s 1n particular a weak Dirichlet process.

(ii) Any purely discontinuous local martingale is orthogonal by Remark .

(iv) An orthogonal process has not necessarily finite variations. For example, any deterministic process
(with possibly infinite variation) is orthogonal.

(iv) The decomposition X = Xo+ M + A for a cadlag weak Dirichlet process X is not unique in general.
Indeed, we can always displace a purely discontinuous martingale part in the orthogonal part. However,
this decomposition is unique if X is special.

3 The Ito-Dupire’s formula for C%'-functionals

In [4], the authors require an assumption relating the regularity of the path of X and of the functional F,
Assumption (A) below. When X has continuous path, it turns out be equivalent to the decomposition
below. In our setting, we shall apply it to an approximation of X obtained by removing its small jumps,
see Remark [3.6] below.

Assumption (A). Let F : © — R be a non-anticipative functional and Y be a cadlag process. We say
that the couple (F,Y") satisfies Assumption (A) if

1

o[ FV) = PtV B Vo)) (Vo — Nl —3 0 i &)
0

for all continuous martingale N.

Remark 3.1. First note that the left-hand side of is always 0 when F is Markov, i.e. F(t,x) = F(t,x)
whenever x; = x}. Second, the above also holds if we assume that, for all x € D([0,T1]), s € [0,T] and
e€[0,T —s],
|Fs+e(x) - Fs+e(Xs/\ s e Xere)‘ < /( ) ¢(X7 |Xuf - Xs|)dbu(x)’
s,5+€

where ¢ : D([0,T]) x Ry — R satisfies supj,<x #(x,y) < oo, limy\0¢(x,y) = ¢(x,0) = 0 for all
x € D([0,T]) and K > 0, and b maps D([0,T]) into the space BV of non-decreasing bounded variation
processes. This follows from the same arguments as in [{), Proposition 2.11]. In particular, is satisfied
if F' is Fréchet differentiable in the sense of Clark [7], see [{, Example 2.12].

We are now ready to state our decomposition result. From now on, we fix a cadlag special weak
Dirichlet process
X=Xo+M+ A (3)



Here, M = M¢+ M? where M¢ and M¢ denote its continuous and purely discontinuous martingale parts,
and A is a predictable orthogonal process (recall that the decomposition is unique in this case, see Remark
. We denote by p~ the jump measure of X, and by v its compensator. If > .. p|AAs| < +o0 a.s.,
then one can define the continuous part of X by

X=X - M- AA,.
>

s<-

Theorem 3.2. Let X be as in and assume that

(X]r+ ) [AA] < +o0 as. (4)
0<s<T

Let F € C%(©) be such that F' and V< F are both in C;ﬁg(@) and such that t € [0,T] — VxF;(X ™) admits
right-limits a.s. Assume further that (F, Z &, (X¢— X)) satisfies Assumption (A) for every cadlag process
Z and stopping time 7 such that T < T a.s.

Then, (Fy(X))icpo,1] is a special weak Dirichlet process with decomposition

t
F(X)= FO(X)+/ Vi Fs(X™)dMj
0
bR @)~ B = oV OO ) — ) (ds,de)
10,¢]xRd
+1F, vitelo, 1], (5)
where T is an orthogonal and predictable process.

Before to provide the proof of this result, let us make several comments.

Remark 3.3. All the terms in are well defined. In particular,
[ (P 000 = FO ) gy (5~ v)(ds, da)
]0,-]xR4
/ xVXFS(X_)1{|m|S1}(/LX —v¥)(ds, dx)
]0,-]xR4

are purely discontinuous local martingales. See Lemma below.
Remark 3.4. If X is a semimartingale, then holds.

Remark 3.5. Let (€,)nen C (0, 1)N be a decreasing sequence of positive real numbers converging to 0.
Using , we can define Z" :=Y" + ng- AAsLan,|<e, where Y™ := a1y o0 * (uX —vX) is a purely
discontinuous local martingale (see [15, Theorem I1.2.84]). Then, Z™ is an orthogonal special semi-
martingale with jumps not larger than €,, namely |AZ}'| < e, Vt € [0,T)] a.s., such that X™ := X — Z"
only has jumps larger than €,. Moreover, |Z™| + [Z"]; —0 a.s as n — 0.

Remark 3.6. For simplicity of exposition of our main result, we assumed that (F, Z®, (X —X¢)) satisfies
Assumption (A) for every cadlag process Z and stopping time T such that T < T a.s. In the proof, we
shall actually only use the fact that (F, X" @&, (X¢ — X%)) satisfies Assumption (A) for all stopping time
T corresponding to a jump time of X™, for allm > 1.



Proof of Theorem[3.2. 1. The fact that the decomposition holds with I'" orthogonal, but not neces-
sarily predictable, follows from the same arguments as in [I], 4], see Proposition in the Appendix. We
therefore just have to show that T'f" is predictable.

2. Let (en, X™, Y™ Z™),en be as in Remark Fix n € N and let (7]")ken be the sequence of stopping
times corresponding to the jumps of X larger or equal to €,, namely 7' = 0 and 7;!,, = inf{s > 7'
s.t. |[AX,| > €,}. These are the jump times of X”. Then, K" := min{k € N s.t. 7)) AT = T} is finite
a.s. and, for ¢ € [0, T,

K™—1
Fy(X™) = Fo(X™) = > Frp at(X") = Frppu(X™)
k=0
K™—1
=Y (B mi(X™) = Frp (X)) — AXTn VP a(X"7)
k=0
—'I_ FT]?+1/\t(Xn_) — FT]?/\t(Xn) + AX77:L£+1/\thFT£+1/\t(Xn_)j|

=R," + R}" + R}"
where

R — / (Fu(X"™ &4 1) — Fo(X™7) — oV Fa (X)) a1y (ds, dz)
]0,¢] xR4
+ / (Fs(Xni Ds $) - Fs(Xni))l{en§|z|§1}(MX - VX)(dS, d.CU)
]0,¢] xR4

- /}o fxRd eV Fo(X" )1 e, <jai<1y (X — %) (ds, da)
] x

K"r—1
R?m = Z [FTI?ﬂ/\t(Xn_) - FT;?M(Xn) + AM%LHMVXFTQHM(XTL_)
k=0

Rf’n :/] } d(FS(X”* Dsx) — Fs(X") — xVXFS(X”’))l{engmgl}yX(ds, dx)
0,t]xR

Kn—1
+ ) AAT VaFrp (X™0),
k=0
in which M™ and A™ denote respectively the martingale and the bounded variation part of X™. By
hypothesis, for all & = 0,..., K™ — 1, the couple (F, X" & (X — Xﬁg)) satisfies Assumption (A).

Moreover, by definition of X™ and (7)ren, X" EEIT]:LH Xfl? - is continuous on [T]?,Tl?_i_l] and coincides
+

with X" @rn (X—X %?) on [0, T +1] . By Proposition we can then find an adapted orthogonal process

'k guch that
t
Fy(X"Brp X0 )= Fon(X") = [ VeFy(X"7)dMS+ T —TEM vee [ ] (6)

n n
Tht1 = Thp1 ™ n Tk
Tk

in which we used that X™ and X have the same continuous martingale part. By continuity of F' and

the path of X" H X" _on [T,?, T,?H], we see from the above that T'F>™* is continuous on [T,?, T,?H].

n
Th+1 T

Then,
K"—1 T AL
2.n kt1 n— c Fn,k Fnk n n—
Ry = E /HM Vi Fs(X")dM: + FT;?HM - FT;;M + AMT&lMVXFTgHM(X )
k=0 Yk

‘ Kn—1
- F7 7k F7 7k
- /0 Vo Fo(X™)dM™ + ;0 T



Let us define
Kn—1

=R+ ZFFM Fn’}f,th.

7',C 1/\25

It follows from the above that I'¥>" is predictable as a sum of predictable processes.
3. Let us now show that

/ Vo Fy (X" )M — / Vo Fy(X7)dM, u.c.p. (7)
0 0
on [0,T]. We have
t t t
/ Vo Fy (X" )M = / Vo Fy(X")dM, — / Vo Fy(X")dY"
0 0 0

Since Y™ is a purely discontinuous martingale such that |[Y"| — 0 a.s. and VF is locally bounded, we
can assume, up to using a localizing sequence, that (ViF(X"),Y™ [Y"]), is uniformly bounded by a
constant C. Then, since | X" — X | — 0 a.s. and VF is continuous, we deduce from [I5, Theorem 1.4.31]
that

/ Vi Fy(X")dM, — / Vi Fy(X7)dM, w.c.p.
0 0

on [0,T]. Moreover,

t
E [ sup | [ ViFs(X")dY!?

T
n—y\\2 n
t€[0,1] <4E [/0 (VxFg(X"7))*d[Y™],

<4C%E[[Y"]7]

in which the last term tends to 0 as n goes to +o00, by dominated convergence. This proves ([7).
Similarly, by applying Lemma below, we deduce that R™ converges u.c.p. on [0,7] to

€[0,7) — (Fo(X™ @s ) = Fo(X7) = aViFo(X 7))L gs 1y (ds, da)
10,¢] xR4

+/ (FS(X_ Ds l’) _FS(X_))l{hv\gl}(:uX_VX)(dsadx)
10,¢] xR4
- / xVXFS(X_)l{|x|§1}(MX - VX)(dS,d.’IJ>.

10,¢] xR4

Finally, since | X" — X| — 0 a.s., we have |F(X") — F.(X)| — 0 a.s. by local uniform continuity of F.
4. Combining steps 1. to 3. above, we obtain that the sequence of predictable processes (I'f*),,cn converges
to I'" u.c.p., which implies that I'" is predictable, and concludes the proof. O

We conclude this section with the proof of the technical lemma that was used in the proof of Theorem
We borrow the standard notations <7 and 42 _(u~) from [15, Section I.3.a., Section IL.1.d.].

Lemma 3.7. Let (€, X", Y™, Z")nen be as in the proof of Theorem .
Define H(x) = (Fs(X"™ @5 2) — Fo(X"7) — oV Fs(X"7)) e, <lzj<1} Jor (s,z) € [0,T] x R%. Then,
H™(z) * (u — vX) is a sequence of purely discontinuous local martingales that converges to

t— fOt ><Rd (Fs(X™ @sx) — Fg(X7) — :L"VXFS(X_))l{MSI}(,uX - VX)(ds,dx) u.c.p.



Proof. Let us define

V;l’n(a:) = (Fs(X™ @s ) = Fs(X" @5 ) + Fo(X"7) = Fo(X7) + 2V Fs(X"7) — 2V Fs(X 7)) e, <<t}
VS2,TL(;L') = (FS(Xi Ds l‘) — FS(Xi) — xvsz(Xf))l{‘xKen}

for (s,z) € [0,T] x R%. By linearity, it suffices to show that I*™ := V& x (uX — vX) converge to 0 u.c.p.,
fori=1,2.

We recall that any caglad process is locally bounded. Furthermore, since X is cadlag and has finite
quadratic variation, we have 3~ ¢ 7y |AX;|? < +o0 a.s. by [1, Lemma 2.10]. We also recall that (Z™),en
is uniformly locally bounded, see Remark Consider the cadlag process E = (X;—, >, |AX[*)i>0
and let (Sy,)men be a localization sequence such that for all m € N the processes ((Z", E).nsm Lgm=0)neN
are uniformly bounded in n. It suffices to show that (V¥ % (uX — 1)), converge to 0 u.c.p. for a fixed
S =58m,i=1,2. Let C be such that ||[E.xs|| V ||Z] || < C for all n a.s. Then,

E[([V2"?%vX)ras] =E A)TAS] Rd|(FS(X_ Bs 1) — Fo(X7) = oV Fo(X 7))L {ju)<eny|*1 (ds, dz)
A X

=E| Y (F(X) - F(X7) - AX,VeE (X))

s<TAS
L0<|AXs|<en

1
=E Yo |Ax)? |/0 {ViFy(X™ @5 MAX,) — Vi F(X7)}dA]?

s<TAS
L0<|AXs|<€n

< 021 (V«F, €,)E Z |AX[* 1550 + [AXTAs* L5501 A X701 <1

s€]0,TAS|
0<|AXs|<en

< 0811 (VeFoen)(C + 1) (8)
where 0.(VyF,-) denotes the modulus of continuity of ViF defined in (1)). In the same way,

E [(\Vl’”lz * VX)T/\S}

1
=E| > |AX |/0 {ViFo (X~ @ MAX,) — Vi F(X™ @y MAX) YA+ Vo F(X™) — Vo F(X )2

s<TAS
0<|AX|<L1

< A(C+ DEE 11 (V< F 12" [0,5017)] (9)

where |[|x]|jo,¢) = sSup,eo4/xs| for all (¢,%) € ©. A
Thus, for i = 1,2, V" belongs to 42.(u*) by [2, Lemma 2.4], and I}y is a purely discontinuous square

integrable martingale by [I4, Theorem 11.21]. Also, by [14}, 3) of Theorem 11.21],we have

1], = / Vin(@) BoX (ds,dr) — 3 [V < / Vi (@) PoX (ds,de) - (10)
]0,tAS]x R4 0<s<tAS ]0,tAS]x R4

where V" = [, V& (z)v({s},dx), for i = 1,2.
Hence, we can apply Doob’s maximal inequality to the square integrable martingale I.ng, 1 =1,2, and



then use , @ and to obtain that, for any o > 0,

P( sup |I%] > o) < —E ||Ix <—E / Vo (@) |"ve (ds, dr) | < —6041(ViF, €,)(C + 1),
(te[O,T]| tAs] ) o2 [| TAS } o2 [ ]0,T/\S]><Rd| (2)] ( ) o2 o )( )

1 4
P(sup |1,5] > a) < —E / V" (@) Pv¥ (ds, dx) | < —E[6841 (VaE, 127 j0,5n))(C + 1).

t€[0,7] a 10,TAS] xR @
The right-hand side terms tend to 0 as n — oo (by Remark and dominated convergence for the second
one), which concludes the proof. O

4 A toy example of application

To illustrate our main result, we now provide a simple toy example of application. We keep it as simple as
possible. Semilinear and fully-non linear problems have been studied in [4, 3] in the context of continuous
path processes and can also be extended to our setting.

We fix d = 1. Let W be a standard Brownian motion and N be a compound Poisson process with
compensator v;dt, for some predictable (t,w) € [0,T] x Q — 14(w, -) taking values in the set of probability
measures on R. Given (t,x) € ©, we define X** by

tVs
X?X = X¢pns + Apvs — Ap + / osdWs + / Vs(y)N(dsa dy), s <T, (11)
t ]

5,tVs]| xR

where o is predictable and bounded, v is ¥ @ # (R)—mesurableﬂ and bounded, and A is a cadlag, bounded,
and with bounded variations predictable process.

We then consider a bounded C'*%(R)-map g : R — R, for some a € (0, 1], with bounded derivative,
and a right-continuous measure p with bounded total variation on [0, 7] and at most a finite number of
atoms {0 <t} <--- <t, <T} which are deterministic. We define

T
v:(t,x) €O — E[g(/0 X5 p(ds))].

The following is nothing but a version of the celebrated Clark’s formula, see [7], which we retrieve here
as a consequence of Theorem

Proposition 4.1. Let the above conditions hold and set X := X% for some x € D([0,T]). Then, v
admits a vertical derivative

T ! ’
Vv (tx) € © = EIVg( | X% uds))u(. 1))

and there exists an orthogonal and predictable process I' such that I'g = 0 and
T T
o / X.op(ds)) =v(0,x) + / Vv (s, X)osdiVs
0 0

T
+ Z(V(S,X) —v(s,X7)) — /0 /R(v(s, X~ @sy) —v(s,X7))vs(dy)Asds + T'r.

s<T

If moreover v(-, X) is a martingale, thenT' = 0. It is in particular the case if A, o, v, X andt € [0,T] — 1
are deterministic.

!We use the standard notations & (resp. B(R)) for the predictable sigma-field (resp. the Borel sigma-field).



Proof. 1. We first assume that p does no have atoms. How to treat the general case will be discussed in
step 3. First note that, for (¢,x) € © and y € R,

T
v(t,x @ y) — v(t,x) - E[Vg(/o Xﬁ’xu(dS))u([t,T])]y’ < CE[{Jul ([t TDly[} )

for some C' > 0. Since |p| is bounded, this implies that

T
Vv(t,x) = E[Vg( /0 X% u(ds)) ([t T]).

Clearly, v and Vyv are locally uniformly bounded since g, Vg and |u| are bounded.

2. Note that (v, Z) satisfies assumption (A) for all cadlag process Z by Remark . We now prove
that v and Vyv are locally uniformly continuous. Fix (¢,x),(¢,x’) € © with ¢ > ¢. Then, by standard
estimates based on our boundedness assumptions,

T
E| / IX0% — XUX | u(ds)] <C(Jxin — x| + VT —F)
0

for some C' > 0 that does not depend on (¢,x) and (t',x"). Given the above and the fact that g is Lipschitz
and C1*®(R), this implies that

V(%) = V(%) < Cllxin = xp0] + (F = 1)) (12)
Vv (t',x') = Vv (t,x)] < Cllxin = xpal® + (¢ = )% + ([t ]) (13)

for some C' > 0 that does not depend on (¢,x) and (¢,x’).

3. In the general case where p has a finite number of atoms {0 < t; < --- <t, < T}, then —
shows that v and Vv are locally uniformly bounded and locally uniformly continuous on each closed and
convex interval of U [ti,tit1), with the convention that tg = 0 and ¢,,+; = T. Moreover, also shows
that v(-, X ) admit right-limits, for all X := X%* for some x € D([0,T]). Then, one can apply Theorem
3.2 on intervals of the form [¢;, ] with ¢; < ¢ < t;41 and 0 < i < n. Since, like X, v(-, X) is a.s. continuous
at t;41, this implies that

tAt; 11
V(t/\ti+1,X) :V(ti,X) —I-/ VXV(S,X)dMSC
ti

Y (s X) —v(s, X)) - /0 /R (v(5, X~ By ) — v(s, X7))va(dy) Auds

s<tAtit+1

+ ]-_‘t/\ti+1 - ]-_‘tp te [ti7ti+1]7

in which M€ is the continuous martingale part of X and I' is predictable and orthogonal.
4. In the case where A, o, v, A and ¢t € [0,T] — v; are deterministic, then one easily checks that
v(-, X) is a martingale. If the later holds, then I' = 0 by uniqueness of the martingale decomposition. [

A Appendix

We first state a technical result whose proof is very close to the first part of the proof of Lemma
Again, we borrow the standard notations &/ and 92 (u~) from [15, Section L.3.a., Section IL1.d.].

loc
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Lemma A.1. Let F € C%Y(©) be such that VF is locally bounded and let X be a cadlag process such
that ZS§T|AXS|2 < 400 a.s. Then,

V= |(Fs(X @5 ) — FS(X_)):l-{lcr:\él}’2 * :UJX € ‘Qfljc
W = 2V Fy(X ) 1p<y|* 1~ €

loc

In particular, ((Fs(X @ x) — Fo(X 7)) 1gz<ay) * (0 —v™) and (Ve Fo(X 7)1 <ny) * (0 — ) are
well-defined purely discontinuous local martingales.

Proof. The fact that both processes are increasing is trivial. We next argue as in the proof of Lemma [3.7

Set Y := (X;_, Zs<t’AX5‘2)tZO and let (Sy,)men be a localization sequence such that (Y.xsmlgm=q)meN

is a sequence of bounded processes. We fix S = S,,, for some m and C s.t. |Yias| < C Vi <T as.
Then,

E [Wt/\S] =E [/ |xvsz(X_)1{|ac|§1}|2MX(d57 dx)
]0,¢AS]%R

< sup  [ViEs(®)PE | ) JAXLss0 +|AXsPLss0daxg <1
SE[O,T], "XHSC SE]O,t/\S[
0<|AX,|<1

< sup |V Fs(x)|* (C +1).
s€[0,T], |x|<C

The last term is finite since V4 F' is locally bounded. Similarly,

E [Vins] = E / (Fu(X @y ) — Fu(X7))Lupry P (ds, dr)
10,¢AS] xR

=E Z ‘(FS(X)_FS(X_)F
s€]0,tAS]
Lo<|AX,|<1

1
=E| ) \AX5|2|/0 Vo Fs(X™ @5 AMAX,)dN?

S€J0,tAS]
Lo<|AX,|<1

< sup [VWEEPE[ DY [AXPleso + [AXs [ Lss0laxg<t
SE[O,T], ”XHSM sE]O,t/\S[
0<|AX|<1

< sup |VXFS(X)|2 (C+1).

s€[0,T], |x|<C

Thus, V and W belong to sziljc

We conclude that ((Fy(X @) — Fo(X 7)) 1{z1<1y) * (1 —vX) and (a Vi Fo(X 7)1 p1<ay) * (0 —vX)
are well-defined square integrable purely discontinuous locale martingales by [14, Theorem 11.21] since
their integrands belong to 42 (u) by [2 Lemma 2.4].

O]

The next result follows from the same arguments as in [I,4]. At the difference of Theorem [3.2] it does
not assert that I'" is predictable. We provide its proof for completeness.

11



Proposition A.2. Let X = Xg+ M+ A be a cadlag weak Dirichlet process with finite quadratic variation.

Let uX be its jump measure and v~ its compensator.
Let F : © — R be C%', such that F and V,F are both in C};’g(@), and such that s — VyFs(X7)
admits right-limits a.s. Then, (Fi(X)):ejo,r) 78 @ weak Dirichlet process with decomposition

F (X /VF

/ (Fu(X™ @y 1) — Fo(X7) — 2V Fa(X ) Lypupory ¥ (ds, d)
]0,¢] xR4
+ / (Fo(X™ @q ) = Fo(X 7)) Lgay (0™ —v™)(ds, da)
]0,¢] xR4
—/ :CVXFS(X_)l{MSl}(,uX — VX)(ds,d:(:)
]0,¢] xR4
+TF, vtelo, 1],

where T'Y is an orthogonal process, if and only if (F, X) satisfies Assumption (A).

Proof. For the rest of the proof, we denote by d.(F,-) and J.(V«F,-) the modulus of continuity of F' and
Vi F, see .

Let N be a continuous local martingale. Our aim is to show that [I‘F N ] = 0, in which

' = R(x / V. Fy(
- A)t]XR(FS(X ®sx) — Fs(X7) — xVXFS(X_))1{|$|>1},uX(ds,d:z:)
- [ (R B0~ B gy (6 0¥ (ds. d)
10,t]xR
+/ eV Fo(X ) 1p<ny (0 — v¥)(ds, dz), t<T. (14)
10,t]xR -

Note that >, .p|AX,|> < +00 a.s., since X has finite quadratic variation, see [I, Lemma 2.10.]. Then,
by Lemma and the definition of a purely discontinuous local martingale, the two last terms of
are orthogonal, hence their quadratic covariation with N equals 0.

On the orher hand, since X is a cadlag process, it has finitely many jumps larger or equal to 1, a.s.
Hence fo de Fo(X®sz)—Fo(X7) —:UVXFS(X_))lﬂxbl}uX(ds, dx) is a bounded variation process and,
by Remark 2.2] its quadratic covariation with N also equals 0. Moreover, by Remark [2.2]

[/VF dMS,N] /VF )d[M,N],.
Thus, by bilinearity of the quadratic covariation, we only have to show that
/ Vi Fs(X7)d[M,N],
which by continuity of N and [I, Proposition A.3] is equivalent to
1 ¢

It ::/0 (Fope(X) — Fy(X))(Ngse — Ny)ds — i ViFs(X7)d[M,N], uc.p.

€ e—0

12



We have
F=rt e

where
Lt
Ite’ = 6/ (Fere(Xs/\ BE‘SJre Xs+6) - FS(X))(NS+6 - Ns)d‘s
0
1 t
I:’2 — 6/ (Fere(X) - Fs+e(Xs/\ BE,SJre Xere))(Nere - Ns)d5~
0

If we show that I¢? = Jo VxFs(X7)d[M,N], u.cp., then I " 0 u.c.p. if and only if 14?2 — 0 u.c.p.,
€—> €E—r €—>
which would provide the required result.

Let us decompose I¢! in
Ite,l — Ite,ll +I:,12 _|_Ite,13 +I§’l4

where
11 1 t 1
Itﬁ - g / / (vsz+s(Xs/\ Dste )‘(XS+E - XS)) - vXFSJrG(XS/\))d)‘ (X3+€ B XS)(NSJFG o NS)dS
o Jo
¢ I
It712 = 6/0 (vszJre(Xs/\) - VXFS(X))(Xere - Xs)(Nere - Ns)ds
1 t
01 = - /0 Vi Fo(X)(Xspe — Xs)(Nype — Ny)ds
u 1/
% = 2 [ (Fue(Xer) = Fu(X)) (Ne — N,

€Jo

Since V«F is in C}gg(@), we have

€,12
[1572] < Oy (VF, €) IV, NP [X, X2

Since N is a local martingale, N has finite quadratic variation by Remark Then, [N, N]!?P = [N, N]
€E—r
and [X, X]'P = [X, X] u.c.p. Hence, the right-hand side term converges to 0 u.c.p. and thus /42 —; 0
€—>

e—0
u.c.p.
Let us now consider 7¢14:
1 t
% =1 [ (Pl Xan) = Fu(X0) N = V)i

0
1 t Ss+e

= 6/ (Fsye(Xsp) — FS(X))/ dN, ds

0

1 t+e u °

= / / Fsie(Xspn) — Fs(X)ds dN,
€Jo (u—e)VO0

where we used the stochastic Fubini’s Lemma to deduce the last equation. Since F' € C;LO’S(@), we have
%|f(17i—e)\/0 Foye(Xsn) — Fs(X)ds| < jx(Fe) > 0 Yu € [0,7T] a.s. Then, using [I5, Theorem 1.4.31], we
conclude that 16 " 0 u.c.p. By using [I, Proposition A.6.], we have I3 " Jo VxFs(X7)d[M,N],
€E— €E—
u.c.p. Hence, it remains to show that 7611 —0> 0 u.c.p.
e—

Let (en)nen a sequence of real numbers which tends to 0 and let .4#” be an element of .# s.t. P(.4¢) =0
and s.t. [N, N]'P = [N,N] and [X, X|!? — [X, X] uniformly on .4". We fix w € .4 for the rest
" n—+o0 n

n—+o00
of the proof (we omit it to alleviate notations).
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Fix an arbitrary v > 0 and let (¢;);en be the jump times of X (depending on this fixed w).

By [1, Lemma 2.10.], there exists K = K (w) s.t. 70 o1 |AXy, 2 < A2
K

We define A, = | Jt; — en, t;] and B, = [0,T]\A,, and decompose I*''! as follows:
i=1

Ien,ll — Ien,llA + Ien,llB

where
A s~ 1 [ '
Iten7 - Z E/t 186]0,t]/0 G€n(87)‘)d)‘ (XS+€n - XS)(N5+EH B NS)dS
i=1 "t
1 t 1
[;"’HB = — 18€B€n / Gen(s,)\>d)\ (Xs+en - Xs)(Ns-‘ren - Ns)ds
€n Jo 0
in which
G, (8,\) := VxFaie, (Xsn Dsten, A Xste,, — Xs)) — ViFuie, (Xsn)-
We have

1] < G (VF, - sup sup X0 = Xal) /[N, NJ2% (X, X2,
i st 4 <T ra€ltitivi], |r—al<en

< 01x1 (Vi 39)y /[N, NJXT, (X, X2,

for n large enough (depending on w), by [I, Lemma 2.12.] applied successively on the intevals [t;, t;+1] to
the processes X;, By, 41 X4,,,— fori=0,..., K — 1 and on [0,%] and [tx,T]. Then,

limsup sup |[I7HP] < Opx ) (V< F, 37)\/[]\7, Nl [ X, X] .
n—oo  te[0,T]

On the other hand, since N is continuous and hence uniformly continuous on [0,7]), |Nste, — Ns| < 7y
Vs € [0,T], for n large enough. Then

K .
. 1 ti 1
sup |1 <30 L / / G (5, VAN | Xser — Xol[Nuper — Nalds
te[0,T] i1 & Jti—en JO

<ax K x2|X| %2 sup Vi Fs(x).
s€[0,7], [x|<[X]

Hence,

liHlsup sup |It6n’11| < 5||XH(vxFa 3’7)\/[1\[7 N]T [Xv X]T +4’YK”X” sup VXFS(X)
n—00  t€0,T) s€[0,77, |x|<]X]|

which allows us to conclude that I¢w!! —+> 0 by arbitrariness of v > 0.
n—-+0o0

Since P(.#) = 1, we get [°1! —+> 0 uniformly a.s. and thus the convergence holds u.c.p. Since it is
n—-+0oo

true for all sequence (€, )nen that converges to 0, then I e11

—O> 0 u.c.p., which concludes the proof. [
e—
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