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Abstract The aim of this paper is to discuss efficient algorithms for the pricing of
American options by two recently proposed Monte-Carlo typemethods, namely the
Malliavian calculus and the regression based approaches. We explain how both tech-
niques can be exploited with improved complexity and efficiency. We also discuss
several techniques for the estimation of the correspondinghedging strategies. Nu-
merical tests and comparisons, including the quantizationapproach, are performed.

1 Introduction

In the last decades, several Monte-Carlo type techniques have been proposed for the
numerical computation of American option prices, or more generally the evaluation
of value functions associated to semi-linear parabolic equations, with possible free
boundary, see e.g. the survey paper [11]. The idea of combining Monte-Carlo meth-
ods with approximations of the expectation operator in backward induction schemes
comes back to Carrière [14] and was popularized by Longstaff and Schwartz [31].
This was the starting point of fruitful researches involving, in particular, a series of
papers by Pagès and its co-authors, see e.g. [3] or [4], on the quantization approach,
Lions and Renier [30], and Bouchard, Ekeland and Touzi [10, 12] on the Malliavin
calculus based formulation.

The aim of all the above mentioned papers is to compute pricesfor American
or Bermudan options in (relatively) high dimensions, when purely deterministic
techniques (finite differences or finite elements for partial differential equations,
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approximating trees) are made inefficient by the so-called curse of dimensionality.
The rationality behind the purely Monte-Carlo based approaches of [31] and [12]
is that the convergence speed of the proposed schemes does not a-priori depend
on the dimension of the problem. This is the usual justification for the use of such
techniques in numerical integration, although, like for any Monte-Carlo method, the
dimension plays an import role at finite distance, usually through the variance of the
estimation error or the complexity of the algorithm.

In the regression based approach of Longstaff and Schwartz [31], it appears in the
choice of the basis of polynomials used for the numerical estimation of conditional
expectations. Such a choice is made very difficult in practice when the dimension
increases.

Many papers are devoted to such an issue and it works well on some particular
(possibly complex) payoffs, see e.g. [37] among others. However, the question of
choosing a good basis in a practical non-standard situationis in general difficult,
and this approach does not allow to built efficient payoff independent algorithms,
particularly in high dimensions. The reason is very simple:the error should essen-
tially be controlled by the projection error on the basis. Hence the basis should be
close to the pricing function, which is unknown (see e.g. Theorem 2 in [25] for
explicit bounds obtained for non-reflected BSDEs). On the other hand, local basis
based on hyper-cubes partitions of the whole space allow foreasier error estimates
and seem to be much more robust, see Section 6.1 in [25].

In the Malliavin based approach, the dimension of the problem appears through
an exploding variance of the estimators of the conditional expectation operators.
This is due to the Skorohod integrals (usually calledMalliavin weights) which enter
into the representation of conditional expectations as theratio of two unconditional
expectations obtained by integrating by parts the Dirac mass which shows up when
applying the Bayes’ rule. The variance of these terms explodes with the dimension
of the underlying factor and with the number of time steps. Another important issue
is the complexity of the algorithm, which,a-priori, seems to be of order of the num-
ber of simulated pathsN to the square:O(N2). Since the variance explodes with the
number of underlying factors and the number of times steps, alarge number of sim-
ulated paths has to be used in order to achieve a good precision in high dimension.
The above mentioned complexity thus makes this approach a-priori much too slow
in practice.

The aim of this paper is to explain how both methods can be improved in order
to circumvent the above mentioned criticisms. As for the non-parametric regres-
sion based method, we suggest to modify the purely non-parametric method of [25]
by adapting the support of the function basis to the density of the underlying fac-
tors. The main advantage of this approach is that the regression basis is not chosen
a-priori but automatically adapted to the distribution of the underlying process. Con-
cerning the Malliavin based approach, we explain how an efficient algorithm with a
reduced complexity can be constructed. We shall see in particular that the complex-
ity of this algorithm is far from being of the order of the number of simulated paths
to the square, as claimed in many papers. It is of orderO(N ln(N)(d−1)∨1) whered
is the dimension of the underlying factor.



Monte-Carlo valuation of American option 3

For both methods, we will explain how, with essentially the same computation
costs, two consistent estimators can be build at the same time. The first one corre-
sponds to the approach of Longstaff and Schwartz [31], whichconsists in estimating
the optimal exercise time. The second is based on the computation of the prices at
each time through a pure backward induction procedure. Because, the estimator of
the optimal exercise rule is by nature sub-optimal, the firstprice estimator is essen-
tially biased from below. On the other hand, because of the convexity of the max
operator, the second one is essentially biased from above. We suggest to consider
the corresponding interval to test the accuracy of the estimations. This can be seen
as a subsidy for the usual confidence interval in linear Monter-Carlo methods. We
refer to [1], [2], [6] or [26] (see also the references therein) for other approaches
leading to the construction of upper- and lower-bounds, andto [24] and [28] for
numerical studies on penalization and regularization technics.

We shall also investigate different methods for the computation of the hedg-
ing strategy. In particular, we shall emphasize that the standard tangent process
approach, widely used in the context of European type options, can be used for
American options too. We will also consider Malliavin basedtechniques, following
the ideas of the seminal paper [21].

The rest of the paper is organized as follows. In Section 2, werecall fundamen-
tal results on the pricing of American and Bermudan options.We discuss the error
induced by the approximation of American option prices by their Bermudan coun-
terparts. We also provide different representation for thehedging policy. In Section
3, we explain how these results can be exploited in order to build estimators of the
price and the hedging strategy, assuming that we are given a way of approximat-
ing conditional expectations. Section 4 is dedicated to thepresentation of improved
versions of the regression based and the Malliavin based Monte-Carlo algorithms.
Numerical experiments and comparisons, including the quantization approach of
[4], are presented in Section 5. All over this paper, elements of Rd are viewed as
column vectors and transposition is denoted by′.

2 Fundamental results for the construction of numerical
algorithms

In this section, we review some fundamental results on the formulation of prices and
the representation of hedging strategies that will be used in the algorithms described
below.

All over this paper, we shall consider ad-dimensional Brownian motionW
on a probability space(Ω ,F ,P) endowed with the natural (completed and right-
continuous) filtrationF = (Ft)t≤T generated byW up to some fixed time horizon
T > 0. We assume, for sake of simplicity, that the interest rate is zero and that
there exists only one risk neutral measure, which is given bythe original proba-
bility measureP (or at leastP will be considered to be the pricing measure). The
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stock dynamics is modeled as the strong solutionX = (X1, . . . ,Xd) of the stochastic
differential equation:

Xt = X0

∫ t

0
σ(s,Xs)dWs t ≤ T, (1)

whereσ is a Lipschitz continuous function defined on[0,T ]×R
d and taking values

in the set ofd-dimensional square matrices. For sake of simplicity, we shall assume
from now on that the stock price processX can be perfectly simulated on any finite
time grid of[0,T ], which is the case in most standard market models.

These choices are made in order to simplify the presentation, but the above algo-
rithms/results could clearly be extended to more general situations, see e.g. [11] for
convergence issues.

2.1 Definitions and facts

We recall in this section some well-know facts on the pricingof American and
Bermudan options.

From now on, the payoff of the American option is defined as a deterministic
measurable functiong : [0,T ]×R

d 7→ R, i.e. the seller payg(t,x) at timet if the
option is exercised at timet and the value of the underlying assets at timet is x. We
shall assume all over this paper thatg has linear growth and is Lipschitz continuous.

Under the above assumption, it follows from standard arguments, see e.g. [19],
that the price at timet of the American option is given by a continuous supermartin-
galeP satisfying

Pt = esssupτ∈T[t,T ]
E [g(τ,Xτ) | Ft ] for t ≤ T P−a.s., (2)

whereT[t,T ] denotes the set of stopping times with values in[t,T ].
Similarly, the price of a Bermudan option with the same payoff function, but

which can be exercised only at times in

π := {0= t0 < t1 < t2 < · · ·< tκ = T} , for someκ ∈ N,

is given by a làdcàg supermartingalePπ satisfying

Pπ
t = esssupτ∈T π

[t,T ]
E [g(τ,Xτ) | Ft ] for t ≤ T P−a.s., (3)

whereT π
[t,T ] denotes the set of stopping times with values in[t,T ]∩π .

It then follows from the Doob-Meyer decomposition and the martingale repre-
sentation theorem, that we can find predictable processesφ andφπ as well as non-
decreasing processesA andAπ such that
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E

[

∫ T

0
|φs|2+ |φπ

s |2ds

]

< ∞ , A0 = Aπ
0 = 0

and

Pt = P0+

∫ t

0
φ ′

sdWs −At , Pπ
t = Pπ

0 +

∫ t

0
φπ

s
′dWs −Aπ

t for t ≤ T P−a.s. (4)

The processesφ and φπ are related to the hedging strategy of, respectively, the
American and the Bermudan option. More precisely, the number of units of stocks to
hold in the hedging portfolio are given byψ ′ := φ ′σ−1(·,X) andψπ ′ := φπ ′σ−1(·,X)
whenever these quantities are well-defined.

Moreover,

Pt = E [g(τ̂t ,Xτ̂t ) | Ft ] and Pπ
t = E

[

g(τ̂π
t ,Xτ̂π

t
) | Ft

]

for t ≤ T P−a.s., (5)

where

τ̂t := inf {s ∈ [t,T ] : Ps = g(s,Xs)} and (6)

τ̂π
t := inf {s ∈ [t,T ]∩π : Pπ

s = g(s,Xs)} (7)

are the (first) optimal exercise times, aftert. In particular,P andPπ are martingales
on [t, τ̂t ] and[t, τ̂π

t ] respectively, for allt ≤ T .

2.2 From Bermudan to American options

Most numerical methods for the pricing of American options are based on the ap-
proximation by Bermudan options with time gridπ with mesh|π | := maxi<κ(ti+1−
ti) going to 0. The approximation is justified theoretically by the following result,
see [3] and [9].

Theorem 1.The following holds:

max
i≤κ

E
[

|Pti −Pπ
ti |

2]
1
2 ≤ O(|π | 1

4 ) .

If moreover there exists ρ1 : [0,T ]×R
d 7→ R

d+1 and ρ2 : [0,T ]×R
d 7→ R+ such

that

|ρ1(t,x)|+ |ρ2(t,x)| ≤ CL(1+ |x|CL)

g(t,x)− g(s,y) ≤
ρ1(t,x)

′(s− t,y− x)+ρ2(t,x)(|t − s|2+ |x− y|2) , ∀ x,y ∈ R
d , t,s ∈ [0,T ] . (8)

for some constant CL > 0, then
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max
i≤κ

E
[

|Pti −Pπ
ti |

2]
1
2 +E

[

∫ T

0
|φs −φπ

s |2ds

] 1
2

≤ O(|π | 1
2 ) .

Note that the assumption (8) is satisfied by most payoffs in practice.
In view of this convergence result, it is enough to focus on the pricing of Bermu-

dan options. We will therefore concentrate on this in the following.

Remark 1. We refer to [3] and [9] for the additional error due to the approximation
of X by its Euler scheme. For a time step of sizeh > 0, It is of orderO(h1/4) in
general, and of orderO(h1/2) under (8).

2.3 Delta representations

For practical purposes, the computation of the hedging strategy is as important as the
estimation of the price process. As for European type options, at least three different
methods can be used in practice. In this section, we restrictto the case of Bermudan
options, recall the convergence results of Section 2.2.

2.3.1 Finite difference approach

The finite difference approach consist is estimating the price process for different
initial conditions. More precisely, letPπ ,δ be defined as in (1)-(3) withX0 replaced
by X0 + δ , δ ∈ R

d . Then, following the standard approach for European options,
one could approximate thei-th component ofφπ

0
′σ(0,X0)

−1 by (Pπ ,δi
0 −Pπ

0 )/h or

(Pπ ,δi
0 −Pπ ,−δi

0 )/2h whereδi is the vector ofRd defined byδ j
i = h1i= j andh > 0

is small. A large literature is available on this approach for European type options,
see e.g. [17] and the references therein. To our knowledge, no rigorous convergence
result is available for American type options. However, in the case of Bermudan
options, the results obtained for European options can still be applied at time 0 by
considering the deterministic price functionpπ(t1, ·), wherepπ is implicitly defined
by pπ(·,X·) = Pπ on [0, t1], as a given terminal payoff at timet1.

Note that this requires the computation of two different values of the American
option price, for two different initial conditions, which is, a-priori, much too time
consuming in comparison to the techniques proposed below. On the other hand the
algorithms presented below, Algorithms A1, A2 and A2b, can be easily adapted
to this context. Indeed, they produce (or can produce for Algorithm 1), simulated
values of option prices on a grid of time corresponding to simulated values of the
stock prices. If one starts the simulations of the stock prices at time−δ , δ > 0 small,
they will thus produce values of the option price at time 0 forsimulated, but close
if δ is small, values of the stock prices. These can be used to compute the finite
differences. Obviously there is no hope that this method will be convergent and the
choice of the value ofδ is not clear. We will therefore not test this approach here.
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2.3.2 Tangent process approach

Assume thatg,σ is C1
b . Then, under a standard uniform ellipticity condition on

σ and mild additional regularity assumptions, ensuring the usual smooth pasting
property for the American option price on the associated free boundary, it is shown
in [23] that there exists a version ofφ satisfying

φ ′
0 = E

[

∇g(τ̂0,Xτ̂0
)′∇Xτ̂0

]

σ(0,X0)

where∇g denote the gradient ofg with respect to its space variable and∇X is the
first variation (or tangent) process ofX defined as the solution of

∇Xt = Id +

∫ t

0

d

∑
j=1

∇σ j(Xr)∇XrdW j
r

whereId is the identity matrix ofMd , σ j is the j-th column ofσ , and∇σ j the Jaco-
bian matrix ofσ j. This is a natural extension of the well-known result for European
options, see [13].

This result was then extended in [9], see also [37], to Bermudan options in terms
of the Malliavin derivative process ofX , without ellipticity condition. Here, we state
it in terms of the first variation process∇X , compare with Corollary 5.1 and see (5.3)
in [9].

Theorem 2.Assume that g,σ ∈C1
b then there exists a version of φπ satisfying

φπ
t
′ = E

[

∇g(τ̂π
t ,Xτ̂π

t
)′∇Xτ̂t | Ft

]

(∇Xt)
−1σ(t,Xt) , t ≤ T . (9)

Remark 2. Note that the payoff functiong is assumed to beC1
b in the above assertion.

However, it should be clear that it can be extended to many situations whereg is only
differentiable a.e. with bounded derivatives. In particular, for one dimensional put
options with strikeK, it is clear thatXτ̂π

t
<K P−a.s. sinceg(t,K) = 0, at least under

suitable ellipticity conditions onσ ensuring thatPπ > 0 on[0,T ). SinceK is the only
point where the payoff function is not differentiable, the above representation can
be easily extended.

2.3.3 Malliavin calculus approach

An extension of the formulation of the delta similar to the one introduced for Eu-
ropean type options in the seminal paper [21] was first proposed in [32]. However,
it involves the non-decreasing processA (or Aπ ) which is difficult to estimate in
practice. In the case where we restrict to Bermudan options,then things simplify
and the result of Proposition 5.1 in [9], together with a standard integration by parts
argument in the Malliavin calculus sense, leads to the following representation.
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Theorem 3.Assume that g,σ ∈ C1
b and that σ is invertible with bounded inverse,

Then there exists a version of φπ satisfying for t ∈ [ti, ti+1), i ≤ κ

φπ
t
′ =

1
ti+1− t

E

[

Pπ
ti+1

∫ ti+1

t
σ(s,Xs)

−1∇XsdWs | Ft

]′
(∇Xt)

−1σ(t,Xt). (10)

SincePπ is a martingale on each interval[t, τ̂t ], it can alternatively be written in
the following form.

Theorem 4.Assume that g,σ ∈ C1
b and that σ is invertible with bounded inverse,

Then there exists a version of φπ satisfying for t ∈ [ti, ti+1), i ≤ κ

φπ
t
′ =

1
ti+1− t

E

[

g(τ̂π
t ,Xτ̂π

t
)

∫ ti+1

t
σ(s,Xs)

−1∇XsdWs | Ft

]′
(∇Xt)

−1σ(t,Xt).(11)

Remark 3. In Black-Scholes type models, i.e.σ(t,x) = diag[x] σ̃(t) where diag[x]
is the diagonal matrix withi-th diagonal component equal toxi andσ̃ is determin-
istic with bounded inverse, then the above results still holds true. Also note that the
payoff functiong is assumed to beC1

b in the above assertion. However, it should be
clear that it can be extended to more general situations where g can be uniformly
approximated by a sequence ofC1

b functions. This follows from standard stability
results for reflected backward stochastic differential equations.

3 Abstract algorithms

3.1 Backward induction for the pricing of Bermudan options

It follows from the formulation (3) ofPπ in terms of an optimal stopping problem
on a finite time grid, that the price process of the Bermudan option satisfies the
so-calledbackward American dynamic programming equation fori = κ −1, . . . ,0

Pπ
T = g(T,XT ) and Pπ

ti = max
{

g(ti,Xti) , E
[

Pπ
ti+1

| Fti

]}

. (12)

or equivalently, thanks to the martingale property ofPπ on each interval[t, τ̂π
t ],

Pπ
T = g(T,XT ) and Pπ

ti = max
{

g(ti,Xti) , E
[

g(τ̂π
ti+1

,Xτ̂π
ti+1

) | Fti

]}

. (13)

Assuming that the involved conditional expectation can be perfectly estimated,
this leads to two kind of possible algorithms for the computation of the price of the
Bermudan option at time 0. In practice, these operators haveto be replaced by a
numerical estimation. In what follows, we denote byÊ[· | Fti ] an approximation of
the true condition expectation operatorE[· | Fti ]. For Ê given, the corresponding
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approximation schemes are:

Algorithm A1 [optimal exercise time estimation]:
1. Initialization : Setτ̂1,π

κ := T .
2. Backward induction : Fori = κ −1 to 0, setτ̂1,π

i := ti1A1
i
+ τ̂1,π

i+11(A1
i )

c

whereA1
i := {g(ti,Xti)≥ Ê[g(τ̂1,π

i+1,Xτ̂1,π
i+1

) | Fti ]}.

3. Price estimator at 0:̂P1,π
0 := Ê[g(τ̂1,π

0 ,Xτ̂1,π
0
)].

Algorithm A2 [price process computation]:
1. Initialization: SetP̂2,π

T := g(T,XT )

2. Backward induction: Fori= κ−1 to 0, setP̂2,π
ti :=max{g(ti,Xti) , Ê[P̂

2,π
ti+1

|Fti ]}.

3. Price estimator at 0:̂P2,π
0 .

Note that the optimal exercise strategy can also be approximated in the Algorithm
A2 as follows:

Algorithm A2b [with optimal exercise time estimation ]:
1. Initialization: Setτ̂2,π

κ = T
2. Backward induction: Fori = κ −1 to 0,τ̂2,π

i := ti1A2
i
+ τ̂2,π

i+11(A2
i )

c whereA2
i :=

{g(ti,Xti) = P̂2,π
ti }.

3. Price estimator at 0:̂P2b,π
0 := Ê[g(τ̂2,π

0 ,Xτ̂2,π
0

)].

The algorithm A1 corresponds to the approach of [31] in whichthe conditional
expectation operators are estimated by non-parametric regression techniques based
on a suitable choice of regression polynomials.

The algorithm A2 corresponds to the approach of [30] and [10]in which the con-
ditional expectation operators are estimated by pure Monte-Carlo methods based
on the representation of conditional expectations in termsof a suitable ratio of un-
conditional expectations obtained by using some Malliavincalculus techniques, see
below.

Assume for a moment thatξ ∈ L1 7→ Ê[ξ | Fti ]∈Fti and that this approximation
is conditionally unbiased, i.e.E[Ê[· | Fti ] | Fti ] =E[· | Fti ], then a backward induc-

tion argument combined with Jensen’s inequality implies that E
[

P̂2,π
0

]

≥ Pπ
0 . On

the other hand, the fact that the estimated optimal exercisepolicy τ̂ i,π
0 is suboptimal

by definition, fori = 1,2, implies thatE
[

P̂1,π
0

]

≤ Pπ
0 andE

[

P̂2b,π
0

]

≤ Pπ
0 . It follows

that:

E

[

P̂1,π
0

]

,E
[

P̂2b,π
0

]

≤ Pπ
0 ≤ E

[

P̂2,π
0

]

. (14)

The above formal relation can then be used for the construction of confidence
intervalsfor the true price of the Bermudan option:[P̂1,π

0 , P̂2,π
0 ] or [P̂2b,π

0 , P̂2,π
0 ]. If

the computation of the conditional expectations is accurate, then the effect of the
convexity bias should be small and thereforeP̂2,π

0 should be close toPπ
0 . Similarly,
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the error in estimating the exact counterpart of the exercise regionsA1
i andA2

i should
be small and therefore the estimation of the optimal stopping times should be good,
leading toP̂1,π

0 andP̂2b,π
0 close toPπ

0 . Thus, a tinyconfidence intervalshould reveal
a good approximation of the exact price, while a largeconfidence intervalshould be
a sign that the estimation was poor. In practice, it seems better to use the interval
[P̂2b,π

0 , P̂2,π
0 ] as both quantities can be computed at the same time with almost no

additional cost.
In practice, the approximation operatorsÊ[· | Fti ] will be based on future values

of simulated paths ofX , see Section 4, so that the above reasoning can not be applied
rigorously, and the terminologyconfidence intervalshould be taken with care. Still,
numerical tests, see Section 5.2 below, show that such intervals provide a good idea
of the quality of the approximation.

3.2 Hedging strategy approximation

As above, we restrict to the case of a Bermudan option. Recalling that the number of
unitsψπ of stocks to hold in the hedging portfolio is given byφπ ′σ−1(·,X), when-
ever this quantity is well-defined, one can estimate the hedging policy by using one
of the representation ofφπ presented in Section 2.3.

The finite difference approach mentioned in Section 2.3.1 can be combined with
Algorithms A1 and A2 in an obvious manner.

As for the tangent process approach and the Malliavin calculus based one, we
can also use Algorithms A1 and A2. Algorithms A1 and A2b provide an estimation
of the optimal exercise strategy. Plugged into (9) or (11) this leads to two possible
approximations of the hedging strategy at time 0:

φπ
0
′ ∼ Ê

[

∇g(τ̂π
0 ,Xτ̂π

0
)′∇Xτ̂π

0

]

σ(0,X0) (15)

or

φπ
0
′ ∼ 1

t1
Ê

[

g(τ̂π
0 ,Xτ̂π

0
)

∫ t1

0
σ(s,Xs)

−1∇XsdWs

]′
σ(0,X0) , (16)

with τ̂π
0 = τ̂1,π

0 or τ̂2,π
0 .

Algorithm A2 provides an estimation of the price process at timet1. Plugged into
(10) this leads to

φπ
0
′ ∼ 1

t1
Ê

[

P̂2,π
t1

∫ t1

0
σ(s,Xs)

−1∇XsdWs

]′
σ(0,X0) . (17)
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4 Improved algorithms for the estimation of conditional
expectations

As above, we focus on the pricing of Bermudan options. We shall also assume here
that the processX can be perfectly simulated on the time gridπ . If this is not the
case, then it has to be replaced by its Euler scheme. The convergence results of
Section 2.2 justify these approximations.

4.1 The regression based approach

We first address the basis function regression method and show how to numerically
improve the methodology proposed by [31]. We compute the complexity of the
method depending on the number of particles and the number ofbasis functions.

4.1.1 Generalities

The common fundamental idea in the regression based and the Malliavin based
approach consists in using simulated paths of the stock prices(X ( j)) j≤N and to ap-
ply one of the backward induction Algorithms A1, A2 (possibly A2b) described in
Section 3.1 by using the simulations in order to estimate theinvolved conditional
expectations.

In the context of Algorithm A1, the numerical procedure reads as follows:

Algorithm A1 with regression [optimal exercise time estimation]:
1. Initialization : Setτ̂1,π ,( j)

κ := T , j ≤ N

2. Backward induction : Fori = κ−1 to 1, set̂τ1,π ,( j)
i := ti1A1,( j)

i
+ τ̂1,π ,( j)

i+1 1
(A1,( j)

i )c

whereA1,( j)
i := {g(ti,X

( j)
ti )≥ Ê

N [g(τ̂1,π
i+1,Xτ̂1,π

i+1
) | Xti = X ( j)

ti ]}, j ≤ N,

3. Price estimator at 0:̂P1,π ,
0 := 1

N ∑N
j=1g(τ̂1,π ,( j)

0 ,X ( j)

τ̂1,π,( j)
0

),

where the estimation

F̂N(ti,X
( j)
ti ) := Ê

N [g(τ̂1,π
i+1,Xτ̂1,π

i+1
) | Xti = X ( j)

ti ]

of the true conditional expectation

F(ti,X
( j)
ti ) := E[g(τ̂1,π

i+1,Xτ̂1,π
i+1

) | Xti = X ( j)
ti ]
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is computed by regressing(g(τ̂1,π ,(ℓ)
i+1 ,X (ℓ)

τ̂1,π,(ℓ)
i+1

))ℓ≤N on (ψ1(X
(ℓ)
ti ), . . . ,ψM(X (ℓ)

ti ))ℓ≤N ,

whereψ1, . . . ,ψM are given functions, i.e.

F̂N(ti,x) :=
M

∑
k=1

α̂ti ,N
k ψk(x)

where(α̂ti ,N
k )k≤M minimizes

N

∑
ℓ=1

∣

∣

∣

∣

∣

g(τ̂1,π ,(ℓ)
i+1 ,X (ℓ)

τ̂1,π,(ℓ)
i+1

)−
M

∑
k=1

αkψk(X
(ℓ)
ti )

∣

∣

∣

∣

∣

2

over(αk)k≤M ∈ R
M.

Clearly, the same ideas can be combined with Algorithm A2 (and its variation
A2b).

We shall not discuss here the theoretical convergence of themethod, we refer
to [16] for rigorous statements, but rather describe how it can be improved from a
numerical point of view. See also [18] and [40] for convergence rates and [22] for a
discussion on the fact that the number of simulated paths hasto be increased rapidly
with the number of polynomials. See also [28] for further numerical tests.

4.1.2 General comments on the regression procedure

Note that at each step of the above algorithm, we have to solvea quadratic optimiza-
tion problem of the form

min
α∈RM

‖Aα −B‖2 (18)

Different solutions are available. First, we can deduce theinduced normal equations

A′Aα = A′B , (19)

and use a Choleski decompositionLL′ of A′A to solve it. This method is the most ef-
ficient in term of computational time but is rather sensible to roundoff error. Besides,
it is not memory consuming because theA matrix does not need to be constructed.

A more stable approach consists in using aQR decomposition ofA, i.e. writeA
asQR whereQ is a N-dimensional orthonormal matrix andR is a N-dimensional
upper triangular matrix, and solveRα = Q′B. This is much more time consuming.
Moreover, theN×M matrixA has to be stored. When using standard basis functions
for the ψk’s, it is typically full, which may become highly demanding in terms of
memory when the number of basis functions is high.

In order to completely avoid roundoff errors, the Singular Value Decomposition
can be used: writeA =UWV ′ with U in R

N ×R
N an orthogonal square matrix ,V
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an orthogonal square matrix inRM ×R
M, andW a diagonal matrix inRN ×R

M with
only positive or zero entrieswi on the diagonal. Replacing 1/wi by zero ifwi = 0,
the solution to (18) is given by

α =V [diag[1/wi]]U
′B (20)

Still this method suffers the same problem as the QR algorithm in term of memory
needed to create the matrixA and is the most time consuming.

4.1.3 Drawbacks of polynomial regressions

The idea of takingψ1, . . . ,ψM has polynomials, or more generally as functions with
global support, was first introduced by [39], in the context of general optimal stop-
ping problems, and then used to price American options by [31]. In [31], the authors
use monomial basis functions and Laguerre polynomials. Most of the following pa-
pers have consisted in extending this approach to Hermite, Hyperbolic and Cheby-
shev polynomials (see [15] for example).

Some basis may be chosen orthogonal in order to invert easilythe associated
normal equation (19). Note however that it should then be orthogonal in the law
induced byX and not with respect to the Lebesgue measure as usually chosen.

Although very easy to implement in practice, this kind of function basis has a
major flaw. For a given number of particles it is not easy to findan optimal degree
of the functional basis. Besides, an increase in the number of function basis often
leads to a deterioration in the accuracy of the result. This is due to rare events that
the polynomials try to fit, leading to some oscillating representation of the function.

Figure 1 below shows how the regression behaves at the first backward step for
a put option in dimension one, for different choices of monomial basis functions.

Fig. 1 Regression with global function

Clearly, the regression procedure could be improved by adding the payoff func-
tion at the first steps of the algorithm, when the price function should still be close
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to the payoff. However, the number of steps for which the payoff should be included
in the basis is somehow arbitrary and difficult to determine in practice.

Note that, in the case where an explicit formula is availablefor the correspond-
ing European option, one can replace the estimatorÊ[P̂2,π

ti+1
| Fti ] in Algorithms A2

and A2b byÊ[P̂2,π
ti+1

−Peuro(ti+1,Xti+1) | Fti ]+Peuro(ti,Xti) wherePeuro(t,x) denotes
the price of the corresponding European option at timet if Xt = x. The rational-
ity behind this comes from the fact that the European price processPeuro(·,X) is a
martingale, and that it typically explains a large part of the Bermudan price. Alter-
natively,Peuro(ti, ·) could also be included in the regression basis.

4.1.4 The adaptive local basis approach

We propose to use a different technique. It essentially consists in applying a non-
conform finite element approach rather than a spectral like method as presented
above.

The idea is to use, at each time stepti, a set of functionsψq,q ∈ {0,1, . . . ,M}
having local hypercube supportDi1,i2,..,id wherei j = 1 to I j, M = ∏1≤k≤N Ik, and

{Di1,..id}(i1,..,id)∈{1,...,I1}×···×{1,...,Id} is a partition of the hypercube[min1≤k≤N X1,(k)
ti ,

max1≤k≤N X1,(k)
ti ]× ·· · ×[min1≤k≤N Xd,(k)

ti ,max1≤k≤N Xd,(k)
ti ]. On eachDl , for l =

(i1, .., id), ψl is a linear function with 1+d degrees of freedom. This approximation
is “non-conform” in the sense that we do not assure the continuity of the approx-
imation. However, it has the advantage to be able to fit any, even discontinuous,
function.

The number of degrees of freedom is equal toM ∗ (1+ d). In order to avoid os-
cillations, the support are chosen so that they contain roughly the same number of
particles.

On Figure 2, we plot the solution of the previous regression problem (Fig. 1)
obtained for a number of basis functions chosen so as to have the same number of
degrees of freedom as when using polynomials.

Clearly, the method behaves much better than when the basis is made of mono-
mials.

Moreover, the normal equation is sparse when using such local functions, and
far better conditioned, leading to the possibility to use the Choleski method, which,
as claimed above, is the most efficient for solving the regression problem. At the
opposite, basis with global support, like polynomials, typically require the use of
QR or SVD factorization, because the global resolution typically fails when a lot of
particles are used.

Note that, in order to ensure that each hypercube approximately contains the
same number of particles, it is necessary to “localize” themin order to appropriately
define the support of the local functions. In dimension one, this can be achieved by
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Fig. 2 Regression with local function

using a partial sort procedure whose complexity is of order of O(I1N). In dimension
d, two methods are available :

(i) Realize partial sorts in each direction and derive the support of the basis func-
tions so that each contains approximatively the same numberof particles. This
option is particularly efficient when the particles have rather independent coordi-
nates. The operation is realized inO(∑d

k=1(Ik +1)N). For example in dimension
2, it leads to a first partial sort to get the particle with the lowest x-coordinates
x0, and successive partial sorts are achieved giving pointsxi such that[xi−1,xi],
i = 1 to I1, containsN/I1 particles. Doing independently the same in the second
dimension, we getI2 intervals of the form[yi−1,yi], i = 1, . . . , I2. TheI1I2 hyper-
cubes are defined by the sets(xi−1,xi]× (y j−1,y j], i = 1, . . . , I1, j = 1, . . . , I2.

(ii) Use a Kd tree, see e.g. [38] and [8], with depthd so that each node of depthi has
Ii+1 sons. Use a partial sort at each node of depthi to sort the particles following
the coordinatei+ 1, and use this sort to define theIi+1 sons. For example in
dimension 2,(I1+1) partial sorts are achieved in the first dimension leading to
I1 sets ofN/I1 particles. Then, for each set of particles, partial sorts are achieved
in the second dimension giving subsets ofN/(I1I2) particles. The hypercubes are
given by the minimum and maximum coordinates of the points inthe subsets. The
difference with (i) is that the partial sorts are no more performed independently
in each direction. The complexity of the procedure remains in O(∑d

k=1(Ik+1)N).

Although the complexity of the two techniques is the same, the first one uses
only ∑d

k=1(Ik + 1) partial sorts, while the second one uses 1+∑d
l=1 ∏ j<l I j(Il + 1)

calls to the partial sort procedure and is far more expensive.

On Figure 3, we have plotted an example of supports in the caseof 16= 4×4
local basis functions, in dimension 2.

Importantly, this approach allows to increase the number ofbasis functions with-
out any instability in the resolution of the regression problem. The construction of
the normal matrixA′A has a complexity of orderO(N) when storing only non zero
elements, the resolution time is negligible (linear withM because of the sparsity
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Fig. 3 Support of 2D function basis

of the matrix), and the reconstruction procedure is inO(N). The complexity of the
global resolution is therefore of order ofO(N(1+∑d

k=1(Ik +1))).

Note that the use of local basis functions was already discussed in [25] but for
(non-reflected) BSDEs. The difference is that the support ofthe hyper-cubes is fixed
once for all. In this paper, one can see that the approximation error is very robust,
in the sense that it essentially only depends on the first moments of the underlying
processX , see their Section 6.2.

4.2 The Malliavin based approach

4.2.1 The alternative representation for conditional expectations

The idea of using Malliavin calculation to provide efficientestimators of conditional
expectations first appeared in [20], and was then further used in [30] and [12] to
price American options, see also [10].
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Given a measurable mapf , the main idea consists in writing

r(ti,x) := E
[

f (Xti+1) | Xti = x
]

as

r(ti,x) =
E
[

δx(Xti) f (Xti+1)
]

E [δx(Xti)]
(21)

whereδx denotes the Dirac mass atx. Then, under suitable regularity and uniform
ellipticity conditions onσ , a formal integration by parts in the Malliavin calculus
sense allows to rewriter(ti,x) as

r(ti,x) =
E
[

f (Xti+1)Hx(Xti)Sti+1

]

E
[

Hx(Xti)Sti+1

] (22)

whereHx denotes the Heaviside function,Hx(y) = 1 if yi > xi for all i ≤ d and
Hx(y) = 0 otherwise, andSti+1 is a Skorohod integral which depends only on the
path ofX on [0, ti+1], see [10] for details and (25) below for an example of repre-
sentation in a simple Gaussian framework.

In the context of Algorithm A2 of Section 3.1, the numerical procedure reads as
follows:

Algorithm A2 with Malliavin [price process computation]:
1. Initialization: SetP̂2,π ,( j)

T := g(T,X ( j)
T ), j ≤ N.

2. Backward induction: Fori = κ −1 to 0, set

P̂2,π ,( j)
ti := max{g(ti,X

( j)
ti ) , ÊN [P̂2,π

ti+1
| Xti = X ( j)

ti ]}

,
3. Price estimator at 0:̂P2,π ,(1)

0 ,

where the estimation

F̂N(ti,X
( j)
ti ) := Ê

N [P̂2,π
ti+1

| Xti = X ( j)
ti ]

of the true conditional expectation

F(ti,X
( j)
ti ) := E[P̂2,π

ti+1
| Xti = X ( j)

ti ]

is computed by considering the Monte-Carlo counterparts ofthe numerator and de-
nominator in (22), i.e.

F̂N(ti,x) :=
∑N

j=1Hx(X
( j)
ti )P̂2,π ,( j)

ti+1
S

( j)
ti+1

∑N
j=1Hx(X

( j)
ti )S

( j)
ti+1

(23)
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whereS
( j)

ti+1
is the Skorohod integral associated to the pathX ( j), and where we use

the convention 0/0= 0.

One can similarly combine this approach with Algorithm A1, by using the ap-
proximation

E[g(τ̂ti+1,Xτ̂ti+1
) | Xti = X ( j)

ti ]∼
∑N

j=1Hx(X
( j)
ti )g(τ̂( j)

ti+1
,X ( j)

τ̂ti+1
)S

( j)
ti+1

∑N
j=1Hx(X

( j)
ti )S

( j)
ti+1

(24)

Here again, we shall not discuss the theoretical convergence of the method, we
refer to [12] for rigorous statements, but rather describe how this method should
be implemented in practice so as to be efficient. However, it should be noted that
the convergence obtained in [12] is based on the fact that they use independent
simulations for each time step, although this does not seem necessary in practice.
The convergence analysis in the above setting is certainly much more involved, and
left open.

4.2.2 General comments

First, it can be shown that the variance of the Skohorod integral Sti+1 is of order of
(min{ti, ti+1− ti})−d , see (25) below as an example. As will be explained below in
the Gaussian case, it can be partially compensated by incorporating a localization
function. Still, this method will in general perform ratherbadly when the length of
the time interval between two dates of possible exercise in small. In particular, if we
are interested by the approximation of American option prices by their Bermudan
counterparts, then a large number of simulations will be required in order to com-
pensate for the explosion of the variance of the estimator asthe time step goes to
0.

Second, we should note that the termE
[

Hx(Xti)Sti+1

]

in (22) is just the density
of Xti at x. If it is known, it can be used directly instead of being estimated. In
practice, it turns out that that the fact that both the numerator and the denominator

in (23) are influenced by theS ( j)
ti+1

’s leads to numerical compensations which seem
to stabilize the algorithm.

In most applications, natural upper and lower bounds are known for the true price
processPπ is terms of deterministic functions ofX . They can be used to truncate
the numerical results obtained at each step of the algorithm, in order to stabilize it.

The computation of the Skorohod integrals involved in the above estimators is
rather tricky in general, even whenX is replaced by its Euler scheme. This is due
to the (possible) dependence of the different components ofX with respect to the
different components of the Brownian motion. However, if upto a suitable transfor-
mation and possibly a deterministic time change, we can reduce to the case where
X =W , then things simplify significantly, as will be shown in the next section.
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Finally, this approach requires a non-degeneracy assumption on σ , while the
regression based method may be applied to large class of Markov processes, see
[29].

4.2.3 Simplifications in the Gaussian case

In the case where we can reduce toW = X , for instance in the Black-Scholes model,
the Skorohod integrals entering in the representation (22)can be taken in the form

Sti+1 = ∏
k≤d

(

W k
ti

ti
−

W k
ti+1

−W k
ti

ti+1− ti

)

(25)

In order to reduce the variance of the estimator, we can also incorporate a local-
ization function as explained in [10]. Given a smooth bounded functionϕ on R+

such thatϕ(0) = 1, r(ti,x) can also be written withSti+1(x) in place ofSti+1 in
(22), where

Sti+1(x) := ∏
k≤d

[

ϕ(W k
ti − xk)

(

W k
ti

ti
−

W k
ti+1

−W k
ti

ti+1− ti

)

−ϕ ′(W k
ti − xk)

]

In such a class of functions, it was shown in [10] that the one that minimizes
the integrated variance of the numerator and the denominator is of exponential type,
ϕ(y) = exp(−ηy) with η > 0. The parameterη should be theoretically of order of
1/
√

min{ti, ti+1− ti}.
Note that the numerator in (22) could be simplified by usingS̃ti+1(x) instead of

Sti+1(x), where

S̃ti+1(x) := ∏
k≤d

[

ϕ(W k
ti − xk)

W k
ti

ti
−ϕ ′(W k

ti − xk)

]

because the increments of the Brownian motion are independent. However, we have
noticed from our tests that it is better to use the same integration weights at the
numerator and denominator so as to play with possible numerical compensations.

4.2.4 Improved numerical methods

A crude application of the algorithm described in Section 4.2.1 leads, at each time
step, to the computation ofN sums composed ofN terms each. This leads to a com-
plexity of orderN2, which makes this procedure completely inefficient in practice.

However, it should be noted that the above calculation problem for the numerator
and the denominator of our estimator can be reduced to the following one: GivenN
pointy1, . . . ,yN in R

d , andN real numbersf1, . . . , fN ,
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Compute qi := ∑
j≤N

Hyi(y j) f j , for eachi ≤ N. (26)

It is clear that both terms in (23) are of this form withy j =X ( j)
ti and f j = P̂2,π ,( j)

ti+1
S

( j)
ti+1

or f j = S
( j)

ti+1
. Even, ifSti+1 is replaced bySti+1(·) this remains the case, whenever

Sti+1(·) is defined with respect to an exponential localizing function:

Sti+1(x) = ∏
k≤d

[

e−η(W k
ti
−xk)

(

W k
ti

ti
−

W k
ti+1

−W k
ti

ti+1− ti

)

+ηe−η(W k
ti
−xk)

]

=

(

∏
k≤d

eηxk

)

∏
k≤d

e−ηW k
ti

[(

W k
ti

ti
−

W k
ti+1

−W k
ti

ti+1− ti

)

+η

]

,

where the only terms which depends onx,
(

∏k≤d eηxk
)

, can be added at the end of

the procedure. Note that, when the same weights are used for the numerator and the
denominator, these terms actually compensate.

We now discuss how Problem (26) can be solved efficiently.

The one dimensional case.In the one dimensional case, the main idea is to reduce
to the situation wherey1 > y2 > .. . > yN , assuming that none of them are equal for
simplicity. Indeed, in this case, theqi’s can be computed inN steps by induction:
q1 = 0, qi+1 = qi + fi for i = 1, . . . ,N −1. In order to reduce to the case where the
yi’s are sorted, it suffices to use a quick sort algorithm whose complexity is of order
of N ln(N). Hence, the complexity of Problem (26) isO(N lnN) and notO(N2).

The two dimensional case.In dimension two, it is no more possible to sort the data.
However, Problem (26) is related to the well-documented “dominance reporting
problem”, which was solved efficiently in dimension two by [7] with the classical
divide and conquer algorithm. The algorithm is based on the construction of two
dimensional K-d tree that stores the points, see [8]. Its construction is achieved in
O(N lnN), and a query for reporting dominance over one point can be achieved in
O(

√
N), see [38] and [8]. The global dominance reporting problem for a set ofN

points can thus be solved inO(N
√

N). We modify this algorithm in the sequel such
that our problem can be solvedO(N lnN).

To show how the algorithm works, imagine for example thatN = 8 as on figure
4. After a sort according to the first coordinate, we split thepoints into two groups
with the same cardinality : points 6,2,5 and 4 define the first set, 3,1,8,7 the second
set. All points of the first set can be dominated1 by all points of set two but no point
of the second set is dominated by a point of set one.
We then compare the points from the second set with the pointsof the first set
according to the second coordinate, while keeping the partial summation, saypsum.

1 Hereafter, we say that a pointx j dominates a pointxk if xi
j > xi

k for all i ≤ d.
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Fig. 4 First step to calculate g

The algorithm is initialized withpsum = 0. Then, point 7 has the highest second
coordinate of set 2 and dominates all points of set 1: addf7 to psum. The second
one, point 1 dominates all points of set one: addf1 to psum. The third one, point 8,
does not dominate points 2 and 4 of set one : addpsum to q2 andq4, then addf8 to
psum. The last point, point 3, does not dominate any point of set one: addpsum to
q5 andq6. We have achieved the last point of set 1, we thus stop the algorithm.
Graphically, the algorithm can be understood as follows. Draw a horizontal line
crossing the vertical axis at the level of the highest secondcoordinate of the two
sets, then lower down this line. Each time the line crosses a point x j of set 2, add the
correspondingf j value topsum, each time the line crosses a pointxk of set 1, add
psum to the correspondingqk.

In a second step, we split the first set into two sets (set 3 and 4) and the second
set into two sets (set 5 and 6), see figure 5. We apply the same procedure as before
on these new pair of sets. For example for set one, we first setpsum = 0. Then, the
point of set 4 with the highest second coordinate is number 4 and it does not domi-
nate point 2 of the set 3 : addf4 to psum. The second one, point 5, does the same :
add f5 to psum. Then addpsum to q6 which has the lowest second coordinate.
We iterate the procedure until each subset contains only onepoint.

Below, we provide the algorithm for the dimension 2. It is composed of two
functions :

• a one dimensional merge function given by algorithm 1,
• a recursive Divide and Conquer function given by algorithm 2.

Merge algorithmMerge1D: We are given two sets. The first set has cardinality
nbp1, and the second has cardinalitynbp2. We are also given sorting tables of in-
dexesisort1 andisort2 so that(xisort1( j)) j≤nbp1 (resp.(xisort2( j)) j≤nbp2) corresponds
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Fig. 5 Second step to calculate g

to the sequence of points of set 1 (resp. set 2) sorted increasingly with respect to the
second coordinate. The arrayY in the algorithm below corresponds to the second
coordinate of the points(x j) j≤N , i.e.Y ( j) := x2

j . The other input is the arrayf of
the values( f j) j≤N , f ( j) := f j. The output are the updated values ofq, q( j) = q j,
for the values of the indexj corresponding to set 1.

Algorithm 1 Merge algorithmMerge1D(Y, f , isort1, isort2,nbp1,nbp2)
sp = 0, ip = nbp2
for i = nbp1 to 1do

ipoint2= isort2(ip)
ipoint1= isort1(i)
while Y (ipoint2)>= Y (ipoint1) do

sp = sp+ f (ipoint2)
ip = ip−1
if ip = 0 then

Break
end if
ipoint2= isort2(ip)

end while
q(ipoint1) = sp
if ip = 0 then

for j = 1 to i−1 do
ipoint1 = isort1( j)
q(ipoint1) = sp

end for
Break

end if
end for
return q

Divide and conquer algorithmDivide2D: We are given one set of points(x j) j≤nbp.
X andY are the arrays corresponding to the first and second coordinates,X( j) :=
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x1
j and Y ( j) := x2

j . The arraysisortX and isortY are tables of indexes so that
(X(isortX( j)) j≤nbp and (Y (isortY ( j)) j≤nbp are sorted increasingly. The input of
this function is the range of indexes corresponding to the set of points to be sorted.
The result is a table of indexes. The output of the global algorithm is the arrayq,
q( j) = q j.

Algorithm 2 Divide and conquer algorithmDivide2D(X ,Y, f , isortX , isortY,nbp)
imed = nbp/2
imedp = nbp− imed
xmed = (X(isortX(imed))+X(isortX(imed+1)))/2 // compute the median point which delim-
itates set 1 (first coordinate lower than xmed) and set 2 (firstcoordinate bigger than xmed)
isortX1 = isortX(1 : imed) // sort data according to the first coordinate in set 1
isortX2 = isortX(imed +1 : nbp) // sort data according to the first coordinate in set 2
iy1= 0
iy2= 0
for i = 1 to nbp do

ipoint = isortY (i)
if X(ipoint) <= xmed) and(iy1< imed) then

isortY1(iy1) = ipoint
iy1= iy1+1

else
isortY2(iy2) = ipoint
iy2= iy2+1

end if
end for// sort data according to the second coordinate in each subset
Divide2D(X ,Y, f , isortX1, isortY1, imed)
Divide2D(X ,Y, f , isortX2, isortY2, imedp) // recursive call toDivide2D on each subset
qloc = Merge1D(Y, f , isortY1, isortY2, imed, imedp) // call of Merge1D on the two subsets
for i = 1 to imedp do

ipoint1= isortX1(i)
q(ipoint1) = q(ipoint1)+qloc(ipoint1)

end for// update ofq

The divide and conquer leads implicitly to the constructionof a binary tree of
depthO(ln(N)/ ln(2)). At each father node at depthp of this tree corresponds a
subtree which containsN/2p points. The cost of the Divide and Conquer function
is linear, and we merge the points corresponding to the son nodes with a linear cost
(as seen in the Merge algorithm). At depthp, we have 2p father nodes, so the cost
of merging all subtrees and spent in the Divide and Conquer function at depthp is
O(N) = 2pO(N/2p). Since the length of the tree isO(ln(N)/ ln(2)), the global cost
of the algorithmO(N ln(N)). This is the cost of the calculation of the conditional
expectation in dimension 2.

Higher dimensions.In [33] some specific algorithm based on binary trees has been
developed for the 3D problem. The query time is said to be equal to O(lnN + k)
wherek is the number of point to report. Recently in [27], an algorithm generalizing
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the previous approach and using a fusion tree of a certain degree, instead of a binary
tree, was proved to solve one query search inO(lnN/ ln lnN + k). All the geometric
algorithm suffers the same flaw: for our problem the number ofpoints dominating
another is on averageN

2d so the global answer remains inO(N2).
The key point in the calculation ofq is to try to keep information about the par-
tial summation in order to report geometrically which pointdominates another.This
implies that it is possible to reduce drastically the numberof operations by using a
similar structure as k-D trees.

It turns out that the generalization of the previous algorithm is indeed rather
straightforward. We use the same divide and conquer algorithm in the first dimen-
sion. This reduces the problem to merging the points in dimensiond−1. Using once
again a binary tree in a new merge function, we are then able tocompare the two sets
of points generated by the Divide and Conquer algorithm. To do this, we use recur-
sively the merge algorithm with a divide and conquer approach in order to decrease
the dimension of the final merge to dimension one. The idea of dominance merge
is described page 367 of [7]. For example in dimension three,the main divide and
conquer, see Algorithm 3, is identical to the two dimensional algorithm. The only
difference is that it asks for a merge in dimension 2.

Divide and conquer algorithmDivide3D: We are given one set of points(x j) j≤nbp.
X , Y andZ are the arrays corresponding to the first, the second and the third co-
ordinates,X( j) := x1

j , Y ( j) := x2
j and Z( j) := x3

j . The arraysisortX , isortY and
isortZ are tables of indexes so that(X(isortX( j)) j≤nbp, (Y (isortY ( j)) j≤nbp and
(Z(isortZ( j)) j≤nbp are sorted increasingly. The input of this function is the range
of indexes corresponding to the set of points to be sorted. The result is a table of
indexes. The output of the global algorithm is the arrayq, q( j) = q j.

The merge in dimension 2 is given by Algorithm 4. It is a recursive algorithm that
calls the Merge1D, Algorithm 1. Two setsA andB in dimension 2 with associated
second and third coordinates are used as input. Due to the divide and conquer part,
we know that potentially each point inB dominates the points inA, because they
have bigger first coordinates. A split is achieved onA∪B according to the second
coordinate leading to four subsetsA1, A2, andB1, B2, see figure 6. Then a call to

Fig. 6 2D merge for two subsetsA andB
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Algorithm 3 Divide and conquer algorithm

Divide3D(X ,Y,Z, f , isortX , isortY, isortZ,nbp)

imed = nbp/2
imedp = nbp− imed
xmed = (X(isortX(imed))+X(isortX(imed +1)))/2
isortx1 = isortx(1 : imed)
isortx2 = isortx(imed +1 : nbp)
iy1= 0
iy2= 0
for i = 1 to nbp do

ipoint = isortY (i)
if X(ipoint) <= xmed) and(iy1< imed) then

isortY1(iy1) = ipoint
iy1= iy1+1

else
isortY2(iy2) = ipoint
iy2= iy2+1

end if
end for
iz1= 0
iz2= 0
for i = 1 to nbp do

ipoint = isortZ(i)
if X(ipoint) <= xmed) and(iz1< imed) then

isortZ1(iz1) = ipoint
iz1= iz1+1

else
isortZ2(iz2) = ipoint
iz2= iz2+1

end if
end for
Divide3D(X ,Y,Z, f , isortX1, isortY1, isortZ1, imed)
Divide3D(X ,Y,Z, f , isortX2, isortY2, isortZ2, imedp)
qloc = Merge2D(Y, f , isortY1, isortY2, isortZ1, isortZ2)
for i = 1 to imedp do

ipoint1= isortX1(i)
q(ipoint1) = q(ipoint1)+qloc(ipoint1)

end for

the Merge2D function is achieved onA1 andB1 and onA2 andB2. All point of
B2 dominate the points ofA1 according to the second coordinate. It only remains
to check in the third direction, which is performed by a Merge1D on B2 andA1

according to the third coordinate.
The costc(N) of the merge withN points can be decomposed in:

• some operation with linear cost inN,
• two merges in dimension 2 withN/2 points,
• one merge in dimension one withN/2 points realized inO(N/2).



26 Bouchard B., Warin X.

Algorithm 4 Merge algorithmMerge2D(Y,Z, f , isortY1, isortY2, isortZ1, isortZ2)

Create subsetA1, A2, B1, B2 (figure 6)
CreateisortY11,isortZ11 associated toA1, isortY12 isortZ12 associated toA2,
CreateisortY21,isortZ21 associated toB1, isortY22 isortZ22 associated toB2,
qloc = Merge2D(Y,Z, f , isortY11, isortY21, isortZ11, isortZ21)
qloc+= Merge2D(Y,Z, f , isortY12, isortY22, isortZ12, isortZ22)
qloc+= Merge1D(Y,Z, f , isortZ11, isortZ22)
returnqloc

Hence,c satisfiesc(N) = 2c(N/2)+O(N), which leads to a global costc(N) =
O(N lnN).

The divide and conquer algorithm with costD(N) achieves :

• two divide an conquer withN/2 points,
• one merge with cost inO(N lnN),
• some extra work with linear costO(N).

Hence, we haveD(N) = D(N/2)+O(N lnN) leading to a global cost ofD(N) =
O(N(lnN)2) .
For N points, the algorithm has a complexity of orderN(lnN)2.

The same procedure can be used in dimensiond ≥ 3. The call of the merge
function in dimensiond at a father node withN/2p particles leads to

• some work with linear costO(N/2p),
• two calls of the merge at the son node withN/2p+1 particles, in dimensiond,
• a call of the merge function withN/2p+1 particles in dimensiond−1.

So the complexity of the merge functioncd can be calculated recursively. A merge
for N particles in 3D satisfiesc3(N) = 2c2(N/2)+O(N/2ln(N/2)) which leads to
a complexityc3(N) = O(N(lnN)2). Similarly a merge in dimensiond, d > 2, will
lead tocd(N) = O(N(lnN)d−1).
So the divide and conquer algorithm with costDd(N), d > 2, achieves :

• two divide and conquer withN/2 points with cost 2Dd(N/2),
• one merge in dimensiond−1 with N points and a cost inO(N(lnN)d−2),
• some extra work with linear costO(N).

Hence, we haveD(N) = 2D(N/2) + O(N(lnN)d−2) leading to a global cost of
D(N) = O(N(lnN)d−1) .

In table 1, we apply the algorithm and compute the time spent for different di-
mensions and different numbers of particles. In dimension 1and 2, we effectively
observe that the complexity is the same and that the time spent divided byN ln(N)
is constant. For dimension 4, it appears numerically that the time spent is between
O(N ln(N)2) andO(N ln(N)3). For dimension 9, we observe that the time spent is in
O(N(lnN)6). Our numerical results thus show a complexity slightly better than the
theoretical one.
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Table 1 Time spend in seconds to calculateg for a given particles number

Part nb 1D 2D 3D 4D 5D 6D 7D 8D 9D

10.000 0. 0.01 0.07 0.22 0.48 0.78 1.08 1.32 1.52
100.000 0.01 0.13 1.05 3.94 9.85 18.95 29.96 41.04 50.3
1.000.000 0.17 1.92 15.2 62.24 178.45 396 717 1110 1518

5 Numerical experiments

In this part, we produce some numerical tests for the pricingof American options
associated to different payoffs.

5.1 Model and payoffs

We now set the interest rate tor = 5% annually. This means that we have to add a
drift term in (1) and take discounting into account in all ouralgorithms.

All the assets are non correlated and follow a Black and Scholes type dynamics
with annual volatilityσ = 20%, and initial value equal to 1:

X i
t = 1+

∫ t

0
rX i

sds+
∫ t

0
σX i

sdW i
s , i ≤ d .

We consider three different Bermudan options with maturityone year and 11
equally distributed possible exercise dates:

Option 1: a geometrical put option with strikeK = 1 and payoff(K −∏d
i=1 X i

t )
+,

Option 2: a geometrical digital put option with strikeK = 0.9 and payoff
1K>∏d

i=1X i
t
,

Option 3: a basket put option with strikeK = 1 and payoff(K − 1
d ∑d

i=1 X i
t )

+.

Note that the two first payoffs involve the process∏d
i=1 X i which can be identified

to a one-dimensional non standard exponential Brownian motion. This implies that
the pricing of both Bermudan options reduces to a one dimensional optimal stopping
problem which can be efficiently solved by PDE techniques. Intable 2, 3 we give
reference prices and delta values computed for geometricalput and digital options.

Table 2 Reference option prices and delta for geometrical put

1D 2D 3D 4D 5D 6D

Option value 0.06033 0.07815 0.08975 0.09837 0.10512 0.11074
Delta value -0.4090 -0.3858 -0.3734 -0.3607 -0.3577 -0.3498
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Table 3 Reference option prices and delta for digital options

1D 2D 3D 4D 5D 6D

Option value 0.4223 0.5035 0.5375 0.5556 0.5662 0.5727
Delta value -3.067 -2.466 -2.116 -1.886 -1.721 -1.593

This will serve as a benchmark. Obviously, we do not use this trick when apply-
ing our algorithms. In table 4, we give option values computed for basket options
with 10d meshes and 8d2 millions of particules. Notice that for basket options these
values should be considered with care, since there is no guarantee that the determin-
istic schemes have converged. In the figures below, estimated prices and deltas for

Table 4 Most accurate computed option prices for basket options

1D 2D 3D 4D 5D 6D

Option value 0.06031 0.03882 0.02947 0.02404 0.02046 0.01831

Options 1 and 2 are normalized by theirtruevalue computed by PDE techniques.
Since no easily accessible benchmark are available for Option 3, results will be
presented in absolute values.

5.2 Numerical results on prices

In the different tests, we compare:

1. Algorithm A1 and Algorithm A2 for the regression based approach of Sections
4.1.1 and 4.1.4 with a number of meshes equal to 8d ,

2. Algorithm A1 and Algorithm A2 for the Malliavin based approach, recall (23)-
(24). We use an exponential parameterη = 1/

√
∆ t in the localization function,

with ∆ t = 1/10.
3. We also compare our results with the quantization method,see [5], [3], [35], [4],

[36]. The quantization method is a recombining tree method where the nodes
are optimally calculated, see [35]. Once a time discretization has been fixed,
a number of quantization points at each time step is chosen according to [4].
The quantization points are calculated off line and are available on the web-
site http://www.quantize.maths-fi.com. Once the quantization points have been
chosen a Monte Carlo approach is used to calculated the transition probabilities
linking nodes in the tree. This technique being time consuming, we use the Prin-
cipal Axis Tree method, see [34], to accelerate the computations. The number of
Monte Carlo simulations used to calculate the probabilities is fixed to 4 millions.
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Results does not change with more than 10 millions.

For each option, dimension and number of simulated paths, weapply the differ-
ent algorithms with the same set of particles.

For all the methods, no special knowledge on the payoff has been used: no con-
trol variate (which could be used for each method and is very efficient in practice),
no special guess of the regression function.

For Option 1, results are given on figure 7 ford = 1 to 6 for the Malliavin and
Regression based approaches depending on the ln of the number N of particles used.
We do not provide the results obtained with the Malliavin approach for large values
of N because it is too time consuming. For instance, in dimension6, the last option
price calculated with 2 millions particles takes more than two hours to be calculated.
It is clearly a limitation to this approach. Recall however that no (even natural)
control variate technique has been used here.

We observe that Algorithm A2 generally provides results above the exact value
of the option while the results obtained with Algorithm A1 are slightly below the
analytic value as expected, see Section 3.1. The Malliavin approach gives very good
results for dimension 1 to 3. The regression based method seems to exhibit a very
small bias which is due to the fact that the number of basis function is limited. From
dimension 4, the convergence is becoming slow and the time needed becomes pro-
hibitive, especially for the Malliavin based approach.

In table 5, we give the time spent for the different calculation with different di-
mensions.2

Table 5 Time spent for calculation of the Malliavin and Regression based approaches for different
numbers of particles (particule number in thousands)

Dimension 1D 1D 2D 2D 3D 3D 4D 4D 5D 5D 6D 6D
part nb 8 256 256 1024 256 2000 250 2000 500 2000 1000 2000
ln of part nb 8.98 12.45 12.45 13.84 12.45 14.50 12.42 14.50 13.12 14.50 13.81 14.50

Regression 0.025 0.80 1.3 5.3 2. 16.6 2.8 23. 8.8 34 32. 59.
Malliavin 0.020 0.95 1.03 23.5 31. 360. 256. 2782 694 4010 3650. 9080.

We observe that the cost of the regression approach is linearwith respect to the
number of particles (instead of the expectedN ln(N) due to the sort algorithm).

2 For all the computations, we use a core i7 2,9 GHz processor.
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 7 Comparison between the regression and the Malliavin based methods for the Bermudean
geometric put option

If we compare the two methods for Option 1 and Algorithm A1 (the most accu-
rate), we can conclude that for a given level of accuracy:

• the Malliavin approach is more attractive in dimension 1 (similar cost but more
accurate).

• the Malliavin approach seems to be more attractive in dimension 2 too. For ex-
ample, with 32.000 particles and a cost of 0.45 seconds, the Malliavin approach
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provides the same accuracy as the regression approach with 258.000 particles
and a cost of 1.8 seconds (the relative error is of order of 0.2%).

• the regression approach seems to become more attractive fordimensions greater
or equal to 3. For instance, in dimension 3, with 2 millions particles and a cost
of 41 seconds, it provides the same accuracy as the Malliavinapproach with
500.000 particles and a cost of 70 seconds (the relative error is of order of 0.2%).

On figure 8, we provide the results obtained with the quantization approach for
Option 1 depending on the number of global quantization points. We use two differ-
ent approaches:

• The backward approach: it consists in applying Algorithm A2to the quantized
process.

• The forward approach: we first apply the backward Algorithm A1 to the quan-
tized process so as to compute an estimationĈπ of the continuation region
Cπ := {(t,x) ∈ π × (0,∞)d : pπ(t,x) > g(t,x)}, wherepπ(t,x) is the price of
the Bermudean option at timet if the stock price isx. We then simulate forward
N paths,(X ( j)) j≤N , of the stock price processX and approximate the Bermudean

option price byN−1 ∑ j≤N g(τ̂( j)
0 ,X ( j)

τ̂( j)
0

) whereτ̂( j)
0 :=min{t ∈ π : (t,X ( j)

t ) /∈ Ĉπ}.

We use 4 millions particles.

In dimension 1, the quantization method requires 1.600 points3 for an accuracy of
0.2%. Once probabilities have been calculated, the backward and the forward reso-
lutions are achieved in 0.02 seconds. An equivalent accuracy can be obtained with
the regression approach in 0.350 seconds. It takes 0.050 seconds with the Malliavin
approach. Obviously this does not take into account the timespend to compute the
transition probabilities, nor the construction of the quantization tree.
In dimension 2, we could only obtain an error of 0.8% with a total of 6.400 quan-
tization points and a quantization of the last time step of 815 points. With 25.600
points, the maximum accuracy was 2% in dimension 3, 8% in dimension 4, 15% in
dimension 5, and 22% in dimension 6, when only using Algorithm A2.
Algorithm A1 combined with a forward Monte-Carlo simulation provides better re-
sults.
Overall, the method is converging and is certainly the less time consuming once a
grid and the associated transition probabilities have beencomputed. However, the
grids proposed on the website http://www.quantize.maths-fi.comare not thin enough
to provide accurate results.

On figures 9 and 10, we give our results for the digital put. Allthe methods have
difficulties to converge. Algorithm A1 always gives better results than Algorithm
A2, i.e. the approximation by the continuation value seems to converge slower than
the one based on stopping times. For dimensions equal or greater to 4, only the

3 Here and below, the number of points corresponds to the sum ofthe numbers of points used at
each time step. There are distributed according to [4]
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 8 Convergence of the quantization method for the geometric Bermudean put option

regression method provides good results. In dimension 3, for a given number of par-
ticles, the results obtained by the Malliavin and the regression approach are similar
for Algorithm A1. Because of the difference in computation time, the regression ap-
proach is more appropriate. In dimension 2, the Malliavin approach combined with
Algorithm A1 seems to be more attractive but it is not clear indimension 1.
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In dimension 1, the quantization approach only achieves an accuracy of 1.2% for
the finest meshes while the regression and Malliavin approaches achieves a 0.3%
error. In dimensions 2 and 3, it provides good results but theaccuracy of the two
other approaches is much better. Results in dimension greater than 4 shows that far
more quantization points are needed.

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 9 Comparison between the regression and the Malliavin approaches for the Bermudean geo-
metric digital option
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 10 Convergence of the quantization method for the geometric Bermudean digital option

On figures 11 and 12, we provide the results obtained for the Bermudean basket
put option. It confirms our previous observations.
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 11 Comparison between the regression and the Malliavin based methods for the Bermudean
basket put option

5.3 Numerical results on hedging policies

In figures 13 and 14, we provide the results obtained by combining the regression
and the Malliavin approach with the representations (9) and(11) for the Bermudean
geometric put option. We provide the results obtained by using the representation
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 12 Convergence of the quantization method for the Bermudean basket put option

(11) for the digital option. We only provide the results for prices computed with
Algorithm A1, Algorithm A2 being less accurate.

In the figures, we use the following terminology:
- Regression algorithm A1 means that prices are computed by using algorithm

A1 and the regression based technique.
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- Malliavin algorithm A1 means that prices are computed by using algorithm A1
and the Malliavin based representation of conditional expectations.

- equation (8), resp. (10), means that we then use the representation of the delta
given in (8), resp. (10).

Note that the problem is symmetric in the different components, so that only one
figure is provided. For more clarity, we normalize our resultby dividing the estima-
tion by thetruevalue computed by analytical methods.

Both representations seem to provide equally good results.

Acknowledgements We are grateful to Christos Makris, Paul Masurel and to the two anonymous
referees for helpful suggestions.
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 13 Convergence of the delta for the geometric Bermudean put option
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(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 14 Convergence of the delta for the geometric Bermudean digital option
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de Saint Flour, IX, Lecture Notes in Mathematics 876, Springer Verlag (1979)

20. E. Fournier, J.-M. Lasry, J. Lebuchoux, P.-L. Lions: Applications of Malliavin calculus to
Monte Carlo methods in finance II. Finance and Stochastics ,5, 201-236 ( 2001)

21. E. Fournier, J.-M. Lasry, J. Lebuchoux, P.-L. Lions, N. Touzi: Applications of Malliavin cal-
culus to Monte Carlo methods in finance. Finance and Stochastics,3, 391-412 (1999)

22. P. Glasserman and B. Yu: Number of paths versus number of basis functions in American
option pricing. Ann. Appl. Probab. 14(4), 2090-2119 (2004).

23. E. Gobet: Revisiting the Greeks for European and American options. Proceedings of the ”In-
ternational Symposium on Stochastic Processes and Mathematical Finance” at Ritsumeikan
University, Kusatsu, Japan (2003)



Monte-Carlo valuation of American option 41

24. E. Gobet and J. P. Lemor: Numerical simulation of BSDEs using empirical regression meth-
ods : theory and practice. In Proceedings of the Fifth Colloquium on BSDEs (29th May - 1st
June 2005, Shan- gai), Available on http ://hal.archives-ouvertes.fr/hal-00291199/fr/, (2006).

25. E. Gobet, J.P. Lemor, X. Warin: A regression-based Monte-Carlo method to solve backward
stochastic differential equations. Annals of Applied Probability, 15(3), 2172-2002 (2005)

26. M. B. Haugh and L. Kogan: Pricing American Options: A Duality Approach. Operation re-
search, 52(2), 258-270 (2004)

27. J. JaJa, C. Mortensen, Q. Shi: Space Efficient and Fast Algorithms for Multidimensional
Dominance Reporting and Counting. Proceedings of the 2004 Annual Symposium on Algo-
rithms and Computation, Hong Kong (2004)

28. J.P. Lemor: Approximation par projections et simulations de Monte-Carlo des
équations différentielles stochastiques rétrogrades. PhD thesis, Ecole Polytechnique,
http ://www.imprimerie.polytechnique.fr/Theses/Files/lemor.pdf, (2005).

29. J.P. Lemor, E. Gobet, and X. Warin: Rate of convergence ofan empirical regression method
for solving generalized backward stochastic differentialequations. Bernoulli, 12(5), 889916
(2006).

30. P.-L. Lions, H. Regnier: Calcul du prix et des sensibilités d’une option américaine par une
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