Monte-Carlo valuation of American options:
facts and new algorithms to improve existing
methods

Bouchard B., Warin X.

Abstract The aim of this paper is to discuss efficient algorithms fer piicing of

American options by two recently proposed Monte-Carlo tyf@thods, namely the
Malliavian calculus and the regression based approachesxplain how both tech-
nigues can be exploited with improved complexity and efficie We also discuss
several techniques for the estimation of the corresponidéuying strategies. Nu-
merical tests and comparisons, including the quantizapproach, are performed.

1 Introduction

In the last decades, several Monte-Carlo type techniquestieen proposed for the
numerical computation of American option prices, or moneagally the evaluation
of value functions associated to semi-linear paraboli@équos, with possible free
boundary, see e.g. the survey paper [11]. The idea of compMbnte-Carlo meth-
ods with approximations of the expectation operator in &kl induction schemes
comes back to Carriére [14] and was popularized by Lonpatef Schwartz [31].
This was the starting point of fruitful researches invotyim particular, a series of
papers by Pages and its co-authors, see e.g. [3] or [4] eoquantization approach,
Lions and Renier [30], and Bouchard, Ekeland and Touzi [P)oh the Malliavin
calculus based formulation.

The aim of all the above mentioned papers is to compute pfareBmerican
or Bermudan options in (relatively) high dimensions, whemegby deterministic
techniques (finite differences or finite elements for padiferential equations,
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approximating trees) are made inefficient by the so-calledecof dimensionality.
The rationality behind the purely Monte-Carlo based apginea of [31] and [12]

is that the convergence speed of the proposed schemes doaspriori depend

on the dimension of the problem. This is the usual justifazafor the use of such
techniques in numerical integration, although, like foy Mfonte-Carlo method, the
dimension plays an import role at finite distance, usualigdigh the variance of the
estimation error or the complexity of the algorithm.

In the regression based approach of Longstaff and Schv&dr}zi{ appears in the
choice of the basis of polynomials used for the numericétedion of conditional
expectations. Such a choice is made very difficult in practiben the dimension
increases.

Many papers are devoted to such an issue and it works well me garticular
(possibly complex) payoffs, see e.g. [37] among others. ¢l the question of
choosing a good basis in a practical non-standard situéiangeneral difficult,
and this approach does not allow to built efficient payoffeépendent algorithms,
particularly in high dimensions. The reason is very simtie: error should essen-
tially be controlled by the projection error on the basisnekethe basis should be
close to the pricing function, which is unknown (see e.g.drken 2 in [25] for
explicit bounds obtained for non-reflected BSDES). On theeohand, local basis
based on hyper-cubes partitions of the whole space allowdsier error estimates
and seem to be much more robust, see Section 6.1 in [25].

In the Malliavin based approach, the dimension of the proldepears through
an exploding variance of the estimators of the conditioxgleetation operators.
This is due to the Skorohod integrals (usually caliéalliavin weightg which enter
into the representation of conditional expectations asdtie of two unconditional
expectations obtained by integrating by parts the Diracsmdsch shows up when
applying the Bayes’ rule. The variance of these terms exqdadth the dimension
of the underlying factor and with the number of time stepsother important issue
is the complexity of the algorithm, whicl;priori seems to be of order of the num-
ber of simulated path to the square®(N?). Since the variance explodes with the
number of underlying factors and the number of times stefasga number of sim-
ulated paths has to be used in order to achieve a good predaisiogh dimension.
The above mentioned complexity thus makes this approacltod-much too slow
in practice.

The aim of this paper is to explain how both methods can beaxgat in order
to circumvent the above mentioned criticisms. As for the-parametric regres-
sion based method, we suggest to modify the purely non-petrammethod of [25]
by adapting the support of the function basis to the densithe underlying fac-
tors. The main advantage of this approach is that the ragrebasis is not chosen
a-priori but automatically adapted to the distributionta# tinderlying process. Con-
cerning the Malliavin based approach, we explain how aniefft@lgorithm with a
reduced complexity can be constructed. We shall see ircpéatithat the complex-
ity of this algorithm is far from being of the order of the nuerlof simulated paths
to the square, as claimed in many papers. It is of o@(@tIn(N)@-1V1) whered
is the dimension of the underlying factor.
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For both methods, we will explain how, with essentially tlaeng computation
costs, two consistent estimators can be build at the sanee Tilve first one corre-
sponds to the approach of Longstaff and Schwartz [31], waetsists in estimating
the optimal exercise time. The second is based on the cotigruts the prices at
each time through a pure backward induction procedure. Be;dhe estimator of
the optimal exercise rule is by nature sub-optimal, the fiir&te estimator is essen-
tially biased from below. On the other hand, because of tmwexdty of the max
operator, the second one is essentially biased from abogesuggest to consider
the corresponding interval to test the accuracy of the egtims. This can be seen
as a subsidy for the usual confidence interval in linear Me@&lo methods. We
refer to [1], [2], [6] or [26] (see also the references theydor other approaches
leading to the construction of upper- and lower-bounds, tanj24] and [28] for
numerical studies on penalization and regularizationrigsh

We shall also investigate different methods for the comjmuteof the hedg-
ing strategy. In particular, we shall emphasize that thadsted tangent process
approach, widely used in the context of European type optioan be used for
American options too. We will also consider Malliavin basechniques, following
the ideas of the seminal paper [21].

The rest of the paper is organized as follows. In Section Zegeall fundamen-
tal results on the pricing of American and Bermudan optid¥s.discuss the error
induced by the approximation of American option prices ®irtBermudan coun-
terparts. We also provide different representation forbeging policy. In Section
3, we explain how these results can be exploited in order ild batimators of the
price and the hedging strategy, assuming that we are giveayaoWapproximat-
ing conditional expectations. Section 4 is dedicated tqtiesentation of improved
versions of the regression based and the Malliavin basedéviGarlo algorithms.
Numerical experiments and comparisons, including the tigetion approach of
[4], are presented in Section 5. All over this paper, elemehiR? are viewed as
column vectors and transposition is denoted.by

2 Fundamental results for the construction of numerical
algorithms

In this section, we review some fundamental results on thaditation of prices and
the representation of hedging strategies that will be usé#uk algorithms described
below.

All over this paper, we shall considerdxdimensional Brownian motiofV
on a probability spaceQ,.#,P) endowed with the natural (completed and right-
continuous) filtrationf = (% i<t generated byV up to some fixed time horizon
T > 0. We assume, for sake of simplicity, that the interest rateeiro and that
there exists only one risk neutral measure, which is giverhleyoriginal proba-
bility measureP (or at leastP will be considered to be the pricing measure). The
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stock dynamics is modeled as the strong soluea (X1, ..., X%) of the stochastic
differential equation:

X =% [ Co(s X)W t<T, )

whereg is a Lipschitz continuous function defined {iT] x RY and taking values
in the set ofd-dimensional square matrices. For sake of simplicity, valstssume
from now on that the stock price procesan be perfectly simulated on any finite
time grid of[0, T], which is the case in most standard market models.

These choices are made in order to simplify the presentdiidrihe above algo-
rithms/results could clearly be extended to more genetgdns, see e.g. [11] for
convergence issues.

2.1 Definitions and facts

We recall in this section some well-know facts on the pricofgAmerican and
Bermudan options.

From now on, the payoff of the American option is defined as tardgnistic
measurable functiog : [0,T] x RY — R, i.e. the seller pag(t,x) at timet if the
option is exercised at timeand the value of the underlying assets at tinsex. We
shall assume all over this paper tigdtas linear growth and is Lipschitz continuous.

Under the above assumption, it follows from standard argusmesee e.g. [19],
that the price at timeof the American option is given by a continuous supermartin-
galeP satisfying

R= esssupe%T]E[g(r,Xr) | #] fort<T P—a.s, 2

where.7 1) denotes the set of stopping times with valueft ji].
Similarly, the price of a Bermudan option with the same pajwfction, but
which can be exercised only at times in

m={0=ty<ti<ty<--- <ty =T}, for somek €N,
is given by a ladcag supermarting®® satisfying

P = esssup. on E[g(1,X;) | %] fort<T P—a.s, 3
t ng[”]

Whereﬂ[{fﬂ denotes the set of stopping times with value§ ji| N .

It then follows from the Doob-Meyer decomposition and thertingale repre-
sentation theorem, that we can find predictable procegsesl ¢ as well as non-
decreasing processAsandA’ such that
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B[ I+ Pds| <o m0= A0
and
R= Po+/0t @dWs— A, B' = p67_|_/0t @'dWs— AT for t<T P—as. (4)

The processe and @™ are related to the hedging strategy of, respectively, the
American and the Bermudan option. More precisely, the nuohnits of stocks to
hold in the hedging portfolio are given iy := ¢/ a—1(-,X) andy™ := ¢ a—1(-, X)
whenever these quantities are well-defined.

Moreover,

R=E[g(f,Xs) | %] and B =E [g(F", X¢n) | F] for t<T P—as, (5)
where

Ti:=inf{set,T] : Bs=9(s,Xs)} and (6)
m=inf{se[t,T|Nnm: PF=9(sX)} (7)

are the (first) optimal exercise times, aftein particular,P andP™ are martingales
on|t, f;] and]t, 7"] respectively, for alt <T.

2.2 From Bermudan to American options

Most numerical methods for the pricing of American options lbased on the ap-
proximation by Bermudan options with time gridwith mesh|m| := max<« (11—
ti) going to 0. The approximation is justified theoretically by tfollowing result,
see [3] and [9].

Theorem 1. The following holds:
1
maxi [|R, — R?] 2 < O(|f?) .
<K !

If moreover there exists py : [0, T] x RY +— R 1 and p, : [0,T] x RY — R, such
that
P2t )]+ [Pa(t, )] < CL(L1+(XS)
gt x) —g(sy) <
pj_(t,X),(Sft,y*X) +p2(t,X)(|t 7S|2+ |X7y|2) ) VX,YE ]Rd,t,SE [OaT] . (8)

for some constant C_ > 0, then



6 Bouchard B., Warin X.
1 T % 1
max R~ R1%)? 5| [l al] < ofjm)
i<k 0

Note that the assumption (8) is satisfied by most payoffsactie.
In view of this convergence result, it is enough to focus @hicing of Bermu-
dan options. We will therefore concentrate on this in thifeing.

Remark 1. We refer to [3] and [9] for the additional error due to the apgmation
of X by its Euler scheme. For a time step of sfze- 0, It is of orderO(h'/4) in
general, and of ordgd(h'/2) under (8).

2.3 Delta representations

For practical purposes, the computation of the hedgintgesiyds as important as the
estimation of the price process. As for European type optiatieast three different
methods can be used in practice. In this section, we resiribe case of Bermudan
options, recall the convergence results of Section 2.2.

2.3.1 Finite difference approach

The finite difference approach consist is estimating theeppirocess for different
initial conditions. More precisely, 16> be defined as in (1)-(3) witK, replaced
by Xo+ &, 6 € RY. Then, following the standard approach for European option
one could approximate theth component oﬁoo”’a(o,xo)*l by (P(;T*‘S —PBJ)/hor
(PI*% — PJ*~%)/2h whereg is the vector ofR? defined byd! = h1i_; andh > 0
is small. A large literature is available on this approaahHaropean type options,
see e.g. [17] and the references therein. To our knowledgegarous convergence
result is available for American type options. However,hie tase of Bermudan
options, the results obtained for European options cdrbstiapplied at time 0 by
considering the deterministic price functipfi(ts, -), wherep™ is implicitly defined
by p™(-,X) = P"on[0,t1], as a given terminal payoff at timg

Note that this requires the computation of two differentreal of the American
option price, for two different initial conditions, whicls,ia-priori, much too time
consuming in comparison to the techniques proposed belavih®other hand the
algorithms presented below, Algorithms Al, A2 and A2b, canelasily adapted
to this context. Indeed, they produce (or can produce fooAlgm 1), simulated
values of option prices on a grid of time corresponding touated values of the
stock prices. If one starts the simulations of the stockgsrat time- 9, 6 > 0 small,
they will thus produce values of the option price at time Odionulated, but close
if & is small, values of the stock prices. These can be used to wentipe finite
differences. Obviously there is no hope that this methotlheilconvergent and the
choice of the value od is not clear. We will therefore not test this approach here.
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2.3.2 Tangent process approach

Assume thap, o is CL. Then, under a standard uniform ellipticity condition on
o and mild additional regularity assumptions, ensuring theall smooth pasting
property for the American option price on the associated freundary, it is shown
in [23] that there exists a version gfsatisfying

@ = E [0g(To, Xz,) DX, ] 0(0,%0)

wherellg denote the gradient @f with respect to its space variable an¥ is the
first variation (or tangent) process Xfdefined as the solution of

t d . .
0% = |d+/0 S 001 (%) DX AW
. =1

wherelg is the identity matrix oM, o’ is the j-th column ofo, andCo’ the Jaco-
bian matrix ofa’. This is a natural extension of the well-known result for &ean
options, see [13].

This result was then extended in [9], see also [37], to Belanuwaptions in terms
of the Malliavin derivative process of, without ellipticity condition. Here, we state
itin terms of the first variation proce&s, compare with Corollary 5.1 and see (5.3)
in [9].

Theorem 2. Assume that g, o € Ci then there exists a version of @™ satisfying
@ =E [Og(i" X DX, | 1] (OX) o (t, %) ,t<T. ©)

Remark 2. Note that the payoff functiogis assumed to tﬁg in the above assertion.
However, it should be clear that it can be extended to mangtsiins wherg is only
differentiable a.e. with bounded derivatives. In partecufor one dimensional put
options with strikeK, it is clear thalXzr < K P —a.s. sincgy(t,K) = 0, at least under
suitable ellipticity conditions oor ensuring thaP™ > 0 on[0, T). SinceK is the only
point where the payoff function is not differentiable, tHege representation can
be easily extended.

2.3.3 Malliavin calculus approach

An extension of the formulation of the delta similar to theeantroduced for Eu-
ropean type options in the seminal paper [21] was first pregas [32]. However,
it involves the non-decreasing procesgor A™) which is difficult to estimate in
practice. In the case where we restrict to Bermudan optitves) things simplify
and the result of Proposition 5.1 in [9], together with a d&mndl integration by parts
argument in the Malliavin calculus sense, leads to thediig representation.
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Theorem 3. Assume that g, 0 € C} and that o is invertible with bounded inverse,
Then there exists a version of ¢ satisfying for t € [t,ti11), | <K

v 1 o [l 1 / 1
A" = B R, [ ols X MOX0W | 7| (OX) To(tX).  (10)
i+1—

SinceP™ is a martingale on each internvig] ii], it can alternatively be written in
the following form.

Theorem 4. Assume that g,0 € C} and that o is invertible with bounded inverse,
Then there exists a version of @™ satisfying for t € [t,ti11), | <K

w 1 A i+l -1 21 —1
A= g(rt,xftn)/t (s, %) 0XAMs | Z| (0X)~ta(t,%).(11)
i+1—

Remark 3. In Black-Scholes type models, i.a(t,x) = diag[x] & (t) where diagdx]

is the diagonal matrix witlith diagonal component equal xband& is determin-
istic with bounded inverse, then the above results stillbdtue. Also note that the
payoff functiong is assumed to b@tl, in the above assertion. However, it should be
clear that it can be extended to more general situationsexean be uniformly
approximated by a sequence(q} functions. This follows from standard stability

results for reflected backward stochastic differentialatiguns.

3 Abstract algorithms

3.1 Backward induction for the pricing of Bermudan options

It follows from the formulation (3) o™ in terms of an optimal stopping problem
on a finite time grid, that the price process of the Bermudationpsatisfies the
so-callecbackward American dynamic programming equationiferk — 1,...,0

PF'=g(T,Xr) and R =max{g(t,%) . E [, | % }. (12)
or equivalently, thanks to the martingale property8fon each interval, /],

PF = g(T.Xr) and BT =max{g(t,%,) , E[9(&, X )| %) }. (13)
Assuming that the involved conditional expectation can édgqetly estimated,
this leads to two kind of possible algorithms for the comfiataof the price of the
Bermudan option at time 0. In practice, these operators twmbe replaced by a
numerical estimation. In what follows, we denotelyy | .%;] an approximation of
the true condition expectation operaitfr | .7 . For& given, the corresponding
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approximation schemes are:

Algorithm A1 [optimal exercise time estimation]:
1. Initialization : Setf™:=T.
2. Backward induction : Fdr=k —1to 0, setf"" :=t; T+ fiﬁql(ﬂl)c

whereAl := {g(t;, X E[g(’\|1+7lra Xsin) ) | Fl}-

3. Price estimator at (PO E[g(‘l G X. 1n)]

Algorithm A2 [price | process computation]:
1. Initialization: SelPT =9(T,Xr)
: 52,77 ~52:
2. Backward induction: For: K—1t00,seB " :=max{g(ti, X, ), E[R"7| %]}
3. Price estimator at 2"

Note that the optimal exercise strategy can also be appeigihin the Algorithm
A2 as follows:

Algorithm A2b [with optlmal exercise time estimation J:

1. Initialization: Selr =T

2. Backward induction: Fdr= k —1to 0,7 :=t; Lpo + fii”lrlwz)c whereA? :=

{o(ti, %) = R )
3. Price estimator at (POZb .= E[g(fg . Xezm)].
To

The algorithm Al corresponds to the approach of [31] in whi@hconditional
expectation operators are estimated by non-parametriessign techniques based
on a suitable choice of regression polynomials.

The algorithm A2 corresponds to the approach of [30] andifi@jhich the con-
ditional expectation operators are estimated by pure M@atdo methods based
on the representation of conditional expectations in tesfressuitable ratio of un-
conditional expectations obtained by using some Malli@attulus techniques, see
below.

Assume for a moment thgte L1 K[E | %] € % and that this approximation
is conditionally unbiased, i.&[E[- | %] | %] =E[ | %], then a backward induc-

tion argument combined with Jensen’s inequality implieﬂm[ﬁg’"} > PJ. On

the other hand, the fact that the estimated optimal exepcikey ff)’" is suboptimal
by definition, fori = 1,2, implies thaf® [Iﬁol’"} < PfrandE [If’gb’"} < P It follows

that:

E [ﬁol’"} E [Pgb ”} <PI'<E [F}%"} . (14)

The above formal relation can then be used for the constnucti confidence
intervalsfor the true price of the Bermudan optio[ltf’ol‘" P27 or [P P27, If
the computation of the conditional expectations is acel,llmen the effect of the
convexity bias should be small and theref@fér should be close t&f". Similarly,
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the error in estimating the exact counterpart of the exereigionsA! andA? should
be small and therefore the estimation of the optimal stappimes should be good,
leading tol%’" and If’gb’" close toRJ". Thus, a tinyconfidence intervaghould reveal
a good approximation of the exact price, while a lacgefidence intervadhould be
a sign that the estimation was poor. In practice, it seenebiet use the interval
[If’g'b’", If’g’"] as both quantities can be computed at the same time with &imeos
additional cost.

In practice, the approximation operatdﬁﬁ | #] will be based on future values
of simulated paths oX, see Section 4, so that the above reasoning can not be applied
rigorously, and the terminologsonfidence intervashould be taken with care. Still,
numerical tests, see Section 5.2 below, show that suclvalsgprovide a good idea
of the quality of the approximation.

3.2 Hedging strategy approximation

As above, we restrict to the case of a Bermudan option. Regalat the number of
units ¢ of stocks to hold in the hedging portfolio is given B a—(-, X), when-
ever this quantity is well-defined, one can estimate the imedaplicy by using one
of the representation @’ presented in Section 2.3.

The finite difference approach mentioned in Section 2.3nlbeacombined with
Algorithms Al and A2 in an obvious manner.

As for the tangent process approach and the Malliavin cadcbhsed one, we
can also use Algorithms A1 and A2. Algorithms Al and A2b pdavan estimation
of the optimal exercise strategy. Plugged into (9) or (115 kads to two possible
approximations of the hedging strategy at time O:

@ ~E [Dg(f& ng)'Dng} (0, %) (15)
or

17 . t '
@ ~ B o) [ ols X Ok o000, (19
1 0
with £ = £ or £,
Algorithm A2 provides an estimation of the price processmét;. Plugged into
(20) this leads to

!

d 1" 2.7 g -1
@'~ |’ /0 (5, %) 10XAW| T(0,%0) . (17)
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4 Improved algorithms for the estimation of conditional
expectations

As above, we focus on the pricing of Bermudan options. We sified assume here
that the procesX can be perfectly simulated on the time grdIf this is not the
case, then it has to be replaced by its Euler scheme. The igamee results of
Section 2.2 justify these approximations.

4.1 The regression based approach

We first address the basis function regression method and st to numerically
improve the methodology proposed by [31]. We compute theptexity of the
method depending on the number of particles and the numtmsi$ functions.

4.1.1 Generalities

The common fundamental idea in the regression based and dli@awh based
approach consists in using simulated paths of the stockg}));<y and to ap-
ply one of the backward induction Algorithms A1, A2 (posgilBi2b) described in
Section 3.1 by using the simulations in order to estimatearhelved conditional
expectations.

In the context of Algorithm A1, the numerical procedure read follows:

Algorithm A1 with regression [optimal exercise time esttiog]:
~1(j) .

1. Initialization : Sefr,’ =T,j<N . _
2. Backward induction : Far=k —1to 1, st := ;1 AL +fi1+’71T’(J)1(A_1.<1>)C
L 1 A . i
whereA"™ ") = {g(t;, X >>EN[ (B X | % =X} <N,
3. Price estimator at @7 := 2 5N 1g(f§ ) XD,
7m

where the estimation
PN X) = BB Xeam) [ % =X
of the true conditional expectation

Ft ) = Elg(ER Xeam) [ % =X
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is computed by regressirg(%;1 . X1y )en on (@a(X")).... 04 <,
i+1
whereys, ..., Py are given functions, T.e.

<

FN0.) = 3 & he(x)
k=1

Where(dE’N)kSM minimizes

:

over (ay)k<m € RM.

2

i+1

M
L) o ( ¢
o )vxf(l,)ma) -5 A%
=

Clearly, the same ideas can be combined with Algorithm AZ2i (i variation
A2b).

We shall not discuss here the theoretical convergence afnttbod, we refer
to [16] for rigorous statements, but rather describe hovait loe improved from a
numerical point of view. See also [18] and [40] for convergerates and [22] for a
discussion on the fact that the number of simulated path®hzesincreased rapidly
with the number of polynomials. See also [28] for further ranital tests.

4.1.2 General comments on the regression procedure

Note that at each step of the above algorithm, we have to sajuadratic optimiza-
tion problem of the form
min ||Aa — B||? (18)
acRM

Different solutions are available. First, we can deducentiaced normal equations
AAa =AB, (29)

and use a Choleski decompositiold of A’A to solve it. This method is the most ef-
ficientin term of computational time but is rather sensibleoundoff error. Besides,
it is not memory consuming because thenatrix does not need to be constructed.

A more stable approach consists in usinQRRdecomposition oA, i.e. write A
asQR whereQ is aN-dimensional orthonormal matrix arRlis a N-dimensional
upper triangular matrix, and sohNRo = Q'B. This is much more time consuming.
Moreover, theN x M matrixA has to be stored. When using standard basis functions
for the gx’s, it is typically full, which may become highly demanding terms of
memory when the number of basis functions is high.

In order to completely avoid roundoff errors, the Singulafié Decomposition
can be used: writd = UWV’ with U in RN x RN an orthogonal square matri¥/,
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an orthogonal square matrix &M x RM, andw a diagonal matrix ilRN x RM with
only positive or zero entriew; on the diagonal. Replacing/t; by zero ifw; =0,
the solution to (18) is given by

a = V|diag[1/wi]]U'B (20)

Still this method suffers the same problem as the QR algarithterm of memory
needed to create the matdxand is the most time consuming.

4.1.3 Drawbacks of polynomial regressions

The idea of takingps, . . ., ¢y has polynomials, or more generally as functions with
global support, was first introduced by [39], in the conteig@eneral optimal stop-
ping problems, and then used to price American options bly [8]31], the authors
use monomial basis functions and Laguerre polynomialst ke following pa-
pers have consisted in extending this approach to HermitpeHbolic and Cheby-
shev polynomials (see [15] for example).

Some basis may be chosen orthogonal in order to invert etilyassociated
normal equation (19). Note however that it should then beagonal in the law
induced byX and not with respect to the Lebesgue measure as usuallyrchose

Although very easy to implement in practice, this kind of ¢tian basis has a
major flaw. For a given number of particles it is not easy to indbptimal degree
of the functional basis. Besides, an increase in the numbieinction basis often
leads to a deterioration in the accuracy of the result. Thfuie to rare events that
the polynomials try to fit, leading to some oscillating regaatation of the function.

Figure 1 below shows how the regression behaves at the fickiMaad step for
a put option in dimension one, for different choices of moradinasis functions.

Regression with polynomial degree 3 . Regression with polynomial degree 5
+ Cash flow following date RN « + Cash flow following date
— Regressed value 0.4 .. — Regressed valuet

Cash flow
Cash flow
°
9

Fig. 1 Regression with global function

Clearly, the regression procedure could be improved byrayitie payoff func-
tion at the first steps of the algorithm, when the price fusrcghould still be close
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to the payoff. However, the number of steps for which the ffasfmuld be included
in the basis is somehow arbitrary and difficult to determmpriactice.

Note that, in the case where an explicit formula is availdbiehe correspond-
ing European option, one can replace the estirriﬁtéfﬂ | %] in Algorithms A2
and A2b byE[F? T — PHO(ti 1, X, ., ) | F] +P"°(ti, X, ) whereP*"°(t,x) denotes
the price of the corresponding European option at tinifeX; = x. The rational-
ity behind this comes from the fact that the European pricegssP®(-, X) is a
martingale, and that it typically explains a large part &f Bermudan price. Alter-
natively,P®"°(t;,-) could also be included in the regression basis.

4.1.4 The adaptive local basis approach

We propose to use a different technique. It essentially istmi applying a non-
conform finite element approach rather than a spectral likthod as presented
above.

The idea is to use, at each time stgpa set of functionsfy,q € {0,1,...,M}
having local hypercube suppd, j,...i, Whereij = 1 tolj, M = [1<k<n Ik, and
{Dil-,--id}(il,..,id)e{l,---.,ll}X---X{l,....,ld} is a partition of the hyperculdening<x<n Xtil’(k),
max <k<N Xtil’(k)]x -+ X [MiNg<k<n Xt?’(k),maxlgkg,\, Xt?’“()]. On eachDy, for | =
(i1,..,id), Y is a linear function with 4 d degrees of freedom. This approximation
is “non-conform” in the sense that we do not assure the coityiof the approx-
imation. However, it has the advantage to be able to fit angn eliscontinuous,
function.

The number of degrees of freedom is equdite (1+d). In order to avoid os-
cillations, the support are chosen so that they containhiguge same number of
particles.

On Figure 2, we plot the solution of the previous regressiablem (Fig. 1)
obtained for a number of basis functions chosen so as to haveaime number of
degrees of freedom as when using polynomials.

Clearly, the method behaves much better than when the Isasiade of mono-
mials.

Moreover, the normal equation is sparse when using such flocetions, and
far better conditioned, leading to the possibility to use @holeski method, which,
as claimed above, is the most efficient for solving the regoesproblem. At the
opposite, basis with global support, like polynomials,itgtly require the use of
QR or SVD factorization, because the global resolutiondsity fails when a lot of
particles are used.

Note that, in order to ensure that each hypercube approgiynapntains the
same number of particles, it is necessary to “localize” tiveorder to appropriately
define the support of the local functions. In dimension ohig,¢an be achieved by
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Regression with 3 local functions
« Cash flow following date
—— Regressed value

Regression wi ith 2 local functions
A « Cash flow following date
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Cash flow
°
~
Cash flow
o
N

Fig. 2 Regression with local function

using a partial sort procedure whose complexity is of ord@ (@, N). In dimension
d, two methods are available :

(i) Realize partial sorts in each direction and derive thepsut of the basis func-
tions so that each contains approximatively the same nuofhgarticles. This
option is particularly efficient when the particles havénemtindependent coordi-
nates. The operation is realized@iy2_, (I + 1)N). For example in dimension
2, it leads to a first partial sort to get the particle with tbevést x-coordinates
Xo, and successive partial sorts are achieved giving pajraach thafx_1,xi],

i =1tolq, containdN/I; particles. Doing independently the same in the second
dimension, we gelb intervals of the fornjyi_1,yi], i = 1,...,l2. Theljl, hyper-
cubes are defined by the s€xs_1,X] x (Yj-1,yj,i=1,...,11, j=1,..., 1.

(i) Use a Kd tree, see e.g. [38] and [8], with depitko that each node of depgthas
li;1 sons. Use a partial sort at each node of depdrsort the particles following
the coordinaté + 1, and use this sort to define the; sons. For example in
dimension 211 + 1) partial sorts are achieved in the first dimension leading to
11 sets ofN/I; particles. Then, for each set of particles, partial sorss@hieved
in the second dimension giving subsetdNgf111,) particles. The hypercubes are
given by the minimum and maximum coordinates of the pointsésubsets. The
difference with (i) is that the partial sorts are no more perfed independently
in each direction. The complexity of the procedure remair®(iy_; (I +1)N).

Although the complexity of the two techniques is the same,fitst one uses
only 3¢, (I+ 1) partial sorts, while the second one uses ¥, [ 1j(Ii +1)
calls to the partial sort procedure and is far more expensive

On Figure 3, we have plotted an example of supports in the @a$6 =4 x 4
local basis functions, in dimension 2.

Importantly, this approach allows to increase the numbéagfs functions with-
out any instability in the resolution of the regression peof. The construction of
the normal matrix&'A has a complexity of orde®(N) when storing only non zero
elements, the resolution time is negligible (linear withbecause of the sparsity
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Fig. 3 Support of 2D function basis

of the matrix), and the reconstruction procedure i®©{iN). The complexity of the
global resolution is therefore of order {N(1+58_, (I +1))).

Note that the use of local basis functions was already dészus [25] but for
(non-reflected) BSDESs. The difference is that the suppdhehyper-cubes is fixed
once for all. In this paper, one can see that the approximatimr is very robust,
in the sense that it essentially only depends on the first mtsred the underlying
processX, see their Section 6.2.

4.2 The Malliavin based approach

4.2.1 The alternative representation for conditional expetations

The idea of using Malliavin calculation to provide effici@stimators of conditional
expectations first appeared in [20], and was then furthed us¢30] and [12] to
price American options, see also [10].
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Given a measurable mép the main idea consists in writing

r(ti,X) =E [f(xti+1) | Xti :X]
as

E [8d(%) f (%,1)]
E [3(%;)]
wheredy denotes the Dirac mass»atThen, under suitable regularity and uniform

ellipticity conditions ono, a formal integration by parts in the Malliavin calculus
sense allows to rewritgt;, x) as

r(t,x) = (21)

r(t,x) = (22)

whereHy denotes the Heaviside functioHy(y) = 1 if yI > x for all i <d and
Hx(y) = 0 otherwise, and#;_, is a Skorohod integral which depends only on the
path ofX on [0,t 1], see [10] for details and (25) below for an example of repre-
sentation in a simple Gaussian framework.

In the context of Algorithm A2 of Section 3.1, the numericedpedure reads as
follows:

Algorithm A2 with Malllavm [price process computation]:

1. Initialization: SelP (). =g(T, X< ), j <N.
2. Backward mductlon For:K—ltoO set

52,70,(])

B0 = max{g(ti, ") , ENBZT | X, =X}

3. Price estimator at @,
where the estimation
PN X)) = BB T X =X
of the true conditional expectation
F X)) =ERT | X% =X

is computed by considering the Monte-Carlo counterparts®humerator and de-
nominator in (22), i.e.

3 OGRETY A
SO AL

i+1

FN(t,x) =

(23)
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Whereyti(i)l is the Skorohod integral associated to the péth, and where we use
the convention 00 = 0.

One can similarly combine this approach with Algorithm AY, using the ap-
proximation

SO g X )AL o
Z?‘:lHX(Xt(J))yt(J)

i i+1

E[g(fti+1vxfti+l) | Xti - XTl(J)] ~

Here again, we shall not discuss the theoretical conveggehthe method, we
refer to [12] for rigorous statements, but rather describe this method should
be implemented in practice so as to be efficient. Howevehadukl be noted that
the convergence obtained in [12] is based on the fact that wlse independent
simulations for each time step, although this does not sesrassary in practice.
The convergence analysis in the above setting is certainhrmore involved, and
left open.

4.2.2 General comments

First, it can be shown that the variance of the Skohorod rateg; , is of order of
(min{ti,ti;1 —t})~9, see (25) below as an example. As will be explained below in
the Gaussian case, it can be partially compensated by io@impg a localization
function. Still, this method will in general perform ratheadly when the length of
the time interval between two dates of possible exercismalsIn particular, if we
are interested by the approximation of American optiongwiby their Bermudan
counterparts, then a large number of simulations will baiiregl in order to com-
pensate for the explosion of the variance of the estimatdthesime step goes to
0.

Second, we should note that the teniHy(X; )%, ] in (22) is just the density
of X; at x. If it is known, it can be used directly instead of being estied. In
practice, it turns out that that the fact that both the nuteer@nd the denominator
in (23) are influenced by thé”tfl)l’s leads to numerical compensations which seem
to stabilize the algorithm.

In most applications, natural upper and lower bounds aravkrior the true price
processP™ is terms of deterministic functions of. They can be used to truncate
the numerical results obtained at each step of the algorithorder to stabilize it.

The computation of the Skorohod integrals involved in thevabestimators is
rather tricky in general, even whefis replaced by its Euler scheme. This is due
to the (possible) dependence of the different componen¥s with respect to the
different components of the Brownian motion. However, ifta suitable transfor-
mation and possibly a deterministic time change, we cancetluthe case where
X =W, then things simplify significantly, as will be shown in thext section.
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Finally, this approach requires a non-degeneracy assampti g, while the
regression based method may be applied to large class ofoMgrocesses, see
[29].

4.2.3 Simplifications in the Gaussian case

In the case where we can reduc&\oe= X, for instance in the Black-Scholes model,
the Skorohod integrals entering in the representation¢2@)e taken in the form

k kK
%Hl — |—| <Vi _ ﬂ) (25)

keg \ i i1t

In order to reduce the variance of the estimator, we can atsarporate a local-
ization function as explained in [10]. Given a smooth bouhfienction¢ on R
such thatg (0) = 1, r(t;,x) can also be written with#;_, (x) in place of.#_, in
(22), where

k k  _\p£K
'%Hl(x) = ) l¢(wr_xk) <\ﬁ _ L\M) _ ¢,(V\4:(—Xk)

K f; tip1—t

In such a class of functions, it was shown in [10] that the dra¢ tminimizes
the integrated variance of the numerator and the denonmiisatbexponential type,
¢ (y) = exp(—ny) with n > 0. The parametey should be theoretically of order of
1/\/min{ti,ti 1 —ti}. .

Note that the numerator in (22) could be simplified by usirig, (x) instead of
F,1(X), where

~ \Mk
Fra () 1= [ | SO —x) = — ¢ (W =)

k<d i

because the increments of the Brownian motion are indeperidewever, we have
noticed from our tests that it is better to use the same iategr weights at the
numerator and denominator so as to play with possible n@alezdmpensations.

4.2.4 Improved numerical methods

A crude application of the algorithm described in Sectidh #4leads, at each time
step, to the computation &f sums composed &f terms each. This leads to a com-
plexity of orderN?, which makes this procedure completely inefficient in picact

However, it should be noted that the above calculation gmolibr the numerator
and the denominator of our estimator can be reduced to tteviolg one: GiverN
pointys,...,yn in RY, andN real numberd, ..., fn,
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Compute ¢ := Z\IHYi (yj)fj, foreachi <N. (26)
i<

Itis clear that both terms in (23) are of this form wjth= Xti(j) andfj = I%i"myq(j)

. 1 i+1
orf; = yti(i)l- Even, if.#;  , is replaced by#; ,, (-) this remains the case, whenever
S,4(+) is defined with respect to an exponential localizing funttio

KWk WK
o M) (Vi W W ) + e W

S, (X
() ti tip1—t

k kK
<vi wi>+n

k<d

e e M
(0= )

where the only terms which dependsmr(ﬂkgd e”xk), can be added at the end of

the procedure. Note that, when the same weights are usewfautmerator and the
denominator, these terms actually compensate.

)

ti Gy —1

We now discuss how Problem (26) can be solved efficiently.

The one dimensional casdn the one dimensional case, the main idea is to reduce
to the situation wherg; > y» > ... > yn, assuming that none of them are equal for
simplicity. Indeed, in this case, thg's can be computed iN steps by induction:
01=0,0.1=0q + fifori=1,...,N—1. In order to reduce to the case where the
yi's are sorted, it suffices to use a quick sort algorithm whaoseptexity is of order

of NIn(N). Hence, the complexity of Problem (26)@N InN) and notO(N?).

The two dimensional caseln dimension two, it is no more possible to sort the data.
However, Problem (26) is related to the well-documentedhiohance reporting
problem”, which was solved efficiently in dimension two by} {¥ith the classical
divide and conquer algorithm. The algorithm is based on tvesttuction of two
dimensional K-d tree that stores the points, see [8]. Itstaction is achieved in
O(NInN), and a query for reporting dominance over one point can beaeth in
O(v/N), see [38] and [8]. The global dominance reporting problemafset ofN
points can thus be solved @N+/N). We modify this algorithm in the sequel such
that our problem can be solv&{NInN).

To show how the algorithm works, imagine for example tRat 8 as on figure
4. After a sort according to the first coordinate, we split ploints into two groups
with the same cardinality : points 6,2,5 and 4 define the fest%1,8,7 the second
set. All points of the first set can be dominatéy all points of set two but no point
of the second set is dominated by a point of set one.
We then compare the points from the second set with the pointse first set
according to the second coordinate, while keeping thegadimmation, sapsum.

1 Hereafter, we say that a poirt dominates a point if xij > x{( foralli <d.
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Set 1 Set 2

Fig. 4 First step to calculate g

The algorithm is initialized withpsum = 0. Then, point 7 has the highest second
coordinate of set 2 and dominates all points of set 1: d psum. The second
one, point 1 dominates all points of set one: dddb psum. The third one, point 8,
does not dominate points 2 and 4 of set one : psltn to g, andqy, then addfg to
psum. The last point, point 3, does not dominate any point of set addpsum to
gs andgg. We have achieved the last point of set 1, we thus stop theitidgo
Graphically, the algorithm can be understood as followsaviDa horizontal line
crossing the vertical axis at the level of the highest seamutdinate of the two
sets, then lower down this line. Each time the line crossesrd gj of set 2, add the
corresponding; value topsum, each time the line crosses a poitof set 1, add
psumto the corresponding.

In a second step, we split the first set into two sets (set 3 aadd the second
set into two sets (set 5 and 6), see figure 5. We apply the sameedurre as before
on these new pair of sets. For example for set one, we firgisset = 0. Then, the
point of set 4 with the highest second coordinate is numbedditadoes not domi-
nate point 2 of the set 3 : adg to psum. The second one, point 5, does the same :
add f5 to psum. Then addosumto gg which has the lowest second coordinate.

We iterate the procedure until each subset contains onlypoime.

Below, we provide the algorithm for the dimension 2. It is gmseed of two
functions :

e aone dimensional merge function given by algorithm 1,
e arecursive Divide and Conquer function given by algorithm 2

Merge algorithmMergelD: We are given two sets. The first set has cardinality
nbpl, and the second has cardinaliyp2. We are also given sorting tables of in-
dexessortl andisort2 so thal(Xisort1(j)) j<nbp1 (r€SP-(Xisort2(j)) j<nbpz) COrresponds
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Set 6

Set 3 Ser4 Set's

=}

£

Fig. 5 Second step to calculate g

to the sequence of points of set 1 (resp. set 2) sorted irogdpsvith respect to the
second coordinate. The arrayin the algorithm below corresponds to the second
coordinate of the point&;)j<n, i.e.Y(j) := sz. The other input is the arraf of

the valueqfj)j<n, f(j) := fj. The output are the updated valuesypfy(j) = q;,

for the values of the indekcorresponding to set 1.

Algorithm 1 Merge algorithmMergelD(Y, f,isort1,isort2,nbpl, nbp2)
sp=0,ip=nbp2
for i =nbplto 1do
ipoint2 = isort2(ip)
ipointl = isortd(i)
while Y (ipoint2) >=Y(ipoint1) do
sp=sp+ f(ipoint2)
ip=ip—1
if ip=0then
Break
end if
ipoint2 = isort2(ip)
end while
g(ipointl) =sp
if ip=0then
for j=1toi—1do
ipointl =isort1(j)
g(ipointl) =sp
end for
Break
end if
end for
return g

Divide and conquer algorithidivide2D: We are given one set of points;) j<nbp.
X andY are the arrays corresponding to the first and second cooegiix j) :=




Monte-Carlo valuation of American option 23

xj andY(j) := x¢. The arraysisortX andisortY are tables of indexes so that
(X(isortX(j))j<nbp and (Y(isortY(j))j<nbp are sorted increasingly. The input of
this function is the range of indexes corresponding to thefsgoints to be sorted.
The result is a table of indexes. The output of the globalrélgm is the arrayq,

a(j) =a;.

Algorithm 2 Divide and conquer algorithmivide2D(X,Y, f,isortX,isortY,nbp)
imed = nbp/2
imedp = nbp—imed
xmed = (X(isortX(imed)) + X(isortX(imed+1)))/2 // compute the median point which delim-
itates set 1 (first coordinate lower than xmed) and set 2 (forstdinate bigger than xmed)
isortX; = isortX(1 :imed) // sort data according to the first coordinate in set 1
isortX, = isortX(imed + 1 : nbp) // sort data according to the first coordinate in set 2

iyl=0

iy2=0

for i =1 tonbp do
ipoint = isortY (i)

if X(ipoint) <= xmed) and(iyl < imed) then
isortY; (iyl) =ipoint

iyl=iyl+1

else
isortY,(iy2) = ipoint
iy2=iy2+1

end if

end for// sort data according to the second coordinate in each subse
Divide2D(X,Y, f,isortXy,isortY;,imed)
Divide2D(X,Y, f,isortX,,isortY,,imedp) // recursive call tdivide2D on each subset
gloc = MergelD(Y, f,isortY;,isortY,,imed,imedp) // call of MergelD on the two subsets
for i=1toimedpdo

ipointl = isortXy (i)

q(ipointl) = q(ipoint1) 4 qloc(ipoint1)
end for// update ofg

The divide and conquer leads implicitly to the constructidra binary tree of
depthO(In(N)/In(2)). At each father node at depfhof this tree corresponds a
subtree which containd /2P points. The cost of the Divide and Conquer function
is linear, and we merge the points corresponding to the sdaswith a linear cost
(as seen in the Merge algorithm). At degihwe have 2 father nodes, so the cost
of merging all subtrees and spent in the Divide and Conqueation at deptip is
O(N) = 2PO(N/2P). Since the length of the tree@In(N)/In(2)), the global cost
of the algorithmO(NIn(N)). This is the cost of the calculation of the conditional
expectation in dimension 2.

Higher dimensions.In [33] some specific algorithm based on binary trees has been
developed for the 3D problem. The query time is said to be lemqu@(InN + k)
wherek is the number of point to report. Recently in [27], an aldaritgeneralizing
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the previous approach and using a fusion tree of a certairedemstead of a binary
tree, was proved to solve one query searc®(mN/InInN + k). All the geometric
algorithm suffers the same flaw: for our problem the numbgraifts dominating
another is on averagh so the global answer remains@{N?).

The key point in the calculation af is to try to keep information about the par-
tial summation in order to report geometrically which palominates another.This
implies that it is possible to reduce drastically the nuntfesperations by using a
similar structure as k-D trees.

It turns out that the generalization of the previous aldwnitis indeed rather
straightforward. We use the same divide and conquer algorin the first dimen-
sion. This reduces the problem to merging the points in dgioerd — 1. Using once
again a binary tree in a new merge function, we are then alslertgare the two sets
of points generated by the Divide and Conquer algorithm.dthis, we use recur-
sively the merge algorithm with a divide and conquer appnoaorder to decrease
the dimension of the final merge to dimension one. The ideaofidance merge
is described page 367 of [7]. For example in dimension thfeemain divide and
conquer, see Algorithm 3, is identical to the two dimensi@igorithm. The only
difference is that it asks for a merge in dimension 2.

Divide and conquer algorithidivide3D: We are given one set of poins; ) j<nbp.
X, Y andZ are the arrays corresponding to the first, the second anditfteco-
ordinates X(j) := x}, Y(j) := x? and Z(j) := 3. The arraysisortX, isortY and
isortZ are tables of indexes so théX(isortX(j))j<nbp, (Y(isortY(j))j<nbp and
(Z(isortZ(j))j<nbp are sorted increasingly. The input of this function is thege
of indexes corresponding to the set of points to be sorted.réhult is a table of

indexes. The output of the global algorithm is the amag(j) = q;.

The merge in dimension 2 is given by Algorithm 4. Itis a reateglgorithm that
calls the MergelD, Algorithm 1. Two sefsandB in dimension 2 with associated
second and third coordinates are used as input. Due to titeedind conquer part,
we know that potentially each point BB dominates the points iA, because they
have bigger first coordinates. A split is achievedAin B according to the second
coordinate leading to four subseig, Ay, andB;, By, see figure 6. Then a call to

By

Yined

Fig. 6 2D merge for two subse#&s andB
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Algorithm 3 Divide and conquer algorithm

Divide3D(X,Y, Z, f,isortX,isortY,isortZ,nbp)

imed = nbp/2

imedp = nbp—imed

xmed = (X(isortX(imed)) + X(isortX(imed +1)))/2
isortx; = isortx(1 : imed)

isortxp = isortx(imed + 1 : nbp)

iyl=0

iy2=0

for i =1 tonbp do
ipoint = isortY (i)

if X(ipoint) <= xmed) and(iyl < imed) then
isortY; (iyl) =ipoint

iyl=iyl+1
else
isortY,(iy2) = ipoint
iy2=iy2+1
end if
end for
izZ1=0
i2=0
for i =1 tonbp do
ipoint = isortZ(i)

if X(ipoint) <=xmed) and(iz1 < imed) then
isortZ; (iz1) = ipoint

iZ1=iz21+1
else
isortZ,(i22) = ipoint
iz=i2+1
end if
end for

Divide3D(X,Y, Z, f,isortXy,isortYs,isortZ;,imed)
Divide3D(X,Y, Z, f,isortXp,isortYs,isortZ,,imedp)
gloc = Merge2D(Y, f,isortY;,isortY,,isortZs,isortZ,)
for i=1toimedpdo

ipointl = isortX (i)

g(ipoint1) = q(ipoint1) + qloc(ipoint1)
end for

the Merge2D function is achieved @x andB; and onA; andB,. All point of
B, dominate the points o&; according to the second coordinate. It only remains
to check in the third direction, which is performed by a Mdreon B, and Ay
according to the third coordinate.

The costt(N) of the merge withN points can be decomposed in:

e some operation with linear cost i,
e two merges in dimension 2 wit /2 points,
e one merge in dimension one wikly2 points realized ifO(N/2).
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Algorithm 4 Merge algorithmMerge2D(Y, Z, f,isortYs,isortYs,isortZ;,isortZy,)
Create subsey, Ay, By, By (figure 6)
CreateisortY;1,isortZ,;1 associated téy, isortY;, isortZ,, associated tédy,
CreateisortY,y,isortZ,; associated t8,, isortYs, isortZ,, associated t@,,
gloc = Merge2D(Y, Z, f,isortYi1,isortYsq,isortZsq,isortZyq)
gloc+ = Merge2D(Y, Z, f,isortYio, isortYap, isortZy o, isortZ;;)
gloc+ = MergelD(Y, Z, f,isortZy 1, isortZyy)
returngloc

Hence,c satisfiesc(N) = 2¢(N/2) + O(N), which leads to a global cos{N) =
O(NInN).

The divide and conquer algorithm with cd3tN) achieves :

e two divide an conquer witlN/2 points,
e one merge with cost i@(NInN),
e some extra work with linear co§i(N).

Hence, we hav®(N) = D(N/2) + O(NInN) leading to a global cost dd(N) =
O(N(InN)?) .
ForN points, the algorithm has a complexity of ordéfin N)2.

The same procedure can be used in dimension3. The call of the merge
function in dimensiord at a father node withl /2P particles leads to

e some work with linear cosD(N/2P),
e two calls of the merge at the son node witi2P+! particles, in dimensiod,
e acall of the merge function witN /2P+1 particles in dimensiod — 1.

So the complexity of the merge functiafl can be calculated recursively. A merge
for N particles in 3D satisfies®(N) = 2c2(N/2) + O(N/2In(N/2)) which leads to

a complexityc3(N) = O(N(InN)?). Similarly a merge in dimensiod, d > 2, will
lead tocd(N) = O(N(InN)d-1),

So the divide and conquer algorithm with c@t(N), d > 2, achieves :

e two divide and conquer withl /2 points with cost B4(N/2),
e one merge in dimensioth— 1 with N points and a cost i®(N(InN)d-2),
e some extra work with linear co§i(N).

Hence, we havéd(N) = 2D(N/2) + O(N(InN)9-2) leading to a global cost of
D(N) = O(N(InN)d-1y .

In table 1, we apply the algorithm and compute the time spendifferent di-
mensions and different numbers of particles. In dimensiand 2, we effectively
observe that the complexity is the same and that the timet sipgded byNIn(N)
is constant. For dimension 4, it appears numerically thatithe spent is between
O(NIn(N)?) andO(NIn(N)3). For dimension 9, we observe that the time spent is in
O(N(InN)8). Our numerical results thus show a complexity slightly éxetihan the
theoretical one.
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Table 1 Time spend in seconds to calculatéor a given particles number

Part nb 1D 2D 3D 4D 5D 6D 7D 8D 9D

10.000 0. 0.01 0.07 0.22 0.48 0.78 1.08 1.32 152
100.000 0.01 0.13 1.05 3.94 9.85 18.95 29.96 41.04 50.3
1.000.000 0.17 1.92 15.2 62.24 178.45 396 717 1110 1518

5 Numerical experiments

In this part, we produce some numerical tests for the prioingmerican options
associated to different payoffs.

5.1 Model and payoffs

We now set the interest rate te= 5% annually. This means that we have to add a
drift term in (1) and take discounting into account in all algorithms.

All the assets are non correlated and follow a Black and ®shiyjpe dynamics
with annual volatilityo = 20%, and initial value equal to 1:

. t t ) .
Xt':1+/orxs'ds+/oaxs'dws',i§d.

We consider three different Bermudan options with matuoite year and 11
equally distributed possible exercise dates:

Option 1: a geometrical put option with strike= 1 and payoff K — |‘|id:1)(ti)+,
Option 2: a geometrical digital put option with striké = 0.9 and payoff
1K>|'|id:1Xti’ _
Option 3: a basket put option with strike= 1 and payoffK — % Zid:1 Xt

Note that the two first payoffs involve the procgs$ ; X' which can be identified
to a one-dimensional non standard exponential Browniamomot his implies that
the pricing of both Bermudan options reduces to a one dimaasoptimal stopping
problem which can be efficiently solved by PDE techniquegabie 2, 3 we give
reference prices and delta values computed for geomepricand digital options.

Table 2 Reference option prices and delta for geometrical put

1D 2D 3D 4D 5D 6D

Option value 0.06033 0.07815 0.08975 0.09837 0.10512 @410
Delta value -0.4090 -0.3858 -0.3734 -0.3607 -0.3577 -(B349
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Table 3 Reference option prices and delta for digital options

1D 2D 3D 4D 5D 6D

Option value 0.4223 0.5035 0.5375 0.5556 0.5662 0.5727
Delta value -3.067 -2.466 -2.116 -1.886 -1.721 -1.593

This will serve as a benchmark. Obviously, we do not use ik tvhen apply-
ing our algorithms. In table 4, we give option values comgdte basket options
with 109 meshes andd® millions of particules. Notice that for basket options taes
values should be considered with care, since there is n@gtes that the determin-
istic schemes have converged. In the figures below, estihpatees and deltas for

Table 4 Most accurate computed option prices for basket options

1D 2D 3D 4D 5D 6D

Option value 0.06031 0.03882 0.02947 0.02404 0.02046 G6D18

Options 1 and 2 are normalized by thé&imevalue computed by PDE techniques.
Since no easily accessible benchmark are available foro@®j results will be
presented in absolute values.

5.2 Numerical results on prices

In the different tests, we compare:

1. Algorithm A1 and Algorithm A2 for the regression based aggeh of Sections
4.1.1 and 4.1.4 with a number of meshes equafto 8

2. Algorithm A1 and Algorithm A2 for the Malliavin based amarch, recall (23)-
(24). We use an exponential paramefet 1/+/At in the localization function,
with At = 1/10.

3. We also compare our results with the quantization metsea [5], [3], [35], [4],
[36]. The quantization method is a recombining tree methbére the nodes
are optimally calculated, see [35]. Once a time discraétimahas been fixed,
a number of quantization points at each time step is choseordiog to [4].
The quantization points are calculated off line and arelabls on the web-
site http://www.quantize.maths-fi.com. Once the quatitngpoints have been
chosen a Monte Carlo approach is used to calculated theattoangrobabilities
linking nodes in the tree. This technique being time consgmive use the Prin-
cipal Axis Tree method, see [34], to accelerate the comjmntstThe number of
Monte Carlo simulations used to calculate the probabiligeixed to 4 millions.
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Results does not change with more than 10 millions.

For each option, dimension and number of simulated pathsppé the differ-
ent algorithms with the same set of particles.

For all the methods, no special knowledge on the payoff has bheed: no con-
trol variate (which could be used for each method and is viigient in practice),
no special guess of the regression function.

For Option 1, results are given on figure 7 fbe 1 to 6 for the Malliavin and
Regression based approaches depending on the In of the nhnobparticles used.
We do not provide the results obtained with the Malliavinraggh for large values
of N because it is too time consuming. For instance, in dimersjdime last option
price calculated with 2 millions particles takes more than hours to be calculated.
It is clearly a limitation to this approach. Recall howevkattno (even natural)
control variate technique has been used here.

We observe that Algorithm A2 generally provides resultsvatiie exact value
of the option while the results obtained with Algorithm Aleaslightly below the
analytic value as expected, see Section 3.1. The Malligyinaach gives very good
results for dimension 1 to 3. The regression based methadssgeexhibit a very
small bias which is due to the fact that the number of basistfan is limited. From
dimension 4, the convergence is becoming slow and the tiradetebecomes pro-
hibitive, especially for the Malliavin based approach.

In table 5, we give the time spent for the different calcalatwith different di-
mensions.

Table 5 Time spent for calculation of the Malliavin and Regressiasdil approaches for different
numbers of particles (particule number in thousands)

Dimension 1D 1D 2D 2D 3D 3D 4D 4D 5D 5D 6D 6D
part nb 8 256 256 1024 256 2000 250 2000 500 2000 1000 2000
Inof part nb 8.98 12.45 12.45 13.84 12.45 14.50 12.42 14.502134.50 13.81 14.50

Regression 0.025 0.80 1.3 53 2. 16,6 28 23. 88 34 32. 59
Malliavin ~ 0.020 0.95 1.03 235 31. 360. 256. 2782 694 4010 03&®80.

We observe that the cost of the regression approach is migarespect to the
number of particles (instead of the expechéld(N) due to the sort algorithm).

2 For all the computations, we use a core i7 2,9 GHz processor.
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Fig. 7 Comparison between the regression and the Malliavin basgHaus for the Bermudean
geometric put option

If we compare the two methods for Option 1 and Algorithm Ale(thost accu-
rate), we can conclude that for a given level of accuracy:

e the Malliavin approach is more attractive in dimension in{kr cost but more
accurate).

e the Malliavin approach seems to be more attractive in dino@r too. For ex-
ample, with 32.000 particles and a cost of 0.45 seconds, @igavin approach
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provides the same accuracy as the regression approach $8tb@® particles
and a cost of 1.8 seconds (the relative error is of order2§).

e the regression approach seems to become more attractig@fensions greater
or equal to 3. For instance, in dimension 3, with 2 millionstistes and a cost
of 41 seconds, it provides the same accuracy as the Mallgyproach with
500.000 particles and a cost of 70 seconds (the relativeisrod order of 02%).

On figure 8, we provide the results obtained with the quatitimaapproach for
Option 1 depending on the number of global quantizationfgoive use two differ-
ent approaches:

e The backward approach: it consists in applying Algorithmtd2he quantized
process.

e The forward approach: we first apply the backward Algorithihta the quan-
tized process so as to compute an estima@dnof the continuation region
C™:= {(t,x) € mx (0,0)4 : p(t,x) > g(t,x)}, wherep™(t,x) is the price of
the Bermudean option at tintef the stock price isx. We then simulate forward
N paths,(X(1));<n, of the stock price proces¢and approximate the Bermudean

option price byN~1 3 g(fé”,x“) ) whereféj) =min{tem: (t, Xt“)) ¢ Cm,

2(0)
To
We use 4 millions particles.

In dimension 1, the quantization method requires 1.600tpbfor an accuracy of
0.2%. Once probabilities have been calculated, the backwaddree forward reso-
lutions are achieved in 0.02 seconds. An equivalent acgwat be obtained with
the regression approach in 0.350 seconds. It takes 0.068d®with the Malliavin
approach. Obviously this does not take into account the sipead to compute the
transition probabilities, nor the construction of the qieation tree.

In dimension 2, we could only obtain an error 08% with a total of 6.400 quan-
tization points and a quantization of the last time step d& Baints. With 25.600
points, the maximum accuracy was 2% in dimension 3, 8% in dgioa& 4, 15% in
dimension 5, and 22% in dimension 6, when only using Algonith?.

Algorithm A1l combined with a forward Monte-Carlo simulatiprovides better re-
sults.

Overall, the method is converging and is certainly the lemse tonsuming once a
grid and the associated transition probabilities have lweamputed. However, the
grids proposed on the website http://www.quantize.métbem are not thin enough
to provide accurate results.

On figures 9 and 10, we give our results for the digital put.tAdl methods have
difficulties to converge. Algorithm Al always gives bettesults than Algorithm
A2, i.e. the approximation by the continuation value seamrtohverge slower than
the one based on stopping times. For dimensions equal otegr®a4, only the

3 Here and below, the number of points corresponds to the suireaiumbers of points used at
each time step. There are distributed according to [4]
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Fig. 8 Convergence of the quantization method for the geometnimBdean put option

regression method provides good results. In dimensiorr 3, §liven number of par-
ticles, the results obtained by the Malliavin and the regjogsapproach are similar
for Algorithm Al. Because of the difference in computatione, the regression ap-
proach is more appropriate. In dimension 2, the Malliaviprapch combined with
Algorithm Al seems to be more attractive but it is not cleadimension 1.



Monte-Carlo valuation of American option 33

In dimension 1, the quantization approach only achieveseanracy of 12% for
the finest meshes while the regression and Malliavin appesmachieves a.8%
error. In dimensions 2 and 3, it provides good results buiattwiracy of the two
other approaches is much better. Results in dimensionegribetn 4 shows that far
more quantization points are needed.
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Fig. 9 Comparison between the regression and the Malliavin appesafor the Bermudean geo-
metric digital option
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Fig. 10 Convergence of the quantization method for the geometrimBdean digital option

On figures 11 and 12, we provide the results obtained for tmmBedean basket

put option. It confirms our previous observations.
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Fig. 11 Comparison between the regression and the Malliavin bastads for the Bermudean
basket put option

5.3 Numerical results on hedging policies

In figures 13 and 14, we provide the results obtained by comditihe regression
and the Malliavin approach with the representations (9)(&dgifor the Bermudean
geometric put option. We provide the results obtained bpgithe representation
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Fig. 12 Convergence of the quantization method for the Bermudeskebaut option

(11) for the digital option. We only provide the results faiges computed with
Algorithm A1, Algorithm A2 being less accurate.

In the figures, we use the following terminology:
- Regression algorithm A1 means that prices are computedsing @lgorithm
Al and the regression based technique.
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- Malliavin algorithm A1l means that prices are computed bpaialgorithm Al
and the Malliavin based representation of conditional etqi®ns.

- equation (8), resp. (10), means that we then use the reiagiem of the delta
given in (8), resp. (10).

Note that the problem is symmetric in the different compdsgeso that only one
figure is provided. For more clarity, we normalize our rebyldividing the estima-
tion by thetruevalue computed by analytical methods.

Both representations seem to provide equally good results.

Acknowledgements We are grateful to Christos Makris, Paul Masurel and to theanonymous
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