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PREFACE 

From the preface to  the first edition. Asymptotic distribution theo- 
rems in probability and statistics have from the beginning depended 
on the classical theory of weak convergence of distribution functions 
in Euclidean spat-onvergence, that is, at continuity points of the 
limit function. The past several decades have seen the creation and 
extensive application of a more inclusive theory of weak convergence 
of probability measures on metric spaces. There are many asymptotic 
results that can be formulated within the classical theory but require 
for their proofs this more general theory, which thus does not merely 
study itself. This book is about weak-convergence methods in metric 
spaces, with applications sufficient to show their power and utility. 

The second edition. A person who read the first edition of this 
book when it appeared thirty years ago could move directly on to 
the periodical literature and to research in the subject. Although the 
book no longer takes the reader to the current boundary of what is 
known in this area of probability theory, I think it is still useful as a 
textbook one can study before tackling the industrial-strength treatises 
now available. For the second edition I have reworked most of the 
sections, clarifying some and shortening others (most notably the ones 
on dependent random variables) by using discoveries of the last thirty 
years, and I have added some new topics. I have written with students 
in mind; for example, instead of going directly to the space D [  0, oo), 
I have moved, in what I hope are easy stages, from C[O, I] to D[O, 11 
to D[O,oo). In an earlier book of mine, I said that I had tried to 
follow the excellent example of Hardy and Wright, who wrote their 
Introduction to  the Theory of Numbers with the avowed aim, as they 
say in the preface, of producing an interesting book, and I have again 
taken them as my model. 

Chicago, 
January 1999 

Patrick Billingsley 
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INTRODUCTION 

The De Moivre-Laplace limit theorem says that, if 

Fn(z) = P['" - n p  m -  
is the distribution function of the normalized number of successes in n 
Bernoulli trials, and if 

is the standard normal distibution function, then 

(3) Fn(z) + F ( z )  

for all z (n  -+ 00, the probability p of success fixed). 
We say of arbitrary distribution functions F, and F on the line that 

F, converges weakly to F ,  which we indicate by writing F, + F ,  if (3) 
holds at every continuity point z of F .  Thus the De Moivre-Laplace 
theorem says that (1) converges weakly to (2); since (2) is everywhere 
continuous, the proviso about continuity points is vacuous in this case. 
If Fn and F are defined by 

(4) Fn(z) = I[n-l,m) 

( I  for the indicator function) and 

( 5 )  F ( z )  = 1[o,CO)(z)7 

then again Fn + F ,  and this time the proviso does come into play: (3) 
fails at z = 0. 
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2 INTRODUCTION 

For a better understanding of this notion of weak convergence, 
which underlies a large class of limit theorems in probability, consider 
the probability measures P .  and P generated by arbitrary distribution 
functions F, and F .  These probability measures, defined on the class of 
Borel subsets of the line, are uniquely determined by the requirements 

P ~ ( - o o , z ]  = F~(s), P(-co,z] = F ( z ) .  

Since F is continuous at 2 if and only if the set {z} consisting of z 
alone has P-measure 0, Fn =+ F means that the implication 

holds for each 2. 
Let dA denote the boundary of a subset A of the line; dA consists 

of those points that are limits of sequences of points in A and are also 
limits of sequences of points outside A .  Since the boundary of ( o o , ~ ]  
consists of the single point 2, (6) is the same thing as 

(7) &(A) ---$ P(A)  if P(dA) = 0, 

where we have written A for (--oo,z]. The fact of the matter is that 
Fn =+ F holds if and only if the implication (7) is true for every Borel 
set A-a result proved in Chapter 1. 

Let us distinguish by the term P-continuity set those Borel sets A 
for which P(8A)  = 0, and let us say that P. converges weakly to  P ,  and 
write Pn =+ P,  if Pn(A) --t P ( A )  for each P-continuity set A-that is, 
if (7) holds. As just asserted, P. =+ P if and only if the corresponding 
distribution functions satisy Fn =+ F.  

This reformulation clarifies the reason why we allow (3) to fail if 
F has a jump at 2. Without this exemption, (4) would not converge 
weakly to ( 5 ) ,  but this example may appear artificial. If we turn our 
attention to probability measures P. and P,  however, we see that 
Pn(A) -+ P(A) may fail if P(dA) > 0 even in the De Moivre-Laplace 
theorem. The measures Pn and P generated by (1) and (2) satisfy 

and 

(9) 
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for Borel sets A. Now if A consists of the countably many points 

k - np 
n = 1 , 2  , . . . ,  k = O , l ,  . . . ,  n, m' 

then P,(A) = 1 for all n and P(A) = 0, so that P(A,) -+ P(A) is 
impossible. Since 8A is the entire real line, this does not violate (7). 

Although the concept of weak convergence of distribution functions 
is tied to the real line (or to Euclidean space, at any rate), the concept 
of weak convergence of probability measures can be formulated for the 
general metric space, which is the real reason for preferring the latter 
concept. Let S be an arbitrary metric space, let S be the class of 
Borel sets (S is the a-field generated by the open sets), and consider 
probability measures Pn and P defined on S.  Exactly as before, we 
define weak convergence P, j. P by requiring the implication (7) to 
hold for all Borel sets A. In Chapter 1 we investigate the general theory 
of this concept and see what it reduces to in various special cases. We 
prove there, for example, that P, converges weakly to P if and only if 

holds for all bounded, continuous real-valued functions on S.  (In or- 
der to conform with general mathematical usage, we take (10) as the 
defintion of weak convergence, so that (7)  becomes a necessary and 
sufficient condition instead of a definition.) 

Chapter 2 concerns weak convergence on the space C = C [  0,1] 
with the uniform topology; C is the space of all continuous real func- 
tions on the closed unit interval [ 0,1], metrized by taking the distance 
between two functions z = z( t )  and y = y ( t )  to be 

An example of the sort of application made in Chapter 2 will show why 
it is both interesting and useful to develop a general theory of weak 
convergence-one that goes beyond the Euclidean case. Let &, ( 2 , .  . . 
be a sequence of independent, identically distributed random variables 
defined on some probability space (R, F, P). If the [n have mean 0 and 
variance c2, then, by the Lindeberg-L6vy central limit theorem, the 
distribution of the normalized sum 

1 1 



4 INTRODUCTION 

converges weakly, as n tends to infinity, to the normal distribution 
defined by (9). 

We can formulate a refinement of the 
central limit theorem by proving weak 
convergence of the distributions of certain 

1 random functions constructed from the & partial sums Sn. For each integer n and each 
0 

sample point w,  construct on the unit interval the polygonal function 
that is linear on each of the subintervals [(i - l) /n,  i/n], i = 1 ,2 , .  . . , n, 
and has the value S i ( w ) / a f i  at the point i /n  (&(a) = 0). In other 
words, construct the function Xn(w)  whose value at a point t of [ 0,1] 
is 

(13) . ,  
1 t -  (i- 1)/n 1 ' -1  i 

X,n(U) = -Si-&) + -<i(u), if t E [b, ,I. u f i  1/n a f i  

For each w ,  X"(w)  is an element of the space C, a random function. 
Let Pn be the distribution of X n ( w )  on C, defined for Bore1 subsets A 
of C-Bore1 sets relative to the metric (11)-by 

Pn(A) = P[w:Xn(w) E A] 

(the definition is possible because the mapping w + Xn(w)  turns out 
to be measurable in the right way), In Chapter 2 we prove Donsker's 
theorem, which says that 

where W is Wiener measure. We also prove the existence in C of 
Wiener measure, which describes the probability distribution of the 
path traced out by a particle in Brownian motion. 

If A = [z: z(1) 5 a] ,  then, since the value of the function X n ( w )  at 
t = 1 is X y ( w )  = S n ( w ) / u f i ,  

It turns out that W(BA) = 0, so that (14) implies 

I P [w: -Sn(w) 5 Q ---f W[z:  z(1) 5 a]. 1 

u f i  
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It also turns out that 

so that (14) does contain the Lindeberg-L6vy theorem. 
If [, takes the values +1 and -1 with probability each, S, can 

be interpreted as the position at time n in a symmetric random walk. 
The central limit theorem says that this position, normalized by fi 
(a = l),  is, for n large, approximately distributed as the position at 
time t = 1 of a particle in Brownian motion. The relation (14) says 
that the entire path of the random walk during the first n steps is, for 
n large, distributed approximately as the path up to time t = 1 of a 
particle in Brownian motion. 

To see in a concrete way that (14) contains information going be- 
yond the central limit theorem, consider the set 

Again it turns out that W(8A)  = 0, so that (14) implies 

1 
(15) lim P[u: - max Sk(w) 5 a] = lim Pn(A) 

n - m  a f i l l k < n  n+cc 

=W[,: sup Z ( t )  5 a 1 , 
O<t<l  

We can evaluate the rightmost member of (15) by finding the limit on 
the left for the special case of symmetric random walk, which is easy 
to analyze. And then we have a limit theorem for the distribution of 
maxk<, S k  under the hypothesis of the Lindeberg-L6vy theorem. 

Fir  another example involving X n ( w ) ,  take A to be the set of z 
in C for which the set [ t :z( t )  > 01 has Lebesgue measure at most a 
(where 0 5 a 5 1). As before, Pn(A) -, P(A).  Since the Lebesgue 
measure of [t: Xr(u) > 01 is essentially the fraction of the partial sums 
S1, S2,. . . , S, that exceed 0, this argument leads to an arc sine law un- 
der the hypotheses of the Lindeberg-L6vy theorem. Chapter 2 contains 
the details of these derivations. 

We can in this way use the theory of weak convergence in C to 
obtain a whole class of limit theorems for functions of the partial sums 
S,,Sz,. . . , S,. The fact that Wiener measure W is the weak limit of 



6 INTRODUCTION 

the distribution over C of the random function Xn(w)  can also be used 
to prove theorems about W ,  and W is interesting in its own right. 

Chapter 3 specializes the theory of weak convergence to another 
space of functions on [ 0, 11-the space D[ 0,1] of functions having only 
discontinuities of the first kind (jump discontinuities). This is the nat- 
ural space in which to analyze the Poisson process and other processes 
with paths that are necessarily discontinuous. We also study spaces of 
discontinuous functions on [ 0, oo) and on certain other sets that play 
the role of a generalized “time”-for example, the set of convex sub- 
sets of the unit square. Chapter 4 concerns weak convergence of the 
distributions of random functions derived from various sequences of de- 
pendent random variables. Chapter 5 has to do with other asymptotic 
properties of random functions; there we prove Strassens’s theorem, a 
far-reaching generalization of the law of the iterated logarithm. 

Many of the conclusions in Chapters 2 through 5 ,  although not 
requiring function-space concepts for their statement , could hardly 
have been derived without function-space methods. Standard measure- 
theoretic probability and metric-space topology are used from the be- 
ginning of the book. Although the point of view throughout is that 
of functional analysis (a function is a point in a space), nothing of 
functional analysis is assumed (beyond an initial willingness to view a 
function as a point in a space). All function-analytic results needed 
are proved in the text or else in Appendix M at the end of the book. 
This appendix also gathers together for easy reference some results in 
metric-space topology, analysis, and probability. 



CHAPTER 1 

WEAK CONVERGENCE IN 
METRIC SPACES 

SECTION 1. MEASURES ON METRIC SPACES 

We begin by studying probability measures on the general metric space. 
Denote the space by S, and let S be the Borel a-field, the one generated 
by the open sets;t its elements are the Borel sets. A probability mea- 
sure on S is a nonnegative, countably additive set function P satisfying 
PS = 1. 

If probability measures Pn and P satisfy* Pnf -+ Pf for every 
bounded, continuous real function f on S, we say that Pn converges 
weakly to P and write Pn + P. In Chapter 1 we study the basic, gen- 
eral theory of weak convergence, together with the associated concept 
of convergence in distribution. We first derive some properties of indi- 
vidual measures on (S, S). Although S is sometimes assumed separable 
or complete, most of the theorems in this chapter hold for all metric 
spaces. 

Measures and Integrals 

Theorem 1.1. Every probability measure P on  (S ,  S )  is regular, 
that is, fo r  every S-set  A and every E there exist a closed set F and an  
open set G such that F c A c G and P(G - F )  < E. 

PROOF. Denote the metric on S by p(z ,  y )  and the distance from 
z to A by p ( z , A )  [Ml].§ If A is closed, we can take F = A and 
G = A6 = [ z : p ( z , A )  < 61 for some 6, since the latter sets decrease to 
A as 6 1 0. Hence we need only show that the class G of S-sets with 

t Or, for example, by the closed sets. All unindicted sets and functions are 
assumed measurable with respect to S .  Another convention: all E’S and 6’s are 
positive. 

Write Pf for ss fdP. 
0 A reference [Mn] is to paragraph n of the Appendix starting on p. 236. 
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8 W E A K  CONVERGENCE IN METRIC SPACES 

the asserted property is a a-field. Given sets A, in 6 ,  choose closed 
sets F, and open sets G, such that F, C A, C G, and P(Gn - F,) < 
~ / 2 , + l .  If G = U ,  G,, and if F = Un<no F,, with no so chosen that 
P(U, Fn - F )  < e/2, then F c U, A, ? G and P(G - F )  < E. Thus 8 
is closed under the formation of countable unions; since it is obviously 

0 

Theorem 1.1 implies that P is completely determined by the val- 
ues of PF for closed sets F .  The next theorem shows that P is also 
determined by the values of P f for bounded, continuous f. The proof 
depends on approximating the indicator IF by such an f, and the 
function f (3) = (1 - p(z, F ) / E ) +  works. It is bounded, and it is con- 
tinuous, even uniformly continuous, because I f  (.) - f (y)l I p(., y)/~. 
And 2 E F implies f(.) = 1, while z 6 FE implies p(.,F) 2 E and 
hence f (z) = 0. Therefore, 

closed under complementation, Q is a a-field. 

(1.1) I&) I f(.) = (1 - p ( . , F ) / E ) +  I IF+). 

Theorem 1.2. Probability measures P and Q o n  S coincide if 
P f = Q f for all bounded, uniformly continuous real functions f. 

PROOF. For the bounded, uniformly continuous f of (l.l), PF 5 
P f = Q f I QF'. Letting E 1 0 gives PF 5 QF,  provided F is closed. 

0 

Because of theorems like this, it is possible to work with measures 
PA or with integrals P f ,  whichever is simpler or more natural. We 
defined weak convergence in terms of the convergence of integrals of 
functions, and in the next section we characterize it in terms of the 
convergence of measures of sets. 

Tightness 

The following notion of tightness plays a fundamental role both in 
the theory of weak convergence and in its applications. A probability 
measure P on (S, S) is tight if for each E there exists a compact set K 
such that PK > 1 - E. By Theorem 1.1, P is tight if and only if P A  
is, for each A in S, the supremum of PK over the compact subsets K 
of A. 

Theorem 1.3. If S is  separable and complete, then each probability 
measure o n  (S ,  S )  is tight. 

PROOF. Since S is separable, there is, for each k ,  a sequence 
Akl, Ak2, ... of open l/k-balls covering S. Choose nk large enough that 

By symmetry and Theorem 1.1, P = Q. 
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P(Uil,, Aki) > 1 - ~/2'. By the completeness hypothesis, the totally 
bounded set Ui<nk Aki has compact closure K .  But clearly PK > 
1 - E .  0 

- - 

Some Examples 

Here are four metric spaces, together with some facts about them we 
need further on. Define a subclass A of S to be a separating class if 
two probability measures that agree on A necessarily agree also on the 
whole of S: The values of P A  for A in A are enough to separate P from 
all the other probability measures on S. For example, by Theorem 1.1 
the closed sets form a separating class. Recall that a class is a 7r-system 
if it is closed under the formation of finite intersections and that A is 
a separating class if it is a 7r-system generating the a-field S [PM.42].t 

EzumpZe 1 . I .  Let Rk denote k-dimensional Euclidean space with 
the ordinary metric Iz - yI = J[x?=,(zi - ~ i ) ~ ] ,  and denote by Rk the 
corresponding class of Borel sets-the k-dimensional Borel sets. The 
distribution function corresponding to a probability measure P on Rk 
is 

Since the sets on the right here form a 7r-system that generates Rk, 
they constitute a separating class. Therefore, F completely determines 
P. 

By Theorem 1.3, each probability measure on (Ilk,,') is tight. 
But tightness is in this case obvious because the space is 0-compact- 
is a countable union of compact sets (B(0,n)- Rk, for example). 0 

Exumple 1.2.  Let Rw be the space of sequences z = ( q , z 2 , .  . .) 
of real numbers-the product of countably many copies of R1. If 
b ( a , p )  = 1 A la - PI, then b is a metric on R1 equivalent to the usual 
one, and under it, R1 is complete as well as separable [M4]. Metrize 
Rw by p ( z , y )  = Cib(zi,yi)/2i .  Obviously,* p ( z n , z )  +, 0 implies 
b(sp,si) +, 0 for each i; but by the M-test [PM.543], the reverse 
implication also holds. Under p, therefore, Rm has the topology of 
pointwise convergence: zn +n ~t: if and only if xr +, xi for each i. 

t These are page references to Probability and Measure, third edition, for any who 

* As often in the book, the superscript is not a power: xn = (zy, z;, . . .). 
may find them useful. 



10 WEAK CONVERGENCE IN METRIC SPACES 

Let r k :  R" + Rk be the natural projection: q(x) = (21,. . . , xk). 
Since convergence in R" implies coordinatewise convergence, Tk is 
continuous, and therefore the sets 

are open. Moreover, y E Nk, , (x)  implies p(x ,y )  < E + 2-'. Given a 
positive r ,  choose E and k so that E + 2-k  < r ;  then N k , € ( x )  C B(x,  r ) .  
This means that sets (1.3) form a base for the topology of Rw. It 
follows that the space is separable: one countable, dense subset consists 
of those points having only finitely many nonzero coordinates, each of 
them rational. If {xn} is fundamental, then each {x?} is fundamental 
and hence converges to some xi, and of course xn converges to the 
point with coordinates xi. Therefore, Rw is also complete. (These 
facts are proved in a more general setting in [M6]). 

Since R" is separable and complete, it follows by Theorem 1.3 that 
each probability measure on 72" is tight. 

In the case of Rk, tightness follows directly from the fact that the space is a- 
compact, an argument which cannot work here, since Rm is not a-compact. Indeed, 
if y; = zi for a 5 k and y; = n for i > k ,  then the sequence {y"} is contained in 
(1.3) but has no convergent subsequence. This means that the closure of (1.3) is not 
compact, and therefore no closed ball B(z ,  e)- is compact. This of course implies 
that Rw is not locally compact. Furthermore, if K is compact, then an arbitrary 
open ball B must share some point z with K" (B c K being impossible), and 
so (since B n K" is open) there is an c such that B(z,e) c B n K". Therefore, 
every compact set is nowhere dense. Finally, by Baire's category theorem [M7], this 
implies that Rm is not a-compact. 

Let 727 be the class of finite-dimensional sets, that is to say, the 

sets of the form r i l H  for k 2 1 and H E Rk. Since .nk is continuous, 
it is measurable R"/Rk [MlO], and so R7 C 72". Moreover, since 
.nilH = T ~ ; ~ ( H  x R1), the set of indices in the specification of an 
727-set can always be enlarged, and it follows that two sets A and A' 
in 727 can be represented as A = r i l H  and A' = r i l H '  for the same 

value of k. And now A n A' = .ni '(H n H')  makes it clear that 727 
is a n-system (even a field). Further, since the sets (1.3) form a basis 
and each lies in 727, it follows by separability that each open set is 
a countable union of sets in 727, which therefore generates the Bore1 
a-field 72": 727 is a separating class. 
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If P is a probability measure on (Rw,Rw), its finite-dimensional 
distributions are the measures Pxi'  on (Rk, R'), k 2 1, and since Ry 

0 

Example 1.3. Let C = C[O, 11 be the space of continuous func- 
tions z = z(.) on [0,1]. Define the norm of z as llzll = supt Iz(t)l, and 
give C the uniform metric 

is a separating class, these measures completely determine P. 

The random-walk polygons of the Introduction lie in C ,  which will be 
studied systematically in Chapter 2. Since p(z,,z) -, 0 means that 
z, converges to z uniformly, it implies pointwise convergence. But of 
course the converse is false: Consider the function z, that increases 
linearly from 0 to 1 over [ 0, n-'], decreases linearly from 1 to 0 over 
[n-l,2n-l], and stays at 0 to the right of 2n-l; that is, 

(1.5) zn(t)  = ntI[,,,-l](t) + (2 - nt>l(,-l,z,-l](t). 

This z, convereges pointwise to the O-function, while p(z,, 0) = 1. 
The space C is separable. For let Dk be the set of polygonal func- 

tions that are linear over each subinterval Iki = [(i- l ) / k ,  i / k ]  and have 
rational values at the endpoints. Then Uk Dk is countable. To show 
that it is dense, for given z and E choose k so that Iz(t) - z ( i / k ) l  < E 

for t E I k i ,  1 5 i 5 k, which is possible by uniform continuity, and 
then choose a y in DI, so that l y ( i / k )  - z(i/lc)l < E for each i. Now 
y(i/k) is within 2~ of z( t )  for t E Iki, and similarly for y((i - l ) / k ) .  
Since y ( t )  is a convex combination of y((i - l)/lc) and y ( i / k ) ,  it too is 
within 2e of z( t ) :  p(z ,y )  5 2 ~ .  

And C is also complete: If z, is fundamental, which means that 
E ,  = sup,,, p(z,, z,) +, 0, then, for each t ,  {zn(t)}  is fundamental 
on the line and hence has a limit z( t ) .  Letting m -, 00 in the inequality 
Iz,(t) -z,(t)I 5 E ,  gives Iz,(t) -z(t)I 5 E , ;  therefore, z,(t) converges 
uniformly to z( t ) ,  z is continuous, and p(z,, z) + 0. 

Since C is separable and complete, it follows, again by Theorem 
1.3, that each probability measure on the Bore1 a-field C is tight. 

Like Rm, C is not u-compact. To see this, consider the function (1.4) again. 
No subsequence of a,, can converge, because if ~ ( E z , ,  , z )  * i  0, then z must be the 
@function, while ~(Ez,,, ,0) = 6 .  Therefore, the closed ball B(0, E ) -  is not compact, 
and in fact no closed ball B(z, 6 ) -  is compact (consider the points z+Ez,,). It follows 
as before that every compact set is nowhere dense and that C is not a-compact. 
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For 0 5 tl < . . -  < t k  5 1, define the natural projection from C to  
Rk by rt,...t,(z) = (z( t l ) ,  . . . , z ( t k ) ) .  In C the finite-dimensional sets 
are those of the form T & ~ . . ~ , H ,  H E Rk, and they lie in C because the 
projections are continuous. As in the preceding example, the index set 
defining a finitedimensional set can always be enlarged. For suppose 
we want to enlarge t l , t 2  to t l , s , t2  (where tl < s < t 2 ) .  For the 
projection $ from R3 to R2 defined by $(u, v, w) = (u, w), we have 
rtlt2 = $rtl,t2 and hence r&i2H = rGtt2$-'H, and of course $-lH E 

R3 if H E R2. The proof for the general case involves more notation, 
but the idea is the same. It follows as before that the class Cf of 
finite-dimensional sets is a .rr-system. Furthermore, we have B(z ,  E ) -  = 
n,[y: Iy(r) - .(.)I 5 4, where r ranges over the rationals in [0,1]. 
Therefore, the a-field a(Cf)  generated by Cf contains the closed balls, 
hence the open balls, and hence (separability) the open sets. Since Cf 

0 

The final example clarifies several technical points. Let SO be the 
a-field generated by the open balls; we can call it the bull a-field. Of 
course, SO c S. If S is separable, then each open set is a countable 
union of open balls, and therefore SO = S, a fact we used in each of 
the preceding two examples. In the nonseparable case, SO is usuallyt 
smaller than S. 

Ezample 1.4. Let S be an uncountable discrete space (p(z ,  y) = 1 
for z # y); S is complete but not separable. Since the open balls are the 
singletons and S itself, SO consists of the countable and the cocountable 
sets. But since every set is open, S = 2', and so SO is strictly smaller 
than S. 

Suppose there exists on S a probability measure P that is not tight. 
If SO consists of all the z for which P { z }  > 0, then SO is countable$ 
and hence PSo < 1 (since otherwise P would be tight). But then, if 
p A  = P(AnS,C) for A in S, p is a finite, nontrivial measure (countably 
additive) on the class 2', and p{z }  = 0 for each z. If S has the 
power of the continuum, then, assuming the axiom of choice and the 
continuum hypothesis, one can show [PM.46] that this is impossible. 

0 

is a r-system and a(Cf)  = C, Cf is a separating class. 

Thus Theorem 1.3 sometimes holds in the nonseparable case. 

The ball a-field will play a role only in Sections 6 and 15. 

t For some nonseparable spaces, the two a-fields coincide-by accident, so to 

4 Since P is finite, S cannot contain an uncountable, disjoint collection of sets of 
speak. See Talagrand [64]. 

positive P-measure [PM.162]. 
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Problems 
A simple assertion is understood to be prefaced by %how that." See Some Notes on 
the Problems, p. '264. 

1.1. The open finite-dimensional sets in Rm form a basis for the topology. Is this 

1.2. Are 'RT and Cf a-fields? 

1.3. Show that, if A and B are at positive distance, then they can be separated 
by a uniformly continuous f, in the sense that I A  5 f 5 I B C .  If A and B 
have disjoint closures but are at  distance zero, this holds for a continuous f 
but not for a uniformly continuous one. 

1.4. If S is a Banach space, then either (i) no closed ball of positive radius is com- 
pact or else (ii) they all are. Alternative (i) holds for RM and C .  Alternative 
(ii) holds if and only if S has a finite basis; see Liusternik and Sobolev [44], 
p. 69. 

1.5. Suppose only that P is finitely additive. Show that, if each P A  is the supre- 
mum of P K  over the compact subsets K of A, then P is countably additive 
after all. 

1.6. A real function on a metric space S is by definition a Borel function if it  
is measurable with respect to S. It is by definition a Baire function if it is 
measurable with respect to the a-field generated by the continuous functions. 
Show (what is not true for the general topological space) that the two concepts 
coincide. 

true in C? 

1.7. Inequivalent metrics can give rise to the same class of Borel sets. 

1.8. Try to reverse the roles of F and G in Theorem 1.1. When is it true that, 
for each E ,  there exist an open G and a closed F such that G C A c F and 
P(F - G) < E? 

1.9. If S is separable and locally compact, then it is a-compact, which implies 
of course that each probability measure on S is tight. Euclidean space is an 
example. 

1.10. Call a class 3 of bounded, continuous functions a separating class if Pf  = Qf 
for all f in 3 implies that P = Q. The functions (1.1) form a separating class. 
Show that 3 is a separating class if each bounded, continuous function is the 
uniform limit of elements of 7. 

1.11. Suppose that S is separable and locally compact. Since S is then a-compact, 
each compact set in S is contained in the interior of another compact set. 
Suppose that Pf = Qf for all continuous f with compact support; show that 
P and Q agree for compact sets, for closed sets, for Borel sets: The continuous 
functions with compact support form a separating class in the sense of the 
prededing problem. 

1.12. Completeness can be replaced by topological completeness [M4] in Theorem 
1.3, and separability can be replaced by the hypothesis that P has separable 
support. 

1.13. The hypothesis of completeness (or topological completeness) cannot be sup- 
pressed in Theorem 1.3. Let S be a subset of [ 0,1] with inner and outer 
Lebesgue measures 0 and 1: A,(S) = 0, X*(S) = 1. Give S the usual metric, 
and let P be the restriction of A' to S ([MlO] & [PM.39]). If K is compact, 
then P K  = 0, and so P is not tight. 
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1.14. If S consists of the rationals with the relative topology of the line, then each 
P on S is tight, even though S is not topologically complete (use the Baire 
category theorem). 

1.15. If T 5 €/(I + ~ ) 2 ~ ,  then (see (1.3)) ~ ( z , r )  c N k , c ( Z ) .  

1.16. If A is nowhere dense, then A' = 0, but the converse is false. Find an A that 

1.17. Every locally compact subset of C is nowhere dense. 

1.18. In connection with Example 1.3, consider the space Cb(T) of bounded, contin- 
uous functions on the general metric space T ;  metrize it by (1.4) (we specify 
boundedness because otherwise 1(z11 may not be finite). Show that Cb(T) is 
complete. Show that it need not be separable, even if T is totally bounded. 

is everywhere dense even though A' = 0. 

SECTION 2. PROPERTIES OF WEAK CONVERGENCE 

We have defined P, =$ P to mean that P,f ---t Pf for each bounded, 
continuous real f on S. Note that, since the integrals Pf completely 
determine P (Theorem 1.2), a single sequence {P,} cannot converge 
weakly to each of two different limits. Although it is not important to 
the subject at this point, it is easy to topologize the space of probability 
measures on (S, S) in such a way that weak convergence is convergence 
in this topology: Take as the basic neighborhoods the sets of the form 
[Q: IQfi-Pfil < e ,  i 5 k], where the fi are bounded and continuous. If 
S is separable and complete, this topology can be defined by a metric, 
the Prohorov metric; see Section 6. 

Weak convergence is the subject of the entire book. We start with 
a pair of simple examples to illustrate the ideas lying behind the defi- 
nition. 

EzampZe 2.1. On an arbitrary S, write 6, for the unit mass at x, 
the probability measure on S defined by &(A)  = IA(z). If x, + xo 
and f is continuous, then 

and therefore S,, + Sz0. On the other hand, if z, f ,  xo, then there is 
an e such that p(zo,zn) > e for infinitely many n. If f is the function 
in (1.1) for F = {zo}, then f(zo) = 1 and f(z,) = 0 for infinitely 
many n, and so (2.1) fails: S,, j4 S,,. Therefore, S,, + S,, if and 
only if z, + $0. This simplest of examples is useful when doubtful 
conjectures present themselves. 0 
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Example 2.2. Let S be [ 0,1] with the usual metric, and for each 
n, suppose that z,k, 0 5 k < r,, are r,  points of [ 0,1]. Suppose that 
these points are asymptotically uniformly distributed, in the sense that, 
for each subinterval J ,  

where I JI denotes length: As n -, 00, the proportion of the points z,k 

that lie in an interval is asymptotically equal to its length. Take P, to 
have a point-mass of l / r ,  at each xnk (if several of the z,k coincide, let 
the masses add), and let P be Lebesgue measure restricted to [0,1]. 
If (2 .2)  holds, then P, + P. For suppose that f is continuous on 
[ 0,1]. Then it is Riemann integrable, and for any given E ,  there is a 
finite decomposition of [ 0 , 1 ]  into subintervals Ji such that, if zli and 
u, are the supremum and infimum of f over Ji, then the upper and 
lower Darboux sums C vi IJi I and Ui I Ji I are within E of the Riemann 
intergal Pf = Ji f(x) dx. B y ( 2 . 2 ) ,  

This, together with the symmetric bound from below, shows that 
Pnf + Pf. Therefore, P, =+ P; this fact, as Theorem 2.1 will show, 
contains information going beyond ( 2 . 2 ) .  

As a special case, take r, = 10, and let x,k = klO-n for 0 5 k < 
r,. If J = ( a , b ] ,  then (2 .2)  holds because the set there consists of 
those k satisfying Lal0"J < k 5 LblOnJ. That P, =+ P holds in this 
case is an expression of the fact that one can produce approximately 
uniformly distributed observations by generating a stream of random 
digits (somehow) and for (a suitably chosen) large n breaking them 
into groups of n with decimal points to the left. 

As a second special case, take Znk to be the fractional part of k e ,  
0 5 k < r, = n. If 6 is irrational, then (2.2) holds [PM.328], which 
is expressed by saying that the integer multiples of 6' are uniformly 
distributed modulo 1. 0 

The Portmanteau Theorem 

The following theorem provides useful conditions equivalent to weak 
convergence; any of them could serve as the definition. A set A in S 
whose boundary d A  satisfies P(dA) = 0 is called a P-continuity set 
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(note that d A  is closed and hence lies in S). Let P,, P be probability 
measures on (S, S )  . 

Theorem 2.1. These five conditions are equivalent 
(i) Pn =+ P. 

(ii) P, f + P f for all bounded, uniformly continuous f .  
(iii) limsup, P,F 5 PF for all closed F .  
(iv) liminf, P,G 2 PG for all open G. 
(v) P,A 4 P A  for all P-continuity sets A .  

To see the significance of these conditions, return to Example 2.1. 
Suppose that z, + TO, so that S,, =+ S,,, and suppose further that the 
zn are all distinct from zo (take zo = 0 and z, = 1/n on the line, for 
example). Then the inequality in part (iii) is strict if F = {zo}, and the 
inequality in (iv) is strict if G = {zo}'. If A = {TO}, then convergence 
does not hold in (v); but this does not contradict the theorem, because 
the limit measure of d { ~ }  = (20) is 1, not 0. 

And suppose in Example 2.2 that (2.2) holds, so that Pn =+ P. If 
A is the set of all the z,k, for all n and k, then A is countable and 
supports each P,, so that P,A = 1 ft P A  = 0; but of course, d A  = S 
in this case. By regularity (Theorem 1.1), there is an open G such that 
A c G and PG < f (say); for this G the inequality in part (iv) is strict. 
To end on a positive note: If (2.2) holds for intervals J ,  then by part 
(v) of the theorem, it also holds for a much wider class of sets-those 
having boundary of Lebesgue measure 0. 

PROOF OF THEOREM 2.1 .  Of course, the implication (i) --t (ii) is 
trivial. 

Proof that (ii) + (iii). The f of (1.1) is bounded and uniformly 
continuous. By the two inequalities in (l.l),  condition (ii) here implies 
limsup, P,F 5 limsup, P, f = P f  5 PF'. If F is closed, letting E 1 0 
gives the inequality in (iii). 

The equivalence of (iii) and (iv) follows easily by complementation. 

Proof that (iii) & (iv) + (v). If A" and A- are the interior and 
closure of A ,  then conditions (iii) and (iv) together imply 

PA- 2 lim sup P,A- 2 lim sup P,A 
n n 

n n 

(2.3) 

2 lim inf P,A 2 lim inf P,A" 2 PA". 

If A is a P-continuity set, then the extreme terms here coincide with 
PA,  and (v) follows. 
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Proof that (v) + (i) . By linearity we may assume that the bounded 
f satisfies 0 < f < 1. Then Pf = s,"P[f > t ] d t  = Ji P[f > t l d t ,  
and similarly for Pn f a  If f is continuous, then a[f > t] c [f = t ] ,  and 
hence [f > t]  is a P-continuity set except for countably many t .  By 
condition (v) and the bounded convergence theorem, 

1 
P n f = i  Pn[f > t ] d t + l l P [ f  > t ] d t = P f .  0 

Other Criteria 

Weak convergence is often proved by showing that PnA + P A  holds 
for the sets A of some advantageous subclass of S. 

Theorem 2.2. Suppose (i) that d p  is a 7r-system and (ii) that 
each open set is a countable union of dp-se ts .  If PnA + P A  for  every 
A in d p ,  then Pn =+ P.  

PROOF. If Al,  . . . A, lie in d p ,  then so do their intersections; hence, 
by the inclusion-exclusion formula, 

i i j  ijk i=l 

If G is open, then G = UiAi for some sequence {Ai} of sets in d p .  
Given E, choose T so that P(UiIT Ai) > PG - E. By the relation just 
proved, PG - E 5 P(UilT Ai) = limn Pn(UisT Ai) 5 liminf, PnG. 
Since E was arbitrary, condition (iv) of the preceding theorem holds. 0 

The next result transforms condition (ii) above in a useful way. 

Theorem 2.3. Suppose (i) that d p  is a 7r-system and (ii) that S 
is separable and, for every x in S and positive E, there is in d p  an A 
for  which x E A" c A C B ( x , E ) .  If PnA + P A  for  every A in d p ,  
then Pn + P. 

PROOF. The hypothesis implies that, for each point 2 of a given 
open set G, 5 E A: C A, c G holds for some A, in d p .  Since S 
is separable, there is a countable subcollection {A&} of {AZ:a: E G} 
that covers G (the Lindelof property [ M 3 ] ) ,  and then G = Ui A&. 

0 Therefore, the hypotheses of Theorem 2.2 are satisfied. 
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Call a subclass d of S a convergence-determining class if, for ev- 
ery P and every sequence {P,}, convergence P,A + PA for all P- 
continuity sets in d implies Pn + P. A convergence-determining class 
is obviously a separating class in the sense of the preceding section. To 
ensure that a given d is a convergence-determining class, we need con- 
ditions implying that, whatever P may be, the class d p  of P-continuity 
sets in d satisfies the hypothesis of Theorem 2.3. For given A, let Ax,€ 
be the class of d-sets satisfying x E A" C A c B(X,E), and let adx,€ 
be the class of their boundaries. If ad,,, contains uncountably many 
disjoint sets, then at least one of them must have P-measure 0, which 
provides a usable condition. 

Theorem 2.4. Suppose (i) that A is a .rr-system and (ii) that S 
is separable and, for each x and e, either contains 0 or contains 
uncountably many disjoint sets. Then d is a convergence-determining 
class. 

Since dB(x, r )  c [y: p(z, y) = r ] ,  the finite intersections of open 

PROOF. Fix an arbitrary P and let d p  be the class of P-continuity 

balls satisfy the hypotheses. 

sets in A. Since 

dp is a .rr-system. Suppose that P,A + P A  for every A in d satisfying 
P(BA) = 0, that is, for every A in dp. If adx,€ does not contain 0, 
then it must contain uncountably many distinct, pairwise disjoint sets; 
in either case, it contains a set of P-measure 0. This means that each 
.Az,€ contains an element of dp, which therefore satisfies the hypothesis 
of Theorem 2.3. Since P,A -, PA for each A in dp, it follows that 

EzampZe 2.3. Consider Rk, as in Example 1.1, and let d be the 
class of rectangles, the sets [y :a i  < yi 5 bi, i 5 k ] .  Since it obviously 
satisfies the hypotheses of Theorem 2.4, d is a convergence-determining 
class. 

The class of sets Q, = [y: yi 5 xi, i 5 k] is also a convergence- 
determining class. For suppose that P,Q, -, PQx for each x such 
that P(aQz) = 0. The set Ei of t satisfying P[y: yi = t ]  > 0 is at 
most countable, and so the set D = (Ui Ei)' is dense. Let dp be the 
class of rectangles such that each coordinate of each vertex lies in D. 
If A E dp, then, since aQx C U i [ y :  yi = xi], Qx is a P-continuity 

P, * P. 0 
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set for each vertex x of A,  and it follows by inclusion-exclusion that 
PnA + PA.  From this and the fact that D is dense, it follows that 
dp satisfies the hypothesis of Theorem 2.3. 

That these sets Qx form a convergence-determining class can be 
restated as a familiar fact. Let F ( x )  = P(Qx) and Fn(x) = P,(Qx) 
be the distribution functions for P and P ! .  Since F is continuous 
at x if and only if Qx is a P-continuity set, Pn + P if and only if 

0 Fn(2) 3 F ( z )  for all continuity points x of F .  

Example 2.4. In Example 1.2 we showed that the class I27 of 
finite-dimensional sets is a separating class. It is also a convergence- 
determining class: Given x and e l  choose k so that 2Tk < ~ / 2  and 
consider the finite-dimensional sets A, = [y: Iyi - xi1 < r ) ,  i 5 k ]  for 
0 < r )  < ~ / 2 .  Then IC E A; = A, C B ( ~ , E ) .  Since aA, consists of the 
points y such that Jyi - xi( 5 r )  for all i 5 k ,  with equality for some i, 
these boundaries are disjoint. And since R" is separable, Theorem 2.4 
applies: RT is a convergence-determining class, and Pn + P if and 
only if PnA -+ P A  for all finite-dimensional P-continuity sets A. 0 

Example 2.5.  In Example 1.3, the sequence of functions z, de- 
fined by (1.5) shows that the space C is not u-compact, but it also 
shows something much more importa,nt: Although the class Cf of finite- 
dimensional sets in C is a separating class, it is not a convergence- 
determining class. For let Pn = s,, and let P = 60 be the unit mass 
at the O-function. Then P, + P ,  because zn ft 0. 

On the other hand, if 2n-' is less than the smallest nonzero ti, then 
.t,...t,( Z n ) = r t  *... t k ( 0 ) = ( O , . . . , O ) ,  andso Pnr<f,tkH= P X ~ , ~ , . ~ , H  for 
all H. In this example, PnA -+ P A  for all sets A in Cf (including those 
that are not P-continuity sets, as it happens), even though P, j4 P. 
In the space C, the arguments and results involving weak convergence 

0 go far beyond the finite-dimensional theory. 

Theorem 2.2 has a corollary used in Section 4. Recall that A is a semiring if it 
is a r-system containing 0 and if A , B  E A and A c B together imply that there 
exist finitely many disjoint d-sets Ci such that B - A = uEl Ci. 

Theorem 2.5. Suppose that (i) A is a semiring and (ii) each open set is a 
countable union of d-se t s .  If P A  5 lim inf, P,A for each A in A, then P, + P.  

PROOF. If A , , .  . . , A, lie in A, then, since d is a semiring, ul='=, Ai can be 
represented as a disjoint union ui,, Bj of other set,s in A [PM.168], and it follows 
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that 
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The proof is completed as before. 0 

A further simple condition for weak convergence: 

Theorem 2.6. A necessary and suficient condition for Pn =+ P 
is that each subsequence {Pni} contain a further subsequence {Pni(,,,)} 
converging weakly (rn -+ m) to P. 

PROOF. The necessity is easy (but not useful). As for sufficiency, 
if Pn j4 P,  then Pnf f+ Pf for some bounded, continuous f .  But 
then, for some positive e and some subsequence Pni, lPni f - Pfl > 6 
for all i ,  and no further subsequence can converge weakly to P. I3 

The Mapping Theorem 

Suppose that h maps S into another metric space S', with metric p' and 
Bore1 a-field S'. If h is measurable S/S' [MlO], then each probability 
P on (S,S) induces on (S',S') a probability Ph-' defined as usual 
by Ph-l(A) = P(h-'A). We need conditions under which Pn + P 
implies Pnh-' =+ Ph-'. One such condition is that h is continuous: If 
f is bounded and continuous on S', then f h  is bounded and continuous 
on S, and by change of variable [PM.216], Pn =+ P implies 

Ezample 2.6. Since the natural projections 7rk from R" to Rk are 
continuous, if Pn =+ P holds on R", then Pnnkl + P7rk1 holds on Rk 
for each k .  As the following argument shows, the converse implication 
is a consequence of the fact that the class 727 of finite-dimensional sets 
in R" is a convergence-determining class (Example 2.4). 

From the continuity Of 7rk it follows easily that d7ri'H C 7ri'dH for 
H c Ilk.  Using special properties of the projections we can prove inclu- 
sion in the other direction. If x E ni 'dH, so that 7rkz E b H ,  then there 
are points a(") in H and points ,d") in HC such that a(") + 7rkX and 
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~ ( " 1  --f TkZ (ti + m). Since the points (a:), ( + .  - zk+l,. . .> lie in 

r k l H  and converge to x, and since the points (pi"', + - pp', z k + l , .  - a )  

lie in ( r i ' H ) "  and also converge to x, it follows that x E a ( r i l H ) .  
Therefore, d x i l H  = nk'aH. 

If A = r k l H  is a finite-dimensional P-continuity set, then we have 
P r i l ( a H )  = P(rL 'dH)  = P ( a x i l H )  = P(BA) = 0, and so H is a 
Prk'-continuity set. This means that, if Pnril  + Pn;' for all k, then 
P,A --f P A  for each P-continuity set A in 727, and hence (since 727 
is a convergence-determining class) it means that P, + P. Therefore: 
P, + P if and onZy i j  P,rk1 + P r i l  for all k.  This is essentially 
just a restatement of the fact that the finite-dimensional sets form a 
convergence-determining class. The theory of weak convergence in Rm 
is applied in Section 4 to the study of some problems in number theory 
and combinatorial analysis. 

Example 2.7. Because of the continuity of the natural projections 
rt l . . . tk  from C to Rk, if Pn + P for probabilities on C, then P,T<~..~, + 
PrGf..,, for all k and all k-tuples t l ,  . . . , t k .  But the converse is false, 
because, as Example 2.5 shows, C j  is not a convergence-determining 
class. In fact, for P, and P as in that example, P, + P,  even though 
for 272-1 less than the smallest nonzero ti we have P,x&~.,~, = PT;~, .~ ,  
(a unit mass at the origin of Rk). Again: Weak-convergence theory 
in C goes beyond the finite-dimensional case in an essential way. The 

By (2 .5) ,  P, + P implies Pnh-' + Ph-l if h is a continuous 
mapping from S to S', but the continuity assumption can be weakened. 
Assume only that h is measurable S/S', and let Dh be the set of its 
discontinuities; Dh lies in S [MlO]. The mapping theorem: 

space C is studied in detail in Chapter 2. 

Theorem 2.7. If P, + P and PDh = 0,  t h e n  + Ph-l. 

PROOF. If z E (h- lF) - ,  then z, --t z for some sequence (2,) 
such that hx, E F ;  but then, if z E D i ,  hx lies in F- .  Therefore, 
Di n (h-'F>- c h- '(F-).  If F is a closed set in S', it therefore 
follows from P D i  = 1 that 
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Condition (iii) of Theorem 2.1 holds.+ 0 

Ezample 2.8. Let F be a distribution function on the line, and 
let cp be the corresponding quantile function: cp(u) = inf[s:u 5 F ( z ) ]  
for 0 < u < 1 (put cp(0) = cp(1) = 0, say). If P is Lebesgue mea- 
sure restricted to [ 0, l ] ,  as in Example 2.2, then Pcp-' is the proba- 
bility measure having distribution function F ,  since Pep-'( -00, z] = 
P[u: cp(u) < z] = P[u: u < F ( z ) ]  = F ( s ) .  Since cp has at most count- 
ably many disconinuities, PD, = 0. If Pn is also defined as in Example 
2.2, then Pn =$ P ,  and it follows that Pn9-l + Pcp-'. Consider the 
case where Znk  = klO-n. If cp is calculated for each approximately uni- 
formly distributed observation as it is generated, this gives a sequence 

0 of observations approximately distributed according to F .  

Example 2.9. If So E S, then [MlO]  the Bore1 a-field for So in the 
relative topology consists of the S-sets contained in SO. Suppose that 
Pn and P are probability measures on S and that PnSo E PSo = 1. 
Let Qn and Q be the restrictions of Pn and P to So. The identity map 
h from So to S is continuous, and Pn = Qnh-', P = Qh-l. Therefore, 
by the mapping theorem, Qn + Q implies Pn + P. 

The converse holds as well. The general open set in So is G n SO, 
where G is open in S. But Qn(G n So) = Pn(G n So) = PnG, and 
similarly for Q. If Pn + P ,  then liminf, Qn(Gn So) = liminf, PnG 2 
PG = Q(G n SO). Therefore: 

If  PnSo E PSo = 1, then Pn + P (on S )  if and only if Qn + Q 
(on So). 

Example 2.10. Suppose again that So E S and PnSo G PSo = 1. 
And suppose that the measurable map h: S + S' is continuous when 
restricted to So, in the sense that, if points zn of So converge to a 
point 5 of So, then hzn --+ hz. If Pn 3 P ,  then the Qn and Q of the 
preceding example satisfy Qn Q. The restriction ho of h from S to 
So is a continuous map from So to S', and the mapping theorem gives 
(So n h-'A' = h0'A') Pnh-' = Qnh;' + QhO' = Ph-'. Therefore: 

I f  PnSo E PSo = 1 and h is continuous when restricted to So, then 
0 Pn + P implies Pnh-' + Ph-'.$ 

For a different approach to the mapping theorem, see Problem 2.10. 
$ See Problem 2.2. 
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Product Spaces 

Assume that the product T = S‘ x S” is separable, which implies that 
S‘ and S“ are separable and that the three Bore1 a-fields are related by 
7 = S‘ x S” [MlO]. Denote the marginal distributions of a probability 
measure P on 7 by P’ and P”: P’(A’) = P(A’ x S”) and P”(A”) = 
P(S’ x A”). Since the projections d(d, z”) = x’ and #(d, d’) = x“ 
are continuous, and since P‘ = P(d)-l and P‘‘ = P(T”>-’, it follows 
by the mapping theorem that Pn + P implies PA + P’ and P[ + P”. 

The reverse implication is false.+ But consider the .rr-system d of 
measurable rectangles A‘ x A“ (A’ E S‘ and A“ E S”). If we take the 
distance between (d, d’) and (y’, y”) to be p(z’, y’) V p ( d ’ ,  y”), then 
the open balls in T have the form [MlO] 

These balls lie in A, and since the a&( (d, d’), r )  are disjoint for dif- 
ferent values of r ,  d satisfies the hypothesis of Theorem 2.4 and is 
therefore a convergence-determining class. 

There is a related result that is more useful. Let dp be the class 
of A‘ x A“ in d such that P’(dA’) = P”(8A”) = 0. Applying (2.4) in 
S‘ and in S” shows that dp is a .rr-system. And since 

a( A’ x AN) c ( (aA’) x S”) u (S’ x (aA”)) , 

each set in dp is a P-continuity set. Since the Bp/(z’,r)  in (2.7) have 
disjoint boundaries for different values of r ,  and since the same is true 
of the Bp/’ (z”, r ) ,  there are arbitrarily small r for which (2.7) lies in 
Ap. It follows that Theorem 2.3 applies to Ap: Pn + P if and only if 
P,A + PA for all A in dp. Therefore, we have the following theorem, 
in which (ii) is an obvious consequence of (i). 

Theorem 2.8. (i) If T = S‘ x S“ is separable, then Pn + P if 
and only if Pn(A‘ x AN) + P(A‘ x A“) for each PI-continuity set A‘ 
and each PI’-continuity set A”. 

(ii) If T is separable, then PA x P[ + P’ x P“ if and only if PA + P’ 
and P[+ PI’. 

Problems 
2.1. According to Examples 2.4 and 2.5, 7ZT is a convergence-determining class, 

while Cf is not. What essential difference between Rw and C makes this 
possible? (See Problem 1.1 .) 

t See Problem 2.7. 
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2.2. Show that the assertion in Example 2.10 is false without the assumption that 
P,So G 1, which points up the distinction between continuity of h at each 
point of SO and continuity of h when it is restricted to SO. 

2.3. If S is countable and discrete, then P, + P if and only if Pn{s} + P{x} for 
each singleton. Show that in this case supAEs IP,A - PA1 + 0. 

2.4. In connection with Example 2.3, show for k = 1 that F has at  most countably 
many discontinuities. Show for k = 2 that, if F has at least one discontinuity, 
then it has uncountably many. Show that, if Fn(x) + F(x) fails for one x, 
then it fails for uncountably many. 

2.5. The class of P-continuity sets ( P  fixed) is a field but may not be a a-field. 

2.6. I f f  is bounded and upper semicontinuous [M8], then P, + P implies that 
limsup, Pnf 5 P f .  Show that this contains part (iii) of Theorem 2.1 as a 
special case. Generalize part (iv) in the same way. 

2.7. The uniform distribution on the unit square and the uniform distribution on 
its diagonal have identical marginal distributions. Relate this to Theorem 2.8. 

2.8. Show that, if 6,, + P ,  then P = 6, for some x. 
2.9. If f is S-measurable and Plfl < 00, then for each E there is a bounded, 

2.10. (a) Without using the mapping theorem, show that P, + Pf if P, f + P for 
all bounded, continuous f such that P D f  = 0. (See the proof of (v)+(i) 
in Theorem 2.1.) 

(b) Now give a second proof of the mapping theorem. (Use (2.5) and the fact 
that Dfh C Dh.) 

uniformly continuous g such that Plf - g( < E .  

SECTION 3. CONVERGENCE IN DISTRIBUTION 

The theory of weak convergence can be paraphrased as the theory 
of convergence in distribution. When stated in terms of this second 
theory, which involves no new ideas, many results assume a compact 
and perspicuous form. 

Random Elements 

Let X be a mapping from a probability space (!2,3, P) to a metric 
space S. We call X a random element if it is measurable 3 / S ;  we say 
that it is defined o n  its domain R and in its range S ,  and we call it 
a random element of S. We call X a random variable if S is R1, a 
random vector if S is Rk, a random sequence if S is R", and a random 
function if S is C or some other function space.t 

The distribution of X is the probability measure P = PX-l on 
(S ,  S) defined by 

( 3 4  PA = P(X-lA) = P[w:X(W) E A] = P[X E A]. 

t Often in the literature an arbitrary random element is called a random variable. 
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This is also called the law of X and denoted C(X). In the case S = Rk,  
there is also the associated distribution function of X = (XI, . . . , Xk), 
defined by 

Note that P is a probability measure on an arbitrary measurable 
space, whereas P is always defined on the Bore1 a-field of a metric 
space. The distribution P contains the essential information about the 
random element X. For example, if f is a real measurable function on 
S (measurable SIR') ,  then by change of variable, 

in the sense that both integrals exist or neither does, and they have 
the same value if they do exist. 

Each probability measure on each metric space is the distribution 
of some random element on some probability space. In fact, given P 
on (S,S), we can simply take ( R , F ,  P) = ( S , S , P )  and take X to be 
the identity, so that X(w) = w for w E R = S: 

(3.4) ( R , F ,  P) = (S,S, P ) ,  X(w) = w for w E R = S. 

Then X is a random element on R with vdues in S (measurable F/S), 
and it has P as its distribution. 

Convergence in Distribution 

We say a sequence {X,} of random elements converges in distribution 
to the random element X if P, + P ,  where P, and P are the distri- 
butions of X, and X. In this case we write X, + X. (This double 
use of the double arrow causes no confusion.) Thus X, + X means 
that L(X,) + L(X). Although this definition of course makes no 
sense unless the image space S (the range) and the topology on it are 
the same for all the X, XI, X2,. - ., the underlying probability spaces 
(the domains)-(R,F, P) and (a,,&, P,), say-may all be distinct. 
These spaces ordinarily remain offstage; we make no mention of them 
because their structures enter into the argument only by way of the 
distributions on S they induce. For example, if we write E, for in- 
tegrals with respect to P,, then, by (3.3), Pnf + Pf if and only if 
E,[f(X,)] -+ E[f(X)]. But we simply write P in place of P, and E 
in place of E,: P and E will refer to whatever probability space the 
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random element in question is defined on. Thus X, + X if and only 
if E[f(Xn)] --t E[f(X)] for all bounded, continuous f on S. 

Theorem 2.1 asserts the equivalence of the following five state- 
ments. Call a set A in S an X-continuity set if P[X E dA] = 0. 

(i) Xn + X. 
(ii) E[f(Xn)] + E[f(X)] for all bounded, uniformly continuous f .  

(iii) limsup, P[X, E F] 5 P[X E F] for all closed F .  
(iv) liminf, P[Xn E GI 2 P[X E GI for all open G. 
(v) P[Xn E A] + P[X E A] for all X-continuity sets A. 

This requires no proof; it is just a matter of translating the terms. 
Each theorem about weak convergence can be recast in the same way. 
Suppose h:S + S' is measurable S/S' and let Dh be the set of its 
discontinuity points. If X has distribution P, then h(X) has distribu- 
tion Ph-l. Therefore, the mapping theorem becomes: Xn + X (on 
S) implies h(Xn) + h ( X )  (on S') if P[X E Dh] = 0. 

The following hybrid terminology is convenient. If Xn and X are 
random elements of S ,  and if Pn  and P are their distributions, then 
Xn + X means Pn  + P. But we can just as well write Xn + P or 
Pn + X. Thus there are four contexts for the double arrow: 

The last three relations are defined by the first. If X, are random 
variables having asymptotically the standard normal distribution, this 
fact is expressed as Xn + N ,  and one can interpret N as the standard 
normal distribution on the line or (better) as any random variable 
having this distribution. In all that follows, N will be such a random 
variable-normally distributed with mean 0 and variance 1. 

ExumpZe 3.1. If So E S, then the Bore1 a-field of SO for the rela- 
tive topology is SO = [ A n  SO: A E S] [MlO] and SO c S. If x: a+ SO, 
then X is a random element of SO (measurable F-/So) if and only if it 
is a random element of S (measurable F/S), the common requirement 
being that the set [w: X(w) E A n SO] = [ w : X ( w )  E A] lie in F for 
every A in S. 

Suppose now that Xn and X are random elements of SO. The 
general open set in So is G n SO with G open in S. Therefore, there 
is convergence in distribution in the sense of SO if and only if there is 
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convergence in distribution in the sense of S ,  the common condition 
being that lim inf, P[X, E G f l  So] 1 P[X E G n SO] for every open set 
G in S. This is essentially the convergence-in-distribution version of 
Example 2.9. 0 

Convergence in Probability 

If, for an element a of S, 

for each E, we say X, converges in probability to a. Conceive of a as 
a constant-valued random element on an arbitrary space, and suppose 
that (3.6) holds. If G is open and a E G, then, for small enough E, 

liminf, P[X, E G] _> limn P[p(X,,a) < €1 = 1 = P[a E GI, whereas if 
a 4 G, then liminf,P[X, E GI 2 0 = P[a E GI. Thus (3.6) implies 
X, + a ,  in the sense of the second line of (3.5). On the other hand, 
if X, =+ a in this sense, then (3.6) follows because [z:p(x,a) < €1 is 
open. For this reason, we express convergence in probability as 

This can also be interpreted by the third line of (3.5): Identify a with 
6,. Again, the random elements X, in (3.7) can be defined on different 
probability spaces. By the mapping theorem, X, + a implies h(X,) + 
h(a) if h is continuous at a.+ 

Suppose that (X,, Y,) is a random element of S x S;  this implies 
(since the projections (z, y )  -+ z and (z, y) + y are continuous) that 
X, and Y, are random elements of S.3 If p is the metric on S ,  then 
p(x ,y )  maps S x S continuously to the line, and so it makes sense 
to speak of the distance p(X,, Yn)-the random variable with value 
p(X,(w), Y,(w)) at w.  The next two theorems generalize much-used 
results about random variables. 

Theorem 3.1. Suppose that (Xn,Yn) are random elements of 
S x S .  If X, + X and p(X,,Y,> + 0,  then  Y, + X. 

~~ 

t For X and Xn all defined on the same R, P[p(X,,X) < E ]  +n 1 defines 
convergence of X n  to X in probability, but this concept is not used in the book 
until Chapter 5 (except for Problem 3.8). Before that, X will always be a constant 
and the Xn may be defined on different spaces. 

3 The reverse implication holds if S is separable, but not in complete generality 
(MIOJ. 
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PROOF. Apply the convergence-in-distribution version of Theo- 
rem 2.1 twice. If F, is defined as [ z : p ( z , F )  I €1, then 

Since F, is closed, the hypotheses imply 

limsupP[Y, E F ]  I limsupP[X, E F,] 5 P[X E F,]. 
n n 

If F is closed, then F, 4 F as E 10.  0 

Take Xn X :  

Corollary. Suppose that (X, Yn) are random elements of S x S. 
If p(X, Yn) + 0, then Yn =+ X. 

Theorem 3.2. Suppose that (Xun,Xn) are random elements of 
s x S. ~ f t  Xu, +n ZU ju x and 

for each E ,  then Xn *n X. 

PROOF. For F, defined as before, we have 

Since Xu, +n 2, and F, is closed, 

And since 2, +u X, (3.8) gives 

limsupP[Xn E F ]  5 P[X E F,]. 
n 

Let r 10, as before. 0 

Other standard results can be extended beyond the Euclidean 
case in a routine way: 

t Xu, +n Z,, indicates weak convergence as n -+ 00 with u fixed. 
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Example 3.2. Assume of the random elements (X,, Y,) of S x S 
that X ,  and Y, are independent in the sense that the events [ X ,  E A] 
and [Y, E B] are independent for A,  B E S; assume that X and Y are 
independent as well. If S is separable, then (Theorem 2.8) X ,  + X 
and Yn + Y imply (X,, Y,) =+ ( X ,  Y). 

If S = R1, we can go further and conclude from the mapping 
theorem that, for example, X,Y, + X Y .  If X ,  G a, and X = a ,  
then X ,  =+ X is the same thing as a, --f a (Example 2.1), and the 
independence condition is necessarily satisfied: Q, -+ a and Y, + Y 

Local vs. Integral Laws 

Suppose P, and P have densities f, and f with respect to  a measure 
p on ( S ,  S). If 

imply a,Y, + aY. 0 

(3.9) f n ( 4  -+ f ( 4  
outside a set of p-measure 0, then, by Scheffe's theorem [PM.215], 

(3.10) 

Thus (3.9), a local limit theorem, implies P, + P ,  an integral limit 
theorem. But the reverse implication is false: 

Example 3.3. Let P = p be Lebesgue measure on S = [ 0,1].  
Take f, to be n2 times the indicator of the set UE=;(kn-', J~n-'+n-~). 
Then p[f, > 01 = n-2,  and by the Borel-Cantelli lemma, f,(s) -+ 0 
outside a set B of p-measure 0; redefine f, as 0 on B, so that f,(z) -+ 0 
everywhere. If P, has density f, with respect to p,  then IP,[ 0, 2]--zI I 
l /n,  and it follows that P, + P ,  a limit theorem for integral laws. 
With respect to p,  P has density f (z)  = 1, and so (3.9) does not hold 

0 

Local laws imply integral laws also in the case where S = Rk7 P 
has a density with respect to Lebesgue measure, and P, is supported 
by a lattice. Let 6(n) = (&(n) , .  . . ,&(TI ) )  be a point of Rk with 
positive coordinates, let a(.) = (a l (n) ,  . . . , ak(n)) be an arbitrary 
point of Rk,  and denote by L, the lattice consisting of the points of 
the form (ul6l(n)-al(n), . . . ,ulc&(n)-ak(n)), where u1,. . . ,uk range 
independently over the integers, positive and negative. If 2 is a point 
of L,, then 

for any z at all: There is no local limit theorem. 

(3.11) [ y : q  - &(n) < y2 5 22, 2 5 I c ] ,  J: E L, 
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is a cell of volume V n  = &(n) &(n), and Rk is the union of this 
countable collection of cells. 

Suppose now that Pn and P are probability measures on Rk, 
where Pn is supported by Ln and P has density p with respect to 
Lebesgue measure. For x E L,, let pn(x) be the Pn-mms (possibly 0) 
at that point. 

Theorem 3.3. Suppose that 

and that, if X n  is a point of Ln varying with n in such a way that 
xn + X ,  then 

Then Pn + P.  

PROOF. Define a probability density qn on Rk by setting qn(y )  = 
pn(x)/vn if y lies in the cell (3.11). Since xn + x implies (3.13), it 
follows by (3.12) that q,(x) + p(x ) .  Let Xn have the density qn, and 
define Yn on the same probability space by setting Yn = x if X n  lies in 
the cell (3.11). We are to prove that Yn + P. Since IXn-Ynl 5 I&j(n)l, 
this will follow by (3.12) and Theorem 3.1 if we prove that Xn =$ P. 
But since q, converges pointwise to p ,  this is a consequence of Scheffk’s 
theorem. 0 

Ezample 8.4. If S, is the number of successes in n Bernoulli 
trials and vn = l/m, then t 

provided k varies with n in such a way that (k - n p ) / m  +n x .  
Therefore, Theorem 3.3 applies to the lattice of points of the form 
(k - n p ) / m :  Pn is the distribution of (S, - n p ) / m  and P is the 
standard normal distribution. This gives the central limit theorem for 

0 

Integration to the Limit 

If X ,  + X for random variables, when does EX, + EX hold? 

Bernoulli trials: (Sn - n p ) / m  * N .  

t Feller (281, p. 184. 
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Theorem 3.4. If X n  + X ,  then ElXl 5 liminf, ElXnl. 

PROOF. By the mapping theorem, IXnl =$ 1x1, and therefore 
PIIXnl > t]  --t P[lXl > t]  for all but countably many t .  By Fatou's 
lemma on the line, 

P[lXl > t] d t  5 liminf P[IXnl > t]  d t  = liminf EIXnl. 
n 

0 
n 

The X n  are by definition uniformly integrable if 

This obviously holds if the Xn are uniformly bounded. If a is large 
enough that the supremum in (3.15) is at most 1, then supn ElXnl 5 
l+a<0O. 

Theorem 3.5. If X n  are uniformly integrable and X n  + X ,  then 
X is integrable and EX, + EX.  

PROOF. Since the ElXnl are bounded, Theorem 3.4 implies that 
X is integrable. And since X: + X +  and X i  + X -  by the mapping 
theorem, the variables can be assumed nonnegative, in which case 

and 

a 
(3.17) EX = P [ t  < X < a]dt + 

By uniform integrability, for given E there is an a such that the second 
term on the right in each equation is less than E ,  and it is therefore 
enough to show that the first term on the right in (3.16) converges to 
the corresponding term in (3.17). But a can be chosen in such a way 
that P[X = a] = 0,  and then this follows by the bounded convergence 

0 theorem applied in the interval [ 0, a]. 

A simple condition for uniform integrability is that 

(3.18) SUP EIIXnll+'] < 00 
n 
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for some E ;  in this case, (3.15) follows from 

Theorem 3.6. If X and the Xn are nonnegative and integrable, 
and ijX, =+ X and EXn -+ EX, then the Xn are uniformly integrable. 

PROOF. From the hypothesis and (3.16) and (3.17) it follows that 

if P(X = a] = 0. Choose Q so that the limit here is less than a given E. 
Then, for n beyond some no, sx ,a Xn dP < 6. Increase Q enough to 
take care of each of the integrab1e";andom variables XI, Xz ,  . . . , X,,.O 

Relative Measure* 

Let PT be the probability measure on (R1,R1) corresponding to 
a uniform distribution over [-T, TI: 

(3.19) 
1 

PTA = -1A n [-T,T](,  A E R1, 2T 

where the bars refer to Lebesgue measure. Now define P,A as 

P,A= lim PTA, 
T-CO 

(3.20) 

provided the limit exists; this is called the relative measure of A. Note 
that, since P,A = 0 if A is bounded, P, is not countably additive on 
its domain of definition. For Bore1 functions f, define 

provided the integrals and the limit exist; Emf is the mean value of f .  
To write P,A or Emf is to assert or assume that the corresponding 
limit exists. If f is bounded and has period To, then it has a mean 
value,t and in fact, Emf = E T ~ ~ .  And if a set A has period TO, in the 
sense that its indicator function does, then P,A = PT,A. 

t Almost periodic functions also have means; see Bohr [lo]. 
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Suppose that X :  R1 + S is measurable R1/S. Then X, regarded 
as a random element defined on (R1, R1, PT), has PTX-' as its distri- 
bution over S. Ift 

(3.22) PTX-' J T  P 
for some probability measure on S, then P is called the distribution of 
X .  By definition, this means that E,[f(X)] = Pf for every bounded, 
continuous f on S, and by Theorem 2.1, it holds if and only if, for every 
P-continuity set A, P,[X E A] = P A  . By the mapping theorem, if 
X has distribution P, and if h is a measurable map from S to S' for 
which PDh = 0, then h(X) has distribution Ph-l. We can derive the 
distributions of some interesting random elements by using standard 
methods of probability theory. For example, by the continuity theorem 
for characteristic functions, if f (w)  is real, then it has distribution P if 
and only if E,[exp(itf(w))] coincides with the characteristic function 
of P. 

If X is a nonzero real number, then cos Xu has period TA = 27r/lXI, 
and its distribution is described by 

(3.23) P, [COS XW 5 X] = P T ~  [COS XW 5 X] 

1 
= 1 - -arccosz, 

where for the arc cosine we use the continuous version on [-1, +1] that 
takes the values 7r and 0 at -1 and +l. By using the simple relation 

-1 5 z 5 +1, 
7T 

(3.24) 
1 i f s = O ,  
0 if s # 0, 

E,[eisw] = { 
we can calculate some moments and characteristic functions. Since E, 
is obviously linear, it follows by (3.24) and the assumption X # 0 that 

We have 

O0 (it)' 
ET[&'~~~'"] = C -ET[COS' XU], r! r =O 

t In the theory of weak convergence, T can obviously go to infinity continuously 
just as well as through the integers. 
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where the expected value can be taken inside the sum because the 
series on the right converges absolutely. And by the M-test, we can 
let T go to infinity on each side: 

O0 (it)' 
cp(t): = Ew[eitCosXW] = -E,[cosr Xu]. r !  (3.26) 

r=o 

Because of (3.23), this characteristic function is the same for all A. 
A twedimensional version of the same argument shows that 

(3.27) E, [ exp(it1 cos Xlu + it2 cos X ~ W ) ]  

Ew [COS'~ X ~ W  * COS~' X ~ W ] .  
(itl)" (it2)TZ w o o  = c c F T  r1=0 rz=o 

Suppose now that A 1  and X2 are incommensurable (neither is 0 and 
X1/X2 is irrational). We can show in this case that 

(3.28) Eoo[cosrl XIW * COS~' X ~ W ]  = EW[cosr1 X ~ W ]  EW[cosrz X ~ W ] .  

The argument is like that for (3.25): 

(3.29) E, [ COS" X ~ W  * XU] 

By (3.24) and the assumption that XI and A2 are incommensurable, 
this last expected value is 1 or 0 according as 2jl - r1 = 0 = 2j2 - 7-2 
or not. But the product 

is also 1 or 0 according as 2j1-7-1 = 0 = 2 j 2 - r ~  or not, and substituting 
this product into (3.29) gives (3.28)-see (3.25). Finally, (3.26), (3.27), 
and (3.28) together imply 

(3.30) E,[exp(itl cos Xlu + it2 cos X ~ U ) ]  = cp(tl)cp(tz). 
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Let 771, q 2 ,  . . . be independent random variables, each having the 
characteristic function 'p and the distribution function in (3.23). By 
the continuity theorem for characteristic functions in two dimensions, 
the random element (cos Xlw, cos X2w) of R2 has the same distribution 
(in the sense of (3.22)) as the random vector (qq,r/2),  provided A 1  

and A2 are incommensurable. Now suppose that XI, A 2 . .  . are linearly 
independent in the sense that mlXl + . +  . + mkXk = 0 for integers mi 
can hold only if mi = 0. Then the preceding argument extends from 
R2 to Rn. Since the rlk have mean 0 and variance f by (3.25), it is 
probabilistically natural to replace them by = &T)k. By (3.23), 

(3.31) 
1 X 

P[& I 4 = 1 - - arccos - Jz' 7T 
-h I x 5 +&. 

Since the distribution of (<I , . . . , <n) is absolutely continuous with re- 
spect to Lebesgue measure in Rn, we arrive at the following theorem. 

Theorem 3.7. Suppose that XI, X2,. . . are linearly independent 
and that <I, <2, . . . are independent, each distributed according to (3.31). 
Then (Jz cos X ~ W ,  . . . , Jz cos Anw) has the distribution of (ti, . . . , En) 
for each n: 

(3.32) P m [ ( h c o s X ~ w ,  . . . , ~ C O S X ~ W )  E A] = P[(&, . . . ,&) E A] 

if a A  has Lebesgue measure 0 .  

theorem implies a result of Kac and Steinhaus: 
Since the [k have mean 0 and variance 1, the Lindeberg-L6vy 

This approximates the relative time a superposition of vibrations with 
incommensurable frequencies spends between x and y .  For a refine- 
ment, see Theorem 11.2. 

Return to the random variables Vk,  and let $(x) = (2n)-l arccos 5, 
with the arc cosine defined as in (3.23). Then the distribution function 
on the right in (3.23) is F ( x )  = 1 - 21)(x) for -1 5 x 5 +1, and 
since F(7k) is uniformly distributed over [ 0,1] (the probability trans- 
formation), & = $(qk) is uniformly distributed over [ O ,  f]. And for 
every x, $ ( C O S ~ ~ T Z )  is (x), the distance from 2 to the nearest integer. 
From the h e a r  independence of {Xk} follows that of {27TXk}, and so 
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the cos2nXkw are distributed like the Vk. By the mapping theorem, 
we can apply II, to each cos2nXk if we relace each q h  by ,Oh. Therefore: 
Suppose that XI ,  X2, . . . are linearly independent and that PI, ,&, . . . are 
independent random variables, each uniformly distributed over [ 0, g]. 
Then, for each n,  

(3.34) Pm[((Xlw), * 7 (Xnw)) E A] = P[(Pl,. - .  7 Pn) E A] 

if dA has Lebesgue measure 0, a connection with Diophantine approx- 
imation. 

Suppose that 0 < a < $ and take A to be the set of ( ~ 1 , .  . . , Z n )  

such that 0 5 xi 5 a for exactly k values of i. If Un(w,a) is the 
number of i, 1 5 i I n,  for which (X iw)  5 a ,  then the event on the left 
in (3.34) is [Un(w,a) = k] (for the corresponding A, dA has Lebesgue 
measure 0), and the right side is a binomial probability: 

(3.35) Pm[Un(w,a) = k] = a"1- a y .  (2 
We can apply the binomial central limit theorem her-ither the local 
or the integral one. Or take a Poisson limit: 

(3.36) 

Three Lemmas* 

The rest of the section is needed only for the proofs of Theorems 14.4 
and 14.5 and in Section 17. 

Theorem 3.8. If (Xn,X) is a random element of S x S and 
p(Xn,X) 3 0, and i j  A is an X-continuity set, then it follows that 
P([Xn E A]A[X E A]) -+ 0. 

PROOF. For each positive E, 

P[Xn E A, X 4 A]) 5 P[p(Xn,X) 2 €1 + P[p(X,A) < € 7  X Sr A]. 

This, the same inequality with A' in place of A, and the assumption 
p(Xn,X) * 0, together imply 

limsup P([Xn E A]A[X E A]) 
n 

2 P[p(X,A) < c, X @ A]] + P[p(X,AC) < E, X E A]. 

If A is an X-continuity set, then the right side goes to 0 as E --t 0. 0 
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Let (X’,X’’) and (XA,Xi) be random elements of T = 5’‘ x 5’”. 
If S is separable, then, by Theorem 2.8(i), 

(3.37) <x;,x;> * (X’,X”) 

holds if and only if 

(3.38) 

holds for all XI-continuity sets A‘ and all XI’-continuity sets A“. 

Theorem 3.9. Suppose that T i s  separable. If XA + X‘ and 
Xi + a“, then  (X;, Xi) * (XI, a”). 

PROOF. We must verify (3.38) for X“ = a“. Suppose that A‘ is an 
XI-continuity set and that a“ # aA“. If a” E A”, then P[Xi # A”] -, 0, 
and (3.38) follows from XA + X’ and 

P[XA E A’, X: E A”] -, P[X’ E A ,  X” E A”] 

P[XA E A’] - P[X: # A”] 5 P[XA E A’, X: E A”] 5 P[X; E A’]. 

If a” # A“, then (3.38) follows from 

P[XA E A’, X: E A”] 5 P[X; E A”] + 0.  0 

Suppose that YN and all the (XA , X i )  are all defined on the same 
(Q3, P). Suppose that 30 is a field in 3 and let 31 = o(30). 

Theorem 3.10. Suppose that T is  separable, X’ and X” are 
independent,  and X” has the same distribution as Y”. If p(Xi ,  Y“) =+ 

(3.39) P([XA E A’] n E )  -+ P[X’ E A’]P(E) 

f o r  each XI-cont inui ty  set A’ and each E in 30, and i f  each XA is  
measurable &/S’, then  (XA, Xi)  + (XI, X”). 

PROOF. Fix an XI-continuity set A’ and an XI’-continuity set 
A“. It follows from the hypothesis and Rhyi’s theorem on mixing 
sequences [M21]  that (3.39) holds for every E in 3, and therefore, 

(3.40) P[XA E A’, Y“ E A”] -+ P[X’ E A’]P[Y” E A”]. 

We are to prove (3.38), which, since X‘ and X“ are independent and 
the latter has the same distribution as Yn, reduces to 

P[XA E A’, X: E A”] -+ P[X’ E A’]P[Y” E A N ] .  

Since p(Xi,Y”) + 0, it follows by Theorem 3.8 that this is the same 

0, if 

thing as (3.40). 0 
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Problems 

WEAK CONVERGENCE IN METRIC SPACES 

3.1. 

3.2. 

3.3. 

3.4. 

3.5. 

3.6. 

3.7. 

3.8. 

Let X I ,  X p ,  , . , be independent random elements having a common distribution 
P on S. Let P,,, be the empirical measure corresponding to the observation 
( X l ( u ) , . . . , X n ( u ) ) :  

n 

.” 
k = l  

Show that, if S is separable, then P,,, +, P with probability 1. Use the 
strong law of large numbers and Theorem 2.3. 

If X’ and X” are random elements of S’ and S”, then ( X ’ ,  X ” ) :  R -+ T = 
St x S” is measurable TIS‘ x S”. And ( X I ,  XI’) is a random element of T if T 
is separable but may not be a random element in the nonseparable case [MlO]. 

Let X n  and X be random elements of a separable S, defined on ( R , T ,  P). Then 
[ u : X , ( u )  + X ( u ) ]  lies in 3; if it has probability 1, then p ( X n , X )  + 0, and 
hence X ,  =+ X .  
Prove directly that Pn + 6, if and only if Pn(B(4, 6 ) )  + 1 for positive E .  Prove 
directly from the definition (3.6) that X ,  + 4 implies h ( X n )  + h ( X )  if h is 
continuous at 4. 

Apply the method of Example 3.4 to the hypergeometric distribution (see Prob- 
lem 10 on p. 194 of Feller [28]). 

Suppose there is a nonnegative random variable Y such that P[(X,(  2 t] 5 
P[Y 2 t ]  for all n and all positve t ,  and EY < 00 (Y and the X ,  can be defined 
on different spaces). Show that X n  + X implies EX, -+ E X .  This corresponds 
to the dominated convergence theorem. 

Prove (in the notation of (3.34)) that 

For random variables qn and q on the same probability space, write 9, + p  9 
if qn - q + 0 in the sense of (3.6). Let Sn be the partial sums of independent 
and identically distributed random variables with mean 0 and variance 1. By 
the Lindeberg-LCvy theorem, S n l f i  + N .  Show that S n / 6  -+p 77 cannot 
hold for any random variable 9. But see Chapter 5. 

SECTION 4. LONG CYCLES AND LARGE DIVISORS* 

Here we study the cycle structure of random permutations on n letters, 
obtaining in particular the joint limiting distribution (n  --t m) of the 
greatest cycle lengths. And we derive analogous results on the limiting 
distribution of the largest prime divisors of an integer drawn at random 
from among the first n integers. These distributions are described by a 
certain measure-the Poisson-Dirichlet measure-on a certain space of 
sequences. We study weak convergence in this space, obtaining results 
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that have applications to population biology as well as to long cycles 
and large divisors. The essential tool is the mapping theorem. 

Long Cycles 

Every permutation can be written as a product of cycles. For example, 
the permutation 

( 4 4  (1 4 2 7)(3)(5 6) 

on the seven “letters” 1,. . . , 7  sends 1 -, 4 + 2 -+ 7 + 1, 3 + 3, 
and 5 -, 6 -, 5. To standarize the representation, start the first cycle 
with 1 and start each successive cycle with the smallest integer not yet 
encountered. 

Of the n! permutations on 1,. . . , n, for how many does the leftmost 
cycle have length i (1 5 i 5 n)? The answer is 

(4.2) (n - 1)(n - 2 ) .  - * (n - i + 1) x (n - i)! = (n - l)! 

To see this, note that what we want is the number of products ap, 
where Q is an i-long cyclic permutation of 1 together with i - 1 other 
letters and p is a permutation of the remaining n - i letters. The 
number of ways of choosing a is the product to the left of the x in 
(4.2); and, Q having been chosen, the number of ways of then choosing 
,!3 is (n - i)! 

Suppose now that a permutation is chosen at random, all n! possi- 
bilities having the same probability, and suppose that it is written as 
a product of cycles in standard order, on the pattern of (4.1). That 
is to say, the first cycle starts with 1, the second cycle starts with 
the smallest element not contained in the first cycle, and so on. Let 
Cr, C;, . . . be the lengths of the successive cycles; if the number of 
cycles is u, set Ct = 0 for > u (C, Ct = n). It follows by (4.2) that 
P[Cr = i ]  = 1/n for 1 5 i 5 n. Suppose that C? = i and that in fact 
the initial cycle consists of i specified letters (including 1, of course). 
Then there remain n - i letters that make up the rest of the permuta- 
tion, and conditionally, the chance that Cg = j is just the probability 
that the first cycle in a random permutation on the remaining n - i 
letters has length j, and this is l / (n  - i) for 1 5 j 5 n - i. Therefore, 

(4.3) P[Cr = i ]  = -, 15 i 5 n, 
1 
n 

2 5 i + j 5 n, 
1 1  
n n - i ’  

p [ q  = i, c; = j ]  = - . - 
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and so on. 
Let L: = Cc/n be the relative cycle lengths, and let B1, B2, . - - be 

independent random variables, each uniformly distributed over [ 0,1] .  
(The uniform distribution has the beta-(1,l) density [ M l l ] ;  hence the 
notation Bi.) Since Ly is uniformly distributed over its possible values 
i / n ,  it should for large n be distributed approximately as B1. That 
this is true can be shown by the argument in Example 2.2: If f is 
continuous over [0,1],  then E[f(Ly)]  = n-l f ( i / n )  is a Riemann 

sum converging to Ji f(z) dz = E[f(B1)]. Therefore, L? + B1. 
If Cy = i, then Cg is, conditionally, uniformly distributed over 

the values j for j 5 n - i = n - Cy. Therefore, conditionally on 
Ly = i / n ,  L; is uniformly distributed over the values j / n  for j / n  5 
1 - i / n  = 1 - Ly. This makes it plausible that (Ly, L;/(1 - Ly))  
will be, in the limit, uniformly distributed over the unit square-like 
(B1, Bz) . This follows by a two-dimensional Riemann-sum argument: 
If f is continuous over the square [ 0, 112, then 

Therefore, (Ly, L t / ( l -Ly) )  + (B1, Bz),  and it follows by the mapping 
theorem that (LT, L;) + (B1, ( 1  - B1)B2). 

Define 

(4.4) G1 = B1, Gi = (1 - B 1 ) * * * ( 1  - & - I ) & ,  i > 1. 

A three-dimensional version of the argument given above shows that 

which, by the mapping theorem, implies (LT, L;, L;) + ( G I ,  G2, G3). 
This extends to the general r :  (Ly, .  . . , Lp) +, ( G I , .  . . , GT). We 
can regard (Ly, L?, . . .) and ( G I ,  G2, . . .) as random elements of Rw 
(Example 2.6), and since the finite-dimensional sets in Rw form a 
convergence-determining class, we have 

(4.5) Ln = (Ly, L!, - .  .) +n G = (G17G2,. .). 
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This describes the limiting distribution of the relative cycle lengths 
of a random permutation when it is written as a product of cycles in 
standard order. 

Induction shows that zf=l Gi = 1 - nf=l (1 - Bi), and since, by the 
Borel-Cantelli lemma, there is probability 1 that Bi > f holds infinitely 
often, it follows that C z 1 G i  = 1 with probability 1. The random 
sequence G can be viewed as a description of a random dissection of 
the unit interval into an infinite sequence of subintervals. A piece of 
length B1 is broken off at the left, which leaves a piece of length 1 - B1. 
From this, a piece of length (1 - is broken off, which leaves a 
piece of length (1 - &)(1 - Bz), and so on. What (4.5) says is that 
the splitting of a random permutation into cycles is, in the limit, like 
this random dissection of an interval. 

Let Ly, = (L?l), LT2), . . .) be Ln with the components ranked by 
size: Li;, 2 L?2, 2 - - -. The details of how this is to be done are taken 
up below. To study the asymptotic properties of the longest cycles of 
a random permutation is to study the limiting distribution of Ly,. Let 
G(.) be G with the components ranked by size. After the appropriate 
groundwork, we will be in a position to deduce LT) + G(.l from (4.5) 
by means of the mapping theorem, as well as to describe the finite- 
dimensional distributions of G(.). It will be very much worth our while 
to do this in a more general context. 

The Space A 

Consider the subset 

of R" with the relative topology, that of coordinatewise convergence. 
Let be the set of z in R" for which 2 1 , .  . . , Z k  > 0 and 1 - 
E 5 '& zi 5 1; it is closed in ROO, and since A = 0, U k > l / €  A,,k 
(intersection over the positive rationals), (4.6) is a Bore1 set, a member 
of R". From CiCp = n follows Ln E A, and since C i G i  = 1 with 
probability 1, P[G E A] = 1. This leads us to study weak convergence 
in the space A. 

If Yn and Y are random elements of A, then they are also random 
elements of ROO; see Example 3.1. And Yn + Y holds in the sense 
of A if and only if it holds in the sense of RO", which in turn holds if 
and only if (YT, . . . , Y,") + (Y1, . . . , Y,) holds for each T .  Therefore: 
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Y n  j Y holds for random elements of A if and only if (Yy, . . . , Y,") J 

(Y1,. . . , Y,) holds for each r .  
Change the G in (4.5) on a set of probability 0 in such a way that 

CiGi  = 1 holds identically, so that G becomes a random element of 
A. Now (4.5) is to be interpreted as convergence in distribution on A 
rather than on ROO. 

We turn next to  ranking. The ranking function p: A + A is defined 
this way: If z E A, then xi +i 0, and so there is a maximum zi, and 
this is the first component of y = pz. There may of course be ties 
for the maximum (finitely many), and if there are j components zi of 
maximum size, take y1 , .  . . , y j  to have this common value. Now take 
yj+l to  be the next-largest component of z, and so on: p is then defined 
in an unambiguous way. 

Lemma 1. The ranking function p: A -, A is continuous. 
PROOF. To prove that z" + z implies pz" + pz, we can start by 

applying an arbitrary permutation to the coordinates of x and applying 
the same perutation to the coordinates of each z": This does not 
change the hypothesis, which requires convergence xr +n xi in each 
coordinate individually, and it does not change the conclusion because 
it leaves pz and the pz" invariant. Use the permutation that ranks 
the xi. Assume then that z1 2 x2 2 - (and hence pz = z) and that 
zn + z; we are to prove that pz" + z. Since xi z? = xi xi = 1 and 
the coordinates are all nonnegative, it follows by Scheffb's theorem that 
Xi 1.; - 

For n beyond some n,, the coordinates zy, . . . , xc all lie in the range 
a1 f E ,  z ? ~ + ~ , .  . . , z t  all lie in the range a2 f E ,  and Z ~ ~ + ~ , I C ~ + ~ ,  . , . 
are all less than a3 + E .  If a1 - E > a2 + E > a2 - E > a3 + E ,  then 
(for n > n,) the first il coordinates of pzn are some permutation of 
zy, . . . , zc , all of which are within E of a l ;  and the next i2 coordinates 
are some permutation of . . , zr2, all of which are within E of a2. 

0 

An immediate consequence of Lemma 1 and the mapping theorem: 

Theorem 4.1. If Y n  and Y are random elements of A, and if 

Since (4.5) now means weak convergence in A, we can conclude 

+n 0. Suppose that 

al = 5 1  = ... = X i l  > a2 = Zil+l = * * * = X i 2  > a3 = X i z + l  = . * * .  

A simple extension of this argument proves continuity. 

Y n  J n  Y ,  then pYn +n pY. 

that the vector Ly) of ranked relative cycle lengths satisfies 
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For this result to have real significance, we need detailed information 
about the distribution of G(.) over A. 

The Poisson-Dirichlet Distribution 

Let B1, B2, . . . be independent random variables on (0, F, P), each hav- 
ing the beta-(1,8) density 8(1-z)e-1 over [0,1],  where 8 > 0. If 8 = 1, 
the Bi are uniformly distributed. Define G = (GI, G2,.  . .) by (4.4), as 
in the special case above. For the general 8, we still have C i G i  = 1 
with probability 1; alter G on a set of probability 0 so as to make it 
a random element of A. The distribution PG-l of G, a probability 
measure on A, is called the GEM distribution with parameter 8. And 
as before, let G(.) = pG = (G(1), G(2), .  . .) be the ranked version of G. 
The distribution PG;,’ of G(.) on A is the Poisson-Dirichlet distribu- 
tion with parameter 8. 

For 8 = 1, the GEM distribution describes the random splitting 
of the unit interval into a sequence of subintervals, and the Poisson- 
Dirichlet distribution describes the random splitting after the pieces 
have been ordered by size (the longest piece to the left). And, also 
for 8 = 1, by (4.5) the GEM distribution describes the asymptotic 
distribution of the relative cycle lengths of a random permutation when 
the cycles are written in standard order, and by (4.7) the Poisson- 
Dirichlet distribution describes the asymptotic distribution when the 
cycles are written in order of size (the longest one first). 

We can get a complete specification of the Poisson-Dirichlet distri- 
bution for the general 8 by an indirect method that comes from popula- 
tion genetics. Imagine a population of individuals (genes) divided into 
n types (alleles) ,t the proportion or relative frequency of individuals 
of the ith type being Zi, i = 1 , .  . . , n. In the diffusion approximation 
to the Wright-Fisher model for the evolution of the population, the 
stationary distribution for the relative frequency vector ( 2 1 , .  . . , 
has the symmetric Dirichlet density [M13] 

21,. . . , 2,-1 > 0, 
21 + * * *  + zn-1 < 1. for { 

t In the genetics literature, the number of types is denoted by K .  For a general 
treatment of mathematical population genetics, see Ewens [27]. The account here 
is self-contained but ignores the biology. 
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Here a represents the mutation rate per type. To study the limiting 
case of a population in which all mutations produce new types, there 
being infinitely many such types available, let n tend to infinity while 
the total mutation rate 6 = na is held fixed. This forces the individual 
components to 0, and so we focus on the largest components-the 
components corresponding to types having appreciable proportions in 
the limiting population-which means studying the first T components 
Z ( l ) ,  . . . , Z(T) of the ranked relative frequencies. 

The program is first to derive the limiting distribution of the ranked 
frequencies, and then later to show that this is in fact the Poisson- 
Dirichlet distribution with parameter 0. Some of the arguments involve 
considerable uphill calculation, and these are put at the end of the 
section, so as not to obscure the larger structure of the development. 

Changing the notation, let Zn be a random element of A for which 
(Zr,. . . , ZC-,) is distributed according to the density (4.8), 2: = 1 - 
2,. - .  . . - ZE-l, and 2: = 0 for i > n. And let Zr, = pZn. Here n will 
go to infinity, a will be a positive function of n such that na + 6 > 0, 
and T will be fixed. Define 

Let g m ( .  ; a )  be the rn-fold convolution of the density aza-l on (0, l),  
and write (assume n > T + 2) (n), = n(n - 1 ) .  - - (n - T + 1). 

Lemma 2. The density of ZT;,, . . . ,Zc, at points of MT as 

(4.10) 

r ( n 4  a - - (n -T)  a-1 . . , a-1 (n-r+l)a-2 
' T - 1  ' T  gn-T ( 1 - Z 1  - . . . - 

ZT 
Z1 

For the proof, see the end of the section. To carry the calculation 
further, we need the limit of gm( + ; a ) .  Suppose that 0 > 0. For k 2 1, 
let c k ( 2 )  be the (s1,. . . , sk)-set where s1,. . . , Sk > 1 and xfZl Si < 2, 
and define 

note that, for 2 5 k ,  ck(Z) = 8 and Jk(X;6) = 0. Define Jo(z ;0)  = 
p - 1  
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Lemma 3. For 0 < x < m, we have 

m rm-k(+m 0 k r ( (m - k ) a )  (4.12) gm(x;a)  = C (-l)k 
O<k<x 

where for k = 0 the integral is to be replaced b y  xma-l. If m + 00 and 
ma + 8 > 0, then gm(x; a )  converges to 

(4.13) 

for  each positive x ;  ge is a probability density on  ( 0 , ~ )  having Laplace 
trans fo rm 

Although ge is integrable, term-by-term integration in (4.13) gives 
C f ~ .  Here y is Euler's constant and El( t )  is Lm e-"u-'du, the 
exponential integral function. The sum in (4.13) can be extended to 
all k 2 0, since the summand vanishes for k 2 x .  Again the proof is 
deferred. 

Theorem 4.2. A s  n -+ 00 and na -+ 8 ( r  f i e d ) ,  the density (4.10) 
of Zc,, . . . ,Zc, converges to the probability density 

(4.15) 

on the set MT defined by  (4.9). 

Let dT(zT;  8) be (4.15) with 2 1 , .  . . , zT-1 integrated out (for fixed zT, 
( 2 1 , .  . . , zT- l ,  2,) ranges over MT), so that dT( . ;8)  is the r th  marginal 
density. 

Theorem 4.3. The rth marginal density of (4.15) is 

(- q k e T f k  l - x  
JkST - 1 ( 7 ; 0) C k ! ( r  - l)! 

(4.16) dT(x; 8) = xe-2 
O<k<X- ' -T  
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for 0 < x < r-'. The corresponding moments are 

for rn = 0,1,2,. . .. 
The two preceding theorems are proved at the end of the section. 

S ize-B iased Sampling 

Let X = (X1,X2, .  . .) be a random element of A. The size-biased 
version of X is another random element X = ( X I ,  X 2 ,  . . .) of A defined 
informally in the following way. Take X 1  = Xi with probability Xi.  
That done, take X 2  = X j  ( j  # i) with the conditional probability 
X j / ( l  - X i ) ;  to put it another way, take X I  = X i ,  X 2  = X j  (i # j )  
with probability Xi - X j / ( l  - Xi) .  Continue in this way. We must set 
up a probability mechanism for making the choices, and we must avoid 
divisions by 0. 

Replace the probability space on which X is defined by its product 
with another space, in such a way that the enlarged space supports 
random variables (1, &, . . . that are independent of X and of each other 
and each is uniformly distributed over [ 0,1]; arrange that 0 < &(w)  < 
1 for every u and w.  Xh (So = 0 ) ;  since X is a 
random element of A, Si t l .  Let cu = i if Si-1 < tU 5 Si. Then, 
conditionally on X ,  the qu are independent and each assumes the value 
i with probability Xi (if Xi  = 0, then [cu = i] = 0). Let 71 = c1; let 
7 2  = cu, where u is the smallest index for which cu is distinct from 71; 

let 73 = cw, where v is the smallest index for which q,, is distinct from 
7 1  and 7 2  (v necessarily exceeds u) ;  and so on. If we define Xu = X,,, 
then X = ( X I ,  X 2 , .  . .) will have the structure we want, provided we 
accommodate the case where we run out new values for the T ~ .  

Suppose that the procedure just described defines 71, . . . , T~ un- 
ambiguously but that X,, + * * - + X,, = 1. Then ~ ~ + 1  is not defined, 
because there is no qw distinct from 71, . . . , ru. In this case, take T~ = 00 

and Xw = 0 for v > u. Under this definition, if X has infinitely many 
positive components, then all the components of X are positive, and 
they are a (random) permutation of the positive components of X ;  and 
if X has exactly u positive components, then X I ,  . . . , Xu are positive, 

Let Si = 
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a permutation of the positive components of X ,  and Xu = 0 for 21 > u. 
And C,"=l Xu = Czl Xu = 1 in any case, so that X is a random ele- 
ment of A (verify in succession the measurability of cu, T ~ ,  Xu).  This 
defines the size-biased version X of X .  

The significance of size-biasing for the biological model is this. If 
( X I , .  . . , X,) has the density (4.15) for each T ,  then X = ( X I ,  X,, . . .) 
describes a population with infinitely many types and mutation rate 
8. Now X = (X,,, X,,, . . .), and for a given X ,  X,, is the conditional 
probability that 71 is the oldest type, X,, is the conditional probability 
that 7 2  is the second oldest type, and so on. For us the significance of 
size-biasing will be that we can use it to show that the densities (4.15) 
specify the finite-dimensional distributions of the Poisson-Dirichlet dis- 
tribution on A. This will give us the asymptotic distribution of the 
lengths of the long cycles in a random permutation, and we can also 
use size-biasing to analyze the distribution of the large prime divisors 
of a random integer. 

Return now to the Zn of Theorems 4.2 and 4.3. By (4.8) and 
Dirichlet's formula [M12], (Zy, . . . ,ZF) has at (21,. . . ,z,) the density 

(4.18) hr(zl,. . . , 2,) = 

if T < n, 21,. . . , z, > 0, and z1 + + Z, < 1; and by symmetry, this 
is also the density for Zc,. . . ,Zc for any of the (n) ,  permutations 
il, . . . , a, of size T from (1,2,  . . . , n}. For size-biasing on Zn, 

(4.19) P [ T ~  = il, . . . ,T, = i,IlZ"] 

the last equality defines p ,  and there are no divisions by 0. Since 
(ZT, . . . ,ZF) = (Z7",, . . . , ZFr), 

P[(@, . . . ,Z:> E HllZ"] = Cp(ZZ", ,  . . . ,zc)Ijy(z;, . . . ,ZC), 

where the sum extends over all (n), choices for il, . . . , i,. And now it 
follows by symmetry that 

(4.20) P[(Zp, . . . ,Z:) E H ]  
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Let [ 0, 11" be the subspace of R" consisting of the points x sat- 
isfying 0 < xi < 1 for all i. Suppose that Bn is a random element of 
[ 0,1]" such that the components By, B?, . . . are independent and Bin 
has the beta-(a + 1, (n  - i)a) density 

on (0 , l ) .  Define Gn by GY = By and GY = (1 - By) .  . (1 - Br-l)Ba. 
Consider the map given by z1 = xi ,  zi = (1 - x1) - .  (1 - xi-l)zi ,  
1 < i 5 T .  The inverse map is x1 = z1, X i  = zi/(l - z1 - - Z i - l ) ,  
1 < i 5 T ,  and so G;", . . . , GP has density 

(4.22) 

Since the Jacobian is n~=2(1 -z l - . . . - z i - l ) -1 ,  algebra reduces (4.22) 
to the integrand in (4.20): 

(4.23) ( B y ,  . .@) =d (G?, . .  . , Gr) ,  

in the sense that the two have the same distribution. 
As n -, 00 and na -+ 8, (4.21) converges to the beta-(l,8) density 

for 1 5 i 5 T .  If B1, B2,. . . are independent, each having this limiting 
distribution, then of course (Br ,  . . . , Bp) an (B1, . . . , By) .  And if 
G I ,  G2,. . . are defined in terms of these Bi by (4.4), as before, then the 
mapping theorem gives (G;",. . . , GP) +, ( G I , .  . . , Gr). It follows by 
(4.23) that (Zy, . .  . ,&?) = s ~  ( G I , .  . . , Gr) ,  and since this holds for each 
r ,  Zn = s ~  G. And further, since the components of Zn are a (random) 
permutation of those of Zn, pZn and pZn coincide, and it follows by 
Theorem 4.1 that 

(4.24) 2:) = pZn = p i n  J~ pG = G(.) .  

Since Theorems 4.2 and 4.3 give the limiting densities for the com- 
ponents of 2;) , we have a complete description of the Poisson-Dirichlet 
distribution: 

The random vector (G( l ) ,  . . . , G(r ) )  has density 
(4.15), G(r)  has density (4.16), and the moments E [ ( G ( , I ) ~ ]  are given 
b y  (4.17). 

Theorem 4.4. 
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Numerical values for some of these distributional quantities can be 
calculated. Below is a short table of the distribution of G(1) for the 
case 8 = 1. The median is e-1/2, which is about .61, and so there is, 
for large n, probability about that the length of the longest cycle 
exceeds .61 x n. 

X .20 .30 .40 .50 .60 .70 .80 .90 
P[G(1) 5 X] .OO .02 .13 -31 -49 .65 .78 .90 

Moments have also been computed: For 8 = 1, the first three com- 
ponents G(q, G(z), G(q of G(.) have means .62, .21, .01 and standard 
deviations .19, .11, .07. And here is a graph of d l (  - ; 1): 

Large Prime Divisors 

Let Nn be an integer randomly chosen from among the first n integers: 
P[Nn = 7-12] = 1/n for 1 5 m 5 n. Let Qni be the distinct prime 
divisors of Nn, ordered by size: Qnl > Qn2 > * *, where Qnu = 1 if Nn 
has fewer than distinct prime divisors,t and let Tn = nu Qnu be the 
product of the distinct prime divisors. 

Theorem 4.5. We have 

(4.25) 

where G(.) has the Poisson-Dirichlet distribution for 8 = 1. 

Note that the vector on the left does lie in A. We prove below that 

(4.26) 

t In the limit, the large prime divisors all have multiplicity 1: PIQ:iIN,] +, 0 
for each i .  See Problem 4.4. 
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from which it follows that the asymptotic properties of the ratios 
logQ,i/logNn are the same as those of the ordered relative cycle 
lengths of a random permutation. For example, the chance is about $ 
that the largest prime factor of Nn exceeds N;L6l. 

PROOF. Since Tn 5 Nn I n, (4.26) will follow if we prove that 

(4.27) 

We need two facts from number theory:t 

(4.28) c - = loga: + 0(1), C l o g p  = O(z) 
P l X  

P 
P i x  

as x -, 00. Since 

(4.28) implies that E[log n - log Tn] is bounded, and (4.27) follows from 
this. 

Size-bias the vector in (4.25), then multiply each component of 
the result by logT, and apply exp( . )  to it. This gives a sequence 
Dn1, Dn2, . . . of random variables such that, if N, has exactly T distinct 
prime factors and PI , .  . . ,pr is an arbitrary permutation of them, then 

(4.29) P[Dn1 =pl , . . . ,Dnr  =~r l lNn]  

And Dni = 1 if i > T .  Note that the conditional probabilities (4.29) 
summed over the r! permutations come to 1. Define Vnl = n and 
Vni = n/Dnl * * * Dn,i-l, and take 

(4.30) Bni = log Dni / log Vni . 
Finally, define Gn1 = B n l  and Gni = (1 - Bn1) 
we can prove that 

(1 - Bn,i-l)Bni. If 

(4.31) Bn2, .  a )  J n  (BIT a ) ,  

t Hardy & Wright [37], Theorems 414 and 425, or [PM.85]. 
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where the Bi are independent random variables, each uniformly dis- 
triubted over [ 0,1], then the mapping theorem will imply that G, = 
(Gnl, Gn2,. . .) +n G = ( G I ,  G2,. . .), where the Gi are defined by 
(4.4). NOW Gni = logD,i/logn (note that Vn,i-l/D,,i-l = Vni and 
that G,i = 0 if i exceeds the number of distinct prime divisors of N,) ,  
and if GLi = logD,i/logT,, then it follows by (4.27) that GL + G. 
Theorem 4.1 now gives pGL + pG = G(.),  and since the D,i are a 
permutation of the Qni, this is (4.25). 

To understand how (4.31) is proved, consider first an approximate 
argument for Bn1. Suppose that 0 5 a 5 1. If t(rn) is the product of 
the distinct prime divisors of rn (T, = t ( N , ) ) ,  then 

P[Bn1 5 a] = P[D,1 5 na] = C -P[D,1 5 nalN, = rn] 
n 

m=l 

h n h logt(rn) h n - logn 
m=l p < n a , p ( m  m=l p<na ,p lm 

1% P 1 1 C,-.a, 1% P 

=E&i P l n a  m<n,plm C P&i pin" 

where the first approximation works because log J: increases so slowly, 
the second works because there are about n/p multiples of p preceding 
n,  and the final step is a consequence of (4.28). 

By Theorem 2.5, in order to prove (4.31) we need only show that, 
for each T ,  

liminf ~ [ a i  < ~ , i  5 bi7 i 5 r] 2 n ( b i  - ai)  (4.32) 

if 0 < ai < bi < 1. Note that there are at least T prime divisors if the 
event in (4.32) occurs. By the definitions, 

T 

n 
i= 1 

(4.33) ~ [ a i  < Bni 5 bi , i  5 T I  = P [ V ~  < D,i 5 v,b,,, i 5 TI 

n 

m=l 
where the inner sum extends over certain permutations p l  . . . , p ,  of 
the distinct prime divisors of rn, namely, over those permutations that 
satisfy 

n 
)bi, i 5 r. 

.Pi-1 (4.34) ( P I  * * api-1 )" < P i  qpl .. 
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By (4.29), each term in the sum satisfies (t(m) defined as before) 

Decrease the right side by increasing t(m) to n. This gives 

and we can further decrease the right side by tightening (4.34) to 

(0 < E < 1). For i = r, the right-hand inequality here implies pT 5 
PT I e n / p i  .**pT-i and hence p i  - * - p T  I en. But then the number 
Ln/p1- * .pT]  of multiples m of p i  + * pT satisfying m I n is greater than 
(1 - e ) n / p l -  * p T ,  and reversing the sums in (4.36) gives 

l l b i  

T 

the sum extending over the permutations satisfying (4.37). 
If ni = n / p l  * *pi-1, then (4.37) implies ni/ni+l = pi I n: and 

where 6 = nL1(l - bi) > 0. By (4.28), there is a u, such that u 2 u, 
implies 

hence n,+l 2 nt-bi, and it follows by recursion that ni 2 nT 2 n 6 , 

and if n 2 u,"I6, then this holds for each u = ni. Fix P I , .  . .pT- l ,  sum 
out pT, and apply (4.39) for u = nT: 

where here the sum extends over p l ,  . . . ,pT-l and the term -r/ logn6 
is to account for the fact that in summing out p ,  we must avoid the 
values of the earlier pi .  And now successively sum out pT-1,. . . , p l  in 
the same way: 

T 

for n 2 u:I6. This proves (4.32). 0 
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Technical Arguments 

PROOF OF LEMMA 2. Let 

(4.40) 

By symmetry, the density of ZE), . . . ,Zrr) at  a point (21,. . . ,zr)  of M,. is 

where the domain of integration is given by 0 < yl,  . . . , ym < zr and (to account 
for 2,") 0 < 1 - s - c,"=, yi < Zr .  The change of variables yi = zrs, reduces the 
integral here to 

where now the variables are constrained by 0 < s1, . . . , sm < 1 and c- 1 < si < 
c. If S is a (positive) random variable having the density gm, then the integral in 
(4.42) is the integral of (c - S)O-' over the event c - 1 < S < c (if c < 1, the 
constraint c - 1 < S is vacuous). Therefore, (4.41) can be written as 

Since the last integral is gm+l(c;a), this proves (4.10). 0 

PROOF OF LEMMA 3. The Laplace transform [ ( l -c l~~( l -e -" )za- ldx) l~a]mo 
of gm( .  ; a )  converges to the right-hand member of (4.14). This by itself, however, 
does not imply that the limit transform comes from a density to which gm(. ; a) 
converges; see Example 3.3. Let Am(z) be the set where 0 < s i r .  . . , sm < 1 and czl sE < x; let &(5) be the set where s1,. . . , s k  > 0 and cf=l sz < z; and define 
Ck(x) as in (4.11). First, for 0 < 5 < m, we have 

(4.43) l x g m ( u ) d u  =/ ams;I-' . . . sE-; 'ds l . . .ds , .  

Use the inclusion-exclusion principle, together with symmetry, to express this as the 
integral over Bm(x) minus an alternating sum of integrals over the regions where 
sl,. . . , Sk 2 1, Skfl,.  . . , sm > 0, and czl si < z. This reduces (4.43) to 

Arn(x) 
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where in the term for k = 0 the iterated integral is replaced by a single integral over 
&(z). Dirichlet's integral formula [M12] further reduces this to 

where in the term for k = 0 the integral is replaced by Pa. 
The derivative of the term for k = 0 in (4.44) matches the corresponding term 

in (4.12), and we turn to the case 1 5 k < x < m. Write p = (m - k)a > 0 and 
u = s1 + . . . + ck. Since (4.43) does have a derivative, we need only find the limit 
for h decreasing to 0 of the difference quotient 

(4.45) 'J s?-~...s;-'(z + h - c7)'dSi ... dSk 
Ck(X+h)-ck(X) 

Since z + h - u 5 h and /3 > 0, the first term here is at most (Dirichlet's formula 
again) - .  

r k ( a )  (z + h)ko - xka N hP- rk(a) zko-- l  -+h 0, 
h W a )  

The difference quotient in the second term in (4.45) goes to P(z - ~ 7 ) O - l ~  and so the 
derivative of the kth term (k 2 1) in (4.44) will agree with the kth term in (4.12) 
if we can integrate to the limit. But by the mean-value theorem, the difference 
quotient is bounded by / 3 ( 2 ~ ) ~ - ~  if /3 2 1 (and h < z) and by the limit /3(z - 0 ) O - l  
if 0 < /3 < 1, and in either case, the dominated convergence theorem applies. (This 
argument is like the proof of the chain rule, which does not work here.) 

Suppose now that m -+ 00 and m a  -+ 8, and consider a fked k. Since r'(1) = 
-y (for our purposes this can be taken as the definition of y), we have &(a) = 
r ( l  + a) = 1 - y a  + O(a2)  and hence amrm(a) -+ e--ye. Since (m)k N mk and 
rn/r(a) = r n a / r ( l +  a) -+ 8, it now follows that the factor in front of the integral 
in (4.12) converges to the corresponding factor in (4.13). It is now clear that the 
term for k = 0 in (4.12) converges to the term for k = 0 in (4.13). Consider the case 
1 5 k < z < m. Let Dk(Z) be the set defined by yl,  . . . , yk > 1/z and cf=l yi < 1. 
Transforming the integrals in (4.11) and (4.12) by si = zyi, consider whether 

holds for each positive z. Of course, Po-' + z'-~. The two integrals themselves 
differ by at most 
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The integrand here goes to 0 pointwise; if 0 < 00 < 0, then (m - k)o > 00 for large 
m, and so the integrand is at most 2(1 - ~Ek_lyz)eO-l, which is integrable over 
&(I) (Dirichlet yet again). By the dominated convergence theorem, the integral 
goes to 0, and we do have g m ( x ;  a)  + ge(x )  pointwise. The limit go is nonnegative, 
and by Fatou's lemma, it is integrable. 

Although the series in (4.13) cannot be integrated term by term, it can be if 
we multiply through by e- tx  for t > 0. Reversing the integral in the kth term then 
gives I'(0)t-e(E1(t))k. Putting this into (4.13) and summing over k gives the middle 
expression in (4.14), and sum and integral here can be reversed because if we work 
with absolute values (suppress the ( - l )k ) ,  the resulting sum is finite. 

For t > 0, the right-hand equality in (4.14) is equivalent to y + log t + E l ( t )  = 
s,"(l- e-")u-'du, which follows by integration by parts on each side, together with 
the fact that -7 = r'(1) = e-" log u du. Finally, since the right-hand member 

0 

PROOF OF THEOREM 4.2. Recall the definitions (4.40). Since r is fixed, we have 
m + 00 and ma + 0, and so, by Lemma 3 (m + 1 in place of m), (4.10) converges 
pointwise to (4.15). By Fatou's lemma, (4.15) integrates to at most 1, and we must 

0 

of (4.14) converges to 1 as t 10, g integrates to 1-is a probability density. 

show that the integral in fact equals 1; this will be part of the next proof. 

PROOF OF THEOREM 4.3. By (4.15) and (4.13), 

where the integration extends over s1 > . . . > sr-l > x and s 1 + .  . . + sr-l + z < 1. 
First, restrict the sum by 0 5 k 5 2-l - r  (the other terms are 0) and take it outside 
the integral; second, lift the constraint s1 > ... > s,-1 and divide by ( r  - l ) !  to 
compensate; and third, change variables: yi = s i / x .  This leads to 

k!(r - l)! (4.46) d,(x;O) = x ' - ~  
O < k S x - ' - r  

where here the integration extends over y l ,  . . . , yr-1 > 1 and yl + . . . + yr-l < 
(1 - x ) / x .  Replace the Jk in (4.46) by its definition (4.11), and intersect the region 
of integration for the yi with that for the si to arrive at (4.16). 

It is probabilistically clear that d,  must be supported by (0,~-l). It is conve- 
nient to take the support as (0, l ) ,  which is consistent because all the summands in 
(4.16) vanish if 2 > r-'. The mth moment of d,( . ; O )  is 
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To simplifty the notation, take w = Ic + r - 1; by (4.11), the last integral in (4.47) is 

where a stands for 1 + s1 + . - . + sv. The change of variable s = a/y converts the 
inner integral into [Mll] 

Therefore, the last integral in (4.47) is (w = k + r - 1) 

(4.48) 

Expanding the right-hand exponential in (4.17) in a series gives 

What (4.17) says is that the right member of (4.47) is identical with (4.49), and this 
will be true if the two match term for term, for each k .  Since the last integral in 
(4.47) reduces to (4.48), and since r(0 + 1) = W(e), the question now is whether 
(take w = k + r - 1 again in (4.49)) 

This last integral is (take si = xi/y) 

Since the inner integral on the right here is (1 + s1 + . . . + sv)-mI'(m), we arrive at 
the integral on the left in (4.50). This proves (4.17). 

We have still to prove that (4.15) integrates to 1, which will be true if the 
marginal density (4.16) does. Since (4.17) holds for m = 0, the question is whether 

(4.51) 

For r = 1, this is 

(4.52) ey-le-Ve-@El(v)dy = 1 1 

and it holds because the integrand is the derivative of e-gE1(v). Multiply each side 
of (4.52) by 0-' and repeatedly differentiate the resulting identity with respect to 
8. This gives a sequence of identities equivalent to (4.51). 

The proofs of Lemmas 2 and 3 and Theorems 4.2 and 4.3 are now complete. 0 
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Problems 
4.1. Show that 

k 
&z;e) = - J k - l ( 2 -  i;q, forz > k 2 1 

5 

if 0 = 1. Now show that &(s; 1) is differentiable except at  2 = 1/2. 

4.2. Let X be the sizebiased version of X .  Show that X ,  + X implies X ,  + X .  

4.3. Denote the size-biased version of X by ax. Show that p 2 X  = p X ,  a 2 X  =d  

ax, p a x  = pX,  upX =d  ax. Show that, if X has the Poisson-Dirichlet 
distribution, then p X  = X and aX has the GEM distribution. Show that, if 
X has the GEM distribution, then u X  =d  X and pX has the Poisson-Dirichlet 
distribution. 

4.4. (a) Let Ab be the set of integers m such that p 2  divides m for some prime p 
exceeding b. Show that, if b, + 00, then P[N, E Abn] + 0 . 

(b) Redefine the Qni to consist of all the prime divisors of N,, multiplicity 
accounted for, in nonincreasing order: Qnl 2 Qn2 2 . . .. Show that (4.25) 
still holds if N ,  is substituted for T,. 

4.5. If 2 has density (4.13), then the denisty he of (1 + Z)-’ is related to d l ( . ,O)  

Show that E[G;y] = Br(B)eYe. 

SECTION 5. PROHOROV’S THEOREM 

Relative Compactness 

Let II be a family of probability measures on (S ,  8). We call II rel- 
atively compact if every sequence of elements of II contains a weakly 
convergent subsequence; that is, if for every sequence {P,} in II there 
exist a subsequence {Pni} and a probability measure Q (defined on 
(S,S) but not necessarily an element of II) such that P,, + Q. Even 
though Pni +i Q makes no sense if QS < 1, it is to be emphasized that 
we do require QS = l-we disallow any escape of mass, as discussed 
below. For the most part we are concerned with the relative com- 
pactness of sequences {P,}; this means that every subsequence {P,,} 
contains a further subsequence {P,,(ml} such that =+m Q for 
some probability measure Q. 

Example 5.1. Suppose we know of probability measures P, and 
P on (C,C) that the finite-dimensional distributions of P, converge 
weakly to those of P: PnT;1..,, +, P7r;1..tk for all lc and all t l ,  . . . , &. 
We have seen (Example 2.5) that P, need not converge weakly to P. 
Suppose, however, that we also know that {P,} is relatively compact. 
Then each {Pni} contains some {P,,(,,,,} converging weakly to some Q. 
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Since the mapping theorem then gives Pn,c,,.rrl;l..t, =+, QrGf..t,, 
and since Pnr,l!..t, +n PnG1..tk by assumption, we have QrG1..t, = 

PrG;..tk for all t l ,  . , . , t k .  Thus the finite-dimensional distributions of 
P and Q are identical, and since the class Cf of finite-dimensional sets is 
a separating class (Example 1.3), P = Q. Therefore, each subsequence 
contains a further subsequence converging weakly to P-not to some 
fortuitous limit, but specifically to P. It follows by Theorem 2.6 that 
the entire sequence {Pn} converges weakly to P. Therefore: 

If { Pn} is relatively compact and the finite-dimensional distrabu- 
tions of Pn converge weakly to  those of P,  then Pn J n  P .  

This idea provides a powerful method for proving weak convergence 
in C and other function spaces. Note that, if {Pn} does converge 
weakly to P, then it is relatively compact, so that this is not too 
strong a condition. 0 

Example 5.2. Now suppose we know that a sequence of mea- 
sures {Pa} on (C,C) is relatively compact and that, for all k and 
all t l ,  . . . , t k ,  PnTG1,,tk converges weakly to some probability measure 
pt l...tk on (Rk,7Zk)-the point being that we do not assume at the 
outset that the pt l...tk are the finite-dimensional distributions of a 
probability measure on (C, C). Some subsequence { Pni} converges 
weakly to some limit P (sub-subsequences are not relevant here). Since 
PnirG1..tk ~i Prt,1kt, (again by the mapping theorem), and since 
PnxG!..t, +n pt l . . . tk (again by assumption), P T G ~ . ~ ,  = pt *...t, for all 
t l ,  . . . , t k .  This time we conclude that there exists a probability mea- 
sure P having the pt l...t, as its finite-dimensional distributions. There- 
fore: 

If {Pn} as relatively compact, and if PnrG1..t, +, pt l...t, f o r  all 
t l ,  . . . t k ,  then some P satisfies Pr<l..tk = pt l...tk f o r  all t l , .  . . , t k .  

This provides a method of proving the existence of measures on 
(C, C) having prescribed properties. 0 

Tightness 

To use this method requires an effective means of proving relative com- 
pactness. 

Ezample 5.3. Suppose Pn are probability measures on the line. 
How might we try to prove that {Pn} is relatively compact? Let F, 
be the distribution functions corresponding to the Pn. By the Helly 
selection theorem [PM.336], every subsequence {&*} contains a further 
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subsequence { Fni(m) } for which there exists a nondecreasing, right- 
continuous function F such that Fni(m) (x) +, F ( x )  for all continuity 
points x of F. Of course, 0 5 F ( x )  5 1 for all z, and if F has limits 
0 and 1 at -GO and +GO, then F is the distribution function of a 
probability measure Q, and Pni(m) +, Q follows (Example 2.3). One 
can try in this way to prove {P,} relatively compact. 

If {P,} is not, in fact, relatively compact, then of course the effort 
must fail for certain subsequences. Suppose for example that P, = 6,. 
Then F ( x )  = 0 is the only possibility for the limit function, and ac- 
cordingly, there are no weak limits at all: If Pni(m) +, Q, then 
Q(-k, k )  5 liminf, P,i(m)(-k, k )  = 0 for all k ,  and so Q cannot be a 
probability measure. The reason this sequence is not relatively com- 
pact is that mass is “escaping to infinity.” 

For a second example, let p, be the uniform distribution over 
[-n,+n], and take P, = 60 for even n and P, = &50 + i p ,  for odd 
n. Then {Pni} contains a weakly convergent subsequence if ni is even 
for infinitely many i ,  but what if ni runs through odd integers only? 
Then the single possible limit F ( x )  is for x < 0 and $ for x 2 0, and 
again Pni(m) =+, Q is impossible: It would imply Q(-k, k )  5 for all 
k.  In this example, the mass lost (namely i), rather than heading off 

0 

The condition that prevents this escape of mass generalizes the 
tightness concept of Theorem 1.3. The family I’I is tight if for every E 
there exists a compact set K such that P K  > 1 - E for every P in n. 

in any particular direction, simply evaporates. 

Theorem 5.1. If n is tight, then it is relatively compact. 

This is the direct half of Prohorov’s theorem, and the main purpose 
of the section is to prove it. The proof, like that of Helly’s theorem, 
will depend on a diagonal argument. The following corollary extracts 
the essence of the argument in Example 5.1. 

Corollary. If {P,} is tight, and i f  each subsequence that converges 
weakly at all in fact  converges weakly to P ,  then the entire sequence 
converges weakly to P: P, +, P.  

PROOF. By the theorem, each subsequence contains a further sub- 
sequence converging weakly to some limit, and by the hypothesis, this 

0 

EzampZe 5.4. Return to Example 5.1, and suppose that P, is a 
unit mass at the function z, defined by (1.5). No subsequence can 

limit must be P. Apply Theorem 2.6. 
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converge weakly (Example 2.7), and the reason for this is that {P,} is 
not tight: If P,K > 1 - E > 0 for all n, then K must contain all the 

0 z, and hence cannot be compact. 

Theorem 5.2. Suppose that  S as separable and complete. If TJ: as 
relatively compact, t hen  at as tight. 

This is the converse half of Prohorov’s theorem. It contains Theo- 
rem 1.3, since a II consisting of a single measure is obviously relatively 
compact. Although this converse puts things in perspective, the direct 
half is what is essential to the applications. 

PROOF. Consider open sets G, increasing to S.  For each E there 
is an n such that PG, > 1 - E for all P in n: Otherwise, for each n 
we have P,G, 5 1 - E for some P, in II, and by the assumed relative 
compactness, Pni Ji Q for some subsequence and some probability 
measure Q, which is impossible because then QG, 5 liminfi P,,G, 5 
lim infi PniG,, 5 1 - E ,  while G, t S. 

From this it follows that, if Akl, A k 2 ,  . . . is a sequence of open balls 
of radius l / k  covering S (separability), then there is an nk such that 
P(Uil,, A k i )  > 1 - ~ / 2 ~  for all P in n. If K is the closure of the totally 
bounded set n,,, Ui<,,, A k i ,  then K is compact (completeness), and 

0 PK > 1 - E for i l l  P i n  II. 

The Proof 

There remains the essential agendum of the section, the proof of The- 
orem 5.1. Suppose that {P,} is a sequence in the tight family n. We 
are to find a subsequence {Pni} and a probability measure P such that 
Pni =+-i P. 

CONSTRUCTION. Choose compact sets K, in such a way that K1 c 
K2 c and PnK, > 1 - u-l for all u and n. The set (JUKU is 
separable, and hence [M3] there exists a countable class A of open sets 
with the property that, if z lies both in U,K, and in G ,  and if G is 
open, then z E A c A- c G for some A in A. Let ‘FI consist of 0 and 
the finite unions of sets of the form A- n K, for A E A and u 2 1. 

Using the diagonal procedure, choose from the given sequence {P,} 
a subsequence {Pni} along which the limit 

a ( H )  = lim P,,H 
2 
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exists for each H in the countable class H. Our objective is to construct 
on S a probability measure P such that 

PG = sup a ( H )  
HCG 

for all open sets G. If there does exist such a probability measure P ,  
then the proof will be complete: If H C G, then a ( H )  = limi Pn, ( H )  5 
lim infi PniG, whence PG 5 lim infi PniG follows via (5.2), and there- 
fore Pni =+i P. 

To construct a P satisfying (5.2)’ note first that 1-I is closed under 
the formation of finite unions and that a ( H ) ,  defined by (5.1) for each 
H in 1-I, has these three properties: 

(5.3) a(Hi) 5 a(H2) if HI  c H2; 

And clearly 4 0 )  = 0. For open sets G define 

then 
M of S define 

is monotone and p(0) = a(@) = 0. Finally, for arbitrary subsets 

(5.7) 

it is clear that y(G) = P(G) for open G. 
Suppose we succeed in proving that y is a n  outer measure. Recall 

[PM.165] that M is by definition y-measurable if y(L) 2 y(M n L )  + 
y(MC n L )  for all L c S, that the class M of y-measurable sets is a 
a-field, and that the restriction of y to M is a measure. Suppose also 
that we are able to prove that each closed set lies in M .  It will then 
follow, first, that S c M ,  and second, that the restriction P of y to S 
is a measure satisfying PG = y(G)  = P(G), so that (5.2) will hold for 
open G. But P will be a probability measure because (each K,, having 
a finite covering by A-sets, lies in 1-I) 

(5.8) 1 2 PS = p(S) 2 supa(K,) 1: Sup(1- u-’) = 1. 
U U 
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We proceed in steps. 

Step 1: If F c G, where F is closed and G is open, and i f  F c H 
fo r  some H in ‘FI, then F c Ho c G for some Ho an 3-1. To see 
this, choose, for each z in F ,  an A, in the class A in such a way that 
5 E A, c A; c G. These A, cover F, and since F is compact (being 
a subset of H ) ,  there is a finite subcover A,, , . . . A,, . Since F c K, 
for some u, we can take Ho = UF=l (A& n K,). 

Step 2 P is  finitely subadditive (on the open sets). Suppose that 
H c G1 U G2, where H E 3-1 and G1 and G2 are open. Define 

If z E F1 and x 4 G I ,  then 2 E G2, so that, since Gg is closed, 
p(z, G i )  = 0 < p(z, G;), a contradiction. Thus F1 c G I ,  and similarly 
F2 c G2. Since F1 c Hand H E 3-1, it follows by Step 1 that F1 c H1 c 
G1 for some H1 in 3-1; similarly, F2 c H2 C G for some H2 in 3-1. But 
then a ( H )  5 a(H1 U H2) 5 a ( H i )  + a(H2) 5 P(Gi) + P(G2) by (5.31, 
( 5 4 ,  and (5.6). Since we can vary H inside GI U G2, P(G1 U G2) 5 

Step 3: P is countably subadditive (on the open sets). If H c 
U, G,, then, since H is compact, H c Un<no G, for some no, and 
finite subadditivity implies a ( H )  5 /3(Un<no G,) 5 Ensno P(G,) 5 
C,P(G,). Taking the supremum over If contained in U,G, gives 

Step 4: y is a n  outer measure. Since y is clearly monotone and 
satisfies ~ ( 0 )  = 0, we need only prove that it is countably subadditive. 
Given a positive E and arbitrary subsets M, of S, choose open sets 
G, such that M, C G, and P(G,) < y(M,) + ~/2,. Then, by the 

@(GI)  + P(G2) f ~ ~ ~ ~ ~ ~ .  

- 

P(U, Gn) I c, P(Gn). 
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countable subadditivity of P ,  y(U, M,) L P(u, G,) I P(Gn) < 
C, y(Mn)  + E ;  since E was arbitrary, y(U, M,) 5 C,  y(Mn) .  

Step 5: P(G) 2 y ( F  n G) + y(FC n G) for  F closed and G open. 
Choose, for given E ,  an H1 in 7-l for which H1 C FC r l  G and a(H1) > 
P(FC n G) - E. Now choose an HO in 7-l for which HO c H t  n G and 
a(H0) > p(H,CnG)-E. Since Ho and H1 are disjoint and are contained 
in G, it follows by (5.6), (5.4), and (5.7) that P(G) 2 a(H0 U Hi) = 

But E was arbitrary. 

By the inequality of Step 5, 
P(G) 2 y ( F  n L )  + y(FC n L )  if G is open and G 3 L; taking the 
infimum over these G shows that F is y-measurable. This completes 
the construct ion. 0 

Prohorov's theorem (the direct half) will be used many times in 

a(H0) +a(H1) > P( H,CnG) +P(F"nG) - 2~ 2 y(FnG)  +y(FCnG) - 2 ~ .  

Step 6 F E M if F is closed. 

what follows. Here is a standard application to classical analysis: 

ExarnpZe 5.5. Let P be a probability measure on the Bore1 sub- 
sets of the half-line S = [ 0,m). The Laplace transform of P is the 
function defined for nonnegative t by L(t)  = Jx>o edt'P(dz). There is 
a uniqueness theorem [PM.286] according to which L completely de- 
termines P. Suppose we also have a sequence of measures P, with 
transforms L,. If P, + P,  then obviously L,(t) ---t L(t)  for each t .  

Let us prove the converse. The argument depends on the inequality 

Since L(t)  is continuous and L(0) = 1, there is for given E a u such 
that u- l J t (1  - L( t ) )d t  < E/e. But then, if L,(t) --f L(t )  for all t ,  
u-l J,"(l- Ln(t))  dt < e/e for n beyond some no. And if a = u-l, then 
(5.9) gives Pn[ 0, a] 2 1-E for n > no, Therefore, {P,} is tight (increase 
a to take care of 9,. . . ,P,,), and by the corollary to Theorem 5.1 it 
is enough to show that if a subsequence converges weakly at all then 
it must converge to P. But Pni +i  Q implies that Q has transform 

0 

The arguments in Examples 5.1 and 5.5 prove very different propo- 
sitions but have the same structure. Each argument rests on three 

limi Lni(t) = L(t) ,  so that, by uniqueness, P must be the limit. 
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things: (i) the concept of tightness, (ii) a previously established con- 
verse proposition, and (iii) a previously established proposition con- 
cerning uniqueness. 

As to Example 5.1, on conditions under which P,nt,1..,, =+ Pnt,l..tk 
for all t l ,  , . . , t k  implies P, + P on C: 

(i) Methods for proving tightness will be developed in Chapter 2. 
(ii) The previously established converse says that Pn =+ P implies 

(iii) The previously established uniqueness proposition says that the 
finite-dimensional distributions P x ~ , ! . . ~ ~  uniquely determine P. 

As to Example 5 .5 ,  on the fact that pointwise convergence of the 
corresponding Laplace transforms (L,(t) + L(t)  for t 2 0) implies 
P, =+ P on [ 0 , ~ ) :  

(i) Tightness was proved by means of (5.9). 
(ii) The previously established converse says that Pn =+ P implies 

(iii) The previously established uniqueness proposition says that the 

1 P,nt,1..,, =+ p.rrt,...,, for all t i , .  . . , t k .  

Ln(t)  + L(t)  for all t. 

transform L uniquely determines P. 

Although these two arguments have the same structure, there is an 
essential difference: If the Laplace transforms in Example 5.5 converge 
pointwise, then, because of (5.9), {P,} is necessarily tight. On the 
other hand, if the finite-dimensional distributions in Example 5.1 con- 
verge weakly, then {P,} may or may not be tight-and the essential 
task in Chapter 2 is to sort out the cases. 

Problems 

5.1. In connection with Example 5.2, assume that P,n;f..,, + ptl.. .tk for all 
tl...tk and prove directly that the pt  l . . . t k  are consistent in the sense of 
Kolmogorov's existence theorem. 

5.2. If S is compact, every separating class is a limit-determining class. 

5.3. Let ll consist of the 6, for 2 in A.  Show directly from the definition that II 

5.4. A weak limit of a tight sequence is tight. 

5.5. If II is tight, then its elements have a common a-compact support, but the 
converse is false. 

5.6. A sequence of probability measures on the line is tight if and only if, for 
the corresponding distribution functions, we have limr+oo F,(z) = 1 and 
limr+-oo Fn(z) = 0 uniformly in n. 

is relatively compact if and only if A- is compact in S. 
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5.7. A class of normal distributions on the line is tight if and only if the means and 
variances are bounded (a normal distribution with variance 0 being a point 
mass). 

5.8. A sequence of distributions of random variables X ,  is tight if it is uniformly 
integrable. 

5.9. Probability measures on S’ x S” are tight if and only if the two sets of marginal 
distributions are tight on S’ and S”. 

5.10. As in Problem 1.10, suppose that S is separable and locally compact. Assume 
that P, f + P f for all continuous f with compact support; show first that 
{P,} is tight and second that P, + P. 

5.11. Consider the following analogues of the concepts of this section: Points on the 
line play the role of probability measures on S, ordinary convergence on the 
line plays the role of weak convergence, relative compactness has the same 
definition (every sequence has a convergent subsequence), and boundedness 
plays the role of tightness. For each of the following facts, find the analogue 
in the theory of weak convergence. 
(a) If each subsequence of {x,} contains a further subsequence converging to 

(b) If (2,) is bounded, then it is relatively compact (and conversely). 
( c )  If {x,} is relatively compact and every subsequence that converges at all 

(d) The same with “bounded” in place of “relatively compact.” 
(e) If {x,} is bounded, sinx, + sinx, and sinrx, + sinrx,  then x, + x. 

5.12. The example in Problem 1.13 shows that Theorem 1.3 fails without the as- 
sumption of completeness, and hence so does Theorem 5.2.  Here is an exam- 
ple of a separable S on which is defined a relatively compact (even compact), 
non-tight set of probability measures the individual elements of which are 
tight. 
(a) Let Q be the closed unit square and put L, = [(x,y):O 5 y 5 11 for 

0 5 x 5 1. Let K be the class of compact K in Q that meet each L,. 
From the fact that K contains each [(x, y): 0 5 x 5 1] ,0  5 y 5 1, conclude 
that K has the power of the continuum. 

(b) Let x c) K, be a one-to-one correspondence between [ 0,1] and K. For 
each x choose a point p ,  in K, n L,, and let A = [p,: 0 5 x 5 11. Show 
that (i) A meets each L,  and (ii) A meets each K in K. 

( c )  Let S = Q - A.  Show that (i’) S misses exactly one point on each L,  and 
(ii’) if K is a compact subset of S, then K misses some L,. 

(d) Let P, be Lebesgue measure on L,  n S (just one point on L, is missing). 
Show that x, + x implies P,,, =+ P,. Show that each P, is tight but 
that [P,:O 5 x 5 11 is not tight. 

x, then x, + x. 

converges to x, then x,, + x. 

SECTION 6. A MISCELLANY* 

Of the four topics in this section, the first, on the ball a-field, is used 
only in Section 15, and the second, on Skorohod’s representation the- 
orem, is not used at all. The last two, on the Prohorov metric and a 
coupling theorem, are used only in Section 21. 
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The Ball +Field 

Applications to nonseparable function spaces require a theory of weak 
convergence for probability measures on the ball a-field So, the one 
generated by the open balls. Although So coincides with the full Bore1 
a-field S in the separable case, it may be smaller if S is not separable. 
In this case, a continuous real function on S may not be measurable 
So, which creates problems: If S is discrete and uncountable (Example 
1.4) and A is neither countable nor cocountable, then I A  is continuous 
but not measurable So. 

Lemma 1. (i) If M is separable, then p( , M )  is So-measurable 
as well as uniformly continuous. 
(ii) If M is separable, then M 6  E SO f o r  positive 6 .  
(iii) If M is closed and separable, in particular if at is compact, then 

M E So. 

PROOF. Since [ x : p ( x , y )  < u] = B(y,u) E So, it follows that 
p( s ,  y) is So-measurable for each y .  If D is countable, then p( - , 0) 
is So-measurable; and if D is dense in M ,  then p( , 0) = p( - , M ) .  
Hence (i), and (ii) follows. Finally, (iii) follows from (ii) and the fact 

0 

The theory of weak convergence for So is closely analogous to that 
for S. 

Theorem 6.1. If P is a probability measure on  (,!?,SO), A is  a n  
So-set, and E is positive, then there exist a closed So-set F and an  open 
So-set G such that F c A C G and P(G - F )  < E .  

PROOF. The proof is analogous to that of Theorem 1.1. Let Q be 
the class of So-sets with the asserted property. If A = [y : p(x ,y )  5 r] 
is a closed ball, take F = A and G = [ y  : p(x,  y) < r + 61 for small 6: 
A E Q. It is now enough to show that Q is a a-field, and the argument 

0 

Call a probability measure on So separable if it has a separable 
support (in So). By Lemma l(iii), the support can be assumed closed. 

Theorem 6.2. Suppose probability measures P and Q on  SO are 
separable. If Pf = Qf for  all bounded, uniformly continuous, So- 
measurable functions f, then P = Q. 

PROOF. Let M be a common closed, separable support for P and 
Q. By part (i) of Lemma 1, the function 

that M = n, M1/, for closed M .  

in Section 1 carries over without change. 

(6.1) f(x) = 1 - (1 - p ( ~ ,  (F')C n M ) / E ) +  
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is So-measurable as well as uniformly continuous, and by part (iii), the 
set A, = (F')' n M lies in So. If z E F ,  then p(z,  A') 2 E, and hence 
f (x) = 1. And f is supported by A: = F' U Mc.  Thus IF 5 f 5 I A ~ .  
If F E So, then PF 5 Pf = Qf 5 QA: = Q(F' U M c )  = Q(F'). 
Suppose that F is closed and let E 1 0: PF 5 QF. Since, by symmetry, 
QF 5 PF as well, P and Q agree for closed So-sets and hence, by 

0 Theorem 6.1, agree on So. 

For probability measures P, and P on SO, if P,f + Pf for every 
bounded, continuous, So-measurable real function f on S ,  we say that 
P, converges weak'ly to P and write P, =$" P. By Theorem 6.2, a 
sequence cannot have two distinct, separable weak0 limits. 

Theorem 6.3. If P has a separable support, then these five con- 
ditions are equivalent 

(i) P, JO P. 
(ii) P, f + Pf for all bounded, So-measurable, uniformly continuous f. 
(iii) limsup, PnF 5 PF for all closed F in So. 
(iv) liminf, P,G 1. PG fo r  all open G in So. 
(v) P,A + PA fo r  every So-set A f o r  which So contains a n  open G 

and a closed F such that G c A c F and P(F - G) = 0. 

PROOF. As in Theorem 2.1, the implication (i) + (ii) is trivial. To 
prove (ii) + (iii) we can use (6.1) and the set A, again, where M is a 
closed, separable support for P. Since lim SUP, P,F 5 lim SUP, P, f = 
Pf 5 PA: = P(F' U M C )  = P(F'), we can let E 1 0, as before. 

The equivalence of (iii) and (iv) is again simple. To prove that (iii) 
and (iv) together imply (v), replace A" by G and A- by F in (2.3). 

Finally, suppose that (v) holds and that f is bounded, continuous, 
and measurable with respect to SO. Let Gt = At = [f > t]  and Ft = 
[f 2 t ] .  Then the So-sets Gt and Ft are open and closed, respectively, 
and Ft - Gt C [f = t ] .  Except for countably many t ,  therefore, we 
have P(Ft - Gt) = 0 and hence P,[f > t] + P[f > t ] ,  and so the old 
argument goes through. 0 

There is also a mapping theorem. Let S' be a second metric space, 
with ball a-field S;. Let h map S into S'. 

Theorem 6.4. Suppose that M (in So) is  a separable support f o r  
P and that h is  measurable So/S; and continuous at each point of M .  
If Pn +" P (in S), then P,h-' *" Ph-' (in S'). 
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PROOF. Let G' be an open Sh-set, and put A = h-lG'. Since 
h is continuous at each point of M ,  A n M c A'. Since A n M is 
separable, there is a countable union G of open balls which satisfies 
A n  M c G c A" c A. But since SO contains A n  M and the open 
set G, liminf, P,h-l(G') = liminf, P,A 2 liminf, P,G 2 P G  2 

0 

Define a sequence {P,} of probability measures on So to be tight' 

P ( A  n M )  = P A  = Ph-'(GI). 

if for every E there is a compact set K such that, for each 6,t 

By Lemma 1, K and K6 are in SO, and so is K6 = [ z : p ( z , K )  5 61. If 
{P,} is tight' and P, J' P, then, since K6 is closed and contains K 6 ,  
it follows by Theorem 6.3, together with (6.2), that PK6 2 1 - E. Let 
6 10: PK 2 1 - E ,  and so P is tight in the old sense. 

The next result is the analogue of Prohorov's theorem. 

Theorem 6.5. If {P,} is tight', then each subsequence {Pni} 
contains a further subsequence {Pni(m)} such that Pni(m) =+& P for 
some separable probability measure P on SO. 

PROOF. Since a subsequence of a tight' sequence is itself tight', it 
is enough to construct a weakly convergent subsequence of { P,} itself. 
Choose compact sets Ku in such a way that K1 c K2 c - .  and 

for all u and 6. Now follow the proof of Theorem 5.1. 
Define the classes A and 7-i just as before. By the diagonal method, 

choose a subsequence {Pni} along which the limit ao(H6)  = limi PniH6 
exists for each of the countably many sets H 6  for H in 'H and 6 a 
positive rational. Now put a ( H )  = limb ao(H6) ,  where 6 decreases to 
0 through the rationals. 

Clearly, a satisfies (5.3). Since (HI U H z ) ~  = Hf U H i ,  it also 
satisfies (5.5). And if H I  and H2 are disjoint, then (compactness) Hf 
and H l  are also disjoint for small 6, and so a satisfies (5.4). Define 
P(G) for open G by (5.6) and y(M) for arbitrary M by (5.7). Then 
Steps 1 through 6 of the previous proof go through exactly as before. 

t Problem 6.1 shows why the 6 and the limit inferior are needed here, even though 
they are not needed for the theory based on S. 
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Let P be the restriction of y to So. By (6.3), ao(K$) 2 1 - u-l 
(K,  E X), and so a(&) 2 1 - u-l. Therefore, (5.8) holds again, and 
P is a probability measure on SO. Finally, if H c G, where H E Fl, 
G is open, and G E So, then (compactness again) H6 c G for small 
6, and so a ( H )  5 ar~(H‘) 5 liminfi PniG. Therefore, PG = P(G) 5 
lim infi P,,G, and Pni +: P. 

The measure P,  as the weak’ limit of the tight’ sequence {P,}, is 
0 

Suppose that p and p’ are two metrics on S ,  and let So, S, SA, S‘ 
be the corresponding ball and Bore1 a-fields. If p’ is finer [M2] than p, 
then each popen set is also p’-open, and hence S c S’. In Section 15 
there arise a function space S and a pair of metrics for which 

tight in the old sense, and so it is certainly separable. 

(6.4) s = s; c s‘. 
If Pn and P are probability measures on S = SA, one can ask whether 

(6.5) Pn + P r e p  

(“re” for “with respect to”) and whether 

(6.6) P, +’ P rep‘. 

Suppose P has a separable support M (in S = SA). If (6.6) holds, then 
limsup, P,F 5 PF  for each p’-closed F in SA and hence holds for 
each pclosed F in S. Thus (6.6) implies (6.5). Now assume also that 
pconvergence to a limit in M implies p’-convergence. If the SA-set F is 
p’-closed, and if F1 is its pclosure, then M n F 1  c F ,  and (6.5) implies 
lim SUP, PnF 5 lim SUP, PnF1 5 PF1 = P ( M  n F1) 5 P F ,  from which 
(6.6) follows. 

Theorem 6.6. Suppose that p’ is finer than p, that p-convergence 
to a limit in M implies p’-convergence, that (6.4) holds, and that M 
(in S = SA) is separable and supports P.  Then (6.5) and (6.6) are 
equivalent. 

Even though (6.5) and (6.6) are equivalent here, (6.6) can give 
more information: If h is a real So-measurable function on S ,  then 
P,h-’ + Ph-’ follows from (6.5) if h is pcontinuous and from (6.6) 
if h is p’-continuous. And if p’ is strictly finer than p, then there are 
more p’-continuous functions than there are pcontinuous functions.+ 

Problem 6.4. 
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Skorohod's Representation Theorem 

If P, =+-, P,  then there are (see (3.4)) random elements X ,  and X 
such that X ,  has distribution P,, X has distribution P,  and X, =+ X .  
According to the following theorem of Skorohod, if P has a separable 
support, then it is possible to constuct the X and all the X ,  on a com- 
mon probability space and to do it in such a way that X,(w) -', X ( w )  
for each w.  This leads to some simple proofs. For example, if P, +, P 
(and P has separable support), and if h: S -' S' is continuous, con- 
struct X ,  and X as just described; then h(Xn(w))  -'n h ( X ( w ) )  for all 
w,  and hence (see the corollary to Theorem 3.1) hX,  J, h X ,  which 
is equivalent to P,h-l =+-, Ph-l. This gives an alternative approach 
to the mapping theorem. 

Theorem 6.7. Suppose that P, = s ~  P and P has a separable 
support. Then there exist random elements X ,  and X ,  defined on a 
common probability space (QF, P), such that L ( X n )  = P,, L ( X )  = P,  
and Xn(w)  +, X ( w )  for  every w.  

PROOF. We first show that, for each E ,  there is a finite S-partition 
Bo, B1,. . . , B k  of S such that 

PBo < E ,  

P(BBi) = 0, i = 0,1, .  . . , k, 
diam Bi < E ,  i = 1,. . . , k. 

Let M be a separable S-set for which PA4 = 1. For each z in M ,  
choose r, so that 0 < r, < ~ / 2  and P(aB(z , r , ) )  = 0. Since M is 
separable, it can be covered by a countable subcollection Al ,  A2, . . . 
of the B(x,?-,). As k t 00, P(&Ai) t F'(UzlAi) 1 P M  = 1, 
and we can choose k so that P(& Ai) > 1 - E .  Let B1 = A1 and 
Bi = A; n ... n A;-l n Ai, i = 2 , . .  .,k, and take Bo = (&A$. 
Then the middle relation in (6.4) holds because dBi C U,"=, aAj for 
i = 0, 1, . . . , k, and the other two are obvious. 

Take Em = 1/2m; there are S-partitions Bp,  B r ,  . . . , B E  such that 

Amalgamate with B r  (which need not have small diameter) all the 
By for which P(BT)  = 0, so that P( - [ B y )  is well defined for i 2 1. 
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By the middle relation in (6.8) and the assumption that P, =$ P ,  there 
is for each m an nm such that n 2 nm implies 

(6.9) &(By) 2 (1 - cm)I'(B,"), i = 0,1,. . . , km. 

We can assume nl < n2 < 
There is a probability space supporting a random element with any 

given distribution on (S ,  S), and by passing to the appropriate infinite 
product spacet we can find an (a, 3, P )  that supports random elements 
X ,  Y, ( n  2 l), Yni (n,i 2 l), 2, (n  2 1) of S and a random variable 
E ,  all independent of one another, having these three properties: First, 
L ( X )  = P and L(Y,) = P,. Second, if nm I n < n m + l ,  then L(Y,i) = 
P,(. IBT). Third, if nm 5 n < nm+l, then L(Zn) = p,, where 

km 

p , ( ~ )  = E ; ; E ~  C P~(AIBz">[P,(B,") - (1 - ~ m ) p ( ~ r ) l ;  
i=O 

by (6.9), pn is a probability measure on ( S ,  S). Finally, [ is uniformly 
distributed over [ 0,1]. 

For n < n1 (if n1 > l), take X ,  = Y,. For n, 5 n < mm+l, define 

km 

xn = c 4 6 5 1 - ~ m , x E B ~ ] y n 2  + 46>1-cm]&. 
i = O  

If nm 5 n < nm+1, then, by independence and the definitions, 

P[X,  E A] 
km 

- - C P [ J  5 1 - Em, X E .By, Yni E A] + P[< > 1 - Em, Zm E A] 
i=O 

km 
= (1 - Em) C P[X E B,"]P(A\Brj + e m p n ( A )  = P,A. 

i=O 

Thus L ( X n )  = P, for each n. Let Em = [X $! B r ,  [ I 1 - em] and 
E = lim inf, Em. If nm 5 n, < nm+l, then on the set E m ,  X, and X 
lie in the same BY, which has diameter less than em. It follows that 
X ,  +, X on E ,  and since P(E&) < 2 ~ m )  we have PE = 1 by the 
Borel-Cantelli lemma. Redefine X, as X outside E.  This aoes not 

0 change its distribution, and now X,(w) +, X ( w )  for all w. 

t See Halmos [36], p. 157, 
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The Prohorov Metric 

Let P be the space of probability measures on the Borel a-field S 
of a metric space S. If one topologizes P by taking as the general 
basic neighborhood of P the set of Q such that lPfi - Qfil < E for 
i = 1,. . . , I c ,  where the fi are bounded and continuous on S, then weak 
convergence is convergence in this topology. Here we study the case 
where P can be metrized. 

The Prohomv distance n(P, Q )  between elements P and Q of P is 
defined as the infimum of those positive E for which the two inequalities 

(6.10) P A I Q A ' + E ,  Q A L P A ' + r  

hold for all Borel sets A. We first prove a sequence of facts connecting 
this distance with weak convergence and then, at the end, state the 
most important of them as a theorem. 

(i) The Prohorov distance is a metric o n  P .  Obviously r (P ,Q)  = 
r ( Q ,  P )  and T(P, P )  = 0. If r ( P ,  Q )  = 0 ,  then for positive E ,  PF  5 
QF'+E, and if F is closed, letting E J. 0 gives PF 5 QF;  the symmetric 
inequality and Theorem 1.1 now imply P = Q. If r (P ,  &) < €1 and 
n(Q, R) < € 2 ,  then PA 5 QA'l + E I  5 R(AE1)E2 + E I  + E Z  I R(A'1+'2) + 
€1 + €2.  The triangle inequality follows from this and the symmetric 
relation. 

(ii) If PA 5 QA'+E for all Borel sets A, then n(P, Q )  5 E .  In other 
words, if the first inequality in (6.10) holds for all A, then so does the 
second. Note that A C S - BE and B c S - A' are equivalent because 
each is equivalent to the condition that p(z, y) 2 E for all z in A and y 
in B. Given A, take B = S - A'; if the first inequality in (6.10) holds 
for B ,  then PA' = 1 - PB 2 1 - QB'- E = Q(S-  B E )  - E 2 &A-c.  

(iii) Ifr(P,, P )  --t 0,  then P, + P.  Suppose that T(P,, P )  < E, + 

0. If F is closed, then limsup, P,F 5 limsup,(PF'n + E,) = P F .  

(iv) If S is separable and P, + P,  then n(P,, P )  + 0. For given 
E ,  let {A*} be an S-partition of S into sets of diameter less than E .  

Choose k so that P(Ui,I,Ai) < E and let 8 be the finite class of open 
sets (Ai, U . - .  U Aim)' for 1 5 il < < i, 5 k. If P, =$ P ,  
then there exists an no such that n 2 no implies that P,G > P G  - e 
for each G in B. For a given A, let A0 be the union of those sets 
among Al, . . . , AI, that meet A. Then A6 E 8, and n 2 no implies 
PA I PA0 + P(Ui,k Ai) 5 PA0 + E < + 2~ 5 PnA2' + 2 ~ .  
Use (ii). 
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(v) If S is separable, then a set in P is relatively compact in the 
sense of Section 5 if and only if i ts  n-closure is  n-compact. In the sep- 
arable case, weak convergence and n-convergence are the same thing, 
and so this is just a matter of translating the terms. 

(vi) If S is  separable, then P is separable. Given E ,  choose an S- 
partition {Ai} as in the proof of (iv). In each nonempty Ai choose 
a point xi, and let II, be the countable set of probability measures 
having the form CiskriSzi for some k and some set of rationals ri. 
Given P E P ,  choose k so that P(Ui,kAi) < E, then choose rationals 
r1,. . . , rk  in such a way that ri = 1 and Cisk Iri - P(Ai) I < E ,  

and put Q = CiSk ribzi. Given a set A, let I be the set of indices i 
(i 5 k) for which Ai meets A. If A0 = Uier Ai, then PA 5 PA0 + E = 
CiGz P(Ai) + E 5 Xiel  ri + 2~ = QAo + 2~ 5 QA' + 2 ~ .  By (ii), n, is 
a countable 2e-net for P.  

(vii) If S is  separable and complete, then P is complete. Suppose 
that {P,} is n-fundamental. It will be enough to show that the se- 
quence is tight, since then it must (by Theorem 5.1 and (iv) above) 
contain a n-convergent subsequence. The proof can be completed by 
the argument in the proof of Theorem 5.2 if we show that for all E and 6 
there exist finitely many S-balls Ci such that P,(C1 U. - - U C,) > 1 - E 

for all n. First, choose so that 0 < 277 < E A 6. Second, choose 
no so that n 2 no implies r(Pno, P,) < 7. Third, cover S by balls 
Ai = B( z i , ~ )  and choose rn so that P,(A1 U U A,) > 1 - 77 for 
n 5 no. Third, let Bi = B(xi,  27). If n 2 no, then P,(& U . .  SUB,) 2 
Pn((AIU.,.UA,)~) 2 Pno(AlU...UA,)-q2 1-277. I f n  5 no, then 
Pn(B1 U. . -  U B,) 2 P,(Al U q .  U A,) 2 1 - 7. Take Ci = B(zi,  S), 
i 5 m. 

Theorem 6.8. Suppose that S is separable and complete. Then  
weak convergence is  equivalent to  r-convergence, P is separable and 
complete, and a set in P is  relatively compact if and only if its n- 
closure is n-compact. 

A Coupling Theorem 

Suppose M is a probability measure on S x S that has marginal mea- 
sures P and Q on S and satisfies 

(6.11) M [ ( s ,  t ) :  P ( S ,  t> > .I < a, 
where p is the metric on S. Then, for positive q, QA = M ( S  x A)  5 
M [ ( s ,  t ) :  p ( s , t )  > a] + M((A")- x S )  < a + P(A*)- 5 a + P(A"+T). 
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This and the symmetric relation imply that the Prohorov distance 
satisfies n(P, Q )  5 a. The following converse, the Strassen-Dudley 
theorem, is used in proving the approximation theorem in Section 21. 

Theorem 6.9. If S is separable and n(P,Q) < a ,  then there is 
a probability measure M on S x S that has marginals P and Q and 
satisfies (6.11). 

To begin the proof, choose P so that n(P,Q)  < P < a, and then 
choose E so that p + 2~ < a and E < p. As in the proof of Theorem 6.7, 
use separability to find a partition Bo, B1, . . . , BI, such that PBo < E 

and diamBi < E for i > 1. Find a similar partition for Q and replace 
{Bi} by the common refinement, so that PBo < E ,  QBo < E ,  and 
diamBi < E </?for  i = 1, ..., k. 

Let pi = PBi and qj = QBj. for 0 5 i , j  5 I c ,  and let A be the set 
of pairs ( i , j )  such that 1 5 i,j 5 k and dist (Bi,Bj) < p. It will be 
shown later that there exists a (k + 1) x (k + 1) array of nonnegative 
numbers pij  such that 

Assuming for the moment that there exists such an array, we can 
complete the proof this way: Let Mij be the product of the conditional 
probability measures P( * )Bi) and Q( 1Bj); if PBi or QBj is 0, take 
Mij(S x S) = 0. Then Mij is a measure on S x S supported by 
Bi x Bj. Let M be the probability measure Cijpi jMij .  Then (sum 
over the ( z , j )  for which pij  > 0) M ( A  x S )  = &pijMij(A x S )  = 

Thus P is the first marginal measure for M ,  and similarly Q is the 
second. 

To prove (6.11), observe first that, if (i,j) E A, then Bi and Bj have 
diameters less than E (since i , j  2 1) and dist (Bi, Bj) < P. Choose sij 
in Bi and t i j  in Bj in such a way that p(si j ,  t i j )  < P. If s E Bi and 
t E Bj, then p ( s , t )  F p(s ,  sij) + p ( s i j , t i j )  + p ( t i j , t )  < ,O + 2~ < a.  It 
follows by (6.12) that 

zij pijP(A(Bi)Q(S(Bj) = Cij pi jP(AnBi) /p i  = xi P(AnB,) = PA.  

Hence (6.11). 
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There remains the (considerable) task of constructing an array 
{ p i j }  satisfying (6.12). We start with finite sets X ,  Y ,  and R c X x Y. 
If (x, y) lies in R, write xRy: x and y stand in the relation (represented 
by) R. For A C X ,  let AR be the set of y in Y such that z R y  for some 
z in A. Indicate cardinality by bars. 

Lemma 2. Suppose that IdR[ 2 IAl for each subset A of X .  Then 
there is a one-to-one map cp of X into Y such that xRcp(x) for every 
x i n X .  

This can be understood through its interpretation as “the marriage lemma”: 
X is a set of women, Y is a set of men, and xRy means that 2 and y are mutually 
compatible. The hypothesis is that for each group of women there is a group of men, 
at least as large, each of whom is compatible with at  least one woman in the group. 
The conclusion is that each woman in X can be married off to a Compatible man. 
Some men may be left celibate, but not if the total numbers of men and women 
are the same; in the notation of the lemma, if 1x1 = lYl, then the map cp of the 
conclusion carries X onto Y. 

PROOF. For U C X and V c Y ,  call the pair ( U , V )  an R-couple 
if [AR n VI 2 IAl for every A c U. This is just the hypothesis of the 
theorem formulated for the relation R n  (U x V )  on U x V .  Call f an 
R-pairing for (U, V )  if it is a one-to-one map of U into V and uRf(u)  
for all u E U. We want to find an R-pairing cp for the R-couple ( X ,  Y ) .  

The proof of the lemma goes by induction on n = 1x1. It obviously 
holds for n = 1. Assume that it holds for sets of size less than n. The 
induction hypothesis implies this: 

(T) If U is a proper subset of X and (U, V )  is an R-couple, then there 
is an R-pairing for (U, V ) .  

Fix an zo in X ;  by the hypothesis, zoRyo for some yo in Y. There 
are two possibilities: (a) ( X  - {zo}, Y - {yo}) is an R-couple, and (b) 
it is not. Assume (a). It then follows by (T) that there is an R-pairing 
f for ( X  - {zo}, Y - {yo}). Extend f to an R-pairing cp for ( X ,  Y )  by 
taking cp(x0) = yo, and we are done. 

So assume (b). Then ( X  - {zo}, Y - {yo}) is not an R-couple, and 
there is an A c X - {xo} such that IAR\{yo}l < [A[. But since ]AR/  2 
(A(  by the hypothesis of the lemma, we have [AR[  2 IAl > IAR\{yo}l. 
This means that (yo E AR and) [AR]  = IAl. Since (by the hypothesis 
of the lemma) IBR n ARI 2 IBI for B c A, (A, AR) is an R-couple, 
and by (T) there is an R-pairing 1c, for (A,AR). Again consider two 
possibilities: (ao) ( X  - A, Y - AR) is an R-couple, and (b”) it is not. If 
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(a") holds, then, by (T), there is an R-pairing x for ( X  - A, Y - AR). 
But this x can be combined with 1c, to give an R-pairing cp for ( X , Y ) .  

It remains only to rule out (b") as a possibility. If (b") does hold, 
then there is a C c X - A such that ICR\AR( < (GI. But then (recall 
that lARl = [ A [ )  we have [ ( A  U C)RI = [AR[ + [@\AR[ < IAI + ICI = 

0 

Next consider finite sets I ,  J ,  and a subset D of I x J .  Consider 
also a rectangular array of cells corresponding to the ( i , j )  in I x J ,  
together with nonnegative numbers Q and rj .  Think of the Q in a row 
below the array (i running from left to right) and the rj in a column 
to the left ( j  running from bottom to top). For E c I ,  let ED be the 
set of j such that ( i , j )  E D for some i E E.  

/ A  U CI, which contradicts the hypothesis of the lemma. 

Lemma 3. Suppose that, for each E c I ,  

(6.13) 

Then there are nonnegative numbers mij such that mij > 0 only for 
(i,j) E D, and 

(6.14) 

If xiGI ci = CjE r j ,  then there is equality on the right in (6.14). 

PROOF. Suppose first that the ci and rj are rational. By multiply- 
ing through by a common multiple of the denominators, we can ((6.13) 
and (6.14) are homogeneous) arrange that the ci and rj are nonneg- 
ative integers. Take Ai to be disjoint sets with (Ail = ci, take Bj to 
be disjoint sets with lBjl = r j ,  and take X = UiAi, Y = Uj Bj. Now 
define R c X x Y by putting into R those (x,y)  such that the indices 
of the Ai and Bj containing them (x E Ai, y E Bj) satisfy ( i , j )  E D. 

There is an interpretation of this setup in terms of wholesale marriage. Suppose 
the women are divided into clans and the men are divided into hordes. Certain clans 
and hordes are compatible, and a woman-man pair is compatible if and only if the 
clan and horde they belong to are compatible. 

We can verify the hypothesis of Lemma 2. Suppose that A c X ,  
and take E = [ i : A n A i  # 81. If i $ E ,  then ( A n A i ) R  = 0. If i E E ,  
then ( A  n Ai)R = U j : l i j I E D  Bj. Therefore, AR = UiEE Uj:( i , j )ED Bj = 

U j E E D  Bj. By (6.13)~ lARl = C ~ E E D  lBjl 2 X ~ E E  ]Ail = IAl. The 
hypothesis of Lemma 2 is thus satisfied, and there is a one-to-one map cp 
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of X into Y such that, for each z in X, zRq(z). Let mij be the number 
of points in Ai that are mapped into Bj by cp. Then C j  mij = ci (every 
point of Ai is mapped into some Bj), and xi mij 5 IBj I = rj (9 is 
one-to-one). Hence (6.14). If mij > 0, then there are points z and y 
of Ai and Bj such that zRy, which implies (i,j) E D. 

To treat the general case, choose rational ci(n> and r j (n)  such that 
0 5 cj(n) rj ( D  does not change). Let {rnij(n)} be a 
solution for these marginals, and pass to a sequence along which each 
mij(n) converges to some mij. This gives a solution to (6.14). 

If xi ci = Cj rj,  then Cj xi mij = Cj r j ,  and none of the in- 
0 

COMPLETION OF THE PROOF OF THEOREM 6.9.  w e  can use 
Lemma 3 to finish the proof of Theorem 6.9. We must construct a 
(k + 1) x (k + 1) array { p i j }  satisfying (6.12). Let I = { O , l , .  . . , k}, 
J = {0,1, .  . . , k, GQ}, ci = pi = PBi for 0 I i 5 k,  rj = q j  = QBj 
for 0 I j 5 I c ,  and roo = ,B + 2 ~ .  Use for D the elements of the 
set A (defined just above (6.12)) together with the pairs (i,ca) for 
a = O , l , . . . , k .  If E is a nonempty subset of I ,  then, since ,B was 
chosen so that n(P, Q )  < p, 

cj and r j (n)  

equalities in (6.14) can be strict. 

EiEEci ~ P B O + P ( U ~ ~ ~ \ ~ ~ ) B ' )  <~+&(u,  8EE\tO) B,) '+P 

' + ' ( Bo " U ~ E E \ { O )  ( ~ f  n 13;)) + p. 

Suppose that z E Bf, where 1 5 i 5 k, and z $ Bo; then z E Bj for 
some j ,  1 5 j 5 k, and dist (Bi,Bj) < f l ,  which implies (i,j) E A, 
which in turn implies j E ED\(m}. Therefore, Ui,E\{o)(Bf n B,C) c 
U j E E ~ \ { m )  Bj, and it follows that 

Thus (6.13) holds, and there exist mij for (i,j) E I x J ,  positive only 
for (i,j) E D, such that 

(4 CjEJ mij = Pi, for 0 5 i 5 k, 
(b) &mij I qj7 for 0 5 j 5 k, { (4 xi,1 mioo I 2 E  + P.  

(6.15) 

Reduce J to J' = {0,1, .  . . , k}, let D' = I x J ' ,  and apply Lemma 3 
a second time, with ci = mioo and ri = qj - xiel rnij (all nonnegative). 
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If E c I and E # 8, then ED’ = J’, and by (6.15a) and the fact that 
CiE-Pj = CjEJt q j  = 1, we have 

The hypothesis of Lemma 3 is therefore satisfied. Since (6.16) also 
implies xiGI 4 = CjEJ, r;, there exist mij such that 

(a) CjEJt mGj = ci for i E I ,  
mf . = r‘. for j E J’. $3 3 

(6.17) 

Take pij = m i j  + mij for (i,j) E D’. F’rom (6.15a) and (6.17a) follows 
C j E J t p i j  = pi;  from (6.17.b) follows C i E l p i j  = q j .  And finally, since 
mij > 0 only if (i,j) E A, it follows by (6.15a) and (6.15~) that 

Therefore, (6.12) is satisfied. 0 

Problems 

6.1. Metrize S = [ 0 , l )  by p(z,  y) = z + y for z # 9. Describe the balls in this 
space; show that SO consists of the ordinary Borel sets and that S = 2[O1’). 
Show that each point of (0,l)  is isolated. An infinite compact set must consist 
of 0 and a sequence converging to 0 in the ordinary sense. Define P,, on SO 
as the uniform distribution over [2-n-1,2-n]. If K = {0}, then PnK6 = 1 
for large n, and so {P,} is tight’. On the other hand, if K is compact, then, 
for each n, PnK6 = 0 for small enough 6. 

6.2. Does SO consist of the S-sets that are either separable or coseparable? 

6.3. Prove in steps that a separable probability measure on SO has a unique ex- 
tension to S. Let P be the measure and M the separable support; let U and 
0 be the classes of open balls and open sets in S. 
(a) Show [PM.159] that the ball and the Borel a-fields in M (with the relative 

topology) are M n a@) = M n SO and M n a(U) = M nS and that they 
coincide. 

(b) Define a probability measure P’ on M n So = M n S by P’( M n B )  = PB 
for B E SO. Define a probability measure P” on S by setting P”A = 
P’(M n A )  for A E S. 

(c )  Now show that P”B = PB for B E SO c S. 
(d) Suppose that Q“ is a second extension. If A E S, then M n A  = M n B  for 

some B E So; use this fact to prove that PI’ and Q” are identical (on S). 
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6.4. Suppose that every p'-continuous function is also pcontinuous; show that p 
is finer than p'. 

6.5. There is another way to define weak convergence for SO. If p is a probability 
measure on SO and f is bounded, define the upper [lower] integral s* f d p  
[S, f dp] as the infimum [supremum] of s g d p  for bounded, So-measurable 
functions g satisfying g 2 f [g 5 f ] .  Let P, be probability measures on SO, 
let P be a probability measure on S, and take PO to be the restriction of P 
to SO. Define P, + P (weak*) to mean that 

K:/* f dP, = lim/ f dP, = / f dP 

for all bounded, continuous f .  Show that this is equivalent to P, JO PO. 
6.6. Let h and h, be maps from S to S', each measurable SIS'. Let E be the set 

of z such that hnzn f ,  hz for some sequence {z,} converging to z. Suppose 
that P, + P ,  P has separable support, E E S, and PE = 0. Use Theorem 
6.7 to show that P,hi1 + Ph-l. 

6.7. Suppose that S is separable. For probability measures P and Q, take M ( P ,  Q)  
to be the set of probability measures on S x S having marginal measures P 
and Q. Let d ( P ,  Q )  = inf inf[a: M [ ( s ,  t ) :  p(s, t )  > a] < a], where the outer 
infimum is over the M in M ( P ,  Q).  Show that d ( P ,  Q) = r (P ,  Q). 

6.8. Show that r (P ,  Q) is unchanged if we require (6.10) only for closed sets A. 
6.9. For measures on the line, show that, if Q(A) = P ( A  + z) and Jz1 < c, then 

6.10. For distribution functions F on the line, consider the completed graphs rF = 
[(z, y): F ( z - )  5 y 5 F ( z ) ] .  Each line y = a - z meets each of r F  and at  
a single point; let L(F,  G) be the supremum over a of the distance between 
these two points. Show that L ,  the Livy metric, is indeed a metric. Show that 
this metric carried over to P in the natural way is equivalent to the topology 
of weak convergence and to the Prohorov metric for the case of the line. 

n(P,Q) < E .  



CHAPTER 2 

THESPACE C 

SECTION 7. WEAK CONVERGENCE AND TIGHTNESS 
IN C 

The Introduction shows by example some of the reasons for studying 
weak convergence in the space C = C [  0,1] of continuous functions on 
the unit interval, where we give to C the uniform topology, defining 
the distance between two points z and y (two continuous functions x(-) 
and y( . )  on [ 0,1]) as 

P h  Y )  = llz - YII = SUP I4t) - Y ( t > I .  
t 

Although weak convergence in C need not follow from the weak 
convergence of the finite-dimensional distributions alone (Example 2 . 5 ) ,  
it does in the presence of relative compactness (Example 5.1). And 
since tightness implies relative compactness by Prohorov’s Theorem 
5.1, we have this basic result: 

Theorem 7.1. Let Pn, P be probability measures o n  (C,C). If the 
finite-dimensional distributions of Pn converge weakly to  those of P ,  
and i f  {Pn} is  tight, then P, + P.  
Tightness and Compactness in C 
In order to use Theorem 7.1 to prove weak convergence in C ,  we need 
an exact understanding of tightness and hence of compactness in this 
space. The modulus of continuity of an arbitrary function z(-) on [ 0,1] 
is defined by 

%(6) = W ( 2 , S )  = sup - z(t)I, 0 < 6 5 1. 
Is-tl<b 

( 7 4  

A necessary and sufficient condition for x to be uniformly continuous 
over [ 0,1] is 

lim ~ ~ ( 6 )  = 0. 
640 (7.2) 
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And an z in C satisfies (7.2). Note that, since Iwx(6) - wy(6)I 5 
2p(z ,  y), w(z,S) is, for fixed positive 6, continuous in z. 

Recall that A is relatively compact if A- is compact, which is equiv- 
alent to the condition that each sequence in A contains a convergent 
subsequence (the limit of which may not lie in A).t The Arzelh-Ascoli 
theorem completely characterizes relative compactness in C: 

Theorem 7.2. The set A is relatively compact if and only if 

(7.3) 

and 

(7.4) lim sup wx(6) = 0. 
6+0 X E A  

The functions in A are by definition equicontinuous at t o  if, as t + 

t o ,  supzEA Iz(t) - z(to)l + 0; and (7.4) defines uni form equicontinuity 
(over [ 0,1]) of the functions in A.  

If A consists of the functions z, defined by (1.5), then A is not rela- 
tively compact; since (7.3) holds, (7.4) must fail, and in fact w(z,, 6) = 
1 for n 2 6-l .  

PROOF. If A- is compact, (7.3) follows easily. Since w(z,n-l) is 
continuous in z and nonincreasing in n, (7.2) holds uniformly on A if 
A- is compact [M8], and (7.4) follows. 

Suppose now that (7.3) and (7.4) hold. Choose k large enough that 
 SUP,^^ w X ( k - ' )  is finite. Since 

it follows that 

(7.5) supsup Iz(t)l < 00. 
t XEA 

The idea now is to use (7.4) and (7.5) to prove that A is totally 
bounded; since C is complete, it will follow that A- is compact. 

t Although this is analogous to the relative compactness in Prohorov's theorem, 
it is technically different because in Section 5 the space of probability measures on 
(S, S )  is not assumed metrizable. But see Theorem 6.8. 
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Let a be the supremum in (7.5). Given E ,  choose a finite E-net 
H in the interval [-a,a] on the line, and choose k large enough that 
wz(l/k) < E for all z in A.  Take B to be the finite set consisting of 
the (polygonal) functions in C that are linear on each interval Iki = 
[(i - l ) /k , i /k ] ,  1 5 i 5 k, and take values in H at the endpoints. If 
z E A,  then Iz( i /k) l  5 a ,  and therefore there is a point y in B such 
that I z ( i / k )  - y(i/k)l < E for i = 0,1,. . . , k. Now y(i/k) is within 
2~ of z( t )  for t E I k i ,  and similarly for y((i - l ) ) / k .  Since y(t) is a 
convex combination of y((i - l ) / k )  and y(i/k), it too is within 2~ of 

0 z( t ) :  p ( z , y )  < 2 ~ .  Thus B is a finite 2e-net for A. 

Let P, be probability measures on (C,C). 

Theorem 7.3. The sequence {P,} is tight if and only if these two 

(i) For each positive q,  there exist an a and an  no such that 

conditions hold 

(ii) For each positive E and q, there exist a 6 ,  0 < 6 < 1, and an no 
such that 

In connection with (7.7), note that w( a ,  6) is measurable because 
it is continuous. Condition (ii) can be put in a more compact form: 
For each positive E ,  

lim lim sup P, [z: wz (6 )  2 E ]  = 0. 
640 n+w 

(7.8) 

PROOF. Suppose {P,} is tight. Given q, choose a compact K such 
that P,K > 1 - q for all n. By the Arzelh-Ascoli theorem, we have 
K c [z: Iz(0)l 5 a] for large enough a and K C [z: w,(6) 5 E] for small 
enough 6, and so (i) and (ii) hold, with no = 1 in each case. Hence the 
necessity. 

Since C is separable and complete, a single measure P is tight 
(Theorem 1.3), and so by the necessity of (i) and (ii), for a given q 
there is an a such that P[z: Iz(0)l 1 a] 5 q, and for given E and q 
there is a 6 such that P[z:w,(b) > E] 2 q. If {P,} satisfies (i) and(ii), 
therefore, we may ensure that the inequalities in (7.6)and (7.7) hold 
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for the finitely many n preceding no by increasing a and decreasing 
6 if necessary: In proving sufficiency, we may assume that the no is 
always 1. 

Assume then that {P,} satisfies (i) and (ii), with no = 1. Given q, 
choose a so that, if B = [x: Ix(0)l I a ] ,  then P,B 2 l - q  for all n; then 
choose 61, so that, if BI, = [IC: ~~(6,) < l/lc], then P,Bk 2 1 - ~ / 2 ~  for 
all n. If K is the closure of A = B n nk BI,, then P,K 2 1 - 2q for all 
n. Since A satisfies (7.3) and (7.4), K is compact. Therefore, {P,} is 

Theorem 7.3 transforms the concept of tightness in C simply by 
substituting for relative compactness its Arzelh-Ascoli characteriza- 
tion. The next theorem and its corollary go only a small step beyond 
this but, even so, fill our present needs. 

tight. 0 

Theorem 7.4. Suppose that 0 = t o  < tl < + - . < t ,  = 1 and 

(7.9) min (ti - t i - 1 )  2 6. 
l<i<v 

Then, for arbitrary x, 

and, for arbitramj P ,  

Note that (7.9) does not require ti - ti-1 2 6 for i = 1 or i = v. 

PROOF. Let rn be the maximum in (7.10). If s and t lie in the same 
interval Ii = [ti-l,ti], then I I C ( S )  - x(t)l 2 Ix(s) - z(ti-l)l + Ix(t) - 
x(ti-1)( 5 2rn. If s and t lie in adjacent intervals Ii and Ii+1, then 
Ix(s) - z(t)l I I.(s) - z(ti-l)l+ Iz(ti-1) - z(ti)l+ Iz(ti) - z(t)l I 3m. 
If Is - tl 5 6,  then s and t must lie in the same Ii or in adjacent ones, 
which proves (7.10). And now (7.11) follows by subadditivity. 0 

Corollary. Condition (ii) of Theorem 7.3 holds iJ for each positive 
E and q, there exist a 6 ,  0 < 6 < 1, and an integer no such that 
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for every t in [ 0, I]. 

that (7.12) is formally satisfied if 6 > l /q; but we require 6 < 1. 
If t > 1-6 )  restrict s in the supremum in (7.12) to t 5 s 5 1. Note 

PROOF. Take ti = i6 for i < v = 11/61. If (7.12) holds, then, by 
0 (7.11), (7.7) holds as well ( 3 ~  in place of E ) .  

Random Functions 

Let ( R , F ,  P )  be a probability space, and let X map R into C: X ( w )  
is an element of C with value Xt(w)  = X ( t , w )  at t .  For fixed t ,  let 
Xt  = X ( t )  denote the real function on R with value Xt(w)  at w; X t  
is the composition T t X ,  where 7rt is the natural projection defined in 
Example 1.3. And let (Xt , ,  . . . ) Xt,) denote the map carrying w to the 
point ( x t , ( w ) ,  . . . , Xt,(w)) = 7rtl...tk(X(W)) in IP. 

If X is a random function-that is, measurable F/C-then the 
composition 7rtl...tkX is measurable 7/Rk, so that (Xt , ,  . . . ) Xt,) is a 
random vector. But the argument can be reversed: The general finite- 
dimensional set has the form A = T ; ~ . ~ , H ,  H E Rk, and if 7rttl...tkX 
is measurable F/Rk, then X - l A  = (7rt1...tkX)-lH E 7; but since 
the class Cf of finite-dimensional sets generates C, it follows that X is 
measurable F /C .  Therefore, X is a random function if and only if each 
(Xt , ,  . . . ,Xt,)  is a random vector, and of course this holds if and only 
if each Xt  is a random variable. Let P = PX-' be the distribution 
of X ;  see (3.1). Then P[(Xt,  ,..., Xt,) E HI = PT;~. .~,H,  and so 
the finitedimensional distributions of P (Example 1.3 again) are the 
distributions of the various random vectors ( X t ,  ) .  . . ) Xt,).  

Suppose that X ,  X ' ,  X 2 , .  . . are random functions. 

Theorem 7.5. If 

holds for all t l ,  . . . ) t k ,  and if 

(7.14) lim lim sup P[w(Xn,  6) 2 E ]  = 0 
6-0 n-co 

for each positive E ,  then X n  =+, X .  

FIRST PROOF. Let P and P, be the distributions of X and the X,. 
Since (7.13) is the same thing as P,7rG1 t k  =+, P7rG!..tk and X n  +, X is 
the same thing as P, +, P ,  the result'will follow by Theorem 7.1 if we 
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show that {X"} is tight in the sense that {P,} is tight. Now Xg J~ Xo 
implies that { P n r i l }  is tight, which in turn implies condition (i) of 
Theorem 7.3. Since (7.14) translates into (7.8), condition (ii) of the 

0 theorem also holds, and {P,} is indeed tight. 

There is a second proof, very different, based on Theorem 3.2. 

SECOND PROOF. For u = 1 ,2 , .  . ., define a map Mu of C into itself 
this way: Let Mux be the polygonal function in C that agrees with 
z at the points i /u ,  0 5 i 5 u, and is defined by linear interpolation 
between these points: 

2-1 2-1 2 
(Muz)( t )  = ( 2  - .t)z(--) + (ut - ( i  - l ) )z (L) ,  U - U Its- .  U 

Since Mux agrees with z at the endpoints of each [(i - l ) /n ,  2/71], it is 
clear that p(M,z, z) I 2w,(l/u). And now define a map L,: R"+l -+ 

C this way: For a = (ao, . . . , a,), take (L,a)(t) = (i - ut)ai-l+ (ut - 
(i - 1))ai for t in [(i - l) /u,i /u];  this is another polygonal function, 
and its values are ai at the corner points. Clearly, p(L,a,L,P) = 
maxi Iai -,$I, so that L, is continuous; and M, = Lurto...t, if ti = 2/u. 

By (7.13), rto. ..tuxn +, rt o...t,X (ti = i /u  again), and since L, 
is continuous, the mapping theorem gives M,Xn J~ MuX. Since 
p(M,X, X) 5 2w(X, l /u)  and X is an element of C ,  p(M,X, X )  goes 
to 0 everywhere and hence goes to 0 in probability, so that MuX =+, X 
by the corollary to Theorem 3.1. Finally, from (7.14) and the inequality 
p(MuXn,Xn) 5 2w(Xn, l /u),  it follows that 

limlimsupP[p(M,Xn,Xn) 2 E ]  = 0. 
u n  

Combine this with M,Xn =+n M,X J, X and apply Theorem 3.2. 0 

This second proof does not require the concepts of relative com- 
pactness and tightness, and it makes no use of Prohorov's theorem. 
See the discussion following the proof of Donsker's theorem in the next 
sect ion. 

Coordinate Variables 

The projection rt, with value rt(z) = z( t )  at z, is a random variable 
on (C,C). We denote it by zt: For fixed t ,  zt has value z( t )  at z. 
If P is a probability measure on (C,C) and t is thought of as a time 
parameter, then [zt:O I t <_ 11 becomes a stochastic process, and the 
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xt are commonly called the coordinate varables or functions. We speak 
of the distribution of xt under P and often write P[xt E HI in place 
of P[x:xt E HI and J z t d P  in place of JcztP(dz) .  Finally, when 
t is a complicated expression, we sometimes revert back to x ( t ) ,  still 
intended as a coordinate variable. 

Problems 

7.1. Let X ( t )  = t [ ,  where [ is a random variable satisfying P[I[l 2 a] - aY-ll2; 
for every n, let P,, be the distribution of X .  Then {P,} is tight but does not 
satisfy (7.12). 

7.2. Show that, if the functions in A are equicontinuous at each point of [ 0,1], then 
A is uniformly equicontinuous. 

SECTION 8. WIENER MEASURE AND 
DONSKER'S THEOREM 

Wiener Measure 

Wiener measure, denoted here by W ,  is a probability measure on (C, C) 
having the following two properties. First, each xt is normally dis- 
tributed under W with mean 0 and variance t :  

For t = 0 this is interpreted to mean that W[zo = 01 = 1. Second, the 
stochastic process [ q : O  5 t 5 11 has independent increments under 
w: If 

then the random variables 

are independent under W .  We must prove the existence of such a 
measure. 

If W has these two properties, and if s 5 t ,  then xt (normal with 
mean 0 and variance t )  is the sum of the independent random variables 
xs (normal with mean 0 and variance s) and xt - xs, so that xt  - xs 
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must be normal with mean 0 and variance t - s ,  as follows from dividing 
the characteristic functions. Therefore, when (8.2) holds, 

In particular, the increments are stationary (the distribution of xt - xs 
under W depends only on the difference t - s) as well as independent. 

+ xs(xt - zs), it follows from the independence of 
the increments that the covariance of xs and xt under W is s if s 5 t. 
By a linear change of variables, the joint distribution of (xtl, . . . , xt,) 
can therefore be writen down explicitly; it is the centered normal dis- 
tribution for which xti and xtj have covariance ti A t j .  But (8.4) is the 
clearest way to specify the finite-dimensional distributions. 

Wiener measure gives a model for Brownian motion. In proving its 
existence, we face the problem of proving the existence on (C,C) of a 
probability measure having specified finite-dimensional distributions. 
There can for an arbitrary specification be at most one such measure 
(Example 1.3), and for some specifications there can be none at all 
(there is, for example, no P under which the distribution of xt is a 
unit mass at 0 for t < i and at 1 for t 2 i). 
Construction of Wiener Measure 

We start with a sequence & , < 2 , .  . . of independent and identically dis- 
tributed random variables (on some probability space) having mean 0 
and finite, positive variance u2. Let S, = + + <, (So = 0), and 
let X n ( w )  be the element of C having the value 

Since x,xt = 

at t. Thus X"(w)  is the function defined by linear interpolation be- 
tween its values X&(w) = S i ( w ) / u f i  at the points i/n. Since (8.5) 
defines a random variable for each t ,  Xn is a random function, the one 
discussed in the Introduction. If <i takes the values f l  with probability 

each, then u = 1 and Xn is the path corresponding to a symmetric 
random walk. 

If gn,t is the rightmost term in (8 .5 ) ,  then gn,t = s ~  0 by Cheby- 
shev's inequality. Therefore, by the Lindeberg-L6vy central limit the- 
orem (together with Theorem 3.1, Example 3.2, and the fact that 
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[ntJ/n -+ t ) ,  X p  +, &N, where, as always, N has the standard 
normal distribution. Similarly, if s 2 t ,  then 

1 
(X,", xz" - Xsn) = -(qnsJ 7 q n t j  - q n s j  1 

u f i  
(8.6) 

+ (&s, ?In$ - &,s) =Sn (Nl, N2), 

where N1 and N2 are independent and normal with variances s and t-s. 
And by the mapping theorem, (X,", Xr) +, (N1,  N1+ N2). The obvi- 
ous extension shows that the limiting distributions of the random vec- 
tors ( X g  , . . . Xt",) are exactly those specified as the finite-dimensional 
distributions of the measure W we are to construct. To put it another 
way, if P, is the distribution on C of X n ,  then for each t l , .  . . , t k ,  
P,7r;1..tk converges weakly to what we want W7r;1,,tk to be. 

Suppose we can show that {P,} is tight. It will then follow by 
the direct half of Prohorov's theorem that some subsequence {Pni} 
converges weakly to a limit we can call W .  But then Pni7r;1.,tk +i 

WrG!..tk, and therefore, by what we have in fact just proved, W7r;1..tk 
will be the probability measure on Rk we want. See Example 5.2. 

The argument for the tightness of {X"} will be clearer if we first 
consider the more general case in which {&} is stationary (the distri- 
bution of (Jk,. . . , J k + j )  is the same for all k). 

Lemma. Suppose that Xn is defined by (8 .5) ,  that {&} is station- 
ary, and that 

lim limsupX2P max ( S ~ I  2 xu+] = 0. 
X-tw ,--roo [ kln (8.7) 

Then { X " }  is tight.+ 
PROOF. Use Theorem 7.3. Since X g  = 0, {P,} obviously satisfies 

condition (i) of the theorem. Condition (ii) we prove by (7.8), which 
translates into the requirement that 

lim limsup P[w(X", 6) 2 €1 = 0 

for each E .  And to this we can apply Theorem 7.4. If (7.9) holds, then 
so do (7.10) and (7.11): 

6-0 TI-+W 
(8.8) 

if min (ti - t i -1)  2 6. 
l<z<u 

t The condition (8.7) is in fact necessary for X" + W .  See Problem 8.3. 
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This becomes easier to analyze if we take ti = mi/n for integers mi 
satisfying 0 = mo < ml < < mu = n. The point is that, because 
of the polygonal character of the random function Xn, if the ti have 
this special form, then the supremum in (8.9) becomes a maximum of 
differences Is, - Smi- l  \/0&i: 

2) 
l s k  - smi-1 I 

(8.10) P[w(Xn, S) 2 3 ~ ]  5 P [ max 1 €1 
mi- lsksmi  o f i  

i=l 

where the equality is a consequence of the assumed stationarity. The 
inequality holds if the condition on the right in (8.9) does, which re- 
quires that 

(8.11) 

For a further simplification, take mi = im for 0 I i < w (and 
mu = n), where m is an integer (a function of n and 6) chosen according 
to these criteria: Since we need mi - mi-1 = m 1 n6 for i < v, take 
m = [nSl; since we also need (v - l ) m  < n 5 vm, take v = [n/ml. 
Then 

and it follows by (8.10) that, for large n, 

(8.12) ~ [ w ( ~ n ,  S) 2 3 ~ ]  I v . P [max Isk( 2 mfi] 
k s m  

Take X and S to be functions of one another: X = ~/d%. Expressed 
in terms of A, (8.12) is 

4X2 
P[w(Xn,S) 1 3 ~ ]  5 - .  €2 P[max\SkJ k s m  2 X u f i ] .  

For given positive E and q,  there is, by (8.7), a X such that 

Once X and S are fixed, rn goes to infinity along with n, and so (8.8) 
follows. 0 
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We can complete the construction of Wiener measure by using 
the independence of the random variables ( n  in the definition (8.5). 
Because of this independence, Etemadi’s inequality [M19] implies 

(8.13) P[max ISu[ 2 a] 5 3max P[lSuI 2 a/3]. 
usm u<m 

Therefore, (8.7) will follow if 

(8.14) lim lirnsupA2maxP[(~k( 2 ~ a J n 7  = 0. 
x-.00 1 2 4 0 0  K n  

For the construction of Wiener measure, we can use any sequence {ti} 
that is convenient. Suppose the are independent and each has the 
standard normal distribution (a  = l), in which case S h / &  also has 
the standard normal distribution. Since 

(8.15) P[(NI 2 A] < EN4 * A-4 = 3A-4, 

we have P[lSkl 2 Aufl = P[v/jFINI 2 Aafi < 3/A4a4 for k 5 n, 
which implies (8.14). This proves the existence of Wiener measure: 

Theorem 8.1. There exists on  (C,C) a probability measure W 
having the finite-dimensional distributions specified by (8.4). 

Denote by W not only Wiener measure, but also a random func- 
tion having Wiener measure as its distribution over C. It is possible 
to reverse the approach taken above, constructing the random func- 
tion first and the corresponding measure second. There are a number 
of ways to do this. For one, use Komogorov’s existence theorem to 
show that there exists a stochastic process [W(t):O 5 t 5 11 having 
the finite-dimensional distributions specified by the right-hand side of 
(8.4). By a further argument involving Etemadi’s inequality (or some- 
thing similar), modify the process so as to ensure that the sample path 
W (  * , w) is continuous for each w [PM.503]. None of this involves the 
space C at all. But once we have this W(w),  we can regard it as a 
random element of (C,C), and then we can define Wiener measure as 
its distribution. 

Donsker’s Theorem 

Donsker’s theorem is the one discussed in the Introduction: 

Theorem 8.2. I f  (1, 52,. . . are independent and identically dis- 
tributed with mean 0 and variance u2, and i f X n  is the random funct ion.  
defined by (8.5), then Xn +n W .  
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PROOF. The proof depends on Theorem 7.5. Now that the ex- 
istence of Wiener measure and the corresponding random function 
W have been established, we can write (8.6) as (X,",X," - X,") +n 
(W., W, - W.) ,  and this implies (X,", X r )  +n (Ws, Wt). An easy ex- 
tension gives (7.13) with W in the role of X .  

We have already proved tightness by means of (8.14), but under 
the additional assumption that the are normal. In place of this, 
we can use the central limit theorem, provided we consider separately 
the small and the large values of k in the maximum in (8.14). By the 
central limit theorem, if kx is large enough and kx k 5 n, then (use 
(8.15)) P[lSkl 2 Xafl 5 P[(Skl 2 X o h ]  < 3/X4. For k 5 kx we can 
use Chebyshev's inequality: P[lSkl 2 X o f l  5 kx/X2n. The maximum 

0 

This argument is based on Theorem 7.5, the second proof of which 
makes no use of Section 5. But Theorem 8.2 assumes the prior existence 
of W ,  and our proof that W does exist depended heavily on the theory 
of Section 5 (compare Examples 5.1 and 5.2). On the other hand, as 
pointed out above, the existence of W can be proved in an entirely 
different way, and so one can do Donsker's theorem without reference 
to tightness and Prohorov's theorem. On the otherother hand, without 
the concept of tightness, the condition (7.14) is somewhat artificial, an 
ad hoc device. 

An Application 

Donsker's theorem has this qualitative interpretation: Xn + W says 
that, if r is small, then a particle subject to independent displacements 
(1, &, . . . at successive times ~ , 2 r .  . . will, viewed from far off, appear 
to perform a Brownian motion. 

Specifically, we can use the theorem to derive limit laws for various 
functions of the partial sums Sn. The Introduction indicates how to 
use the relation X" + W to derive the limiting distribution of 

in (8.14) is therefore dominated by (3/X4) V (kx/X2n). 

(8.16) Mn = max Si. 
O<i<n 

We are now in a position to carry through the details. 
Since h(z)  = sup,z(t) is a continuous function on C, it follows 

from Xn + W and the mapping theorem that suptXr =+- sup,Wt. 
Obviously, sup, Xr = Mn/afi, and SO 

(8.17) 
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Thus we would have the limiting distribution of M,/u& (under the 
hypothesis of Theorem 8.2) if we knew the distribution of supt Wt. The 
idea now is to find the latter distribution by calculating the limiting 
distribution of Mn/Ov/;; in an easy special case. 

For the easy special case, assume that the independent & take the 
values f l  with probability each, so that SO, S1,. . . are the successive 
positions in a symmetric random walk starting from the origin. We 
first show that for each nonnegative integer a ,  

The case a = 0 being easy ( M ,  2 So = 0), assume a > 0. Since 

P[Mn 2 a] - P[S, = a] = P[M, 2 a,  s, < a] + P[M, 1 a,  s, > a ] ,  

and since the second term on the right is just PIS, > a ] ,  (8.18) will 
follow if 

Now all 2, possible paths (&,. . . , S,) have the same probability, 
and so (8.19) will follow provided the number of paths contributing to 

the left-hand event is the same as 
the number of paths contributing to 
the right-hand event. Given a path 
contributing to the left-hand event in 
(8.19), match it with the path obtained 
by reflecting through a all the partial 

I? sums after the first one that achieves 
the height a (replace Sk by a-(sk-a)) .  

Since this describes a one-to-one correspondence, (8.19) and (8.18) 
follow. This is an example of the reflection principle. 

Assume a 2 0 and put a, = [an1I21. From (8.18) it follows that 
P[Mn/fi 2 a] = 2P[S, > an] + P[S, = a,]. The second term here 
goes to 0, and P[S, > a,] -, P[N > a] by the central limit theorem, 
and so P[M,/fl + 2P[N > a] for a 2 0. Combine this with (8.17): 

2 
(8.20) P[supWt 5 a] = - 

t 6 0  

(the left side is 0 if a < 0). We have derived a fact about Brownian 
motion by combining Donsker’s theorem with a computation involving 
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random walk, a computation which is simple because it reduces to 
enumeration and because a random walk cannot pass above an integer 
without passing through it. 

Under the hypotheses of Donsker's theorem (drop the assumption 
& = kl), (8.17) holds, and from (8.20) it now follows that 

Under the hypotheses of the Lindeberg-Levy theorem, the limiting 
distribution of Mn (normalized) is the folded normal law. 

The next section has further examples that conform to this pattern. 
If h is continuous on C-or continuous outside a set of Wiener measure 
O-then Xn + W implies h(Xn) =$ h(W). We can find the limiting 
distribution of h ( X n )  if we can find the distribution of h(W), and 
we can in many cases find the distribution of h(W) by finding the 
limiting distribution of h ( X n )  in some simple special case and then 
using h ( X n )  + h(W) in the other direction. 

Therefore, if the & are independent and identically distributed 
with mean 0 and variance 02, then the limiting distribution of h ( X n )  
does not depend on any further properties of the ti. For this reason, 
Donsker's theorem is often called the (or an) invariance principle. It 
is perhaps better called a functional limit theorem, or since the limit is 
Brownian motion in this case, a functional central limit theorem. 

The Brownian Bridge 

A random element X of (C,C) is Gaussian if all its finite-dimensional 
distributions are normal. The distribution over C of a Gaussian X 
is completely specified by the means E[Xt] and the product moments 
E[X,Xt],  because these determine the finite-dimensional distributions. 
For W ,  the moments are E[Wt] = 0 and E[WsWt] = s A t. 

A second important random element of C is the Brownian bridge, a 
Gaussian random function W" specified by the requirements E[W,"] = 0 
and E[W,"W,"] = s(1 - t )  for s 5 t. The simplest way to show that 
there is such a random function W" is to construct it from W by 
setting W," = Wt - tW1 for 0 5 t _< 1. Obviously, W",  thus defined, is 
a Gaussian random element of C ,  and a calculation shows that it has 
the required moments . 

We also use W" to denote the distribution on C of the random 
function W". If h: C --f C carries 2 to the function with the value 
s( t )  - tz(1) at t ,  then the measures W and W" are related by 
W" = Wh-'. 
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Problems 
8.1. Show that W has no locally compact support. See Problem 1.17. 

8.2. Define % = (1 + t)W,O/(,+,). The process [K: t 2 01 has continuous sample 
paths, the finite-dimensional distributions are Gaussian, and the moments are 
EK = 0 and E[V ,&]  = s A t .  The process thus represents a Brownian motion 
over the time interval [ 0,m). 

8.3. Assume that X" is defined by (8.5) and that X n  + W .  Use (8.20) and 
symmetry to show that sup, [Wtl has a fourth moment. Conclude that (8.7) 
holds. 

8.4. Let & I , .  . . , &,k, be independent random variables with mean 0 and variances 

X" be the random function that is linear on each interval [ S $ - ~ / S : ,  sfi/sz] 
and has values X"(S:~/S~) = Sni/Sn at the points of division. Assume the 
Lindeberg condition holds and generalize Donsker's theorem by showing that 
X" * w. 

2 
U i i ;  put Sni = -k * ' .  + Fni, S f i  = 6,1 -k . . '  + U i i ,  and S: = sfk,. Let 

SECTION 9. FUNCTIONS OF BROWNIAN MOTION 
PATHS 

The technique used in the preceding section to find the distribution 
of supt Wt and the limiting distribution of Mn/afi we here apply to 
other functions of Brownian motion paths and partial sums. We also 
compute some distributions associated with the Brownian bridge. In 
subsequent sections, convergence in distribution to W will be proved for 
a great variety of random functions, and in each case the calculations 
carried out here apply. 

Although the theory of weak convergence of probability measures 
on function spaces had its origin in problems of the kind considered 
here, and although these problems and their solutions are indeed 
interesting, it is possible to understand the general theory of the 
subsequent sections without studying this one. 

In this section, the Lindeberg-LQvy case will mean the one in which 
the Sn are partial sums of independent, identically distributed random 
variables with mean 0 and finite, positive variance u2, and X n  will 
always denote the random function defined by (8 .5) .  The random walk 
case will be that in which each takes the values f l  with probabilities 
4 each (u2 = 1). 

Maximum and Minimum 

Let m = inft W, and M = sup, W,, and let 
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be the corresponding quantities for the partial sums. The mapping 
carying the point 2 of C to the point (inft z( t ) ,  sup, z( t ) ,  ~ ( 1 ) )  of R3 is 
everywhere continuous, and so by Donsker’s theorem and the mapping 
theorem, 

in the Lindeberg-L&y case. 
We first find an explicit formula for 

in the random walk case. We show that if 

then 

for integers a, b, and v satisfying 

Since a < b, the series in (9.5) are really finite sums. Notice that both 
sides of (9.5) vanish if n and v have opposite parity or if v is either a 
or b. 

For particular values of n,a ,b ,v ,  denote the equation (9.5) by 
[n,a,  b,w]. Then [n,u, b,v] is valid if (9.6) holds, and the proof 
of this goes by induction on n. For n = 1, this follows by a 
straightforward examination of cases. Assume as induction hypothesis 
that [n - 1, a, b, U] holds for a, b, v satisfying (9.6). If a = 0, then (9.3) 
vanishes (i starts at 0 in the minimum in (9.1), and So = 0), and 
the sums on the right in (9.5) cancel because p n ( j )  = p n ( - j ) .  Thus 
[n, a, b, v] is valid if (9.6) holds and a = 0; we may dispose of the case 
b = 0 in the same way. To complete the induction step, we must verify 
[n, a, b, v] under the assumption that a < 0 < b and a 5 v 5 6. But in 
this case, a+ 1 5 0 and b -  1 2 0, so that [n - 1, a - 1, b -  1 , v  - 11 and 
[n - 1, a + 1, b + 1, u + 11 both come under the induction hypothesis and 
hence both hold. And now [n, a,  b, v] follows by the probabilistically 
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obvious recursions (condition on the direction of the first step of the 
random walk) 

and 

This proves (9.5), and it follows by summation over w that, if 

(9.7) a < O < b ,  a < u < v < b ,  

then 

(9.8) P[a < m, I M, < b, u < S, < w] 
00 

= C P[u + 2k(b - a )  < S, < v + 2k(b - a)] 
kZ-00 

00 

- C P[2b - w + 2k(b - a) < s, < 2b - u + 2k(b - a ) ] .  
k=-W 

Taking a = -n - 1 in this formula leads to 

(9.9) P[M, < b, u < s, < w] = P[u < s, < w] 
- P[2b - 2, < s, < 2b - u ] ,  

valid for -n - 1 5 u < w 5 b, b >_ 0. From (9.9) it is possible to derive 
(8.18) again. 

Now (9.8) holds in the random walk case, and because of (9.2), we 
can find the distribution of (m, M ,  W1) by passing to the limit. If a ,  b, u, 
and v are real numbers satisfying (9.7), replace them in (9.8) by the 
integers [ a f i ] ,  r b f i 1 ,  LufiJ, and [wfil, respectively. Because of 
the central limit theorem and the continuity of the normal distribution, 
a termwise passage to the limit in (9.8) yields 

(9.10) P[a < m 5 M < b, u < Wl < w] 
00 

= c P[u + 2k(b - a )  < N < 2, + 2 k ( b  - a ) ]  
k=-W 

00 

- P[2b - v + 2k(b - a )  < N < 2b - u + 2 k ( b  - a) ] .  
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The interchange of the limit with the summation over k can be justified 
by the series form of Scheff6's theorem [PM.215]. 

The joint distribution of M and W1 alone could be obtained by 
letting a tend to -w in (9.10), but it is simpler to return to the 
random walk case and pass to the limit in (9.9), which gives 

(9.11) P[M <b, u < W1< v] 
= P [U < N < V ]  - P [2b - 21 < N < 2b - U] , 

valid for u < v 5 b, b 2 0. Taking v = b and letting u --+ --oo leads to 

(9.12) PIO 5 M < b] = 2P[O 5 N < b];  

this is the same thing as (8.20). 
From (9.10) for u = a and v = b we get 

(9.13) P[a < rn 5 M < b] 
00 

= C (-l)'P[a + k(b - a) < N < b + k ( b  - a) ] ,  
k=-m 

valid for a 5 0 5 b. And this result with a = -b gives 

00 

(9.14) P[sup lWtl < b] = (-l)kP[(2k - 1 ) b  < N < (2k + l ) b ]  
k=-W t 

for b 2 0. By continuity, the strict inequalities in all these formulas 
can be relaxed to allow equality. And the right sides can all be written 
out as sums of normal integrals. 

Although we derived (9.10) through (9.14) by passing to the 
limit in the random walk case, we have the limiting distributions 
for (mn, Mn, &), (Mn, Sn), Mn, (mn, Mn), and maxiin JSnl (all 
normalized by nfi) in the more general Lindeberg-L6vy case because 
(9.2) holds there. 

The Arc Sine Law 

For 2 in C, let hl(z)  be the supremum of those t in [ 0,1] for which 
~ ( t )  = 0; let hz(z) be the Lebesgue measure of those t in [ O , l ]  for 
which z( t )  > 0; and let hs(z) be the Lebesgue measure of those t in 
[ 0, hl(z)] for which z( t )  > 0. Then T = hl(W) is the time at  which 
W last passes through 0, U = hz(W) is the total amount of time W 
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spends above 0, and V = h3( W )  is the amount of time W spends above 
0 in the interval [ 0, TI. The object is to find the joint distribution of 

It can be shown [M15] that each of the functions hl, ha, and h3 
is measurable and is continuous outside a set of Wiener measure 0. 
Therefore, 

(T,  u, v, w. 

(9.15) (hl(Xn),h2(Xn)ih3(zn),Xln) (T,U,V,Wl) 

in the Lindeberg-Levy case. In the random walk case, the vector on 
the left has a simple interpretation: T, = n h l ( X n )  is the maximum 
i, 1 5 i 5 n, for which Si = 0; U, = nh2(Xn) is the number of i, 
1 5 i 5 n, for which Si-1 and Si are both nonnegative; V, = nh3(Xn) 
is the number of i, 1 5 i 5 T,, for which Si-1 and Si are both 
nonnegative; and, of course, X y  = S,/fi. 

With these definitions we therefore have 

in the random walk case; the distribution of (T, U, V, W1) will be found 
by a passage to the limit. In the general Lindeberg-LBvy case, the left 
side of (9.15) is a somewhat more complicated function of the partial 
sums Si, but it will still be possible to derive limit theorems associated 
in a natural way with these partial sums. 

Since the random vector (T, U,  V, W1) is constrained by 

(9.17) 1 - T + V  if W 1 2 0 ,  
u = {  V if W1 5 0 ,  

it suffices to consider (T, V, "1)  and the related vector (T,, V,, S,). 
The distribution of the latter vector in the random walk case will be 
derived from three facts which admit of elementary proofs we do not 
carry through here. 

First, we need the local central limit theorem for random walk: If 
m tends to infinity and j varies with m in such a way that j and rn 
have the same parity and j/fi y, then+ 

(9.18) 

Feller [28], p. 184, has the local limit theorem for the binomial distribution, 
and (9.18) follows because i(Sm + m) is binomially distributed. 
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Second, we need the fact that 

. j  P[S1 > 0,.  . . , Sm-1 > 0, Sm = 3 )  = - p m ( j )  
m 

(9.19) 

for j p0sitive.t If S2m = 0, then U2, = V2, assumes one of the values 
0 ,2 , .  . . ,2m; the third fact we need3 is that these m + 1 values all have 
the same conditional probability: 

i = O , l ,  ..., m. 1 
P[h, = 22 I S2m = 0] = - 

m + i 7  
(9.20) 

To compute the probability that T, = 2k, V, = 22, and S, = 
j ,  condition on the event s 2 k  = 0. Conditionally on this event, 
(So,. . . , S 2 k )  and (SZk+l,. . . , s,) are independent, V, depends only 
on the first sequence, and T, = 2k and S, = j both hold if and only if 
the elements of the second sequence are nonzero and the last one is j .  
By (9.19) and (9.20) we conclude that 

if 

(9.22) 0 < 2 i < 2 k < n ,  j > O .  

Both sides of (9.21) vanish if n and j have opposite parity. For j 
negative, the same formula holds with ( j (  in place of j on the right. 

We apply Theorem 3.3 to the lattice of points (2k/n ,2 i /n , j / f i )  
for which j and n have the same parity. Suppose that k, i, and j tend 
to infinity with n in such a way that 

2k 2i - + t ,  - + w ,  - 
n n 

where 0 < TJ < t < 1 and x > 0. Then (9.22) holds for large n, and it 
follows by (9.21) and (9.18) that 

P[T, = 2k, V, = 2i, S, = j ]  + g ( t , x ) ,  

t See Feller [28], p. 73. 
3 See Feller [28], p. 94. 
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where 

The same result holds for negative z by symmetry. Since local limit 
theorems imply global ones (Theorem 3.3), 

(9.24) 

has (in the random walk case) the limiting distribution in R3 specified 
by the density 

(9.25) if O < v < t < l ,  
other wise. 

f ( t ,  v, z) = { p 
By (9.16), (T,V,Wl) has this density. Because of (9.17), the 
distribution of (T, U,  V, "1) can be written out explicitly as well. 

From (9.25) it follows that the conditional distribution of V given 
T and W1 is uniform on [O,T]; this corresponds to (9.20). By (9.17), 
if T = t and W1 = z, then U is distributed uniformly over [l- t ,  11 for 
x > 0 and uniformly over [ 0, t] for z < 0. Using (9.25) to account for 
the possible values of t and z, we find the density of U alone: 

Now the integral of g( t ,z )  over the range x > 0 is l/[27rt3/2(l - t)lj2], 
which is the derivative of -7r-'((l- t ) / t ) 1 / 2 ,  and hence (9.26) reduces 
to 1 / [ d 2 ( 1  - u ) ' / ~ ] .  Therefore 

ds 2 
(9.27) P[U 5 u] = 1 = - arcsin&, O < u < 1. od- = 
This is Paul LQvy's arc sine distribution. A similar computation shows 
that T also follows the arc sine law: 

(9.28) 
2 P[T 5 t] = - arcsin di, o < t < 1. 
lr 

Let us now combine (9.15) with the facts just derived to  obtain a 
limit theorem for the general Lindeberg-LBvy case. Let us agree to say 
that a zero-crossing takes place at i if the event 

(9.29) Ei = [Si = 01 U [Si-l > 0 > Si] U [Si-l < 0 < Si] 
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occurs (which in the random walk case is to say that Si = 0). Let T' 
be the largest i, 1 5 i 5 n, for which a zero-crossing takes place at i; 
let UA be the number of i, 1 5 i 5 n, for which Si > 0; and let VL be 
the number of i, 1 5 i 5 TA, for which Si > 0. It will follow that 

if we can show that the left side here approximates the left side of 
(9.15). 

Clearly, TA/n is within 1/n of hl(Xn). If yn is the number of i, 
1 5 i 5 n, for which Ei occurs-the number of zero-crossings-then 
UA/n and Vh/n are within y n / n  of h2(Xn)  and h3(Xn), respectively. 
Therefore, (9.30) will follow from (9.15) and Theorem 3.1 if we prove 
that yn/n +, 0, and for this it is enough to show that 

(9.31) 
1 

E[yn/n] = - PEi -+ 0. 
n .  

2 = 1  

But 
PEi 5 P [ I < ~ I  2 6 4  + P[ISi-ll 5 €4 

for each positive 6, and hence, by the central limit theorem, PEi -+ 0. 
And now (9.31) is a consequence of the theorem on CesBro means. 

From (9.30) we may conclude for example that UA/n and T'/n 
have arc sine distributions in the limit. 

The Brownian Bridge 

The Brownian bridge W" behaves like a Wiener path W conditioned 
by the requirement W1 = 0. With an appropriate passage to the limit 
to take account of the fact that [Wl = 01 is an event of probability 
0, this observation can be used to derive distributions associated with 
W". 

Let P, be the probability measure on (C,C) defined by 

The first step is to prove that 

(9.32) P, =+, W" 
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as E tends to 0. Take W as a random function defined on some 
probability space, and take W" to be defined on the same space by 
Wt = Wt - tW1. If we prove that 

(9.33) limsupP[W E F 10 i Wi i €1 i PIWo E F]  
€ 4 0  

for every closed F in C, then (9.32) will follow by Theorem 2.1. 
F'rom the normality of the finite-dimensional distributions it 

follows that W1 is independent of each (Wt",, . . . , Wfk) because it is 
uncorrelated of each component. Therefore, 

(9.34) PIWo E A, W1 E B] = PIWo E A]P[Wi E B] 

if A is a finite-dimensional set in C and B lies in R1. But for B fixed 
the set of A in C that satisfy (9.34) is a monotone class and hence 
[PM.43] coincides with C. Therefore, 

PIWo E A 10 5 W15 E] = PIWo E A ] .  

Since p(W, W")  = IWll, where p is the metric on C, (W1( <_ 6 and 
W E F imply W" E F6 = [z :p(z ,F)  5 61. Therefore, if E < 6, 

The limit superior in (9.33) is thus at most PIWo E Fb], which decreases 
to PIWo E F ]  as 6 .1 0 if F is closed. This proves (9.33) and hence 
(9.32).t 

Suppose now that h is a measurable mapping from C to Rk and 
that the set Dh of its discontinuities satisfies PIWo E Dh] = 0. It 
follows by (9.32) and the mapping theorem that 

(9.35) P[h(W") 5 a] = lim P[h(W) 5 cx 1 o 5 W1 5 E] 
€ 4 0  

holds for each a at which the left side is continuous (as a funtion of 
a ranging over Rk). From (9.35) we can find explicit forms for some 
distributions connected with W". Sometimes an alternative form of 
(9.35) is more convenient: 

P[h(Wo) I a] = lim P[h(W) _< a I - E 5 ~1 5 01. 
€+O 

(9.36) 

t This part of the argument in effect repeats the proof of Theorem 3.1. 
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The proof is the same (we could use any subset of [ -E,E] of positive 
Lebesgue measure). 

Define 
mo = inf W f ,  M" = sup W f .  

t t 

Suppose that a < 0 < b and 0 < E < b; by (9.10) we have, if c = b - a, 

(9.37) P[a < m 5 M < b, 0 < W1 < E ]  

00 

= C P[2kc < N < 2kc+ E ]  

kZ-00  
m 

- c P[2lcc+2b- E < N < 2kc+2b]. 
k=-W 

Since 

1 1 
lim - ~ [ z  < N < z + €1 = - e - x 2 / 2 ,  
€+O E 6 (9.38) 

and since the series in (9.37) converge uniformly in E ,  we can take the 
limit ( E  + 0) inside the sums, and it follows by (9.35) that 

00 00 

(9.39) P[a < mo < M" 5 b] = C e-2(kc)2 - c e-2(b+kc)2 * 

Thus we have the distribution of (m", M") .  Taking -a = b gives 

co 

, b > 0 .  ke-2k2b2 (9.40) P[sup IWJ 5 b] = 1 + 2 c (-1) 
k = - W  t 

By an entirely similar analysis applied to (9.11), 

(9.41) P[m" < b] = 1 - e-2b2, b > 0. 

Let U" be the Lebesgue measure of those t in [ 0,1] for which 
W,O > 0. It will follow that U" is uniformly distributed over [ 0,1] 
if we prove 

(9.42) 

Because of (9.17), the conditional probability here is P[V 5 a I - E 5 
W1 < 01. From the form of the density (9.25) we saw that the 

l i m P [ U < a I  - ~ < W 1 < 0 ] = c x ,  O < a < 1 .  
€40 
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distribution of V for given T and W1 is uniform on (0,T).  In other 
words, L = V/T is uniformly distributed on (0, l )  and is independent 
of (T, W1). Therefore, the conditional probability in (9.42) is 

P[TL 5 Q 1 - E 5 W1 <_ 01 = P[T 5 O!/S I - E < W1 5 O]ds, 

and (9.42) will follow by the bounded convergence theorem if we prove 
the intuitively obvious relation 

But this follows by (9.38) and the form of the density (9.25). Therefore, 

(9.43) PIUO _< a] = Q, 0 < Q < 1. 

Problems 

9.1. 

9.2. 

9.3. 

Show by reflection in the random walk case that 

(9.44) if v 2 b, 
if w 5 b P[Mn 2 b, > S,, = v] = { Pn(') pn(2b- v) 

for 6 2 0. Derive (9.9) from this. 

For nonnegative integers G, let r(c1,. . . , ck; v) be the probability that an n- 
step random walk (n  fixed) meets c1 (one or more times), then meets -c2, then 
meets ~ 3 , .  . ., then meets (-1)"'Ck, and ends at v. Use (9.44) and induction 
on k to show that 

(Reflect through (-l)kCk-l the part of the path to the right of the 
first passage through that point following successive passages through 
c1, -Q,. . . , (-l)k-1Ck-2.) Derive (9.5) by showing that p,(a, b,v)  is 

For z in C let h(z)  be the smallest t for which z( t )  = sups ~ ( 8 ) .  Show that h 
is measurable and continuous on a set of W-measure 1. Let T,, be the smallest 
k for which s k  = maxis,, si and prove 

P ? < a  +-arcsinf i ,  2 0 < c r < 1 ,  
[ n - I  n. 

in the Lindeberg-L6vy case. (See Feller [28], p. 94, for the random walk case.) 
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9.4. Derive the joint limiting distribution of the maximum and minimum of 
Si -in-'S,,, 0 < i < n, in the Lindeberg-Lhvy case. (Consider yt" = X p  - tX;  
with X" defined by (8.5).)  

SECTION 10. MAXIMAL INEQUALITIES 

To prove tightness in Section 8, we used Etemadi's inequality (8.13),  
which requires the assumption of independence. Since we are also 
interested in functional limit theorems for dependent sequences of 
random variables, we want variants of (8.13) itself. This means that 
we need usable upper bounds for probabilities of the form 

P[muk<n Iskl 2 A], 

that is, maximal inequalities. The inequalities derived here are useful 
in probability theory itself and also in applications of probability to 
analysis and number theory. 

Maxima of Partial Sums 

Let (1,. . . , t n  be random variables (stationary or not, independent or 
not), let sk = & + - . + & (SO = 0), and put 

(Because of the absolute values, the notation differs from (8.16) and 
(9.1).)  We derive upper bounds for P[Mn 1 A] by an indirect approach. 
Let 

and put 

(10.3) 

There is a useful companion inequality. If ISnl = 0, then, trivially, 
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But this also holds if lSnl > 0. For in that case, ISkl 2 (Sn - Skl holds 
for k = n but not for k = 0, and hence there is a k, 1 5 k 5 n, 
for which ISkl 2 ISn - Skl but ISk-l( < (Sn - Sk-11; for this k, 
(Sn - Skl = mOkn 5 Ln and ISk-11 = mO,h-l,n 5 Ln, which implies 
that IS,( 5 ISk-11 + I&I + IS, - Shl 5 2Ln + ICkl: (10.5) again holds. 
Finally, (10.4) and (10.5) combine to give 

If we have a bound on Ln-that is to say, an upper bound on the 
right tail of its distibution-as well as a bound either on ISnl or on 
maxk I&[, then we can use (10.4) or (10.6) to get a bound on Ma, as 
required to establish tightness. And in the next chapter, bounds on 
Ln itself will play an essential role. We can derive useful bounds on 
Ln by assuming bounds on the mijk. 

Theorem 10.1. Suppose that a > and ,Ll 2 0 and that u1,. . . , un 
are nonnegative numbers such that 

1 2a 
(10.7) P [ m i j k  2 A] 5 -( .I) , 0 5 i 5 j 5 k 5 n, 

i< l<k  
x 4 p  

forA > 0. Then 

(10.8) 

for A > 0,  where K = Ka,p depends only on a and p. 

illustration. 
Before turning to the proof, consider the independent case as a first 

EzampZe 10.1. Take a = ,Ll = 1 and suppose that the & are 
independent and identically distributed with mean 0 and variance 1. 
By Chebyshev’s inequality and the inequality xy 5 (x + Y)~, 

( j  - i) (k - j )  < (k - i)’ 
- A2 A2 - A4 * 
<-- 

Thus (10.7) holds with ul E 1, and by (10.8), P[Ln 2 A] 5 Kn2/A4 
and hence P [ L n / f i  2 A] 5 KIA4 (normalize as usual by 6). By 
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stationarity, 

P [ max->A ] I n P  [F - 2 X  ] 
k<n fi 

Write $(A) for this last integal. By (10.6), 

Since $($A) -, 0 as X + 00, we can use this inequality to prove (8.7) 
and hence tightness. Thus we have a new proof of Donsker's theorem: 
We have proved tightness by Theorem 10.1 instead of by the central 

0 

This alternative proof still uses independence, however, and the real 
point of Theorem 10.1 is that it does not require independence. See, for 
example, the proof of Theorem 11.1, on trigonometric series, and the 
proof of Theorem 17.2, on prime divisors. Postponing again the proof 
of Theorem 10.1, we turn to the following variant of it, where conditions 
are put on the individual ISj - Sil rather than on the minima rnijk. 

Theorem 10.2. Suppose that Q > f and P 1 0 and that u1,. . . , un 
are nonnegative numbers such that 

limit theorem and Etemadi's inequality. 

f o r X  > 0. T h e n  

(10.10) 

f o r  X > 0, where K' = KA,p depends only on a and P ,  

therefore, by (10.9) (xy I (x + Y ) ~ ) ,  
PROOF. By Schwarz's inequality, P(AnB) 5 P1/2(A)P1/2(B), and 

If s = Cllnul,  then P[L, > A] 5 Ks2"/X4@ by Theorem 10.1. But 
PIISnl 2 A] < sza/X40 by (10.9), and so it follows by (10.4) that 

0 P[M, 2 XI 5 (K + 1 ) 2 4 ~ ~ / ~ 4 ~ .  
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By Markov’s inequality, (10.9) holds if 

(10.11) 

does. 

Ezample 10.2. Return to Example 10.1, where a = ,B = 1. If the 
& have fourth moment T ~ ,  then it is a simple matter to show [PM.85] 
that ES; = kr4  + 3k(k - 1) 5 3kr4 (T >_ o = 1). In this case, (10.11) 
holds for u1 = f i r 2 .  By applying Theorem 10.2 we can now conclude 
that P[M, 2 A] I ~ K ’ ~ ’ T ~ / X ~ ,  or P[M,/@ 2 A] 5 ~ K ‘ T ~ / A ~ .  This 
is enough to establish tightness in Theorems 8.1 and 8.2. And as 
before, the real point of Theorem 10.2 is that it does not require 

Just as (10.11) implies (10.9), there is a moment inequality that 

independence. 0 

implies ( 10.7), namely 

A More General Inequality 

If we generalize Theorem 10.1, the proof becomes simpler. Let T be a 
Bore1 subset of [ 0,1] and suppose that y = [yt: t E TI is a stochastic 
process with time running through T .  We suppose that the paths of the 
process are right-continuous in the sense that if points s of T converge 
from the right to a point t of T ,  then y8(w) + yt(w) at all sample 
points w (if T is finite, this imposes no restriction). Let 

(10.13) mrst = 1% - rrl A 1% - Ysl, 

and define 

( 10.14) 

Theorem 10.3. Suppose that cy. > f and ,B 2 0 and that p is a 
finite measure on  T such that 



SECTION 10. MAXIMAL INEQUALITIES 109 

for X > 0 and r ,s , t  E T. Then 

(10.16) 

for X > 0, where K = Ka,p depends only on a and ,B. 

To deduce Theorem 10.1 from Theorem 10.3, we need only take 
T = [i/n:O 5 i I n] and r(i /n) = Si, 0 5 i 5 n,  and let p have mass 
ui at i ln ,  1 5 i I n. 

PROOF. Write m(r, s, t )  for mr,s,t. The argument goes by cases. 

Case 1: Suppose first that T = [0,1] and that p is Lebesgue 
measure. Let DI, be the set of dyadic rationals 2 / 2 k ,  0 5 i 5 2 k .  
Let BI, be the maximum of m ( t 1 ,  t 2 ,  t 3 )  over triples in Dk satisfying 
tl 5 t 2  5 t 3 .  Let Ak be the same maximum but with the further 
constraint that t l , t 2 ,  t 3  are adjacent: t 2  - tl = t 3  - t 2  = 2 - k .  For t in 
Dk, define a point t‘ in D k - 1  by 

Then Ir(t) - y(t’)I 5 Ak for t in Dk, and therefore, for t l , t 2 ,  t 3  in Dk, 

and 

If tl < t 2  < t 3 ,  then ti I t; I ti, and since ti ,  t;, t$ lie in Dk-1, it 
follows that m ( t 1 7 t 2 , t 3 )  5 Bk-1+2Ak7 and therefore, B k  5 Bk-1+2Ak. 
Since A0 = BO = 0, it follows by induction that BI, 5 2(A1+ - - + Ak) 
for k 2 1, and it follows further by the right-continuity of the paths 
that L(y) 5 2CF1 Ak. 
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We need to control Ak. Suppose that 0 < 0 < 1 and choose C 
so that C c E 1  0' = i. Then 

Since p is assumed to be Lebesgue measure, (10.15) implies 

Since 4/3 2 0 and 2a - 1 > 0, there is a 0 in (0,l) for which the series 
here converges. This shows how to define K and disposes of Case 1. 

Case 2 Suppose that T = [0,1] and p has no atoms, so that 
F ( t )  = p[O,t ]  is continuous. If F is strictly increasing and F(1) = c, 
take a = so that a4@cza = 1, and define a new process < by 

<(t) = a y ( F - l ( c t ) ) .  

Then < comes under Case 1, and the theorem holds for 77 because 
L(y) = aL(<). If F is continuous but not strictly increasing, consider 
first the measure having distribution function F ( t )  + ~ t ,  and then let E 

Case 3 Suppose that T is finite (which in fact suffices for Theorem 
10.1). If 0 # T ,  let y(0) = y ( t l ) ,  where t l  is the first point of T ,  and 
take p(0) = 0. If 1 # T ,  take y(1) = y ( t v - l ) ,  where t,-l is the last 
point of T ,  and take p{l} = 0. Then the new process y and measure 
p satisfy the hypotheses, and so we may assume that T consists of the 
points 

0 = t o  < t l  < ' * .  < t ,  = 1. 

Define a process y' by 

go to 0. 

If mist denotes (10.13) for the process y', then mist vanishes unless T ,  

s, t all lie in different subintervals [ti, t i+l) .  Suppose that 

(10.17) T E [ t i , t i + l ) ,  S E [tj,tj+l), t E [tk,tk+l), < j < 
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Then m:st = m(ti, t j ,  t k ) ,  and hence, by the hypothesis of the theorem 
for the process y, 

Now let Y be the measure that corresponds to a uniform 
distribution of mass p{tl-1) + p{ t l }  over the interval [tl-l,tl], for 
1 I 12 v. Then 

and so (10.18) implies 

( 10.19) 
1 

x4p 
P[mi,, 2 A] I -v2y?-, t ] .  

Although (10.17) requires t < 1, (10.19) follows for t = 1 by a small 
modification of the argument. 

Thus (10.19) holds for 0 5 r I s I t I 1, and Case 2 applies to 
the process y': 

Since L(y') = L(y), if we replace the K that works in Cases 1 and 2 
by 22aK, then the new K works in Cases 1, 2 ,  and 3. 

Case 4: For the general T and p, consider finite sets 

such that Tn C Tn+l and UTn is dense in T .  Let pn have mass 
P((tn,i-l,tn,i] n T )  at the point tni. If y(n)  is the process y with the 
time-set cut back to Tn, then L ( T ( ~ ) )  1 L ( y )  by the right-continuity of 
the paths. Since each y(n) comes under Case 3, we have 

Let E go to 0. 0 
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A Further Inequality 

The last theorem of this section will be used in Chapter 3. Suppose 
that y = [yt: t E TI has right-continuous paths, as before, and for 
positive 6 define L(y,6) by (10.14), but with the supremum further 
restricted by the inequality t - r 5 6.  

Theorem 10.4. Suppose that a > f and ,B 2 0 and that p is a 
finite measure on T such that 

(10.20) P[mrst 2 A] 5 @pZff(T n (r, t ] ) ,  

for X > 0 and r ,s , t  E T .  Then 

1 
r 5 s 5 t ,  t - r < 26 

for X > 0,  where K = Ka,p depends only on a and p. 
This theorem is somewhat analogous to Theorem 7.4 and its 

corollary. The K's in (10.16) and (10.21) are the same. 

PROOF. Take v = Ll/S], ti = i6 for 0 5 i < v, and t ,  = 1. If 
Ir - tl 5 6, then r and t lie in the same [ti-l, ti] or in adjacent ones, 
and hence they lie in the same [ti-l,ti+l] for some i, 1 5 i 5 v - 1. 
If Zi is the supremum of mrst for r ,  s, t ranging over T n [ti-l, ti+l] 
( -  r < s < - t ) ,  then P[Zi L A] 5 Kp2"(T r l  Eti-1, ti+l])/X4p by Theorem 
10.3. If pi = p(T n [ti-l,  t i+l]), then 

and (10.20) follows from this. 0 

Problems 

10.1. Prove a theorem standing to Theorem 10.3 as Theorem 10.2 stands to 
Theorem 10.1. 

10.2. Weaken (10.11) by assuming only that it holds for i = 0 and j = n, but 
compensate by assumin that SI, . . . , S, is a martingale and 4/3 2 1. Show 

strength as (10.10). 

(10.12) holds with Q 2 112 and /3 1 114, then 

- 
that P[M, 2 A] 5 A- 4% (zl<nul)2a, an inequality of essentially the same 

10.3. Adapt the proof of Menshov's inequality (Doob [19], p. 156) to show that, if 
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Now deduce that, if (10.11) holds with a 2 1 and /3 2 1/2, then 

If Q = /3 = 1, this gives Menshov’s inequality again. 

where /3 2 0 and a > 1/2, then ci <i converges with probability 1. 
10.4. Use Theorem 10.2 to show that, i f< l ,&,  . . . satisfies (10.11) for 0 I i I j < 00, 

SECTION 11. TRIGONOMETRIC SERIES” 

In this section we prove functional limit theorems for lacunary series 
and for series defined in terms of incommensurable arguments. 

Lacunary Series 

A trigonometric series xEl(ak cos mkz+br, sinmkz) is called lacunary 
if the m k  are positive integers increasing at an exponential rate: 
m k + l / m k  2 q > 1. If z is chosen at random from [ 0,27r], then the series 
has some of the properties of a sum of independent random variables. 
Here we prove a functional central limit theorem for the partial sums 
of a pure cosine series. 

In this theorem, P and E will refer to normalized Lebesgue measure 
on the Bore1 sets in Cl = [0,27r]. Since the cosine integrates to 0 over 
[ 0,27r], it follows from the relation 

(11.1) 
1 1 
2 2 

cos 8 . cos 8’ = - cos(e + el) + - cos(e - el) 

that 

2 1 
(11.2) E [ c o s ~ ~ ]  = 0, E[COS mu] = -, 

2 
E[cosmw * cosm’w] = 0, 1 5 m < m’ 

Because of the $ here, it is probabilistically natural to multiply the 
cosine by a; this makes the variance equal to 1. And so, define 
&(W) = &ah cos mkw and consider the sums 

n n 

k = l  k= I 
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Define a random element Y n  of C by 

for 

This is a trigonometric analogue of the random function (8 .5)  of 
Donsker's theorem: Yn is the polygonal function resulting from linear 
interpolation between its values = s k / s n  at the points t = s i / s i ,  

k = 0 , 1 , .  . . , n.t Strengthen the lacunarity condition to 

(11.6) m k + l / m k  2 2. 

Theorem 11.1. If (11.6) holds and 

(11.7) 

then Y n  + W .  
To show that the finite-dimensional distributions converge it is best 

to consider a triangular array first: Let c n k ( w )  = &ank cos m k w  for 
1 5 k 5 n. In the following lemma and its proof, k ranges from 1 to n 
in the sums, products, and maxima. 

Lemma 1. If (11.6) holds, Zf c k a i k  + a2 > 0, and Zf C r i  = 
mElXk a i k  -+ 0, then c k  <nk =$ aN.  

PROOF. The hypothesis of convergence to a2 we can strengthen 
to equality, and we can arrange that a = I: If e; = c k  a i k  and 
< A k ( u )  = & % ~ l u - l a n k c o s m k w ,  then On + 1, & ( 8 L 1 a - 1 a n k ) 2  = I ,  
and (Example 3.2) E k c L k  + N implies c k ( n k  + aN.  Assume, 
therefore, that c k a i k  = 1. 

t If a;,, = 0, there is a division by 0 in (11.5); but in that case, no t can satisfy 
the defining inequality anyway. Or simply assume all the af to be positive. 
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< 1, the principal value of log(1 + iz) can be defined as 
~(x), where ~ ( x )  = ~ ~ 1 3 ( - l ) u ( i x ) u + 1 / u  and lr(x>I 5 1xI3 
This gives 

Then 

(11.8) exp [it zk <nk] = ~ , e - ~ ~ / ~  + A,, 

and so XI, <,k + N will follow if we prove 

(11.9) EA, + 0 

and 

(11.10) ET, = 1. 

We first show that 

(11.11) x k c k  * 1* 

From the assumption that cka:k  = 1, it follows by the double-angle 
formula that 

2 xk &(W) = xk 2a;k cos2 mkw = 1 + ck ank cos 2mkw. 

And now (1 1.2)-orthogonality-implies 

and (11.11) follows from this. 
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F'rom l<nkl I f i l a n k I  it follows that, for all sufficiently large n, we 
have 

By this and (ll.ll), Zn + et2/2. But since 1 + u  I eu, we also have 
lTnl 5 nk(l + t2aEk)'/2 I exp(Ckt2aEk/2) _< et2,  and so An + 0. 
Finally, by (11.8), lAnl I 1 + lTnl I 1 + et2, and so, by Theorem 3.5, 
we can integrate to the limit: (11.9) follows. 

There remains the proof of (11.10). Expanding the product that 
defines Tn gives 

(11.12) ETn = 1 + ) : ( f i i t ) " a j ,  -**aj,E [ C O S ~ ~ , U * * . C O S ~ ~ , W  1 , 
where the sum extends over v = 1, .  . . , n and n 2 j 1  > . 
And repeated use of (11.1) leads to 

> j ,  2: 1. 

(11.13) E [ c o s ~ ~ , u * * . c o s ~ ~ , u ]  
1 -- - C E [ c o s ( ~ ~ ,  f mj, f * * * f m j , ) ~ ] ,  2"-1 

where here the sum extends over the 2"-l choices of sign. The expected 
value in the sum is 0 unless 

(11.14) mjl f mjz f * * f mj, = 0. 

But if j 1  > ... > j,, then by (11.6), 

1 1  
(11.15) mj, f m j 2  f e . 9  

and (11.12) are therefore 0, and (11.10) follows. 

2"- 1 

and so (11.14) is impossible. The expected values on the right in (11.13) 
0 

We need a second lemma for the proof of tightness. Define Sn by 

Lemma 2. If(11.6) holds, then 

(11.3), as before. 

(1 1.16) 

where C is a universal constant. 
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PROOF. The proof uses (10.11) and Theorem 10.2 for Q = p = 1. 
By (11.13) for = 4, 

(11.17) E[Si] = c ' a j ,  * * * a j ,  ~ " ~ E [ c o s ( m j ,  f m j ,  fmj ,  &mj,)w], 

where in C' the four indices range independently from 1 to n, and C" 
extends over the eight choices of sign. In place of (11.6) temporarily 
make the stronger assumption that mk+l/mk 2 4. We must sort 
out the cases where the coefficient of w in (11.17) vanishes for some 
choice of signs. Suppose that j1 2 j 2  2 j 3  2 j 4  and consider whether 
L: = mj, f mj, = fmj ,  f mj, =: R is possible. It is if j 1  = j ,  and 
j 3  = j 4 ,  but this is the only case: If j1  > j 2 ,  then mj, 2 4mj, and 
hence L 2 4mj, f mj, > 2mj, 2 mj, + mj, 2 R. Suppose on the other 
hand that jl = j 2  but j 3  > j 4 .  Then L = mj, kmj,  is either 0 or 2mj2; 
but R # 0 rules out the first case and R 5 mj, + mj, < 2mj, I 2mj, 
rules out the second. 

Therefore (if mk+l/mk 2 4), the only sets of indices j1, .  . . , j 4  that 
contribute to the sum in (11.17) are those consisting of a single integer 
repeated four times and those consisting of two distinct integers each 
occuring twice. Since in any case the inner sum has modulus at most 1, 

( 11.18) 

Since (11.6) implies mk+2/mk 2 4, it implies that (11.18) holds if 
k is restricted to even values in the sum Sn and also in the sum on 
the right. The same is true for odd values, and so by Minkowski's 
inequality, (11.18) holds if the right side is multiplied by 24. Finally, 
the same inequality holds with Sj - Si in place of S,: 

And now (11.16) follows by Theorem 10.2 if C = 16. 3 .  K'. 0 

PROOF OF THEOREM 11.1. We prove Y n  + W by means of 
Theorem 7.5 (with Y n  and W in the roles of X n  and X ) ,  and we turn 
first to (7.13). Let an = maxk<, - lakl/Sn. Taking ank = a k / S n ,  k 5 n, 
in Lemma 1 gives Yy = Sn/sn + W1. Fix a t in (0,l) and let kn( t )  



118 THE SPACE C 

be the largest k for which s",sE 5 t. Then ts: lies between s i n ( t )  and 

4, ( t ) + l ,  and therefore, 

( 11.19) 

By (11.5), qn is within f i a n  of S k , ( t ) / S n ,  and it converges in 
distribution to Wt by (11.19) and the lemma. And ( q n , Y r )  + 
(Wt, W1) will follow by the Cram&-Wold method [PM.383] if we show 
that uqn+vYy + uWt+vWl for all u, v. But this also follows from the 
lemma if we take unk = (u + v)ak/sn for k 5 k n ( t )  and ank = vak/sn 
for kn( t )  < k 5 n. This argument extends to the case of three or 
more time points, and therefore (q:, . . . , &!) +n (Wt,, . . . , Wt,) for 
all t l ,  . . . , t k .  

We turn next to (7.14), which we prove by means of (7.10). Let 
X = an. If 1 = 0 and m = n, then (11.16) can be written 

But this holds for any pair of integers satisfying 0 5 1 5 m 5 n, 
because it depends only on the condition (11.6). Suppose now that ti 
are points satisfying 0 = t o  < - < tv = 1 and (7.9), so that, by (7.10)) 

Suppose further that we can choose the ti in such a way that ti = 
s k i / s :  for integers mi satisfying 0 = mo < - - - < mv = n. Since the 
random function Y" is a polygon with break-points over the ti, (11.21) 
implies 

w(Yn,6 )  5 3 max max , 

the inner maximum here equals the supremum in (11.21). It follows 
by (11.20) that 

Isk - Sui-11. 

l<i<v ui-l<k<ui Sn 

c v  C (11.22) P[w(Yn,  6) 2 361 5 7 C(ti -  ti-^)^ 5 - m a  (ti - ti-1). 
€4 l<i<v i=l 

Suppose we can, for all sufficiently large n, arrange that 
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The first two of these conditions will ensure that (11.22) holds for large 
n, and it will then follow from the third one that P[w(Y",b) 2 3 ~ 1  5 
36C/e4. And of course this implies (7.14), which will complete the 
proof. 

Integers mi satisfying (11.23) can be chosen this way: Take v = 
[1/(26)1 and m, = n, and for 0 2 i 5 - 1, take mi = kn(2Si), 
where k n ( t )  is defined as before. For large n, (11.23) then follows from 

Incommensurable Arguments 

Replace the integers ml,  m2,. . . in (11.3) by a sequence XI, X2,. . . of 
linearly independent real numbers, as at the end of Section 3. And 
for simplicity take Uk G 1. That is, replace &(w)  = fiUkcosmkw by 
G ( w )  = ficos&w and replace (11.3) by 

(1 1.19). 

(11.24) 
k = l  

For each w E R1, define a function Z"(w)  in C by 

k + l ,  0 5  k < n .  for - I t < -  
k 
n n 

This, a second trigonometric analogue of (8 .5 ) ,  is a polygonal function 
with values Z;,,(w) = Sl,(w)/fi at the corner points. The objective 
is to extend (3.33) to a functional central limit theorem. 

Let <k be the random variables in (3.31). If we put v,(w) = 
(ficos Xlw, . . . , ficosX,w) and V, = (0,. . . , &), then what (3.33) 
says is that PTV;' JT PV;', where P refers to the space the 
independent sequence {<k} is defined on. Define 7,:Rn -+ C this 
way: If z = (21 ,..., zn),  take 7nz = z, where z(0) = 0, z(k/n) = 
C;=, z i / f i  for 1 5 k 5 n, and z is linear between these points. Since 
T~ is continuous, it follows by the mapping theorem that PTV;'T;~ +T 
PV;'T;~. But T,(zI,(w)) is exactly Zn(w) as defined by (11.25), and 
Xn = T ~ V ~  is a special case of the random function (8.5) of Donsker's 
theorem (a = 1). Therefore, Donsker's theorem applies: 

PT(Zn)-l +T P(Xn)-l J n  PW-l, 



120 THE SPACE C 

where the P at  the right refers to some space supporting a Wiener 
random function W .  

Now suppose that h: C -+ R1 is measurable, and let Dh be the set 
of its points of discontinuity. If 

(11.26) 

for some no, then two further applications of the mapping theorem give 

P[Xn E Dh] = P[W E Dh] = 0, n 2 no, 

P ~ ( Z ~ ) - l h - l  JT P(Xn)-lh-' +n PW- 1 h -1 . 

Finally, if H is a linear Bore1 set and 

(11.27) 

then 

P[h(Xn) E a H ]  = 0 = P[h(W) E a H ] ,  n 2 no, 

PT[h(Zn(w)) E HI -'T P[h(Xn) E H ]  -$n P[h(W) E HI. 

What the argument shows is this: If (11.26) and (11.27) hold, then 

lim P,[h(Zn(w)) E HI = P[h(W) E HI. (1 1.28) 

Take H = (--oo,x]. Then (11.27) holds for all but countably many x, 
and we arrive at our theorem. 

Theorem 11.2. If XI, X I , .  . . are linearly independent and Z"(w) 
is defined over R1 by (11.25), and if (11.26) holds, then 

(11.29) 

for all but countably many x. 

If h(x) = suptx(t), for example, then (11.26) holds because h is 
continuous everywhere on C. On the other hand, h has discontinuities 
if h(x) is sup[t:z(t) = 01, for example, or if h(x) is the Lebesgue 
measure of [ t : x ( t )  > 01; but P[W E Dh] is 0 for these functions as 
well [M15]. Since the random variables & in the definition of Xn have 
continuous distributions in this particular case (see (3.31)), we also 
have P[Xn E D h ]  = 0 as long as n > 1. Therefore, Theorem 11.2 
gives the folded normal distribution as the limiting distribution of the 
maximum of the sums ~ C i < k c o s X i w ,  1 5 k 5 n, as well as an 
arc sine law for the fraction of positive partial sums, and so on. 

Problem 

n+m 

lim P,[h(Zn(w)) 5 x] = P[h(W) 5 x] 
n-mo 

11.1. Prove a theorem that stands to (3.41) as Theorem 11.2 stands to (3.33). 



CHAPTER 3 

THE SPACE D 

SECTION 12. THE GEOMETRY OF D 

The space C is unsuitable for the description of processes that, like 
the Poisson process and unlike Brownian motion, must contain jumps. 
In this chapter we study weak convergence in a space that includes 
certain discontinuous functions. 

The Definition 

Let D = D [  0,1] be the space of real functions x on [ 0,1] that are 
right-continuous and have left-hand limits: 

(i) For 0 5 t < 1, x(t+) = lim,ltz(s) exists and x(t+) = ~ ( t ) .  
(ii) For 0 < t 5 1, x( t - )  = lim,px(s) exists. 

Functions having these two properties are called cadlag (an acronym 
for “continu 8. droite, limites 8. gauche”) functions. A function x is said 
to have a discontinuity of the first kind at t if ~ ( t - )  and x(t+) exist 
but differ and x ( t )  lies between them. Any discontinuities of a cadlag 
function-of an element of D-are of the first kind; the requirement 
x( t )  = x(t+) is a convenient normalization. Of course, C is a subset 
of D. 

With very little change, the theory can be extended to functions on [ 0,1] taking 
values in metric spaces other than R1. What changes are needed will be indicated 
along the way. Denote the space, metric, and Bore1 a-field by V, v, and V ;  V will 
always be assumed separable and complete. The definition of the cadlag property 
needs no change at all. 

For x E D and T c [0,1], put 

(12.1) Wz(T) = W ( Z , T )  = sup Ix(s> - x(t)l .  
s , t E T  
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The modulus of continuity of z, defined by (7.1), can be written as 

(12.2) w,(6) = w ( x ,  6 )  = sup w,[t, t + 61. 
O l t l l - a  

A continuous function on [ 0,1] is uniformly continuous. The following 
lemma gives the corresponding uniformity idea for cadlag functions. 

Lemma 1. For each x in D and each positive E ,  there exist points 
to ,  t l ,  . . . , t, such that 
(12.3) 

(12.4) wz[ti-l,ti) < €, i = 1 , 2 , .  . . ,v .  

0 = t o  < tl < * . *  < t, = 1 

and 

PROOF. Let to be the supremum of those t in [ 0,1] for which [ 0, t )  
can be decomposed into finitely many subintervals [ti-l, ti) satisfying 
(12.4). Since z(0) = x(O+), we have to > 0; since z(to-) exists, [ 0,  to)  
can itself be so decomposed; to < 1 is impossible because %(to) = 

F'rom this lemma it follows that there can be at most finitely many 
points t at which the jump Iz(t) - z(t-)l exceeds a given positive 
number; therefore, z has at most countably many discontinuities. It 
follows also that z is bounded: 

z(t"+) in that case. n 

(12.5) 11x11 = SUP 14 < 00. 
t 

Finally, it follows that x can be uniformly approximated by simple 
functions constant over intervals, so that it is Borel measurable. 

If x takes its values in the metric space V, replace $he lx(s)  - z( t ) (  in (12.1) by 
v(x(s),z(t)); the magnitude of the jump in z at t is v(x(t),z(t-)). Lemma 1 and 
its proof need no change, and in place of (12.5) we have the fact that the range of x 
has compact closure. Indeed, for given points x(t,) in the range, choose a sequence 
{ni} and a t so that either t,, 1 t or tni T t ;  in the first case, z(tn,) -t x ( t ) ,  and 
in the second, z(tni) + x ( t - ) .  As for measurability, a function that assumes only 
finitely many values is measurable B/U, where 13 is the a-field of Borel sets in [ 0,1], 
and [MlO] a limit of functions measurable B/U is itself measurable B/U. 

We need a modulus that plays in D the role the modulus of conti- 
nuity plays in C. Call a set {ti} satifying (12.3) 6-sparse if it satisfies 
m i n l ~ i ~ v ( t i  - ti-1) > 6. And now define, for 0 < 6 < 1, 

(12.6) wL.6) = w'(z,6) = inf max wx[ti-l , t i) ,  
{ti} l l i l v  



SECTION 12. THE GEOMETRY OF D 123 

where the infimum extends over all 6-sparse sets {ti}. Lemma 1 is 
equivalent to the assertion that limb wg(6) = 0 holds for every z in D. 
Notice that wL(6) is unaffected if the value z(1) is changed. 

Even if z does not lie in D, the definition of wL(6) makes sense. Just 
as limb w,(6) = 0 is necessary and sufficient for an arbitrary function 
z on [ 0,1]  to lie in C, limb wL.6) = 0 is necessary and sufficient for z 
to lie in D. 

Now to compare wL(6) with ~~(6). Since [ 0 , l )  can, for each 6 < $, 
be split into subintervals [ti-l, ti) satisfying 6 < ti - ti-1 5 26, we have 

(12.7) 

There can be no general inequality in the opposite direction because 
of the fact that w,(6) does not go to 0 with 6 if z has discontinuities. 
But consider the maximum (absolute) jump in z: 

(12.8) 

the supremum is achieved because only finitely many jumps can exceed 
a given positive number. We have 

(12.9) 

To see this, choose a &sparse {ti} such that w,[ti-l,ti) < wL(6) + E 

for each i. If 1s - tl 5 6, then s and t lie in the same [ti-l,ti) or else 
in adjacent ones, and Iz(s) - z(t)l is at most wh(6) + E in the first case 
and at most 2w;(6)+e+j(z) in the second. Letting E + 0 gives (12.9). 
Since j ( z )  = 0 if z is continuous, we also have 

(12.10) 

Because of (12.7) and (12.10), the moduli w,(6) and wk(6) are 
essentially the same for continuous functions z. 

The Skorohod Topology 

Two funtions z and y are near one another in the uniform topology 
used for C if the graph of z( t )  can be carried onto the graph of y ( t )  
by a uniformly small perturbation of the ordinates, with the abscissas 
kept fixed. In D, we allow also a uniformly small deformation of the 
time scale. Physically, this amounts to the recognition that we cannot 
measure time with perfect accuracy any more than we can position. 
The following topology, devised by Skorohod, embodies this idea. 
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Let A denote the class of strictly increasing, continuous mappings 
of [0,1] onto itself. If X E A, then A0 = 0 and A 1  = 1. For z and y in 
D, define d(z,y)  to be the infimum of those positive E for which there 
exists in A a X satisfying 

(12.11) 

(12.12) 

sup I X t  - tl = sup It - X-ltl < E 
t t 

and 

sup I x ( t )  - y(Xt)( = sup (z(x- ' t)  - y(t)J < E .  
t t 

To express this in more compact form, let I be the identity map on 
[ 0,1] and use the notation (12.5). Then the definition becomes 

By (12.5), d ( z , y )  is finite (take A t  t ) .  Of course, d(z ,y )  2 0; and 
d ( z , y )  = 0 implies that for each t either z( t )  = y ( t )  or z( t )  = y(t-), 
which in turn implies z = y. If X lies in A, so does X-'; d(x ,  y) = d ( y ,  x) 
follows from (12.11) and (12.12). If XI and A2 lie in A, so does their 
composition X 1 X 2 ;  the triangle inequality follows from (IX1X2 - Ill 5 
l1X1 -Ill+ l l X 2 - I I I  together with ~ ~ z - z X ~ X ~ I I  i (1z-yX211+I(y-zX1((. 
Thus d is a metric. 

This metric defines the Skorohod topology. The uniform distance 
(Iz - y(( between z and y may be defined as the infimum of those 
positive E for which sup, Iz(t) - y ( t ) (  < E .  The X in (12.11) and (12.12) 
represents the uniformly small deformation of the time scale referred 
to above. 

Elements z, of D converge to a limit z in the Skorohod topology if 
and only if there exist functions A, in A such that limn zn(Xnt) = x( t )  
uniformly in t and limn Ant = t uniformly in t .  If z, goes uniformly to 
z, then there is convergence in the Skorohod topology (take Ant = t ) .  
On the other hand, there is convergence z, = IIO,a+l/n) + z = 
in the Skorohod topology (0 5 a < l) ,  whereas zn(t)  --t z( t )  fails in 
this case at t = a. Since 

(12.14) IznW - WI I I%(t> - &wl + I z ( W  - z(t>l, 
Skorohod convergence does imply that zn(t) + z( t )  holds for conti- 
nuity points t of z and hence for all but countably many t. More- 
over, it follows from (12.14) that if z is (uniformly) continuous on 
all of [ 0,1], then Skorohod convergence implies uniform convergence: 
llzn - zII 5 l)zn - zXnII + w,(llA, - Ill). Therefore: 

The Skorohod topology relativized to C coincides with the uniform 
topology there. 
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Example 12.1. Consider again j ( z ) ,  the maximum jump in z. 
Clearly, l j (z )  - j (y ) l  < E if llz - yII < ~ / 2 ,  and so j ( - )  is continu- 
ous in the uniform topology. But it is also continuous in the Skorohod 
topology: Since j ( y )  = j(yX) for each A, d(z,y) < ~ / 2  will imply for 
an appropriate X that l j (z )  - j (y ) (  = l j (z )  - j(yX)I < E .  

The space D is not complete under the metric d: 

Example 12.2. Let zn be the indicator of [0, 1/2n). Suppose that 
Xn(1/2,) = 1/2n+1. If A, is linear on [0, 1/2,] and on [1/2,, 11, then 
((zn+lX, - znll = 0 and ((A, - 111 = 1/2n+1. On the other hand, if A, 
does not map 1/2n to 1/2nf1, then ((zn+l -znI( is 1 instead of 0, and it 
follows that d(x,, zn+l) = 1/2n+1. Therefore, {zn}  is d-fundamental. 
Since zn(t)  + 0 for t > 0 and the distance from zn to the 0-function 

0 

We can define in D another metric do-a metric that is equivalent 
to d (gives the Skorohod topology) but under which D is complete. 
Completeness facilitates characterizing the compact sets. The idea in 
defining do is to require that the time-deformation X in the definition 
of d be near the identity function in a sense which at first appears more 
stringent than (12.11); namely, we are going to require that the slope 
( A t  - X s ) / ( t  - s )  of each chord be close to 1 or, what is the same thing 
and analytically more convenient, that its logarithm be close to 0. 

If X is a nondecreasing function on [0,1] satisfying A0 = 0 and 

is 1, the sequence {z,} is not d-convergent.$ 

A 1  = 1, put 

( 12.15) 

If I IXJJ" is finite, then the slopes of the chords of X are bounded away 
from 0 and infinity and therefore it is both continuous and strictly 
increasing and hence is a member of A. Although IIXII" may be infinite 
even if X does lie in A, these elements of A do not enter into the 
following definition. 

Let dO(x, y)  be the infimum of those positive E for which A contains 
some X such that ( (A l l "  < E and (12.12) holds. In other words, let 

t We can replace [ 0,1/2") by [to,  t 0 + 1 / 2 ~ )  here, the point being that the example 
does not depend on special properties of 0 (like A0 = 0). 
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Since IU - 11 5 el'Ogul - 1 for u > 0, 

At  - A0 
- 1 < ellhllo - 1. 

(12.17) I -  
And since w 5 e" - 1 for all w ,  it follows by (12.13) that 

Symmetry and the triangle inequality for do follow from \lX-lllo = IlXll" 
and the inequality 

That do(z, y) = 0 implies z = y follows from (12.18) together with the 
corresponding property for d. Therefore, do is a metric. 

Because of (12.18), do(zn, z) + 0 implies d(z,, z) -+ 0. The reverse 
implication is a consequence of the following lemma. 

Lemma2. ~ f d ( z , y )  < S2 and6 5 1/2, thendo(z,y)  5 46+wk(S). 

In connection with Example 12.1, note that, if A,(1/2,) = 1/2nS1, 
then the chord from (0, X,O) to (1/2,, X,(1/2,)) has slope 1/2, from 
which it follows that do(zn,z,+l) = IIXnllo = log2. Therefore, {z,} 
is not do-fundamental, as must be the case if D is to be do-complete. 
And if 6 is just greater than 0, then d(zn,z,+l) < S2, and the 
lemma applies; but since wkn(S) = 1, all that follows from this is the 
fact that log 2 5 22-2/n + 1. 

PROOF. Take 6 < S and then take {ti} to be a S-sparse set satis- 
fying wz[ti-1, ti) < wk(S) + E for each i. Now choose from A a p such 
that 

and 

(12.21) sup Jpt - t (  < 62. 
t 

We want to define in A a X that will be near p but will not, as p 
may, have chords with slopes far removed from 1. Take X to agree with 
p at the points ti and to be linear in between. Since the composition 
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p-lX fixes the ti and is increasing, t and p-lXt  always lie in the same 
subinterval [t i-1,  t i).  Therefore, by (12.20) and the choice of {t i} ,  

It is now enough to prove (IAIJ" I 46. Since X agrees with p at the 
ti, it follows by the condition (12.21) and the inequality ti - t i-1 > 6 
that ( ( M i  - Xt i -1 )  - (ti - ti-1)1 < 262 < 26(ti - t i -1 ) .  From this we 
can deduce that I ( X t  - As) - (t  - s)l I 261t - sI for all s and t:  Because 
of the polygonal character of A, this is clear for s and t in the same 
[ti-l, ti]. And it follows in the general case because, for every triple u1 , 
u2, u3, 

Therefore, 

5 log(1 + 26). 
At - As 

log( 1 - 26) 5 log t-s 
Since 1 log(1 f u)I 5 2 ( u (  for (u( 5 1/2, it follows that ((X(1" I 46. 0 

By Lemmas 1 and 2 together, d(z,, x) + 0 implies dO(xn, z) --f 0; 
and as already observed, the reverse implication follows from (12.18): 

Theorem 12.1. The metrics d and do are equivalent. 

Separability and Completeness of D 

The following lemma will simplify several proofs. Suppose that the 
set g = {s,} satisfies 0 = so < s1 < < s k  = 1, and define a map 
A,: D + D in the following way. Take A,z to have the constant value 
z(s,-~) over the interval [su- l ,su)  for 1 5 u I k and to agree with x 
at t = 1. If x is sufficiently regular, then A,z will be close to z in the 
metric d :  

Lemma 3. Ifmax(s, - su-l) I 6 ,  then d(A,x,x) 5 6 V wL.6). 

PROOF. Write A,x = i to simplify the notation. Let Ct be the s, 
"just to the left" o f t ,  in the sense that (1 = sk  = 1 and <t = su-l 
for t E [s,-l,s,). Then i ( t )  = z(<t). Given E, find a &sparse set {ti} 
such that zur[ti- l , t i)  < wk(6) + E for each i. Let X t i  be the sv "just 
to the right" of ti, in the sense that Xto = SO = 0 and X t i  = s, for 
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ti E ( s v - l , s v ] .  Since ti - t i-1 > 6 2 sv - s,-l, the Xt i  increase with i. 
Extend X to an element of A by interpolating linearly between the ti. 
Obviously, sup, I X t  - tl 5 6. 

It is now enough to show that I2(t)-~(X-'t)l = Iz(<t)-z(X-lt)l 5 
wL(6) + E (let E -, 0 at the end). This holds if t is 0 or 1, and it is 
enough to show that, for 0 < t < 1, <t and X-lt always lie in the same 
[ti-l, ti). To prove this it is enough to show that ti 5 <t is equivalent 
to ti 5 X - l t  (and hence <t < t j  is equivalent to X-lt < t j ) .  The case 
t j  = 0 being trivial, suppose that t j  E (sv-l,sv]. In this case, since 
<t is one of the si7 t j  5 Ct is equivalent to s, _< <t, which in turn is, 
by the definition of <, equivalent to sv 5 t. But from ti E (sv-l,s,] it 
also follows that X t j  = sv,  and hence sv 5 t is equivalent to Xt j  5 t ,  or 
t j  5 X-lt. 0 

Theorem 12.2. T h e  space D is separable u n d e r  d and do and is 
complete u n d e r  do .  

PROOF. Separability. Since d and do are equivalent and separabil- 
ity is a topological property, we can work with d .  Let BI, be the set of 
functions having a constant, rational value over each [(u - l ) / k ,  u / k )  
and a rational value at t = 1. Then B = UI, BI, is countable. Given 
z and E ,  choose k so that k-l < E and wL(k-') < E .  Apply Lemma 3 
with u = { u / k } :  d(z, A,z) < E .  Clearly, d(A,z, y )  < E for some y in 
BI,: d ( z , y )  < 2~ and y E B. 

It is enough to show that each do-fundamental 
sequence contains a subsequence that is do-convergent. If {zk} is 
do-fundamental, it contains a subsequence {y,} = {q,} such that 
do(y,, yn+l) < 1/2,. Then A contains a pn for which 

Completeness.  

(12.22) IlPnlI0 < 1/2" 

and 

The problem is to find a function y in D and functions A, in A for 
which IIX,IIo --t 0 and y,(&lt> 3 y(t) uniformly in t .  

A heuristic argument: Suppose that yn(A,'t) does go uniformly to a limit 
y(t). By (12.23), yn(pLIA;tlt) is within 1/2" of yn+l(Aiilt), and therefore it, like 
y(A,'t), must go uniformly to y(t). This suggests trying to choose A, in such a 

way that yn(pL1A;ilt) is in fact identically equal to y,(A,'t), or p;'A;:, = A;', 
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or An = An+1/1n = An+2/1n+lpn = ..., and this in turn suggests trying to define 
A, as an infinitely iterated composition: A, = . . * pn+lpn .  If this idea works at all, 
An should be near the identity for large R ,  just as the tail of a convergent infinite 

product is near 1. 

that 
Since e" - 1 5 2u for 0 5 u <_ 1/2, it follows by (12.17) and (12.22) 

This means that, for fixed n, the functions pn+m * . .pn+lpnt are uni- 
formly fundamental as m -+ 00. Therefore, the sequence converges 
uniformly to a limit 

The function An is continuous and nondecreasing and fixes 0 and 
1. If we prove that IIXnll" is finite, it will follow that An is strictly 
increasing and hence is a member of A. By (12.19) and (12.22), 

Letting m + 00 in the first member of this inequality shows that 
IIXnll" 5 1/2n-1; in particular, ((An(("  is finite and An E A. 

From (12.24) follows An = Xn+lpn, which is the same thing as 
Xi!l = pnXG1. Therefore, by (12.23), 

It follows that the functions yn(X,lt), which are elements of D ,  are 
uniformly fundamental and hence converge uniformly to  a limit func- 
tion y(t). It is easy to show that y must be an element of D. Since 

0 

It is interesting to observe that if do is replaced by d and llAllo is temporar- 
ily redefined as sup, / A t  - t J ,  then this proof of completeness goes through word 
for word, except at one place: sup,lAnt - tl 5 1/2"-' does not imply that A, 
is strictly increasing. In fact, if ,!in carries 1/2" to 1/2"+' and is linear over 

[ ( A n ( ( "  -+ 0, yn is do-convergent to y. 
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[ 0,1/2"] and [1/2", 11 (this is the function of Example 12.1 in new notation), then 
p,+,,, .* .pn+ipn(l /2n)  = 1/2"+,,,+'; (12.24) now implies that Xn(1/2n) = 0. 

Compactness in D 

We turn now to the problem of characterizing compact sets in D. Using 
the modulus wk(S) defined by (12.6), we can prove an analogue of 
Theorem 7.2, the Arzellt-Ascoli theorem: 

Theorem 12.3. A necessay  and suficient condition for  a set A 
to be relatively compact in the Skorohod topology is that 

(12.2 5) 

and 

(12.26) lim supwL(6) = 0. 
6+0 xEA 

This theorem differs from the Arzellt-Ascoli theorem in that for 
no single t do SUP,~A ( z ( t ) J  < 00 and (12.26) together imply (12.25) 
(consider xn = nI[a,ll). The important part of the theorem is the 
sufficiency, which will be used to prove tightness. 

Let a! be the supremum in (12.25). 
Given E ,  choose a finite €-net H in [-a,a!] and choose 6 so that 6 < E 

and wk(6) < E for all z in A.  Apply Lemma 3 for any 0 = { s u }  sat- 
isfying max(s, - su-l) < 6: z € A implies d(x,A,x) < E .  Take B to  
be the finite set of y that assume on each [su- l ,su)  a constant value 
from H and satisfy y ( 1 )  E H .  Since B obviously contains a y for which 
d(A,x,y)  < E ,  it is a finite 2enet for A in the sense of d. Thus A is 
totally bounded in the sense of d. 

But we must show that A is totally bounded in the sense of do, 
since this is the metric under which D is complete. Given (a new) E ,  

choose (a new) 6 so that 0 < 6 5 1/2 and so that 46 + wi(6) < E holds 
for all z in A. We have already seen that A is d-totally bounded, and 
so there exists a finite set B' that is a b2-net for A in the sense of d. 

PROOF OF SUFFICIENCY. 

But then, by Lemma 2, B' is an E-net for A in the sense of do. 

The proof of necessity requires a lemma. 

Lemma 4. For @ed 6 ,  w'(x, 6 )  is  upper-semicontinuous in x .  

PROOF. Let x, 6, and E be given. Let {ti} be a 6-sparse set such 
that w,[ti-l, ti) < wk(6) + E for each i. Now choose q small enough 
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that 6+2q < min(ti-ti-1) and q < E .  Suppose that d(z,  y) < q. Then, 
forsomeAinA,wehavesuptly(t)-z(At)I <qandsuptIA-lt-tl < q .  
Let si = A-lti. Then si - si-1 > ti - ti-1 - 2q > S. Moreover, if s and 
t both lie in [si-l, sj), then As and At  both lie in [ti-l,ti) and hence 
~Y(s)  - Y ( t ) l  < Iz(As) - z(At)l+ 2q 5 w;(S) + c + 277. Thus d(z, 9) < 77 

0 

PROOF OF NECESSITY IN THEOREM 12.3.  If A- is compact, then 
it is d-bounded (has finite diameter), and since supt Iz(t)( is the d- 
distance from z to the 0-function, (12.25) follows. 

By Lemma 1, w’(z, 6) goes to 0 with 6 for each z. But since w’(. ,S) 
is upper semicontinuous, the convergence is uniform on compact sets 

implies wh(S) < wL(6) + 3 ~ .  

[W* 0 

For the general range space V ,  write supt v(z(t), y(t)) in place of 112 - yI1 in all 
the definitions and arguments (it is mostly a matter of using the triangle inequality 

in V rather than on the line); [IX - I [ (  and (IX((’ need no change. In Example 12.1, 
take zn to have value a on [ 0,1/2”) and value b on [1/2n, 11, where a and b are 

distinct points of V .  In the argument for separability, any countable set dense in 
V can replace the rationals. The completeness argument, which uses the assumed 
completeness of V ,  goes through as before. In place of (12.25) in the condition for 

compactness, assume that the set [z(t):  5 E A ,  t E [ 0, I] ] has compact closure, and 
in the proof of sufficiency use an +net from this set. 

A Second Characterization of Compactness 

Although the modulus wk(6) leads to a complete characterization of 
compactness, a different one is in some ways easier to work with. This is 

the supremum extending over all triples t l ,  t ,  t 2  in [ 0,1]  satisfying the 
constraints. Suppose that w;(S) < w, and let { ~ i }  be a &sparse set 
such that wZ[7i-1, ~ i )  < w for all i. If t 2  - t l  5 6, then tl and t 2  cannot 
lie on opposite sides of any of the subintervals [~ i -1  , ~ i ) ,  and therefore, 
if tl 5 t 5 t 2 ,  either t l  and t lie in a common subinterval or else t 
and t 2  do, so that either Iz(t) - z(t1)l < w or else Jz(t1) - z(t)l < w. 
Therefore (let w 1 w;(S)), 
(12.28) w;(S) 5 wL(6). 

There can be no inequality in the opposite direction: For the func- 
tions 

(12.29) zn = I[O,n-l), = I[l-n-l,l], 
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we have wgn(b) = 0, whereas win(6) = 1 for n 2 6-I. In neither case 
does {z,} have compact closure, and so there can be no compactness 
condition involving (in addition to (12.25)) a restriction on w$(6) alone. 
It is possible, however, to formulate a condition in terms of wi(6) and 
the behavior of 2 near 0 and 1. 

Theorem 12.4. A necessaq and suficient condition for a set 
A to have compact closure in the Skorohod topology is that it satisfy 
(12.25) and 

lims+o S U P , ~ A  ~"(6) = 0, 
lim6+0 SUP,€A Iz(6) - z(O)( = 0, 
lim6,osupZEA \z(l-) - x(1-  6)l = 0. 

(12.30) 

PROOF. It is enough to show that (12.30) is equivalent to (12.26). 
That (12.30) follows from (12.26) is clear from (12.28). In fact, 

(12.31) w:(6) V Iz(6) - z(0)I V [ ~ ( l - )  - ~ ( 1  - 6)l 5 wk(26). 

We can prove the reverse implication by showing that 

(12.32) wk(i6)  5 24{w:(6) V Iz(6) - z(0)l V Iz(l-) - z(1 - 6)l). 

We first show that 

(12.33) I x ( s )  - z( t l ) (  V Iz(t2) - z(t)l I 2w:(6) 
if tl 5 s I t 5 t 2 ,  t2 - tl I 6. 

Indeed, if lz(s)-z(tl)l > w;(6), then, by the definition, Iz(t)-z(s)l 5 
wg(6) and (z(t2) - z(s)l 5 wg(S), so that Iz(t2) - z( t ) (  5 2w,'(6). 

Next, 

(12.34). 

To see this, note that, if tl 5 t < t2 and Iz(t) - z(t1)l > wi(6), then 
Iz(t2) - z(t)I I w,N(6), and therefore, ( z ( t )  - z( t l ) (  5 (z ( t )  - x(t2)( + 
Iz(t2) - z(t1)l I w:(6) + lz(t2) - z(tl)l.  Hence (12.34). 

F'rom (12.34) it follows that w,[O,6) 5 2(wg(S)+)2(S)-z(O)\) and 
wz[l  - 6, l )  5 2 ( 4 ( 6 )  + lz(l-) - z(1 - &)I) (for the second inequal- 
ity, take tl = 1 - S and let t 2  increase to 1). Because of these two 
inequalities, (12.32) will follow if we show that 

(12.35) 

w,[tl,t2) I 2(wi(6) + Iz(t2) - z(tl) l)  if t2 - tl 5 6. 

wk( i6 )  5 6{w:(6) V w,[O, 6) V w2[1 - 6, l ) ) .  
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Let a exceed the maximum on the right in (12.35). It will be enough 
to show that wh(6/2) 5 6a.  Suppose that z has jumps exceeding 2 a  
at u1 and u 2 .  If u2 - u1 < 6, then there are disjoint intervals ( t1 ,s)  
and (t ,  t 2 )  containing u1 and u 2 ,  respectively, and satisfying t 2  - tl < 6, 
and if these intervals are short enough, we have a contradiction with 
(12.33). Thus [ 0,1]  cannot contain two points, within 6 of one another, 
at each of which z jumps by more than 2a.  And neither [0,6) nor 
[l - 6 , l )  can contain a point at which z jumps by more than 2a .  

Thus there exist points si, satisfying 0 = so < s1 < - . < sT = 1, 
such that si - si-1 2 6 and such that any point at which z jumps 
by more than 2 a  is one of the si. If s j  - sj-1 > 6 for a pair of 
adjacent points, enlarge the system {si} by including their midpoint. 
Continuing in this way leads to a new, enlarged system S O , .  . . , sT (with 
a new r )  that satisfies 

1 
-6 < si - si-1 5 6, 
2 

i = 1 , 2 , .  . . , r. 

Now (12.35) will follow if we show that 

(12.36) wZ[si-l, $ 2 )  5 6 a  

for each i. Suppose that si-1 5 tl < t 2  < Si. Then t 2  - tl < 6. Let u1 
be the supremum of those points u in [ t l , t 2 ]  for which the inequality 
suptllu<o Iz(u) - z(t1)l 5 2 a  holds. Let u2 be the infimum of those u 
in [tl,  t 2 ]  for which supolultz 1 z ( t 2 ) - z ( u ) I  5 2a.  If 01 < 0 2 ,  then there 
exist points s just to the right of u1 satisfying Ix(s) - z(t1)l > 2 a  and 
there exist points t just to the left of 02 satisfying Iz(t2) - z(t)l > 2a; 
since we can arrange that s < t ,  this contradicts (12.33). Therefore, 
u 2  5 01 and it follows that Iz(ul-) -z(tl)l 5 2 0  and ( z ( t 2 )  - z(01)l 5 
2a.  Since tl < 01 5 t 2 ,  01 is interior to (s i - l , s i ) ,  and so the jump at 
u1 is at most 2a. Thus lz(t2) - z(tl)l 5 60. This establishes (12.36), 

0 

Finite-Dimensional Sets 

hence (12.35), and hence (12.32), which proves the theorem. 

Finite-dimensional sets play in D the same role they do in C. For 
0 5 tl < . . < t k  5 1, define the natural projection 7rtt,...tk from D to 
R~ as usual: 

(12.37) T t l ” ’ t k ( x )  = (z(tl), * * * z ( t k ) ) ‘  

Since each function in A fixes 0 and 1, no and TI are continuous. 
Suppose that 0 < t < 1. If points zn converge to z in the Skorohod 
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topology and 5 is continuous at t ,  then (see (12.14)) xn( t )  + x ( t ) .  
Suppose, on the other hand, that x is discontinuous at t .  If A, is the 
element of A that carries t to t - l / n  and is linear on [ 0, t ]  and [t, 11, 
and if zn(s) 3 x(X,s), then xn converges to 2 in the Skorohod topology 
but xn( t )  does not converge to x ( t ) .  Therefore: If 0 < t < 1, then rt 
is continuous at x if and only if x is continuous at t .  

We must prove that rt1...tk is measurable with respect to the Bore1 
a-field D, We need consider only a single time point t (since a map- 
ping into Rk is measurable if each component mapping is), and we may 
assume t < 1 (since TI is continuous). Let h,(x) = 6- l  At+' x ( s )  ds. 
If x, --f 2 in the Skorohod topology, then zn(s) --f x(s )  for conti- 
nuity points s of 2 and hence for points s outside a set of Lebesgue 
measure 0; since the z, are uniformly bounded, limn he(xn) = h,(x) 
follows. Thus he( . )  is continuous in the Skorohod topology. By right- 
continuity, hm-l(x) -P r t (x)  for each x as m -+ 00. Therefore: Each 
rt is measurable. 

Having proved the 7rtl...tk measurable, we may, as in C, define in D 
the class D D ~  of finite-dimensional sets-those of the form T G ~ . . ~ ~ H  for 
k 2 1 and H E Rk. If T is a subset of [0 ,1] ,  let p[ r t :  t E T ]  be the 
class of sets rGf , . t kH,  where k is arbitrary, the ti are points of T ,  and 
H E Rk; these are the finite-dimensional sets based on time-points in 
T .  Then p[.rrt: t E T ]  is a r-system (see the argument in Example 1.3). 
Let a[rt:t E T ]  be the a-field generated by the real functions rt for 
t E T; it is also generated by the class p [ r t :  t E TI. 

Theorem 12.5. (i) The projections no and 7r1 are continuous; for 
0 < t < 1, rt is continuous at x if and only if x is continuous at t .  
(ii) Each nt is measurable V /R1 ,  and each ntl...tk is measurable D / R k .  
(iii) I f T  contains 1 and is dense in [0 ,1] ,  then a[7rt:t E T ]  = D and 

p [ ~ t :  t E TI is a separating class. 

PROOF. Only (iii) remains to be proved. By right-continuity and 
the assumption that T is dense, it follows that 7ro is measurable with 
respect to a[r : t  E TI, and so we may as well assume that T contains 
0. For each rn, choose points SO,. . . , s k  of T in such a way that 0 = 
SO < < sk = 1 and max(s, - su-l) < rn-', and take Om = { s u } ;  
here k and the s, are functions of m. For o = ( 0 0 , .  . . , ak) in let 
Vma be the element of D taking the constant value a,-1 on [su-l, su) ,  
1 i u 5 k, and taking the value crk at t = 1. Clearly, Vm:Rk+l + 

D is continuous (relative to the Euclidean and Skorohod topologies) 
and hence is measurable with respect to 7Zk+1/D. Since rso...sk is 
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measurable a[7rt: t E T]/R"', the composition Vmn,o...,k is measurable 
a[7rt:t E T ] / D .  But this composition is just the map A,, of Lemma 
3, which is therefore measurable ~ [ n t :  t E T ] / D .  Since d(z,  Aom) 5 
rn-l V u~l(m-~) by the lemma, z = lim, Aa,z for each z. This means 
[MlO] that the identity function is measurable a[7rt:t E T]/D, which 
implies D c a[7rt:t E TI. Since p[7rt:t E TI is therefore a n-system 

0 

It follows from Lemma 4 that w'(. , 6) is D-measurable. Since the 
functions in D are right-continuous, the supremum in (12.27) is un- 
changed if tl, t, t 2  are restricted to the rationals; since the individual 
7rt are D-measurable, it follows that w"( - , 6) is also D-measurable. 

Random Functions in D 

generating D, it is a separating class. 

Just as in the case of C, the finite-dimensional distributions of a proba- 
bility measure P on ( D ,  D) are the measures P7rg1..tk. Since the projec- 
tions are not everywhere continuous on D ,  there is this difference with 
C: Pn 3 P does not always imply Pn7rG1..tk + P7rg1..tk; see the next 
section. On the other hand, D is like C in that if the finite-dimensional 
distributions do converge weakly, the measures on D they come from 
may not; in fact, Example 2.5 applies to D just as well as to C. 

If (R,.F, P) is a probability space and X maps R into D ,  then X 
is a random element of D-in the sense that it is measurable F/D- 
if and only if each Xt(w) = nt(X(w)) defines a random variable; the 
argument is as for C (see p. 84). Finally, each coordinate function 
7rt(z) = z( t )  = zt can be viewed as a random variable on (D,D) (p. 
86). 

The Poisson Limit* 

A probability measure Pa on D describes a Poisson process with rate 
cr if the increments are independent under Pa and have Poisson distri- 
butions: 

(12.38) -a(t-s) (QG - S H i  P,[zt - z, = i] = e 
i! 

To prove the existence of such a measure, first construct the corre- 
sponding random function: Call a function in D a count path if it is 
nondecreasing, takes integers as values, and has jumps of exactly 1 at 
its points of discontinuity. Let D, be the set of count paths. The idea 
is that the elements of D, are the possible paths for a point process, 
a process that counts events. Take a Poisson process [Xt:O 5 t 5 11, 
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arrange that each sample path X ( . , w )  lies in D, [PM.297], and let Pa 
be the distribution of X ( w ) ,  

The following theorem shows that weak convergence to Pa is just a 
matter of the convergence of the finite-dimensional distributions. Let 
Pn, P be probability measures on (D,D). 

Theorem 12.6. Suppose that E E D and To is a countable, dense 
set in [ 0,1]. Suppose further that, if x ,  xn E E and zn(t) --$ z(t) for 
t E TO, then xn + x an the Skorohod topology. If PnE = PE = 1 and 
PnnGt ..., tk J n  PT;; ..,, tk for all k-tuples an To, then Pn +n P. 

The set D, of count paths satisfies the hypothesis on E ,  as will be 
shown. 

PROOF. The idea is, in effect, to embed E in R" with the product 
topology; see Example 2.4. Let TO = {t l ,  t 2 ,  . . .} and define 7r: D -, R" 
by T ( Z )  = (z ( t l ) ,  z(tg), . . .). If 7rk is the natural projection from Rm 
to RL, defined by nk(z1, z2,. . .) = ( ~ 1 , .  . . ,zk), then 7 r k ~  is the natural 
projection Tt ,...tk from D to Rk. Therefore, T-'(TF'H) = E 2) 

for H E Rk,  and since the sets ";'HI the elements of Ry, generate 
R", it follows that 7r is measurable D / R m .  

For A c D, define A* = r-l(.rrA)-. Then A* E D and A c A*. If z 
lies in ( A m ) * ,  so that T X  E (T(AnE)) - ,  then there is a sequence {xn} 
in AnE such that m, -, 7rx. If z also lies in E ,  then by the hypothesis, 
xn converges to z in the Skorohod topology. Therefore, ( A  n E)* n E 
is contained in the closure A- of A in the Skorohod topology. Since 
Pn7rG!..tk +, 7rtl...tk by hypothesis, and since 7rtl...tk = 7rk7r, we have 
PnT-lKil J n  Pn-'7rF1. But since in R" weak convergence is the 
same thing as weak convergence of the finite-dimensional distributions, 
it follows that Pnxr-l + P7r-l on R". Therefore, if A E D, 

-1 

lim sup PnA 5 lim sup P,A* 
n n 

= limsup PnT-'(TA)- 5 PT-'(TA)- = PA*. 
n 

And now, since P,E = PE = 1 and ( A  n E)* n E c A-, 

lim sup PnA = lim sup Pn(A n E )  
n n 

- < P ( A  n E)* = P ( ( A  n E)* n E )  5 PA-. 

Therefore, Pn =+- P. 0 
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It is not hard to see that the set D, of count paths is closed in 
the Skorohod topology. Let To be any countable, dense set in [ 0,1], 
and suppose that z,z, E D, and that, for each t in TO, zn(t)  -, ~ ( t )  
(which means that zn(t) = z( t )  for large n). A function in D, has only 
finitely many discontinuities; order those for 2: 0 < tl < - .  . < t k  5 1. 
For a given E ,  choose points ui and ui in To in such a way that ui < 
ti 5 vi, ui - ui < E ,  and the intervals [ui-l, ui] are disjoint. Then, for 
n exceeding some no, z, agrees with z over each [ui-l,ui] and has a 
single jump in each [ui, 4. If A, (in A) carries ti to the point in [ui, ui] 
where 2, has a jump (and is defined elsewhere by linearity, say), then 
supt IX,t - tl 5 E and z:,(A,t) = z( t ) .  Therefore, z, converges to 2 
in the Skorohod topology, and so D, satisfies the hypothesis on E in 
Theorem 12.6. 

Exumple 12.3. Suppose that, for each n, <,I,. . . , tnnn are indepen- 
dent and take the values 1 and 0 with probabilities a /n  and 1 - a/n. 
Define a random function Xn by X r ( w )  = &i(w). Then Xn has 
independent increments; since X r  - XF has the binomial distribution 
for lntJ - LnsJ trials, with probability of success a /n  at each, it has in 
the limit the Poisson distribution with mean a(t - s). It follows easily 
from the theorem that Xn + Pa. This can be extended in various 

13 ways, for example to the (Aiw) of (3.34) and (3.35). 

Problems 
12.1. Let D+ be the class of functions on [ 0,1] that have only discontinuities of 

the first kind in (0,l) and have right-hand limits at 0 and left-hand limits at 
1. Convert D+ into a pseudo-metric space in such a way that (i) 5 and y are 
at  distance 0 if and only if they agree at their common continuity points and 
at 0 and 1, and (ii) D is isometric to the standard quotient space (see Kelley 
[41], p. 123). 

12.2. Under the Skorohod topology and pointwise addition of functions, D is not a 
topological group. 

12.3. The set C is nowhere dense in D. 
12.4. Put 

w r ( 6 )  = sup SUP {wz(t i , t )  A W , ( t , t z ) } .  
t z - t ~ < d t l < t < t l  

Show that 
wr (6 )  = sup inf {wz(tlr t )  V wz( t ,  t z ) }  

t a - t 1 < 6  t i < t < t z  

and 
W:(a) 5 w:"(6) 5 2 4 6 ) .  

12.5. Suppose that < is uniformly distributed over [i, I], and consider the random 
functions 

x = 24€,1], X" = I[c-n-',l] + IIE+n-l,l]. 
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Show that X" ji X ,  even though XG.. . tk  * X t ,  ... t ,  for all t l , .  . . , t k .  Why 
does Theorem 12.6 not apply? 

SECTION 13. WEAK CONVERGENCE AND TIGHTNESS 
IN D 

Prove weak convergence in function space by proving weak convergence 
of the finite-dimensional distributions and then proving tightness-this 
was the technique so useful in C, and we want to adapt it to D. Since D 
is separable and complete under the metric do, a family of probability 
measures on (D,D) is relatively compact if and only if it is tight, and 
so there is no difficulty on that point. On the other hand, the fact 
that the natural projections are not continuous complicates matters 
somewhat. 

Finite-Dimensional Distributions 

For probability measures P on ( D ,  D), denote by T p  the set of t  in [ 0,1] 
for which the projection ~t is continuous except at points forming a 
set of P-measure 0. Since TO and TI are everywhere continuous, the 
points 0 and 1 always lie in T p .  If 0 < t < 1, then ~t is continuous at 
z if and only if z is continuous at t ,  and it follows that t E T p  if and 
only if PJt = 0, where 

(13.1) Jt = [ z : z ( t )  # z( t - ) ] .  

(This equivalence holds only in the interior of the unit interval: 0 lies 
in T p ,  and each function z is continuous at 0; 1 lies in T p ,  but an x 
may or may not be continuous at 1.) 

An element of D has at most countably many jumps. Let us prove 
the corresponding fact that PJt > 0 is possible for at most countably 
many t. Let Jt(e) = [z: Iz(t) - z(t-)l > €1. For fixed, positive E and 
6, there can be at most finitely many t for which P( J t ( e ) )  2 6, since 
if this held for infinitely many distinct tn, then P(limsup, J t , (E) )  2 6 
would follow, contradicting the fact that for a single z the saltus can 
exceed e at only finitely many places. Since P(J t (e ) )  1 PJt as E 1 0, 
the result follows: 

T h e  set T p  contains 0 and 1, and its  complement in [ 0,1] is  at  
most  countable. 

If t l , .  . . , t k  all lie in T p ,  then Ttl...tk is continuous on a set of P- 
measure 1, and it follows by the mapping theorem that 

(13.2) Pn + P 
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implies 

(13.3) 

If some ti lies outside Tp, then (13.3) may not follow from (13.2): Take 
P to be a unit mass at Ipt) and Pn to be a unit mass at Ipt+n-i). 

Here is the analogue of Theorem 7.1: 

Theorem 13.1. If {Pn} is tight, and if PnTGf,,t, +  PIT;^..^, holds 
whenever t i , .  . . t k  all lie an Tp, then P n  + P.  

PROOF. By the corollary to Theorem 5.1, it is enough to show 
that, if a subsequence {Pn,} converges weakly to some Q, then Q must 
coincide with P. Assume that Pn, + i  Q. If t i , .  . . , t k  lie in Tp, then 
Pnir&!..tk =+i PTG1,.tk by the hypothesis of the theorem. If t i , .  . . , t k  

lie in TQ, then Pnir&f..t,  + i  Qr;1..,, by the assumption. Therefore, 
if t l ,  . . . , t h  lie in Tp n TQ, then PrL1,.tk = QT;~..~,. But by Theorem 
12.5, this implies that P = Q, because Tp n TQ contains 0 and 1 and 

0 

Tightness 

The analysis of tightness in C began with a result (Theorem 7.3) which 
substituted for compactness its ArzelA-Ascoli characterization. Theo- 
rem 12.3, which characterizes compactness in D ,  gives the following 
result. Let {Pn} be a sequence of probability measures on ( D ,  D). 

has countable complement-since Tp and TQ both do. 

Theorem 13.2. The sequence {Pn} is tight if and only if these 
two conditions hold 

(i) We have 

(ii) For each E, 

(13.5) limlimsup P,[x: wL(6) 2 €1 = 0. 
6 n  

PROOF. Conditions (i) and (ii) here are exactly conditions (i) and 
(ii) of Theorem 7.3 with 1 1 ~ 1 1  in place of Iz(0)l and w' in place of w. 
Since D is separable and complete, a single probability measure on D 

0 is tight, and so the previous proof goes through. 
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There are two convenient alternative forms for (13.4). The first 
controls Ilzll by controlling Iz(t)l for the individual values of t ,  the 
second by controlling Iz(0)l and j ( z )  (defined by (12.8)). 

Corollary. Either of the following two conditions can be substi- 

(i‘) For each t in a set T that is dense an [ 0,1] and contains 1, 
tuted for (i) in Theorem 13.2: 

(13.6) lim limsupP,[z: Iz(t)l 2 a] = 0. 
a+oo n 

(i“) The relation (13.6) holds for t = 0, and 

(13.7) lim limsupP,[z:j(rc) >_ a] = 0. 
a4oo n 

The proof will show that (i), (i’), and (i”) are all equivalent in the 
presence of (ii) . 

PROOF. It is clear that (i) implies (i‘) and (i”). It is therefore 
enough to show that, in the presence of (ii), (i) follows from (i’) and 
also from (i”) . 

Assume (ii) and (i’). Let {to,. . . t v}  be a &sparse set for which 
w,[t+l,ti) < wL(6) + 1, i 5 v. Choose from T points sj such that 
0 = so < s1 < - .  - < sk = 1 and sj - sj-1 < 6.  (The ti depend on 
z, but the s j  do not.) If m(z) = maxo<jikJz(sj)l, then, since each 
[ti-I,ti) contains an sj, 11zl1 5 m(z) + wi(6) + 1. If (13.5) and (13.6) 
hold, then there exist a 6 and an a such that Pn[z:wL(6) _> 11 < 77 and 
Pn[z: m(z)  2 a] < 77 for large n. But then P,[z: 11x11 2 a + 21 < 277 for 
large n, which proves (13.4). Thus (ii) and (i’) imply (i). 

Assume (ii) and (i”). Let {ti} be the &sparse set (depending on 
z) described above. Now (z(t i)  - z(ti-1)l I wk(6) + 1 + j ( z ) ,  and 
so maxisv (z(ti)l 5 Iz(0)l + w(wk(6) + 1 + j ( rc))  and (since 6v 5 1) 
11z11 5 Jz(O)( + 6-’(w;(6) + 1 + j ( z ) )  + wk(6). If (13.5) holds, there 
is a 6 such that Pn[z:w;(6) 2 11 < q for large n. Further, if (13.6) 
holds for t = 0, and if (13.7) holds, then there is an a such that 
Pn[z: Iz(O)( 2 a] < 77 and Pn[z: E 1 ( 2  + j ( z ) )  + 1 2 a] < 77 for large n. 
And then Pn[z: llzll 2 2a] < 377 for large n. Thus (ii) and (i”) imply (i). 

We can use Theorem 12.4 in place of Theorem 12.3 here. In fact, 
the inequalities (12.31) and (12.32) make it clear that we can replace 
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(13.5) by the condition that, for each positive E and q, there exist a 6, 
0 < 6 < 1, and an integer no such that 

for n 2 no. As the next theorem shows, the second and third conditions 
in (13.8) are automatically satisfied in the most important cases. 

Theorem 13.3. Suppose that Pnxgl..,, + PT;!..~, whenever the 
ti all lie an T p .  Suppose further that, for every E ,  

(13.9) lim P[z: Iz( 1) - z( 1 - 6) I > E ]  = 0, 
6+0 

and that, for positive E and q,  there exist a 6 ,  0 < 6 < 1, and an  no 
such that 

( 13.10) Pn[z:w:(6) 2 €1 I q, n 2 no. 

Then P, + P. 

PROOF. We need only prove that {P,} is tight, and for this it is 
enough to check (13.8) and (13.6) with T p  in the role of 5". For each t 
in Tp, the weakly convergent sequence {P,x,l}  is tight, which implies 
(13.6). 

As for (13.8), we need consider only the second and third condi- 
tions, since of course (13.10) takes care of the first one. By right- 
continuity we have P[z: Iz(S) - z(0)I > E ]  < q for small enough 6; by 
hypothesis, P,T~: + P.0,: if 6 E T p ,  and it then follows that the 
middle condition in (13.8) holds for all sufficiently large n. With one 
change, the symmetric argument works for the third condition. From 
the fact that cadlag functions have left-hand limits at 1, it follows that 
P[z: lz(l-) - z(1 - S)l 2 E ]  -+ 0 as S + 0, and from (13.9) it follows 
further that P[z: Iz(1) -z(l-)l 2 E ]  = 0-that is, PJ1 = 0. Therefore, 
there is continuity from the left at 1 outside a set of P-measure 0, and 

0 

Let $t:D --f R2 carry z to (z(t),z(l-)). One can replace (13.9) 
in this theorem by the condition that Pn$tl + P$tl for t E T p .  But 
some restriction on the oscillations near 1 is needed: Consider the case 
where P, is a unit mass at 1p-,-1,~1. 

the symmetric argument does go through. 
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Theorem 13.3 can be stated in terms of random elements of D; com- 
pare Theorem 7.5. The second proof of Theorem 7.5 makes very little 
use of the general theory of weak convergence, and the convergence-in- 
distribution version of Theorem 13.3 can be given a similar proof.+ 

Let Xn and X be random elements of D. 

Theorem 13.4. Suppose that Xn + X .  Then P[X E C] = 1 if 
and only i f  j ( X n )  =+ 0. 

PROOF. By Example 12.1 and the mapping theorem, j ( X n )  =+ 
0 

A corollary shows what happens if we use the conditions for weak 
convergence in C. 

Corollary. Suppose the conditions (7.6) and (7.7) hold for prob- 
ability measures on (D,D). Suppose further that PnrG1,.tk =+ P K ; ~ . . ~ ~  
for all t l ,  . . . , t k .  Then Pn + P,  and Pc=1.  

PROOF. The proof of Theorem 7.3 shows that condition (i) of The- 
orem 13.2 holds, and by (12.7), condition (ii) holds as well. Therefore, 
Pn =+ P, or Xn X for the corresponding random functions. And 
since j(Xn) 5 W(Xnl6) for each 6 ,  (7.7) implies that j ( X n )  + 0. tl 

j ( X ) .  And j ( X )  = 0 if and only if X E C. 

A Criterion for Convergence 

Write Tx for T p ,  where P is the distribution of X .  

Theorem 13.5. Suppose that 

for points ti of Tx, that 

and that, for r 5 s 5 t ,  n 2 1, and X > 0,  

1 
X4P 

(13.13) 

where /3 2 0 and CY > i, and F is a nondecreasing, continuous function 
on [0,1]. ThenXn *n X .  

P[IXz - XFI A lXr  - XrI 2 A] 5 -[F(t) - F(r)I2", 

t See Problem 13.1. 
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There is a more restrictive version of (13.13) involving moments, 
namely 

PROOF. By Theorem 13.3, it is enough to show that for each 
positive E and q there is a 6 such that P[w"(Xn,6) 2 €1 5 q for all 
n. We can prove this by applying Theorem 10.4 to each Xn, since the 
paths are right-continuous and w"(Xn, 6) = L ( X n ,  6). Let T = [ 0,1] 
and define p by p(s, t] = F ( t )  - F ( s ) .  With Xn in the role of y, (10.20) 
is the same thing as (13.13). It follows by (10.21) that 

2K 
P[WN(Xn, 6) 2 €1 < -p [  0,1] sup p2"-l[t, t + 261 

€4P O<t<  1-26 

where WF is the modulus of continuity. Since F is uniformly continuous 
and (Y > f ,  it is possible, for given E and q,  to choose 6 so that the 

0 right side here is less than q. 

For applications of Theorem 13.5, see the next section. 

A Criterion for Existence* 

These ideas lead to a condition for the existence in D of a random 
element with specified finite-dimensional distributions. For each k- 
tuple t l ,  . . . , t k ,  let pt l . . . tk let be a probability measure on (Rk, Rk), 
and assume that these measures satisfy the consistency conditions of 
Kolmogorov's existence theorem. 

Theorem 13.6. There exists in D a random element with finite- 
dimensional distributions pt, ...tk, provided these distributions are con- 
sistent; provided that, for  tl < t < t 2 ,  

where p 2 0, (Y > f, and F is a nondecreasing, continuous function 
on [ 0,1]; and provided that 
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By right-continuity, (13.16) is in fact necessary for the existence of 
such a random element of D. 

PROOF. For each n, consider the points ty = i / 2 n  for i = 0, .  . . , 2n, 
and let Xn be a random function that is constant over each [ty-l,tP) 
and for which (Xz",, . . . ,X&,) has distribution pt 0 . . . t 2n .  Let Y n  be the 
process Xn with the time-set cut back to Tn = {t?}. Let pn have mass 
F ( t l )  - F(ty-L_,) at tP for i = 1 , .  . . , 2 n ,  and apply Theorem 10.4. By 
(13.15), 

and it follows by (10.21) that 

Suppose that T I s 5 t and t - s I 6. Move T , s , ~  to the left 
endpoints T' ,  s', t' of the intervals [t&l, t r )  containing them (t' = 1 if 
t = 1). Then IXr-XFIAIXF-XrI = lY$-T?[Al~?-YTl and t'-s' I 
6 + 2-n. It follows that, if 2-n I 6, then w"(Xn, 6) 5 L(Yn,  2 6 ) .  And, 
again if 2-n I 6, pn(Tn n [t, t + 461) 5 F ( t  + 46 + 2-n)  - F ( t  - 2-n)  I 
~ ~ ( 4 6  + 2 2-n)  I ~ ~ ( 6 6 ) .  Since pn(Tn) = F(l) - F(O), we arrive at 

2 K  
P[w"(Xn,6) 2 €1 I ,4p[F(1) - F ( O ) ] ( w ~ ( 6 6 ) ) ~ " - ~ .  

Fkom the uniform continuity of F ,  it follows that, for given E and 77, 
there exists a 6 such that 

(13.17) P[w"(Xn,6) 2 €1 5 77 

for n large enough that 2+ 5 6. 

(13.8). If 2-k 5 6, then 
The distributions of the Xn will be tight if they satisfy (13.4) and 

Since the distributions of the first term on the right all coincide for 
n 2 k, it follows by (13.17) that (13.4) is satisfied. 
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The first condition in (13.8) of course holds because of (13.17). To 
take care of the second and third conditions, we temporarily assume 
that, for some positive 60, h 2 60 implies 

Under this assumption, the second and third conditions in (13.8) hold, 
so that {X"} is tight. Suppose that X is the limit in distribution of 
some subsequence. Because of the consistency hypothesis, the distri- 
bution of ( X t ,  , . . . , X t k )  is pt l . . . t k  for dyadic rational ti, and the general 
case follows via (13.16) by approximation from above. 

It remains to remove the restriction (13.18). For a 60 < i, take f ( t )  
tobeOtotheleftof60, 1 totherightof1-607and(t-60)/(l-260) in 
between. Now define ut l . . . tk  as P , ~ . . . , ~  for si = f(t i) .  Then the vt l . . . tk  

satisfy the conditions of the theorem with a new F ,  as well as the 
special condition (13.18), so that there is a random element 2 of D 
with these finite-dimensional distributions. We now need only define 

O 

Example 13.1. We can use this theorem to construct a random 
function representing an additive process. Suppose that F is nonde- 
creasing and continuous over [ 0,1], and for 0 I t 5 1, let vt be a 
measure on the line for which q(B1) = F ( t ) .  Suppose now that, for 
s 5 t ,  v,(A) 5 vt(A) for all A ,  so that vt - v, is a measure with total 
mass F ( t )  - F ( s ) .  By the general theory [PM.372], there is an infinitely 
divisible distribution having characteristic function 

X by X ( t )  = Z(60 + t(1 - 260)) for 0 2 t 5 1. 

the mean and variance are 0 and F ( t )  - F ( s ) .  
We are to construct a random element of D for which the incre- 

ments are independent and Xt - X, has characteristic function (13.19). 
Since q5,,t = q$,,+,,t, the distributions specified for X,-X,  and X t  - X ,  
convolve to that specified for X t  - X,, and so the implied finite- 
dimensional distributions are consistent. Further, by Chebyshev's in- 
equality and the assumed independence, the left side of (13.15) is at 
most 

And (13.16) follows by another application of Chebyshev's inequality. 
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In the case of Brownian motion, vt consists of a mass of t at the 
origin. If vt consists of a mass of F ( t )  at 1, then (13.19) is the char- 
acteristic function of a Poisson variable with its mean F ( t )  - F ( s )  
subtracted away. We can add the means back in, which gives a Pois- 
son process with rate function F ( t ) :  The increments are independent] 
and X t  - X ,  has the Poisson distribution with mean F ( t )  - F(s ) .  0 

Problem 

13.1. Prove Theorem 13.3 by the method of the second proof of Theorem 7.5. In 
place of the Mu of the previous proof, use the A, of Lemma 3 in Section 
12. 

SECTION 14. APPLICATIONS 

This is a sampling of the applications of weak-convergence theory in 
D. Of the results here, only Theorems 14.2 and 14.4 are used in later 
proofs. 

The identity map i from C to D is continuous and is therefore 
measurable C/D. If W is Wiener measure on (C,C), then Wi-' is 
a probability measure on (D,D), and it is easy to see that W and 
Wi-' have the same finite-dimensional distributions. F'rom now on, 
we denote this new measure by W rather than WZ-'; W will also 
denote a random element of D having this distribution. 

Donsker's Theorem Again 

Given random variables &, &, . . . on an (52,3, P), with partial sums 
Sn = [I + * + 6,  let Xn(w)  be the function in D with value 

(14.1) 

at t .  This random element of D (each X r  is measurable D / R 1 )  is the 
analogue of (8.5); it is slightly easier to analyze. 

Theorem 14.1. Suppose the [n are independent and identically 
distributed with mean 0 and variance u2. Then the random functions 
defined by  (14.1) satisfy X n  =% W .  

PROOF. The proof in Section 8 that the finite-dimensional distri- 
butions converge carries over with essentially no change. Since W is 
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continuous at 1, we can apply Theorem 13.5. 

1 
E[IX: - XZ",l21X2", - X:I2] = ;lz(LntJ - 

147 

By independence, 

for t l  5 t 5 t 2 .  If t 2  - tl 2 l/n, the right side here is at most 
4(t2 - t ~ ) ~ .  If t2 - tl < l/n, then either t l  and t lie in the same 
subinterval [(i - l ) /n, i /n)  or else t and t 2  do; in either case the left 
side vanishes. Therefore, (13.14) holds for Q = ,8 = 1 and F ( t )  = 2t. 0 

The equations (9.2) and (9.10) through (9.14) can be derived as 
before. Some functions of the partial sums Si can be more simply 
expressed in terms of the random element of D defined by (14.1) than 
in terms of the random element of C defined by (8.5). For example, 
for x E D ,  let h(x) be the Lebesgue measure of the set o f t  for which 
x ( t )  > 0. Then [M15] h is measurable D / R 1  and is continuous on a set 
of Wiener measure 1. If X n  is defined by (14.1), then h ( X n )  is exactly 
n-l times the number of positive partial sums among S1,. . . , Sn-l, 
which leads to a simple derivation of the arc sine law. 

An Extension 

Let X be the random function constructed in Example 13.1. Suppose 
that, for each n, &I , .  . . , enrn are independent random variables with 
mean o and variances U i k .  Let s& = c L l u z i  and M~ = maxaik,  
and assume that s i T n  = 1 and Mn + 0. Let kn(t) be the maximum k 
for which s i k  5 t ,  and define measures vn,t and random functions X n  
bY 

If vn,t converges vaguely to vt (in the sense that vn,t(u, b] +n vt(u, b] if 
vt{u} = vt{b} = 0), then it follows by the theory of infinitely divisible 
distributions [PM.375] that X r  + Xt .  Since vn,t - vn,3 then converges 
vaguely to vt - vs for s < t ,  it follows also that X r  - XF +- X t  - 
X 3 ;  and by the independence of the increments, the finite-dimensional 
distributions of X n  converge weakly to those of X .  

We can easily prove that 

(14.2) xn*x 
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if we assume that vt(R1) E t and that, if m, = mink oik, then M, 5 

(t - s + M,), and so 
Km, for some K .  The variance of Xp - Xp is Ck,(sl<k5k,(t) ff2 nk < - 

Now t 2  - tl 2 m, implies that the right side here does not exceed 
(2K + 1)2(tz - t ~ ) ~ ,  while t 2  - tl < m, implies that the left side is 0. 
This proves (13.14) for a = ,Ll = 1 and F ( t )  = (2K + l ) t ,  and (13.12) 
holds because X1 - XI-6 has variance 6. Hence (14.2). This extends 
Theorem 14.1 to triangular arrays satisfying the Lindeberg condition. 
It also covers Example 12.3. 

Dominated Measures 

The random variables [, in Theorem 14.1 are defined on a space 
(a, F, P1, and we can replace P by any probability measure PO ab- 
solutely continuous with respect to it. Suppose, for example, that 

= [ 0,1], 3 consists of the Bore1 subsets of [ 0,1], and <, is the nth 
Rademacher function: &(w) = 2w, - 1, where w, is the nth digit in 
the dyadic representation of w .  Theorem 14.1 applies to {&} if w is 
drawn from [ 0,1] according to Lebesgue measure, but this is also true 
if w is drawn according to a distribution having a density with respect 
to Lebesgue measure: 

Theorem 14.2. Theorem 14.1 remains true if P is replaced by a 

PROOF. Define X" by 

Po absolutely continuous with respect to it. 

(14.3) 

where the pn are integers going to infinity slowly enough that p, = 
o(n). Since llXn - Xnll I E:zl l&[/ofi, it follows by Chebyshev's 
inequality that (d is Skorohod distance) 

(14.4) d ( X n , X n )  5 llXn - X y  * 0, 

where this is interpreted in the sense of P (that is, P governs the 
distribution of the &). By Theorem 14.1, 

(14.5) xn * w 
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in the sense of P, and it follows by (14.4) and Theorem 3.1 that 

(14.6) X"*W 

in the sense of P. 
Let A be a W-continuity set (in D ) ,  temporarily fixed; (14.6) im- 

plies that P[Xn E A] --+ W(A).  Let Fo be the field of cylinders- 
sets of the form [(&, . . . ,&) € HI. If E € Fo, then, since pn + 00, 

P([Xn E A] n E )  = P[Xn E A]P(E) for large n, and therefore 

(14.7) P([Xn E A] n E )  -, W(A)P(E).  

Since the events [X" E A] all lie in ~(Fo), it follows by Rhyi's theorem 
on mixing sequences [M21] that Po[X" E A] -, W(A).  This holds for 
each W-continuity set A, and so (14.6) holds in the sense of PO (as well 
as P). Since P dominates Po, it follows that (14.4) holds in the sense 
of Po (think of the E-S version of absolute continuity), and by another 

0 application of Theorem 3.1, so does (14.5). 

Empirical Distribution Functions 

The empirical distribution for observations &(w) ,  . . . ,&(w) in [ 0,1] is 
defined as F n ( t , w )  = n-l Cy=l I[o,ti(&(w)). Assume the En are inde- 
pendent and have a common distribution function F over [ 0,1], and 
consider the random function defined by 

This describes the empirical process. 

Theorem 14.3. If &, &, . . . are independent and have a c o m m o n  
distribution funct ion F over [ 0,1], and i f  (14.8) defines Y", then  Y n  + 
Y ,  where Y i s  the Gaussian random element of D specified by E K  = 0 
and E[Y,yt] = F(s)(l - F ( t ) )  f o r  s 5 t .  

That such a random function Y exists will be part of the proof. 

PROOF. We first prove the theorem under the assumption that 
F ( t )  = t ,  in which case Y is the Brownian bridge W" (extended from 
C to 0). Let UF be the number among <I , .  . . , t n  that lie in [ 0, t ] .  
For 0 = t o  < tl < < t h  = 1, the Uc - Uc-, have the multinomial 
distribution with parameters ti-ti-1, and it follows by the central limit 
theorem for multinomial trials that the finite-dimensional distributions 
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of the Yn converge weakly to those of W". By Theorem 13.5, it suffices 
to prove that 

for tl 5 t 5 t2. 
Let pl = t - t l ,  p2 = t2 - t and p3 = 1 - pl - p2; for 1 < - -  i < n, 

let at be 1 - pi or -pi as ti lies in (tl, t] or not, and let Pi be 1 - p2 
or -p2 as lies in (t,tz] or not. Then the first inequality in (14.9) is 
equivalent to 

(14.10) E [ (2 at)' (5 Pi) 2] I 6n2p1p2. 
i=l i=l 

Since Eai  = EPi = 0, considerations of symmetry show that the left 
side of (14.10) is 

And now (14.10) follows from 

That proves the theorem for the uniform case. The quantile func- 
tion 4 ( s )  = inf[t:s 5 F(t)]  satisfies +(s) 5 t if and only if s 5 F( t ) .  
If qn is uniformly distributed over [0,1], then q5(qn) has distribution 
function F ,  and so we can use the representation tn = q5(qn), where 
the qn are independent and uniformly distributed. 

If Gn(.,w) is the empirical distribution for ql(w), . . . ,qn(w) and 
Z r ( w )  = ,/E[Gn(t, u)  - t], then Zn + W" by the case already treated. 
But Fn(t,w) = Gn(F(t) ,w),  so that Yn as defined by (14.8) satisfies 
qn(w) = ZFct,(w). Define $:D + D by ($z)(t) = z ( F ( t ) ) .  If z, 

converges to z in the Skorohod topology and z E C, then the conver- 
gence is uniform, so that $xn converges to $x uniformly and hence 
in the Skorohod topology. From the mapping theorem and the fact 
that Zn =+ W",  it follows that Yn = +(Zn) * $(Wo); since +(Wo) is 
Gaussian and has the means and covariances specified for Y, the proof 
is complete. 0 
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For an example, apply the mapping theorem: 

If F is continuous, the limiting varable here has the same distribution 
as sup, IWtI-namely that given by (9.40). If F ( t )  = t ,  we can also 
apply (9.39) through (9.43). 

Random Change of Time 

If S n / a f i  is approximately normal for large n, and if Y is a random 
index that is large with high probability, then perhaps S v / a f i  or 
S v / a f i  will be approximately normal. Since S v / a f i  = Xu”/n if X n  
is defined by (14.1), this leads to the question of what happens to a 
random function if the time scale is subjected to a random change, a 
question best considered first in a general context. 

Let DO consist of those elements 4 of D that are nondecreasing and 
satisfy 0 5 +(t) 5 1 for all t. Such a 4 represents a transformation of 
the time interval [ 0,1]. We topologize Do by relativizing the Skorohod 
topology of D. Since Do E D, as is easily shown, the a-field DO of 
Bore1 sets in Do consists of the subsets of Do that lie in 27 [MlO]. For 
z E D and + E Do, the composition 2 o 4, with value z(~$(t))  at t ,  is 
clearly an element of D. Define +: D x Do + D by 

then [M16] + is measurable D x Do/D. 
Let X be a random element of D and let @ be a random element 

of Do. We assume X and @ have the same domain, so that ( X ,  @) is a 
random element of D x Do with the product topology [M6]. If X o @ 
has value X ( w )  o @(w) at w-that is, if X o @ = + ( X ,  @)-then X o @ is 
the random element of D that results from subjecting X to the time- 
change represented by @. Suppose that, in addition to X and @, we 
have, for each n, random elements X n  and Qn--of D and Do-having 
a common domain (which may vary with n).  

Lemma. I f ( X n , a n )  + ( X , @ )  and P[X E C] = 1, t h e n X n o P  + 
X O @ .  

PROOF. This will follow by the mapping theorem if we show that 
+ (defined by (14.11)) is continuous at (z,4) for 2 E C. Suppose that 
zn + z and q5n + 4 in the Skorohod topology, and choose A, E A in 
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such a way that IlX, - 111 + 0 and ll4n - 4XnII + 0. Then, since 3: lies 
in C, 

Izn4nt - z4Xntl I Izn4nt - z+ntl+ Izbnt - z4Xntl 
I IIZn - zll+ Wz(ll4n - $ A n [ [ )  + 0. 0 

Return now to a consideration of sums S, = 51 + + en. Let un be 
positive-integer-valued random variables defined on the same space as 
the &. Define X" by (14.1), and define Y n  by 

(14.12) 

Theorem 14.4. If 

( 14.13) Vn - 3 8, 
an 

where 8 is  a positive constant and the an are constants going to infinity, 
then  X n  + W implies Y n  + W. 

PROOF. There is no loss in generality in assuming that 0 < 8 < 1 
(this can be arranged by passing to new constants an)  and that the a, 
are integers. Define 

Since 

(14.15) 

the Skorohod distance from an to the element $( t )  = 8t  of DO goes to 
0 in probability. Because of the assumptions X n  + W and an 3 00 

it follows by Theorem 3.9 that ( X a n , a n )  + (W,4) and hence by the 
lemma above that X a n  o an + W o 4. If 

1 
RZ"(w) = - q v n ( w ) t j  (4 

then Xan o an and Rn have the same value at w if vn(w) /an  < 1, 
the probability of which goes to 1 by (14.13) and the fact that 8 < 1. 
Therefore, Rn + W o 4. Now 

and hence Y n  * 8-1/2(W o 4). Since this limit has the same distribu- 
tion as W ,  Y n  + W .  0 
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Of course, Yn j. W implies S,,/a,,& + N ,  as well as an arc sine 
law and limit theorems for maxima and so on. Since the hypothesis 
requires only (14.13) and Xn + W, it applies to various dependent 
sequences {tn}. 

If the limit in (14.13) is not constant, we need more specific as- 
sumptions about the 5,. Again define Yn by (14.12). 

Theorem 14.5. Suppose <I, &, . . . are independent and identically 
distributed with mean 0 and variance u. If 

(14.16) e + o ,  vn I,- I 
where 0 is  a positive random variable and the a, are constants going 
to  infinity, then Yn + W .  

PROOF. Assume first that there is a constant K such that 0 < 0 < 
K with probability 1. We may adjust the a ,  so that they are integers 
and K < 1. 

is the random element of DO 
defined by at = O t ,  then ( d  is the Skorohod distance) d ( P , @ )  + 0. 
From this and (14.16), it follows that the distance in Do x R1 between 
(an,vn/n) and (@,e) goes to 0 in probability, and it follows by the 
corollary to Theorem 3.1 that 

If we define an by (14.14), and if 

(14.17) (an, vn/an) + (a, 0). 

Define X" by (14.3), where pn + 00 and p ,  = o(n).  As before, we 
have (14.4) and( 14.6)-and hence Xan + W-and (14.7) holds for E 
in the field Fo of cylinders. And now, by (14.17) and Theorem 3.10, 

in the sense of the product topology on D x (DO x R1), where 0" is 
independent of W and @a,O = 0"t. By (14.4), 

The mapping that carries the point (z ,4 ,a )  to a-lj2(z o 4) is 
continuous at that point if 2 E C ,  4 E DO, and a > 0. By the mapping 
theorem, therefore, 

( V n / a n ) - 1 / 2 ( X a n  0 an> + (eo)-1/2(w 0 a"). 
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Since 8" and W are independent, (8°)-1/2(W o a') has the same dis- 
triubtion as W .  Moreover, (vn/an)-1/2(Xan o a') coincides with Yn 
if un/an < 1, the probability of which goes to 1 because K < 1. Thus 
Yn + W if 8 is bounded. 

Suppose 8 is not bounded. For positive u, define 0, = 0 and 
uu," = u, if 8 5 u, and define OU = u and Vu,n = anu if 8 > u. Then, 
for each u, IVu,n/an - OU( + 0 as n --f 00, and by the case already 
treated, if 

then Yuyn +n W .  Since P[Yuin # Y"] 5 P[B > u], it follows by 
Theorem 3.2 that Y" + W .  0 

Renewal Theory 

These ideas can be used to derive a functional central limit theorem 
connected with renewal theory. Let 71, 72,. . . be positive random vari- 
ables and define 

k 

(14.18) ut = max [k: c 7)i 5 t ] ,  t 2 0; 
i=l 

take ut = 0 if t < 71. If q k  is the length of time between the occurrences 
of the (k - 1)st and kth events in a series, then ut is the number of 
occurrences up to time t .  

We assume the existence of positive constants p and CT such that, 
if 

then Xn + W .  This will be true if, as in the usual renewal setting, 
the qn are independent and identically distributed with mean p and 
variance C T ~ .  Define Zn by 

Theorem 14.6. If Xn =+ W ,  then 2" + W .  
PROOF. We assume in the proof that p > 1, since this is only a 

mater of scale. We first show that 
( 14.1 9) sup I - - - - [ + , O .  u, l o  

ogvgu p u  
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The hypothesis X n  3 W implies 

(14.20) 

since replacing s-l by s-1/2 would give convergence in distribution. 
By the definition (14.18), v, > t implies ltl , qt 5 21. Therefore, 

implies 

(14.21) 

Similary, if E < p-',  then 

implies 

(14.22) 

By (14.20), the probabilities of (14.21) and (14.22) go to 0 as u --f 00, 

which proves (14.19). 
Put 

vtn(w>/n if h&4/n 5 1, 
@ X W >  = { qp otherwise. 

By (14.19), an + 4, where 4(t)  = t / p ,  so that, by the lemma (p. 151) 
again, X n  o an + W o 4. Let 

Yn = XnoW if un/n 5 1, the probability of which goes to 1 by (14.19) 
and the assumption p > 1. Therefore, Yn + W o 4. 
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By the definition (14.18), 

From mmisn l q i l / f i  =+ 0 it follows that sup,,l - Iq,,t+ll/afi + 0, 
which in turn implies that, if 

then Rn =$ W o $ .  Therefore, p112Rn =$ W (recall that 4(t) = t / p ) ,  
0 from which Zn =$ W follows because of the symmetry of W .  

Problems 

14.1. Let 

Show that q5,, + q5 (in the Skorohod topology) but that xo& f ,  Z O ~ .  Relate 
this to the lemma in this section. 

14.2. Under the hypotheses of the Lindeberg-LBvy theorem, there are limiting dis- 
tributions for 

Construct the relevant mappings from D to R' and prove that they are mea- 
surable and continuous on a set of W-measure l .  For the forms of the limiting 
distributions, see Donsker [18] for (a) and (b) and Mark (471 for (c). 

14.3. Let & be the Rademacher functions on the unit interval, and let P be Lebesgue 
measure, so that Theorem 14.1 applies. Show that the requirement in Theo- 
rem 14.2 that PO be dominated by P is essential: The therorem fails if PO is 
a point mass or (more interesting) if PO is Cantor measure. 

SECTION 15. UNIFORM TOPOLOGIES* 

In this section we use the weak-convergence theory for the ball o-field 
(Section 6) to prove two results in empirical-process theory. 
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The Uniform Metric on D[ 0,1] 

Let d be the Skorohod metric on D and let u be the uniform metric 
there: 

Clearly u is finer than d; and in fact, since U ( I ~ ~ , ~ ~ ,  I ~ J ] )  = 1 for s # t ,  
the u-topology is not separable. If D is the a-field of d-Bore1 sets, and 
if D j  is the class of finite-dimensional sets as defined above Theorem 
12.5, then, by that theorem, D = a ( D j ) ;  and since D is d-separable, 
D coincides with the d-ball a-field Do. 

Let UO and 2.4 be the ball and Borel a-fields for the uniform metric 
u. The five classes of sets are related by 

(15.2) Do = D = a (Dr )  = uo c u, 

where the inclusion is strict. We have already noted the first two 
equalities. For the third equality, observe first that the closed u-ball 
Bu(z, c)- is by right-continuity the intersection over rational T of the 
Dj-sets [y:z(r) - - E  5 y ( ~ )  5 z ( T ) + E ] ,  so that Uo c a ( D j ) .  The reverse 
inclusion will follow if we prove for each t and a that 

(15.3) [z:7rt(z) = z( t )  > a] = u Bu(z,,n)- 
n 

for an appropriate {z,} depending on t and a. If t < 1, take zn = 
c ~ + ( n + n - l ) I [ ~ , ~ + ~ - ~ ) .  It is easy to show that the right side is contained 
in the left side. Suppose on the other hand that x( t )  > a and choose n 
so that z(s) > a + n-' for s E [t, t + n-') and Iz(s)[ < n - (a( for all s ;  
that Iz(s) - zn(s)I 5 n for all s then follows by separate consideration 
of the cases where s does and does not lie in [t,t + n-'). If t = 1, 
take zn = a + ( n  + n-l)l{t) and use a similar argument. Hence (15.3), 
which proves the right-hand equality in (15.2). 

Let 23 be the class of ordinary Borel sets in [ 0,1] and define 4 : 

[0 ,1 ]  + D by 4(t) = Ilt,l1. For each s and a ,  q5-1[z:z(s) < a] lies 
in B, and since the finite-dimensional sets [z:z(s) < a] generate D, 
4 is measurable B/D.  But 4 is not measurable B/u, because the set 
A = UtEH Bu(4(t) ,  f) is u-open for each H ,  while +-'A = H need not 
lie in B. This proves that the inclusion in (15.2) is strict. 

Consider next the empirical process, the random function Y n  de- 
fined by (14.8) for random variables & on a probability space (a, F, P). 



158 THE SPACE D 

Now Yn is a random element of D with the Skorohod metric d, because 
it is measurable T / D .  But Yn is not a randomelement of D with the 
uniform metric u (is not measurable T / U ) ,  as follows by essentially 
the same argument that proves the inclusion relation in (15.2) to be 
strict. By Theorem 14.3, Yn + Y ,  and so, if P, is the distribution on 
D of Yn and P is the distribution on D of Y ,  then 'P, + P holds in 
the sense of d: 

(15.4) P, + P red. 

Since these measures are defined on Uo, one can ask whether there is 
weak' convergence in the sense of Section 6: 

(15.5) Pn J' P reu. 

But here Theorem 6.6 applies. Since (15.2) holds, and since d- 
convergence to a point of the separable set C of continuous functions 
implies u-convergence, it is enough to ask whether C supports P,  which 
is true if the distribution function F common to the & is continuous. 
For in that case, j(Y") = l / f i  (see (12.8)), and Theorem 13.4 implies 
that PC = P[Y E C] = 1. Therefore, (15.4) and (15.5) both hold. As 
explained in Section 6, (15.5) contains more information than (15.4) 
does. 

A Theorem of Dudley's 

Let (T, h)  be a compact metric space and let 7 be the Borel a-field 
for T.  Take M = M ( T )  to be the space of all bounded, real, T- 
measurable functions on T ,  with the metric u defined (on M now) by 
(15.1). Note that, for T = [0,1], M is much larger than D[O, 11. In 
Theorem 15.2 below, h will be the Hausdorff metric [Mli'] on the space 
T of closed, convex sets in the unit square. But for now, (T,h) can be 
any compact space. Let C = C(T) be the space of continuous functions 
on T. Since an element of C is measurable 7 and is bounded because 
of compactness, C is a closed subset of M .  And C is separable: For 
each integer q, decompose T into finitely many 7-sets A,i of diameter 
less than l /q .  Consider the class of functions that, for some q, have a 
constant, rational value over each Api; it is countable, and it is dense 
in C because the continuous functions are uniformly continuous. 

Let Mo and M be the ball a-field and Borel a-field for ( M ,  u). We 
can define the modulus of continuity for elements of M in the usual 
way: 

(15.6) w2(6) = w(z, 6) = sup Iz(s) - z(t)I. 
h(s, t ) l6  
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It is easy enough to see that w(. ,S) is u-continuous and hence M -  
measurable, but conceivably it is not always Mo-measurab1e.t On the 
other hand, 11 - 11 is obviously Mo-measurable. 

Let P, be probability measures on ( M ,  Mo),  and let P,* be the 
corresponding outer measures (on the class of all subsets of M ) .  

Theorem 15.1. Suppose that f o r  every Q there exist a n  a and a n  
no such that 
(15.7) 

Suppose further that fo r  every E and Q there exist a S and a n  no such 
that 
(15.8) P,"[z: wx(S) 2 E ]  < 7,  n 2 no. 
Then  {Pn} i s  tight', and C supports the limit of every weak'ly conver- 
gent subsequence. 

This, of course, looks like Theorem 7.3. The outer measure in 
(15.8) covers the possibility that the set in question does not belong to 
the a-field Mo on which the P, are defined. In order to prove Theorem 
15.1, we need a generalization of the Arzelh-Ascoli theorem. 

Lemma. A set A in M is  relatively compact i f  
(15.9) 

and 
( 15.10) lim sup wx(6)  = 0. 

6 4 0  XEA 

In Theorem 7.2, it was sufficient to control Iz(0)l (see (7.3)), but 
(15.9) is needed here; consider T = { a ,  b }  and A = [x: .(a) = 01. It is 
a consequence of (15.10) that A- is in fact contained in C. 

PROOF. Since T is compact by assumption, it contains a countable, 
dense subset To. Given a sequence {zn}  in A,  first use (15.9) to replace 
it by a subsequence along which zn(t)  converges to a limit for each t in 
TO. Given E ,  choose 6 so that wx(S) < E for all x in A ,  and choose in TO 
a finite S-net { t l ,  . . . , t k }  for T .  Finally, choose no so that rn, n 2 no 
implies that Izm(ti) - zn(ti)l 5 E for each i. For each s in T ,  there is 
an i such that h(s,  ti) 5 6 and hence Ix,(s) - zn(ti)l 5 E for all n. But 
then, m,n 2 no implies lz,(s) - z,(s)l 5 3 ~ .  Thus (2,) is uniformly 
fundamental and hence converges uniformly to a continuous function 
on T .  0 

t Whether this can in fact happen seems to be unknown. 
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PROOF OF THEOREM 15.1 .  We must show that, for each E ,  A 4  
contains a compact set K with the property that, for each positive y, 
P,Kr 2 1 - E for all large enough n. Given the E ,  first choose an a and 
an no such that a > 1 and 

(15.11) 

Then choose a sequence { ~ i }  such that 0 < ai+l < ai and a sequence 
{no(i)} of positive integers such that no < no(i) and 

€ 
P,[z: Ilzll 2 a] 5 - 2 

for n 2 no. 

1 E 

22 2% 
(15.12) P,' z: wZ(cq) 2 -1 5 - for n 2 no(i). 

And now define 

(15.13) 

(a  > 1) and 

(15.14) 

This, a compact subset of C because of the lemma, is our K .  
Let B and Bi be the sets in (15.11) and (15.12). Given y, choose 

rn so that 1/2m-1 < y and take Gm = BC n ni,, B: and nm = 
maxi<, no(i). By (15.11) and (15.12), the inner measure (Pn)* satisfies 
(Pn)*(Gm) 2 1 - E for n 2 nm. If we prove that 

( 15.15) G, c K Y ,  

then PnKr 2 (P,)*(Gm) 2 1 - E will hold for n 2 nm, which will 
complete the proof. (In the application below, Theorem 15.2, we have 
P,K 5 P,C = 0, and so we definitely need the KY, not just K.) 

Fix an z that lies in Gm. Then z satisfies 

( 1 ~ 1 1  I a, w,:(Q~) 5 1/22 for i 5 rn. 
To prove (15.15), we must find a z such that 

(15.16) z E K ,  112 - zll < y. 

If h(s,t)  2 ai, then (~(3) - z(t)l 5 2a 5 2ah(s , t ) /ai  = h ( ~ , t > / 2 ~ & .  
And if h(s , t )  5 and i 5 rn, then Iz(s) - x ( t ) l  5 1/22. Therefore, for 
all s and t ,  

(1 5.17) 
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Choose a finite set T, in T with the properties that (i) h(s ,  t )  2 6, 
for distinct s and t in T, and (ii) for each s in T we have h(s,  t )  < 6, for 
some t in T,. (If we choose points one by one to satisfy (i), we must, 
by compactness, end with a finite set satisfying (ii).) If s and t are 
distinct points of T,, then, since h(s , t )  2 6,, (15.17) for i = m gives 
Iz(s) -z(t)I 5 h(s ,  t)/2,6,, which of course also holds if s = t. This is 
a Lipschitz condition for the function z restricted to T,, and [M9] the 
restricted function can be extended to a function t that is defined on 
all of T ,  has the same bound, and satisfies the same Lipschitz condition 
for all s and t in T :  

(15.18) 

This is our t. 
Since llzll 5 a, z E K will follow if we show that ~ ~ ( 6 2 )  5 3/2a 

for all i. If i 2 m and h(s , t )  5 62, then by (15.18) and the fact that 
2262 is decreasing, I t ( s )  - z(t)l 5 h ( ~ , t ) / 2 ~ 6 ,  5 h ( ~ , t > / 2 ~ 6 2  5 1/2i. 
Now suppose that i < rn and h(s , t )  5 6i. Choose points s, and t ,  in 
T, such that h(s,s,) < 6, and h(t,t,) < 6,. Since h(s,s,) < 6,, 
(15.18) gives I z ( s ) - z ( s , ) ~  5 h ( ~ , s , ) / 2 ~ 6 ~  5 1/2" 5 1/22. Similarly, 
Iz(t) - z(tm)l 5 1/22. And since h(s,,t,) 5 6i +26, 5 362 5 a2 and t 
agrees with z on T,, Iz(s,)-z(t,)l = Iz(s,)-z(t,)l 5 w,(ai) 5 1/22. 
And now the triangle inequality gives I t ( s )  - z ( t )  I 5 3/2i, and so z does 
lie in K .  

For the other condition in (15.16), it will be enough to show that 
Iz(s) - z(s)l 5 2/2" for all s. Choose from T, an s, such that 
h(s,s,) < 6,. From ~(s,) = z(s,) it follows that Iz(s) - t ( s ) l  
Iz(s) -z(s,)l+ Iz(s,) - t ( s ) l .  Since z E G, and h(s ,  s,) < 6, 5 a,, 
we have Iz(s) -z(s,)( 5 w,(a,) 5 1/2,. And from (15.18) it follows 
that Iz(s,) - z(s)l  5 h(s,, s)/2,6, 5 1/2,. 

It remains to show that, if Pni +-O P ,  then PC = 1. Since C is 
closed and separable, it lies in Mo (Lemma 1, Section 6). Each of 
the compact sets K constructed above is contained in C, and since 
P,KY 2 1 - y for large n, P((CY)-) 2 P((KY)-)  2 limsup, P,KY 2 

0 

Empirical Processes Indexed by Convex Sets 

Let T be the space of closed, convex subsets of Q = [ 0, 112, and let h be 
the Hausdorff metric [M17] on T: (T, h)  is a compact metric space. Let 
7, M ,  C, Mo, and M be the specializations to this case of the spaces 

1 - E .  Let y ---f 0 and then E + 0: PC = 1. 
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and classes of sets defined above. Define the projection 7rtl...tb: M + Rk 
in the usual way: 7r t l . . . tk (z )  = (z( t l ) ,  . . . ,z(tk)).  And let M f  be the 
class of finite-dimensional sets, those of the form 7r;!..tkH for H E Rk. 
Note that ( M ,  u)  is not separable. 

First, 7rt is measurable Mo/R1. To prove this, it is enough to 
verify (15.3) (same symbols in a new context), where now IC,, = LY + 
(n  + n-l)IitI. Since {t}  is h-closed and hence lies in 7, IC, E M .  That 
the right side of (15.3) is contained in the left is again easy. If z( t )  > a ,  
choose n so that z( t )  2 LY + n-' and I I C ( S ) ~  5 n - la1 for all s; to show 
that I I C ( S )  - z,(s)l 5 n for all s, consider separately the cases s = t 
and s # t .  Since each 7rt is Mo-measurable, 

(1 5.19) a ( M f )  c Mo C M .  

Let M' be the set of y in M that are continuous from above in the 
sense that, if t,, -1 t in the set-theoretic sense, then y ( t n )  + y(t). There 
is [M18] a countable set To in T such that, for each t E T ,  there exists 
a sequence {tn} in TO for which tn 1 t .  From this it follows that 

Suppose that (0, F, P) is a probability space and 2: R + M ;  let 
Z ( t , w )  = 7rt(Z(w)). Call Z a random element of ( M , M o )  if it is 
measurable F/Mo-because M is not separable, Mo, not M, is the 
relevant a-field here. If Z is a random element of (M,Mo) ,  then, by 
(15.19), each Z(t, .)  is a random variable (measurable F/R1). Sup- 
pose, on the other hand, that Z(t, . )  is a random variable for each t 
and that Z( - ,w)  lies in M' for each w. Then, by (15.20), 

and therefore Z is a random element of ( M ,  Mo). 
Suppose that (1 , <2 , . . . are independent two-dimensional random 

vectors on (0,3, P), each uniformly distributed over Q. Suppose that 
&(w)  E Q for each i and w ,  and define p,,(w) = pn(. , u) by 
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Of course, p n ( t , u )  is well defined for arbitrary subsets t of Q, and if 
it is restricted to the a-field of ordinary Borel subsets of Q, it is a 
probability measure. But we restrict it further to the class T .  Since 
p n ( .  , u) is the restriction of a probability measure, it lies in M' ,  and 
since each p n ( t ,  . )  is a random variable, p n  is a random element of 
( M , M o ) .  And if X is Lebesgue measure on the Borel subsets of Q, 
then 

(15.22) 

defines another random element of ( M ,  Mo). 
Theorem 15.2. There is a random element X of ( M , M o )  such 

that X n  =+O X ;  and X E C with probability 1. 

Of course, X n  =JO X means that the corresponding distributions 
on Mo satisfy Pn j0 P. 

PROOF. By the multinomial central limit theorem, the random 
vector ( ( X " ( t l ) ,  . . . , Xn( tk ) )  has asymptotically the centered normal 
distribution with covariances X( t i  n t j )  - X ( t i ) X ( t j ) .  Suppose we can 
verify the hypotheses of Theorem 15.1. It will follow by Theorems 
6.5 and 15.1 that every subsequence of {P,} contains a further subse- 
quence that converges weak'ly to a limit supported by C. We showed 
above that rt is measurable Mo/R1,  and it is obviously w-continuous. 
Therefore, each rt1...tk is measurable Mo/Rk and u-continuous. If 
Pni =+; P ,  then it follows by Theorem 6.4 that PnirG1.,tk + i  PrG!..tk 
and hence that PrG1..tk is the normal distribution specified above. 

Since C C M' (tn I t  implies h(t,,t) 3 0 [M17]), (15.20) holds if 
M' is replaced by C. Therefore, CnB,(z, r ) -  E a ( M f  nC) and hence 
MonC c a ( M f n C ) :  M f n C  is a r-system which generates MonC. It 
follows that, if P and Q are two probability measures on ( M ,  Mo),  and 
if PC = QC = 1 and P X G ~ . . ~ ~  = Q X G ~ . . ~ ~  for all t l , .  . . , t k ,  then P = Q. 
This means that there is only one limit for the weak'ly convergent 
subsequences-the one having the normal distributions specified above 
as its finite-dimensional distributions. Since this will complete the 
proof, it is enough to verify the hypotheses of Theorem 15.1. 

Assume for the moment that (15.8) holds, and consider the 6 and 
no corresponding to an E of 1, say. Let t l ,  . . . , t k  be a &net. Since 
the finite-dimensional distributions converge, there is an a such that 
P[maxilk IXcl 2 a] I 77 for all n. But then P[llXnll 2 a + 11 5 2q for 
n 2 no, and (15.7) follows. It is therefore enough to  verify (15.8). 
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Preliminaries: Let An(s, t) = IXn(s) - Xn(t)I .  Since I,(&) - It(<i) 
has variance at most A(sAt), Bernstein’s inequality [M20] gives (x > 0) 

(15.23) P[An(s,t) 2 4 5 2exp 

Let Tm be the 2-m-net T(2-m) constructed in [M18]; the number Nm 
of points (sets) in Tm satisfies 

(15.24) log Nm A 6  log 2m 5 Bm2m/2 

for constants A and B. For each t in T, let tA and tk be the sets in 
[M 18 (32)] : 

(15.25) t& c t C t;, A ( t C  - t&) < 2-m, h( t , tk )  < 2-m; 

for each m, the tA  and tk are functions o f t .  There are Nm pairs tk, 
tk. Fix a 8 in the range < 0 < 1, and define a function m = m(n) 
by m = [(a8 log 2)-l log nJ . Then 

1 
(15.26) 2em i fi < 2e(m+1), < e < 1. 

The next step is to show that (tk is a function of t )  

( 15.27) I?,* [x: sup IX(tk) - x(t)l > €1 +n 0 
tET 

for each E .  We have 

and the last term goes to 0 by (15.26). Let Cn be the maximum of 
An(tk, th) for t ranging over T .  Since there are only N m  pairs (th, t;), 
it follows by (15.23) through (15.26) that 

This implies (15.27), 
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Because of (15 .27 ) ,  (15 .8 )  will follow if we prove that 

lim lim sup P max n n ( s ~ ,  t;) 2 el = 0, 
( 15.28) 6 n  [h(s , t )56 

where the supremum has become a maximum (and there are no mea- 
surability problems) because Tm is finite. We prove (15 .28 )  by the 
method of chaining. We take S = 2 - k ,  where k will be specified later. 
Suppose that rn > k, and consider the chain of transitions 

To bound the increment in (15 .28 ) ,  we add the increments across the 
links of the chain: 

(15.29)  An(sk,tk) I An(s:,s:-l) 
k<i<m 

+ An(s:, tg) + An((', 
k<i<m 

Define 

Erik = max An(si,tK). 
h(s, t , )52-k 

Note that Fn(S) = Fn(2-k )  = En,m(n). By (15 .29 ) ,  

(15.30)  
i=k+l 

and we can treat the terms on the right separately. 
The number of possible pairs (ty , t:-l) in Dni exceeds Ni, because 

for each 7 in Ti there are several t in T for which T = t:, and these 
different t 's  can give different values for ty-l. But the number of these 
pairs is certainly bounded by N:. By (15 .25 ) ,  A(t:At:-_,) 5 A(t:At) + 
A(tAt:-_,) < 2 - ( i - 2 ) .  If i 5 rn, then fi 2 2ei,  and (15.23)  and (15.24)  
imply 
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where bl is a positive constant independent of i. 
If h(s,t)  5 2-', then [M17(30)], A(sAt) < 45 2-' and hence, by 

(15.25), X(sKAtK) < 47.2-'. Suppose that k 5 m and use (15.23) and 
(15.24) again: 

E 2  1 (15.32) P[E,k 2 E ]  IN: - 2exp - [ 2(47. 2-' + ~ 1 2 ~ ' )  
for k 5 rn, 5 2exp[-b2~2~'] 

where b2 is independent of k and E .  Given E ,  choose k large enough 
that &ki-2  < E .  Since (15.31) and (15.32) both hold if k 5 i 5 rn, 
it follows by (15.30) that 

m 

P[Fn(2-le) 2 3 ~ ]  5 2 exp[-b12'~] + 2 exp[-b2~2~']]. 
i=k+l  

Increase the sum here by requiring only i > k. By further increasing 
k, we can ensure that the right side is less than q. Therefore, for each 
E and q,  there is a k, such that, if S = 2-', then P[F,(S) 2 3~1 < 7 for 

0 

If the index set T in Theorem 15.2 is replaced by the smaller set 
consisting of the rectangles [O,u] x [O,v] for 0 5 u,w 5 1, the theo- 
rem then has to do with the distribution of two-dimensional empirical 
distribution functions: The methods touched on in this section have 
implications for empirical-process theory. 

n large enough that m > k. This proves (15.28). 

SECTION 16. THE SPACE D[O,oo) 

Here we extend the Skorohod theory to the space D,  = D [  0 , ~ )  of 
cadlag functions on [ 0, oo), a space more natural than D = D [  0, I] 
for certain problems. This theory is needed in Chapter 4 but not in 
Chapter 5. 

Definitions 

In addition to D,, consider for each t > 0 the space Dt = D[O,t] 
of cadlag functions on [ 0, t ] .  All the definitions for D1 have obvious 
analogues for Dt: ) )z)) t  = supSltlz(s)I, At, IlAll;, d;, dt .  And all the 
theorems carry over from D1 to Dt in an obvious way. If z is an 
element of D,, or if z is an element of D, and t < u, then z can also 
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be regarded as an element of Dt by resticting its domain of definition. 
This new cadlag function will be denoted by the same symbol; it will 
always be clear what domain is intended. 

One might try to define Skorohod convergence x, --+ x in D ,  by 
requiring that dZ)(x,,z) +, 0 for each finite, positive t (2, and x re- 
stricted to [ O , t ] ,  of course). But in a natural theory, x, = I~o,l-l/,~ 
will converge to x = I[O,l] in D,, while d;(x,, x) = 1. The problem 
here is that x is discontinuous at 1, and the definition must accommo- 
date discontinuities. 

Lemma 1. Let x, and x be elements of D,. If d;(z,,x) -+, 0 
and m < u, and if x is continuous at m, then d&(xn,x) t, 0. 

PROOF. We can (Theorem 12.1) work with the metrics d, and d,. 
By hypothesis, there are elements A, of A, such that IIX, - Ill, -+, 0 
and llz, - xXnIlu -+, 0. Given 6 ,  choose 6 so that It - m( I 26 implies 
Ix(t) - z(m)I < ~ / 2 .  Now choose no so that, if n 2 no and t 5 u, 
then IX,t - tl < 6 and lxn(t) - x(X,t)l < ~ / 2 .  Then, if n 2 no and 
It - ml I 6, we have IX,t - ml I [Ant  - tl + It - m( < 26 and hence 

(16.1) sup Ix(t)-z(m)I < E ,  sup Ix,(t)-x(m)l < 6 ,  for n 2 no. 

I ~ n ( t )  - x(m)I I Ixn(t) - x(Xnt)l + Ix(Lt)  - x(m)I < 6 .  Thus 

lt-mI56 lt-rn156 

If (i) ~ , m  < m, let p, = m-n-'; if (ii) ~ , m  > m, let p, = ~ ; ' ( m -  
n-I); and if (iii) X,m = m, let p, = m. In case (i), Ip, - mJ = n-l; in 
case (ii), Ip,-ml I IX,'(m-n-')-(m-n-')l+n-'; andincase (iii), 
p, = m. Therefore,p, -+ m. Since IX,p,-mJ 5 IX,p,-p,I+Ip,-mI, 
we also have X,p, -+ m. Define p, E Am so that p,t = Ant on [ 0, p,] 
and p,m = m; and interpolate linearly on [p,, m]. Since pnm = m 
and pn is linear over [Pn,m], we have Ipnt - tl I IX,p, - pml there, 
and therefore, p,t ---t t uniformly on [ 0, m]. Increase the no of (16.1) 
so that p, > m - 6 and X,pn > m - 6 for n 2 no. If t 5 p,, then 
Ix,(t) - x(pnt)l = Ix,(t) - x(X,t)l I 112, - xX,II,. On the other hand, 
ifp, I t I m and n 2 no, then m 2 t >p, > m -  6 and m 2 p,t 2 
pnp, = Xnp, > m - 6, and therefore, by (16.1), Ix,(t) - x(p,t)l 5 

Thus I ~ n ( t )  - ~(p, t ) l  -+ 0 
0 

The metric on D, will be defined in terms of the metrics d h ( x ,  y) 
for integral m,t but before restricting z and y to [ 0, m], we transform 

Ixn(t) - x(m)I + [ ~ ( m )  - ~ ( / l n t ) l  < 26. 
uniformly on [ 0,  m]. 

t In what follows, m will be an integer, although the m in Lemma 1 can be 
arbitrary. 
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them in such a way that they are continuous at m. Define 

1 

0 i f t 2 m .  

if t 5 m - 1, 
(16.2) gm(t> = { m - t  i fm  - 15 t 5 m, 

For z E D,, let xm be the element of D, defined by 

(16.3) z:"(t) = g m ( t ) z ( t ) ,  t 2 0. 

And now take 

(16.4) d&,(z, y) = 2-m(l A d k ( z m ,  y")). 
m= 1 

If d&((z,y)  = 0, then d & ( z , y )  = 0 and xm = ym for all m, and this 
implies z = y .  The other properties being easy to establish, d& is a 
metric on D,; it defines the Skorohod topology there. If we replace 
d& by dm in (16.4), we have a metric d ,  equivalent to d&. 

Properties of the Metric 

Let A, be the set of continuous, increasing maps of [ 0, 00) onto itself. 

Theorem 16.1. There as convergence d & ( z n , z )  + 0 in D ,  i f  
and only i f  there exist elements An of A, such that 

(16.5) 

and, f o r  each m, 

(16.6) 

PROOF. Suppose that d & ( z n ,  x) and d w ( z n ,  x) go to 0. Then there 
exist elements A; of Am such that 

€2 = 111 - A,"llm v IIZFA~ - zm(lm --tn O 

for each m. Choose 1, so that n 2 Zm implies E;  < l /m.  Arrange 
that 1, < Zm+l, and for 1, 5 n < Zm+l, let m n  = m. Since lm, _< n < 
Imn+l, we have mn --tn 00 and e? < l/mn. Define 
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Then IX,t - tl < l/m, for t 2 m, as well as for t 5 m,, and therefore, 
supt IX,t - tl 5 l/m, +, 0. Hence (16.5). Fix c. If n is large enough, 

which is equivalent to (16.6). 
then c < m,-l, and so Ilx,Xn-x1lc = 1 1 ~ p X p - x ~ ~  I I C  I l/m, -+n 0,  

Now suppose that (16.5) and (16.6) hold. Fix m. First, 

holds uniformly on [ 0, m]. Definep, and pn as in the proof of Lemma 1. 
As before, pnt + t uniformlyon [0, m]. Fort 5 p,,  Ix:"(t>-zF(p,t)I = 
Izm(t) - x:,"(Ant)l, and this goes to 0 uniformly by (16.7). For the case 
p ,  I t I m, first note that Ixm(u)I I gm(u)IIxIlm for all u 2 0 and 
hence 

By (16.5), for large n we have X,(2m) > m and hence IIxCnllm I 
IIxnXnllzm; and llxnXnllarn -+n IIx11zrn by (16.6). This means that llxnllm 
is bounded (m is fixed). Given E ,  choose no so that n 2 no implies that 
pn and pnpn both lie in (m - E ,  m], an interval on which g, is bounded 
by E. If n 2 no and pn I t 5 m, then t and pnt  both lie in (m - E ,  m], 
and it follows by (16.8) that Ixm(t) - xF(p,t)l I ~(IIx l l ,  + Ilz,llrn). 
Since IIx,Ilm is bounded, this implies that Ix:"(t)-xF(p,t)( +, 0 holds 
uniformly on Ip,, m] as well as on [ 0, p,] . Therefore, d, (xr , xm) +, 0 

0 for each m, and hence d,(z,, x) and dL(z,, x) go to 0. 

A second characterization of convergence in D,: 

Theorem 16.2. There is convergence d&(x,,x) + 0 in D, if 
and only ifd:(x,, x) -+ 0 for each continuity point t of x. 

This theorem almost brings us back to that first, unworkable defi- 

PROOF. If d&(x,,x) -+ 0, then d&(xF,xm) -+, 0 for each m. 
Given a continuity point t of x, fix an integer m for which t < m - 1. 
By Lemma 1 (with t and m in the roles of m and u) and the fact that 
y and ym agree on [0, t ] ,  d;(x,, x) = d,"(xr, zm) +, 0. 

To prove the reverse implication, choose continuity points t ,  of x 
in such a way that t ,  t 00. The argument now follows the first part of 
the proof of Theorem 16.1. Choose elements A? of At, in such a way 
that 

nition of convergence in D,. 

E? = IlX? - q t ,  v IIxCnX? - 41tm +n 0 
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for each m. As before, define integers m, in such a way that m, --f m 
and e p  < l /mn,  and this time define A, E A, by 

{ yt if t 5 tm,, 
if t 2 tm,. Ant = 

Then IX,t - tl 5 l/m, for all t ,  and if c < tm,, then 1)z,A, - zllc = 
Ilz,Xp - zllc 5 l/m, +, 0. This implies that (16.5) and (16.6) hold, 
which in turn implies that dL(z,, z) 0. 

Separability and Completeness 

For z E D,, define $mx as zm restricted to [O,m]. Then, since 
dh($mzn,$mz)  = dh(zF,zm), $m is a continuous map of D, into 
Dm. In the product space II = D1 x 0 2  x s.., the metric p(a,P)  = 
Cg=l 2-m(l A dR(am,&))  defines the product topology, that of CO- 

ordinatewise convergence [M6]. Now define $:D, + II by $2 = 
($13, $22 ,  * * .I: 

$m: D ,  --t Dm, 4: D, --t II. 

Then d&(z,y)  = p($z,$y): $ is an isometry of D ,  into n. 
Lemma 2. The image $D, is closed in II. 

PROOF. Suppose that z, E D ,  and a E II, and p($z,,a) -’, 0; 
then d; (zF ,am)  +, 0 for each m. We must find an z in D, such 
that a = $z-that is, am = $mz for each m. 

Let T be the dense set of t such that, for every m 2 t ,  am is 
continuous at t. Since dh(zF, a m )  +, 0, t E T n [  0, m] implies z;(t) = 
gm(t )Zn( t )  +, am(t). This means that, for every t in T, the limit 
z( t )  = lim,z,(t) exists (consider an m > t + 1, so that g n ( t )  = 1). 
NOW gm(t )z( t )  = a m ( t )  on T n [O,m]. It follows that z ( t )  = am(t) on 
T n [ 0, m - 11, so that z can be extended to a cadlag function on each 
[ 0, m - 11 and then to a cadlag function on [ 0, m). And now, by right 

0 continuity, g m ( t ) z ( t )  = a m ( t )  on [O,m], or ?,!Jmz = xm = am. 

Theorem 16.3. The space D, is separable and complete. 

PROOF. Since II is separable and complete [M6], so are the closed 
0 subspace $D, and its isometric copy D,. 

Compactness 

i f ,  f o r  each m, $mA is relatively compact in Dm. 
Theorem 16.4. A set A is relatively compact in D ,  if and only 
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PROOF. If A is relatively compact, then A- is compact and hence 
[M5] the continuous image $,A- is also compact. But then, $,A, as 
a subset of $,A-, is relatively compact. 

Conversely, if each $,A is relatively compact, then each ($,A)- is 
compact, and therefore [M6] B = ($1A)- x ($2A)- x . - .  and (Lemma 
2) E = $Dm n B are both compact in II. But x E A implies $,x E 
($,A)- for each m, so that $x E B. Hence $ A  c E ,  which implies 

For an explicit analytical characterization of relative compactness, 
analogous to the Arzelk-Ascoli theorem, we need to adapt the w’(z, 6) 
of (12.6) to D,. For an x in D, (or an x in D ,  restricted to [O,m]), 
define 

that $ A  is totally bounded and so is its isometric image A.  

(16.9) 

where the infimum extends over all decompositions [&-I, t i) ,  1 5 i 5 w, 
of [ 0, m )  such that t i  - ti-1 > 6 for 1 5 i < w. Note that the definition 
does not require t ,  - tv-l > 6: Although 1 plays a special role in the 
theory of D1, the integers m should play no special role in the theory 
of D,. 

The exact analogue of w’(x,S) is (16.9), but with the infimum 
extending only over the decompositions satisfying ti - ti-1 > 6 for 
i = w as well as for i < w. Call this G,(z, 6). By an obvious extension 
of Theorem 12.3, a set B in D, is relatively compact if and only if 
supzEB llzll, < 00 and lim6supxEB G(x ,S)  = 0. Suppose that A c 
D,, and transform the two conditions by giving $,A the role of B. 
By Theorem 16.4, A is relatively compact if and only if, for every m 
(recall that $,x = xm), 

(16.10) 

and 

(16.11) lim s u p ~ , ( z ~ ,  6) = 0. 
6-0 x E A  

The next step is to show that (16.10) and (16.11) are together 
equivalent to the condition that, for every m, 

(16.12) 
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and 

(16.13) lim sup &(z, 6) = 0. 
6 4 0  xEA 

The equivalence of ( 16.10) and (16.12) (for all m) follows easily because 
llxrnllrn 5 11x11, 5 llxm+lllm+l. Suppose (16.12) and (16.13) both hold, 
and let K, be the supremum in (16.12). If x E A and 6 < 1, then 
we have Ixm(t)I 5 K,S for rn - 6 5 t < m. Given E, choose 6 so that 
K,6 < e/4 and the supremum in (16.13) is less than ~ / 2 .  If x E A 
and m - 6 lies in the interval [tj-l, t j )  of the corresponding partition, 
replace the intervals [ti-l, ti) for i 2 j by the single interval [tj-i, m). 
This new partition shows that 2om(x, 6) < E. Hence (16.11). 

That (16.11) implies (16.13) is clear because wA(x, 6) 5 2o,(x, 6): 
An infimum increases if its range is reduced. 

This gives us the following criterion. 

Theorem 16.5. A set A in D, is  relatively compact if and only 
if (16.12) and (16.13) hold fo r  all m. 
Finite-Dimensional Sets 

Let D, and D, be the Bore1 a-fields in D, and D, for the metrics 
dh and d&. And let rt l...tk: D,  + Rk (ti 2 0) and rg...tk: D, -, Rk 
(0 5 ti 5 m) be the natural projections. We know from Theorem 12.5 
that each r p  is measurable Dm/R1; and $, is measurable D,/D, 
because it is continuous. But rt = ry$+,, for t 5 m - 1, and therefore 
each rt is measurable DD,/R1 and each 7rtl. ..tk is measurable D,/7Zk. 
Finally, the argument following (12.37) shows that TO is everywhere 
continuous and that, for t > 0, rt is continuous at z if and only if x is 
continuous at t .  

Suppose that T C [ 0, m). Define a[7rt: t E T ]  in the usual way, 
and let p [ r t : t  E TI be the r-system of sets of the form rl;ll..tkH for 
k >_ 1, ti E T, and H E Rk-the finite-dimensional D,-sets based on 
time-points lying in T .  

Theorem 16.6. (i) The projection TO is continuous, and f o r t  > 0,  
rt is continuous at x if and only if x is continuous at t .  
(ii) Each 7rt is measurable D, /R1; each rt l . . . tk  is measurable D,/7Zk. 

(iii) If T is dense in [ 0 ,  oo), then u[rt: t E TI = D, and p[nt: t E T ]  is 
a separating class. 

PROOF. Only (iii) needs proof. If we show that 

(16.14) D, C o[rt: t E TI, 
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then there is actually equality, since each .rrt is measurable D,/R1. 
And (16.14) will imply that the n-system p [ n t :  t E TI generates D, 
and hence is a separating class. The finite case of (16.14) is Theorem 
12.5(iii), which applies to T, = (T n [ 0, m]) U {m}: 

(16.15) D, = a[7r,m:t E T,]. 

The problem is to derive (16.14) from (16.15). 
If t 5 m, then 

If t = m, then g,(t) = 0, and this set is D ,  or 8 according as 0 E H or 
0 @ H-an element of a[nt: t E TI in either case. If t < m, then (16.16) 
is [IC: n t Z  E ( g m ( t ) ) - l H ] ,  and this, too, lies in a[.rrt: t E TI (if H E R1). 
Therefore, if A = (nT) - lH  and t E T,, then $GIA E a[.rrt: t E TI. By 
(16.15), the sets A of this form generate D,, and it follows that $, is 
measurable a[.rrt: t E T]/D,. 

Now d&( , a )  is measurable D,/R1 for each a in D,, and so (com- 
position) d&($,( e ) ,  a )  is measurable a[.rrt: t e T]/R1, as is do( e ,  y) = 
C2-,(l A d&($,( . ) ,qm(y))) .  This means that a[.rrt: t E T ]  contains 

0 the balls and hence (separability) contains 27,. 

Weak Convergence 

Let Pn and P be probability measures on (D,, D,). 

Lemma 3. A necessary and suf ic ient  condition for Pn + P ( o n  
D,) is that =& P$;l ( o n  D,) for every m. 

PROOF. Since $, is continuous, the necessity follows by the map- 

For the sufficiency, we also need the isometry $ of D ,  into II; since 
ping theorem. 

$ maps D, onto $D, there is the inverse isometry 5: 

Consider now the Bore1 a-field P for II with the product topology 
[M6]. Define the (continuous) projection &:II ---t D1 x x DI, by 
<~,(a)  = (a1,. . . , a k ) ,  and let Pj be the class of sets (rlH for k 2 1 
and H E D1 x . . x DI,. The argument in Example 2.4 shows that P,f 
is a convergence-determining class: Given a ball B(a,c)  in II, take k 
so that 2-k < c/2 and argue as before (use Theorem 2.4) with the sets 
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A, = [p E II: d; (a i ,  pi)  < q, i 5 k] for 0 < q < ~ / 2 .  And now argue as 
in Example 2.6: a<ilH = <i 'aH for H E Dl x - .  . x Dh and hence, 
for probability measures Q, and Q on II, Q&' + Q<i' for every k 
implies Qn * Q. 

We need one further map. For y E Dk, let pk(y) = (a',. . . ,arc) 
be the point of D1 x x Dk for which ai(t) = g i ( t ) y ( t )  on [O,i], 
i = l ,  ..., k: 

The map pk is continuous: Suppose that vn + y in Dk; then gi . yn + 

gi . y in Dk, and this is also true if the functions are restricted to [ 0, i] 
because gi . y is continuous at i (use Lemma 1).  

The hypothesis now is that Pn$i' =& P$[' (on Dk) for each k, 
and by the mapping theorem this implies that P,$,'p,l + P$i 'p i l  
(on D1 x - .  x Dk). Since pk$k = <k$, we have Pn$-'<il * P$-'pk' 
(on Dk) for each k. It follows by the argument given above that 
P,$-' + P$-l (on II). 

Extend the isometry [ defined above to a map q on II by giving 
it some fixed value (in D,) outside the closed set $D,. Then q is 
continuous when restricted to $Dm, and since $Doo supports P$-' 
and the I?,$-', it follows by Example 2.10 that (q$ is the identity on 

0 

As in the case of D[ 0,1], define T p  as the set of t for which rt is 
continuous outside a set of P-measure 0. As in Section 13, t E Tp if 
and only if PJt = 0 where Jt is the set of x that are disconinuous at t .  
And as before, T p  contains 0, and its complement is at most  countable. 
For 5 in D,, let rtz be the restriction of 2 to [ O , t ] .  

We must prove that rt is measurable Doo/Dt. Define rFz as the ele- 
ment of Dt having the value z ( ( i - l ) t / k )  on [ ( i - l ) t / k ,  i t / k ) ,  1 5 i 5 k, 
and the value z( t )  at t .  Since the T i t / k  are measurable Dm/R1, it fol- 
lows as in the proof of Theorem 12.5(iii) that rf is measurable D,/Dt. 
By Lemma 3 of Section 12, dt(rtz,rts)  5 tk-' V w i ( x , t k - ' )  -+k 0 for 
each z in D,. Therefore [MlO], rt is measurable. 

Theorem 16.7 A necessary and suficient condition for P, + P 
is that P,r;' + Pr,' for every t an T p .  

PROOF. Given a t in Tp, fix an integer m exceeding t + 1; if 
d&(zn,z) -+ 0, then d&(z , ,z )  --t 0, and if z is continuous at t ,  then 

D,) P, = P,$-lq-' * PTpq-1 = P. 
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it follows by Lemma 1 that dZ(rtzn,rtz) + 0. In other words, the set 
of points at which rt is continuous contains Jf, and if Pn =+ P and 
t E T p ,  then the mapping theorem gives PnrF' + Pr;'. 

For the reverse implication, it is enough, by Lemma 3, to show that 
Pn$G' + P$,'. Choose t so that t E Tp and t 2 m. Let rm be the 
continuous mapping from D, to D, defined by 

Since $, = Tmrt, the mapping theorem gives Pn$m' = (PnrF')TG' + 
(Pr,-').;'= P$;1. 0 

Tightness 

Here is the analogue of Theorem 13.2; it follows from Theorem 16.5 by 
the analogous argument. 

Theorem 16.8. The sequence {P,} is tight i f  and only if these 
two conditions hold 

(i) For each m, 

(16.17) lim limsvq Pn[z: llz/lm 2 a] = 0. 
a-co n 

(ii) For each m and E, 

(16.18) limlimsupPn[z: w & ( z , ~ )  2 E] = 0. 
6 n  

And there is the corresponding corollary. Let 

(16.19) jm(z> = sup Iz(t) - Z(t+ 
tsrn 

Corollary- Either of t h e  following two cudzt ions  can be substi- 

(i') For each t in a set T that is dense in [ 0, oo), 
tuted for  (i) in Theorem 16.8: 

(16.20) lim limsupPn[z: Jz( t ) (  2 u] = 0. 
a+oo n 

(i") The relation (16.20) holds for t = 0, and for each m, 

(16.21) lim limsupPn[z:jm(z) 2 a] = 0. 
a-+w n 
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PROOF. The proof is almost the same as that for the corollary 
to Theorem 13.2. Assume (ii) and (i'). Choose points ti such that 
O = t o < t l  < . . . < t , = m , t i - t i - l > 6 f o r l < Z < v - l ( p e r h a p s n o t  
for i = v), and w,[ti-i,ti) < wh(z,6) + 1 for 1 I i I v. Choose from 
T points S j  such that 0 = SO < s1 < < sk = m and Sj  - sj-1 < 6 
for 1 I j I k. Let m(z)  = mao<j<k Iz(sj)l. If t ,  - t,-l > 6 ,  then 
11~11rn - < m(z) + w;(z,6) + 1, just as before. If t ,  - t,-l 5 6 (and 
6 < 1, so that t,-l > m- l) ,  then llzllm-l 5 m(z>+wA(z,6) +l .  The 
old argument now gives (16.17), but with 1 1 ~ 1 1 ~  replaced by IIzllrn-l, 
which is just as good. 

In the proof that (ii) and (i") imply (i), we have (v - 1)s 5 m 
instead of v6 I 1. But then, 21 I m6-I + 1, and the old argument goes 
through. 0 

Aldous's Tightness Criterion 

Let Xn be random elements of D,. We need probabilistic conditions 
under which the (distributions of the) X n  are tight. First, (16.17) 
translates into 

(16.22) lim limsupP[llXnIIm 2 a] = 0, 

which must hold for each rn. There is a useful stopping-time condition 
that implies (16.18). 

A stopping time for the process X n  is a nonnegative random vari- 
able r with the property that, for each t 2 0, the event [r 5 t ]  lies 
in the a-field a[Xr:s I t ] .  A stopping time also satisfies [I- = t] E 
a [ X r : s  _< t] .  All our stopping times will be discrete in the sense that 
they have finite range. Consider two conditions. 

Condition lo.  For each E ,  q, m, there exist a 60 and an no such 
that, if 6 5 60 and n 2 no, and if r is a discrete Xn-stopping time 
satisfying r 5 m, then 

a+w n 

(16.23) P[lX,n,, -X,nI 2 €1 i 7.  

Condition 2'. For each E ,  q, m, there exist a 6 and an  no such 
that, if n 2 no and 7 1  and r2 are Xn-stopping times satisfying 0 5 
r1 5 7 2  5 m, then 

(16.24) P[IX7"2 - XPJ 2 E ,  72 - 7 1  I 61 I q. 
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Note that, if (16.24) holds for a value of 6, then it holds for all 
smaller ones. 

Theorem 16.9. Conditions 1" and 2" are equivalent. 

PROOF. Since T + 6 is a stopping time, 2" implies 1". For the 
converse, suppose that T I m and choose 60 so that 6 5 260 (note the 
factor 2) and n 2 no together imply (16.23). Fix an n 2 no and a 
6 5 60, and let (enlarge the probability space for X n )  8 be a random 
variable independent of F = a[X?: s 2 01 and uniformly distributed 
over J = [ 0,261. For the moment, fix an z in D, and points tl and t 2  
satisfying 0 5 tl 5 t2. Let p be the uniform distribution over J ,  and 
let I = [0 ,6] ,  Mi = [s E J :  Iz(ti + s )  - z(ti)l < €1, and d = t 2  - t l .  
Suppose that 

(16.25) t 2  - tl 5 6 

and 

3 
(16.26) p ( M i )  = P[8 E Mi] > 4, fori = 1 andi  = 2. 

If p ( M 2 n I )  5 $, then p(M2) 5 $, a contradiction. Hence p ( M 2 n I )  > 
$, and (0 I d IS) p( (M2+d)n  J )  2 p ( ( M 2 n I ) + d )  = p ( M 2 n I )  > i. 
Thus p ( M l ) + p ( ( M z + d ) n J )  > 1, which implies p(M1n(M2+d) )  > 0. 
There is therefore an s such that s E M I  and s - d E M2, from which 
follows 

Thus (16.25) and (16.26) together imply (16.27). To put it another 
way, if (16.25) holds but (16.27) does not, then either P[8 E Mf] 2 $ 
or P[8 E Mi] 2 i. Therefore, 

Since 0 5 8 5 26 5 260, and since 8 and .F are independent, it 
follows by (16.23) that the final term here is at most 877. Therefore, 1" 
implies 2". 0 



178 THE SPACE D 

This is Aldous's theorem: 

Theorem 16.10. If(16.22) and Condition 1" hold, then {X"} is 
tight. 

PROOF. By Theorem 16.8, it is enough to prove that 

(16.28) limlimsup P[wk(Xn,  6) 2 E ]  = 0. 

Let Ak be the set of nonnegative dyadic rationals j /2k of order k. 
Define random variables T;, T?, . . . by T; = 0 and 

6 n  

T? = min[t E A,: Tr-1 < t 5 m, lXF - X$-l I 3 €1, 

with T? = m if there is no such t .  The T? depend on E ,  m, and k as 
well as on i and n, although the notation does not show this. It is easy 
to prove by induction that the T? are all stopping times.+ 

Because of Theorem 16.9, we can assume that Condition 2" holds. 
For given E ,  q ,  m, choose 6' and no so that 

P[lx+ - Xn q- 1 I 2 E, T? - (-1 5 6'1 5 77 

for i 2 1 and n 2 no. Since T,'" < m implies that 1X$ - X$-l I 2 E ,  we 

have 

(16.29) 

Now choose an integer q such that q6' 2 2m. There is also a 6 such 
that (increase no if necessary) P[T? < m, T? 5 61 5 q/q  for i 2 1 
and n 2 no. But then 

(16.30) P ( U [ T ? < ~ , T ? - T . ~ , ~ _ ~ < ~ I )  57 ,  n2no.  

Although the T? depend on k, (16.29) and (16.30) hold for all k simul- 
t aneously. 

a 

P[T? < m, T? - T?-~ 5 6'1 5 q,  i 2 1, n 2 no. 

9 

i= l  

By (16.29), 

E[T? - T?-~~T: < m] 2 ~ 'P[T?  - T?-~ 2 6'1~: < m] 

2 6'(1 - 'V/p[T: < m]),  

t This is easy because the 7," are discrete; proofs of this kind are more complicated 
in the continuous case. 
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and therefore, 

Q 

m 2 E [ T ~ ~ T ;  < m] = E[T? - T E ~ ~ T :  < m] 2 q6'(1 - ~/P[T: < m]).  
i=l 

Since q6' 2 2m by the choice of q, this leads to P [ T ~  < m] 5 27. By 
this and (16.30), 

Let Ank be the complement of the set in (16.31). On this set, let 
v be the first index for which T," = m. Fix an n beyond no. There are 
points tt (the T,'") such that 0 = t i  < e . 1  < t; = m and tf - tf-l > 6 
for 1 5 i < v (but not necessarily for i = v). And IXp - XcI < E if s 
and t lie in the same [tf-l, t f )  as well as in A,. If An = lim supk Ank, 
then PA, 1 - 37, and on An there is a sequence of values of k along 
which v is constant (v 5 q )  and, for each i 5 v, tf converges to some 
ti. But then, 0 = t o  < < t ,  = m, ti - t i-1 2 6 for i < v, and 
by right continuity, lXF - XfI 5 E if s and t lie in the same [t i- l , t i) .  
It follows that w&(Xn,6) 5 E on a set of probability at least 1 - 37. 
Hence (16.28). 0 

From the corollary to Theorem 16.8 follows this one: 

Corollary. If, for each m, the sequences {Xg} and {jm(Xn)} are 

Finally, Condition 1" can be restated in a sequential form: If T, 

are discrete Xn-stopping times with a common upper bound, and if 6, 
are constants converging to 0, then 

tight on the line, and i f  Condition 1" holds, then {X"} is tight. 

n 
X ~ n + 6 n  -XT", J n  0. (16.32) 



CHAPTER 4 

DEPENDENT VARIABLES 

SECTION 17. MORE ON PRIME DIVISORS * 
Introduction 

Section 4 treats, among other things, the asymptotic distribution of 
the largest prime divisors of a random integer.t Here we study the 
total number of prime divisors of a random integer and the number of 
them in a given range, and we show that the limit is normal in some 
cases and Poisson in others. And we prove the associated functional 
limit theorems. 

On the a-field of all subsets of R = {1 ,2 , .  . .}, let P, be the prob- 
ability measure corresponding to a mass of 1/n at m for 1 5 m 5 n, 
so that P,A is the proportion among the first n integers that lie in 
A. And let E, denote the corresponding expected value. For each 
integer a, 

(17.1) 
1 1  1 n  1 
a n  n u  a 
- - - < P,[m:alm] = - 1-1 5 - : 

the probability that a divides m is approximately 1/a for large n. By 
the fundamental theorem of arithmetic, distinct primes p and q indi- 
vidually divide m if and only if their product does, and this, together 
with (17.1), leads to the approximate equation 

the three probabilities having the approximate values l/pq, l/p, and 
l / q .  The events “divisible by p” and “divisible by q” are therefore 
approximately independent, and similarly for three or more distinct 

t The theory of Section 4 is not required here; it is used only in passing, for 
comparison. 
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primes, and this means that probability theory can be brought to bear 
on problems of multiplicative arithmetic. 

Let Sp(m) be 1 or 0 according as p divides m or not. By (17.2), 
the Sp behave approximately like independent random variables. Now 
the sum 

(17.3) 
Un<PlVn 

is the number of prime divisors p of m lying in the range un < p I v,. 
There are many theorems about sums of stictly independent random 
variables, and many of these can be carried over to the arithmetic case. 

A General Limit Theorem 

Replace (17.3) by the more general sum 

(17.4) f n ( m )  = C fn(p>Sp(m) ,  1 I m I 72. 

P l n  

Consider independent random variables Ep (on some probability space), 
one for each prime p ,  that take the values 1 and 0 with probabilities 
p-' and 1 - p - l .  The properties of the sum S n  = xp5n fn(p)<p can 
serve as a guide to those of fn.  Define 

Assume that u i  > 0, at least for large n. 
If m is drawn at random from {1,2, .  . . , n}, then fn becomes a 

random variable governed by P,. Write fn * E to indicate that this 
random variable converges in distribution to [. 

Theorem 17.1. Suppose there exist positive constants an such 
that 

where the second relation holds for each positve e .  If 

(17.7) 
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and the distribution of ( is determined by its moments, then 

(17.8) 

The proof depends on the method of moments. Consider first an 
application. 

EzampZe 17.1. Suppose that f n ( p )  G 1, so that fn(m) is the total 
number of prime divisors of rn. (Even though the function f n  is the 
same for all n in this case, the probability mechanism changes with n, 
and so it is clearer to preserve it in the notation.) All that is needed 
from number theory is the fact that there exists a constant c such thatt 

(17.9) Z: = logloga:+c+o(l) =logloga:+O(l). 

From this it follows that the Pn and on of (17.5) are each log log n + 
O(1). If an = nl/loglogn, then the first sum in (17.6) is logloglogn + 
0(1), and the second is [an] = o(n'): (17.6) is satisfied. Since on -+ 00 

and the random variables tp - l / p  are uniformly bounded, it follows 
by the Lindeberg (or the Liapounov) central limit theorem that (17.7) 
holds with N in the role of t. Therefore, Theorem 17.1 gives the 
striking result of Erdos and Kac: 

P 5 X  

Dividing through by 4- leads to the weak law of large numbers 
of Hardy and Ramanujan: 

Cs, =+ 1. 
1 

log log n (17.11) 
P l n  

0 

PROOF OF THEOREM 17.1. We can assume that on G 1 (pass 
from f n ( p )  to fn(p)/on). Let 

t Hardy & Wright (371, Theorem 427, or [PM.240]. 
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By the first condition in (17.6), 

an<p ln  

Therefore, (17.8) is equivalent to 

( 17.12) 

and similarly, (17.7) is equivalent to 

gn - un * 5, 

(17.13) Tn - Vn + 5. 
It is therefore enough to show that (17.13) implies (17.12). 

For each positive integer r ,  

by the multinomial theorem, where C' extends over those u-tuples 
T I , .  . . , T, of positive integers adding to r and C" extends over the u- 
tuples P I , .  . . , p ,  of primes satisfying p i  < . - < p ,  5 a n .  And En[gk] 
is the same thing with 

replaced by 

Since these two expected values differ by at most l /n ,  I E[TA] -En [gk] I 5 
~L-~(C,,,~ Ifn(p)l)T. Two binomial expansions, together with the sec- 
ond condition in (17.6), now give 

(17.15) IE[(Tn - ~ n ) ' ]  - En[(gn - ~ n > ~ ] l  
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(Notice that the first condition in (17.6) requires large values for the 
a,, while the second requires small ones.) 

By (17.13), if E[(T, - v,)~] is bounded in n for even r, then (see 
(3.18)) E[(T, - v,)~] t E[r] holds for all r. It will follow by (17.15) 
that En[(gn - v,)'] --f E[r] holds for all r, which, by the method of 
moments [PM.388], will in turn imply (17.12). If qp = tP - p- ' ,  then 

Since the qp are independent and have mean 0, we can require in C' 
that each ri exceed 1. If pn is the maximum on the right in (17.6), then 
pn I p for some p, and if we take p > 1, then Ifn(p)qpITi 5 p f i ( p ) q E  
for ri >_ 2. Therefore, the inner sum on the right in (17.16) has modulus 
at most 

C%P"f,2(p1)7;,1 *..E~PTuf,2(Pu)~;J I DT(  c f3P)E[v;1)U. 
P l a n  

Now 1 = u: >_ cpSa, fi(p)E[qi], and it follows by (17.16) that 

Thus IE[(T, - v,)']I is indeed bounded for each r. 

This argument uses from number theory only the fundamental the- 
orem of arithmetic. The applications of Theorem 17.1 require further 
number theory-(17.9), for example. 

EzampZe 17.2. To prove the functional version of (17.10), we need 
a slight generalization of the argument leading to it. Suppose that 

Ifn(p)I < 00 and on --f 00. Then the central limit theorem 
applies to Sn just as before. Take a, = n1iU:. Then the first sum in 
(17.6) is logo: + 0(1) = o(u,); the second sum is O(nl/"':), which is 
~ ( n ' )  because u, - 00. Therefore, (17.6) holds, and we can conclude 
that 

(17.17) f n - p n  un = L ~ ( f , ( p ) ( 6 p - ~ ) )  un + N .  
P<n 

0 
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An example where the limit is Poisson: 

Example1 7.3. Suppose that f, counts the prime divisors between 
u, and v,: 

(17.18) f n ( P )  = qun,vn](P), fn(m) = c Sp(m). 
U n  <P<Vn 

Let <A = <(A) have the Poisson distribution with mean A. If 

(17.19) Y, = o(nE),  u, 4 00, 

where the second condition holds for each positive E ,  then the f, 
in (17.18) satisfies f, =$ <A. To prove this, first note that, since 
maxun<p<vn l /p -, 0 by the third condition in (17.19), it follows by 
a standard limit theorem for the Poisson case [PM.302] that S, = 
C u n < p < v n  P + <A. And since p, and uz go to A, it follows further 

that (S, - p,)/un + 77 = (<A - X ) / 6  Apply Theorem 17.1 with 
a, = v,; the first and third conditions in (17.6) are obviously satisfied, 
and the second condition in (17.19) implies the second one in (17.6). 
Therefore, (fn - p,>/a, + 77, which in turn implies f, + CA. 

Let u, = eSCn and Y, = etcn, where 0 < s < t .  If c, --f 00 and 
c,/ log n ---t 0, then (17.19) holds for X = log t - logs (use the middle 
member of (17.9)), and we obtain C[Gp(m):sc, < logp 5 tc,] + 
[(logt-log s). To compare this Poisson case with the Poisson-Dirichlet 
case (Section 4), take c, = log log n: 

logp  5 t ]  =$, <(logt - logs). (17.20) c [Sp(m): s < log log n 

This magnifies what goes on just to the right of 0 in Theorem 4.5. 0 

The Brownian Motion Limit 

Suppose as in Example 17.1 that f , ( p )  E 1. For 1 5 m 5 n, define an 
element X n ( m )  of D[ 0,1] by 

(17.21) 

The reason for the range in the sum is this: Define a new f n ( p )  as 1 if 
P -  < .clogtn and 0 otherwise; then the corresponding p, and 0: of (17.5) 
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are both t log log n + 0(1) by (17.9). The variance of X p  under P ,  is 
therefore approximately t ,  the variance of Wt. 

Theorem 17.2. For the X n  of (17.21), X n  =+ W .  

PROOF. It follows immediately from (17.10) that XT + N .  Sup- 
pose that 0 < s < t < 1, and apply Example 17.2 to 

a i fp  5 elog'n, 

b f n ( P )  = if elog'n < p < - elogt 72, { 0 otherwise. 

Then the a; of (17.5) is (a2s + b2( t  - s)) loglogn + 0(1), and (17.17) 
gives 

ax: + b ( ~ r  - x:) * (u2s + b2(t  - s ) ) ~ / ~ N .  

Since the limit here has the same distribution as uWs + b(Wt - W,), it 
follows by the Cram&-Wold argument that (X,",X," - X,") converges 
in distribution to (W,,Wt - Ws). An extension shows that all the 
finite-dimensional distributions of X n  converge weakly to those of W .  

Define Y n  by (17.21) but with p further constrained by p 5 n1l4 
in the sum. Then 

by Markov's inequality (first order) and (17.9). Therefore, it is enough 
to prove Y" + W ,  and since the finite-dimensional distributions of Yn 
also converge to those of W ,  it is enough to show that {Y"} is tight. 

Let r and s be positive integers, let U and V be disjoint sets of 
primes, and consider the four sums 

We have (see (17.14)) 

where C' extends over the u-tuples {ri} adding to r and the v-tuples 
{ s j }  adding to s ,  and C" extends over the {pi}  c U and { q j }  c V 
satisfying p l  < * - < p ,  and q1 < . * < qv. And E,[f&f$-] is the same 
thing with the inner summand replaced by n-l Ln/pl - a p,ql . . q v j .  
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Therefore, IE[ShS$] - En[f&fG]I 5 n-11UITIV(s7 where IUI and IVI 
denote cardinality. This also holds if T = 0 or s = 0, and the proof is 
simpler. Let a = x p E u p - l  and b = '& q-'. By a double binomial 
expansion, 

Take T = s = 2 and W = U U V .  Since we have E[(Su - a)'] = 
cpEup-l(l - p - l )  I a and similarly for Sv, it follows by (17.22) that 

(use xy 5 (z + and Schwarz's inequality) 

If Q < p 5 n1/4 and W is contained in the set of primes in the range 
Q < p 5 0, then 

Suppose that Q < T 5 p 5 n1I4, and let U and V consist of the 
primes in the ranges Q < p I T and T < p 5 p, respectively. The 
preceding inequality gives 

Suppose now that X > 4, so that X/4 exceeds the maximum absolute 
value of the summands 6, -p-l .  Apply Theorem 10.1 and then (10.6): 

(17.23) P,[ max 1 ($ - i) 12 A] 5 - a<r<P 
a<p<T 
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Let 52 = CP5+p-'. Change the definition of Y": Normalize by 
sn rather than d l z .  It is enough to prove tightness for the new 
random functions Yn. By (17.23), there is a constant K', such that, if 
a < p 5 n1/4 and n is large enough that ES" > 4, then 

As 2 increases from 0 to n, 5 2  increases in jumps from 0 to 5:) and 
no jump exceeds 1. Therefore, for a given 6, if n is large enough 
that s i  < 6, then there exist ao, . . . ,av such that, for ti = sii/s;, 
0 = t o  < tl < . . * < t ,  = 1 and 6 < ti - t i-1 < 26 for each a < v. By 
(17.24) and (7.11), 

for large n. This proves tightness. 0 

We can clarify the number-theoretic meaning of this theorem by 
transforming (17.21). First, P,[m: log log m 5 (1 - E) log log n] ---t 0 by 
(17.9). Therefore, if P, governs the choice of m, 

(17.25) 
log log m 
log log n *" 1. 

Let y+ = CP<,p-'; this is essentially s;, but we now regard it as an 
approximate mean rather than variance. Define an( a ,  m) by 

(17.26) Q,(O,m) = 0; Qn( l ,m)  = 1; 

and interpolate linearly between these points. It follows by (17.25) and 
two more applications of (17.9) that 

and therefore, if I is the identity function on [ 0,1], then Q, =+ I in 
the sense of D[O,l]. By Theorem 3.9, (X", iPn) + (W, I ) ,  and by the 
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lemma to Theorem 14.4, Xn o an =+ W o I = W .  But X n  o an is the 
random function Zn defined by 

c (s,(m,- ‘). 1 
Z r ( m )  = 

P 
P:-YPl%a+l <t 

JmGG 
(17.27) 

Thus Zn =$ W .  We could also divide by J m - t h e  result is the 
same. 

The random function Zn can be described this way: If t = yp/ym+l, 
then 

(17.28) 

and if p‘ is the next prime after p ,  then Z n ( m )  is constant on the 
interval [yp/ym+l, yP!/ym+l],  which has length proportional to p - l .  

Suppose an idiot-savant successively checks the primes up to m in order to see 
which ones divide m, the amount of time he devotes to p being proportional to 
l /p-he calculates with ever-increasing fury. Call p “advantageous” with respect to 

m if c,,, 6,(m) > 7,; this means that, with respect to divisibility by the primes 
preceding p ,  m is “more composite’’ or “less prime-like” than the average integer. If 

q’ is the product of the prime divisors of m that precede p ,  then p divides m if and 
only if it divides m/q‘, and the latter is easier to check than the former. The savant 

knows all this. If p is advantageous, then q’ is likely to be large, which simplifies 
the computational task and hence irritates the idiot (computation being his life). 
The proportion T,(m) of time he spends on advantageous (and to him vexatious) 

primes is the Lebesgue measure of the set of t in [ 0,1] for which Zp(m)  > 0, and 
in the limit this follows the arc sine law (9.27). Since the corresponding density is 

U-shaped, T,, is more likely to be near 0 or 1 than to be near the middle of [ 0,1]. 
For example, for about 20% of the integers under n (n large), T,, > .9, for about 
20%, T~ < .1 ,  and for only about 6% do we have .45 < T,, < .55. 

Let ap(m)  be the highest power of p that divides m. If we redefine 2” by 

substituting cyp(m) for b,(m) in (17.27), then 2“ + W still holds. Indeed, if 
pP(m)  = cyp(m) - 6,(m), then Pn[pp 2 k]  = n-llnp-k-’J 5 p-“-’ , and hence 
En[&] 5 czl p-k- ’  = ( p ( p  - l))-’. It follows that E , , [ z p p p ]  is bounded, and 
therefore, by Markov’s inequality, c, p p /  log log n J, 0: The new Zn does converge 
in distribution to W .  

We can now imagine that the idiot-savant finds for each successive p its ex- 
act power in the prime factorization of m. Now he can quit after he has encoun- 

tered the largest prime divisor pl(m) of m. By Theorem 4.5, logpl(m)/logm = 
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x,(m) 3, x, where x has the density &(x; 1) as defined by (4.16). It follows that 
loglogpl(m)/loglogm = 1 + logx,(m)/loglogm +n 1. Therefore, if the idiot 
quits after encountering pl(m), he saves (to his satisfaction) very little time. 

The skewing of the distribution of T, toward the ends of [ 0,1], as described 
above, is even more pronounced if our idiot-savant spends the same amount of time 
on each p :  Let A6 be the set of x in D[ 0,1] that are nonzero and have constant 
sign over [l - 6,1]. For each E there is a 6 such that P[W E A6 n C] > 1 - E (see 
(9.28)). And by Theorem 2.l(iv) and the fact that A: n C = A6 n C, it follows 
that liminf, P,[Z" E A&] 2 P[W E A:] = P[W E A6 f l  C] > 1 - E .  The points of 
discontinuity of Zn(m) are the ratios ~ ~ / ' y ~ + l  % log logp/ log log m, and the great 
majority of these lie to the right of 1 - 6. In fact, if ~ ( x )  is the number of primes 
up to x, then the proportion of the discontinuity points less than 1 - 6 is about 
r(exp(log'-6m))/?r(m), and this goes to 0 in probability because ~ ( z )  is of the 
order x/logz. Therefore, under the new regime for our idiot-savant, the limiting 
distribution of 7, has mass at 0 and mass f at  1. 

The Poisson-Process Limit 

There is a functional limit theorem corresponding to (17.20). First, 
transform the ratio there by taking its logarithm. If 

u, = exp exp( s + log log log n)  , vUn = exp exp(t + log log log n) , 

then 

(17.29) z[6,(rn): s < loglogp - logloglogn 5 t]  

= c bp(m) J n  C(t - 4. 
un < P l v n  

For each prime divisor p of m, place a point at log log p - log log log n. 
If P, governs the choice of m, this gives a point process on (-00, 00). 

Let X r ( m )  be the number of points in (0, t] for t 2 0 and minus the 
number in ( t ,  01 for t 5 0. Then XF(m) - Xr(m) is the sum in (17.29). 

Now consider a Poisson process on (00, w) with a constant intensity 
of 1, and let Xt be the number of points in ( O , t ]  or minus the number 
in ( t , O ]  as t 2 0 or t 5 0. Then X has independent increments, and 
X ,  - X ,  has the Poisson distribution with mean t - s. Thus (17.29) 
can be written as Xr - X r  + X ,  - X,. 

We can extend this in the usual way by the Cram&-Wold method. 
Suppose that T < s < t ,  define T~ = expexp(r - logloglogn), and 
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define un and vn a~ before. NOW define 

By the analysis above, Sk and f; converge in distribution to X, - Xr, 
and S: and f: converge in distribution to Xt - X,. By independence, 
Theorem 2.8(ii), and the mapping theorem, S, = ask + bS: + a(X, - 
Xr) + b(Xt - X,) = <. If fn = af; + bf:, A' = logs - log r ,  and XI' = 
log t - logs, then the pn and a: of (17.5) satisfy p n  + p = aX' + bX" 
and U: + a2 = a2X' + b2X". But now, (Sn - pn) /an  + (< - p) /a,  
and it follows by Theorem 17.1 that (fn - pn)/an + (< - p) /a.  But 
then it follows further that fn + 5. This means that af; + bf: + 
a(X, - XT) + b(Xt - X,) for all a and b, and therefore, (X," - XF, XF - 
X:) = (fA,f,") + (X, - Xt,Xt - X,). The argument extends: The 
finite dimensional distributions of the process Xn converge to those of 
X. 

The sample paths of Xn and X are elements of the space D(  -00, 00) 

of cadlag functions over (-00,oo). If we restrict X n  and X to [s, t], 
then, by Theorem 12.6, there is convergence in distribution in the sense 
of the space D[s ,  t]. It is possible to adapt the reasoning of Section 16 
to the space D(-m,00). Replace the gm of (16.2) by the function 
that is 1 on [-m + 1 ,m - 11 and 0 outside [-m, m], and is linear on 
[-m, -m + 11 and [m - 1,m]. Define P ( t )  by (16.3), but for all t on 
the line, and define a metric on D ( - ~ o , ~ o )  by (16.4), where now d& 
is the metric for the Skorohod topology on D[-m, m]. One can derive 
for D(-00, 00) the analogues of Theorems 16.1 through 16.7. If r , ,p is 
the restriction of z to [s, t ] ,  then, as observed above, the distributions 
P, and P of Xn and X satisfy P,r;t + Pr;; for all s and t ,  and by 
the analogue of Theorem 16.7, P n  + P: 

We have Xn  + X an the sense of the space 

For negative [nonnegative] i, let pi be the successive X-points 
(points where X jumps) preceding [following] 0: 0 . .  < p-2 < p-1 < 
0 < PO < p1 < . * (with probability 1, 0 is not an X-point). It is a 
standard property of the Poisson process that the interarrival intervals 
pi - pi-1 have the exponential density &(z) = e-" for i # 0, while 
,130 - p-1 has density $2(z) = ($1 * $1)(x) = z e - x .  

Theorem 17.3. 
D(-0O, 00). 



192 DEPENDENT VARIABLES 

Thus the interarrival intervals have mean 1, except for the one that 
covers 0, which has mean 2: A long interval has a better chance of 
covering 0 than a short one has. In fact, for every fixed t ,  the interval 
that covers it has density 49 and mean 2. This seems paradoxical, 
because an arbitrary interval can be made to cover t simply by shifting 
t the right amount. But this is like trying to place your bet after 
the roulette wheel has come to rest, which casino operators vigorously 
discourage. 

For negative [nonnegative] i, let pi(m) be the prime divisors of m 
preceding [following] logn: . < p-2(m) < p-l(m) < logn < po(m) < 
pl(m) < - - - (p = log n is impossible because e is transcendental). 
Then the Xn-points corresponding to the pi are the points pr(m) = 
loglogpi(m)-logloglogn. Let D, be the set of functions in D(-w, 00) 
that are nondecreasing, take integers as values, and have jumps of 
exactly 1 at the points of discontinuity. The corresponding set for 
D[ 0,1] is described after (12.38). 

Suppose that zn and z lie in D, and that zn + z in the topology of 
D ( - o ~ ,  00). Assume that s < 0 < t and that z is continuous at s and 
t .  Then z has a finite number M of jumps in [ s , t ] ,  and it is not hard 
to show (see the discussion following the proof of Theorem 12.6) that, 
for large n, x, has exactly M jumps in [s, t] and that the positions of 
these jumps converge to the positions of the jumps in z. Since X n  and 
X have their values in D,, it follows by Example 3.1 and the mapping 
theorem that (p,", . . . ,,Or) * (&, . . . ,&) for all u and v. Therefore, 
loglogpi(m) - loglogpi-i(m) = s ~  pi - pi-1, and from this it follows 
that logpi(m)/logpi-l(m) *, exp(Pi - ,&I) and (for y > 1) 

(17.30) limP,[m:pi(m) 2 ~ : - ~ ( m ) ]  = {;::(I +logy) if i = 0, 
n if i # 0. 

Also, E[exp(pi - Pi-l)] = 00 (for i = 0 as well as for i # 0), and since 
pi-pi-1 >_ logpi/logpi-l, Theorem 3.4 implies that En[pi-pi-l] + 00. 

Because of (17.25), Amn = logloglogm - logloglogn = s ~  0 if 
P, governs the choice of m. The points corresponding to the pro- 
cess Xn are the loglogp - log loglogn. If instead we use the points 
loglogp - logloglogm, we have a different process Yn. Since this is 
just a matter of translating the time scale by the amount Amn, the dis- 
tance in D ( - o ~ ,  co) between Xn and Y n  goes to 0 in probability, and 
therefore, by Theorem 3.1, Yn + X. For example, (17.30) also holds 
if we redefine the pi(m) so that < p-z (m)  < p-l(m) < logm < 
po(m) < pdm) < * * ' .  
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SECTION 18. MARTINGALES 

This section makes use of the basic facts of ergodic theory and discrete- 
time martingale theory. Here is a statistical example to which the limit 
theory of the section applies. 

EzampZel8.1. Let {(o, G ,  . . .} be a stationary Markov chain with 
finite state space. Suppose the transition and stationary probabilities 
p ( z , j ;  0) and p ( i ;  0) are positive and depend on a parameter 0 ranging 
over an open interval. Define (assume the derivatives exist) 

The log-likelihood of the observation C O , .  . . , cn is Ln(0)  = logp((0; 0) + 
CE=llogp(<k-l,&;O), and its derivative is L p )  = xE=o&. It is 
easy to verify that E[<o] = 0 and E[&Il(o,. . . ,&-I] = 0, from which it 
follows that {t,} is a martingale difference and (equivalently) {Lc (0 ) }  
is a martingale. 

Large-sample theory for Markov chains starts with a central limit 
theorem: If 0 is the true value of the parameter, then n-1/2Lk(0) =$ 

a (8 )N,  where a2(0) = E[J:]. But {[1,<~, ...} is stationary (not so 
if (0 is included) and ergodic, and it follows by Theorem 18.3 that 
n-1/2 & + E[<:]N. And because of the norming factor n-1/2, 
this still holds if we include t o  in the sum, which gives the required 
limit theorem. These arguments can be made to cover chains of higher 
order as well as more general processes. 0 

Triangular Arrays 

Suppose we have a triangular array of random variables. For each 
n, <,I, & 2 , .  . . is a martingale difference with respect to the a-fields q,c,. . .: &k is q-measurable, and E [ t , k l l q - l ]  = 0. There may 
be a different probability space for each n. Suppose that the t,k have 
second moments, and put a& = E[Jik(IG-,]. If the martingale is 
originally defined only for 1 5 k 5 T,, take Jnk = 0 and q = cn for 
k > T,. Assume that cgl &k and Ezl aik converge with probabil- 
ity 1. The development begins with the following theorem [PM.476]. 

Theorem 18.1. Assume that 
00 

(18.1) 
k = l  
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where u is a nonnegative constant,tand that 
M 

(18.2) 
k=O 

for each E. Then EL1 [nk =+ uN. 

We turn now to the corresponding functional limit theorem. The 
(nk are still a martingale difference, and the notation is the same as 
before. 

Theorem 18.2. 

(18.3) 

for every t and that 

(18.4) 

Assume that 

ksnt  

for every t and E. If xr = &,nt - (nk, then Xn * W an the sense of 

D[O, m). 

A simple way to construct a Brownian motion W on [ 0, m) is to  
take a Brownian bridge W" on [ 0,1] and define Wt = (1 + t)W,"/(l+tl 
for t E [O,m). 

PROOF. Suppose that s < t ,  and define qnk as a(& for k 5 [ns] 
and as btnk for L.81 < k 5 [nt]. BY (18.3), ~ k < n t E [ ~ ~ ~ ( l ~ - l ]  =$ 

a2s + b2(t - s); therefore, Theorem 18.1 applies to {ink}, and it follows 
that ax: + b(Xr - X,") * aW, + b(Wt - Ws).  By the Cramdr-Wold 
argument, the two-dimensional distributions converge, and the same is 
true for higher dimensions. 

For tightness, we use the corollary to Theorem 16.10. Since [:k 5 
e2 + (;kI[l<,,kl>f] , (18.4) implies that E[maxkSnm ($1 --tn o for each rn. 
Therefore, {jm(Xn)} is tight on the line for each rn, and of course 
{Xt} is tight. 

To verify Condition 1" of the theorem, we use the sequential ver- 
sion, (16.32). Assume then that Tn are discrete Xn-stopping times 
bounded by m and that 6, + 0. We must show that 

n (18.5) X7,+bn - x: * n  0- 

t The theorem is stated [PM.476] for Q > 0, but the proof there covers the case 
Q = 0 as well. 
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If A[ is the event where LnTnl < k 5 Ln(rn +&)I, and if Cnk = IA&k, 

then the difference in (18.5) is x k  &. For large n, 6, < 1, and in that 
case ( T ~  5 m) A[ # 8 implies lc 5 n(m + l), and we can take the last 
sum as &n(m+l)Cnk* Now apply Theorem 18.1 for the case where 
cr2 = 0 in (18.1): (18.5) will follow if we prove, first, that the Cnk form 
a martingale difference with respect to the and, second, that 

(18.6) EIC:kll-?-ll 

k l n ( m f 1 )  

and 

k l n ( m + l )  

Since 
If T is the largest point in the (finite) range of T~ for which T < 

k /n ,  then [LnTnJ < k]  = [nTn < k] = [ T ~  5 T ]  E a[XF:s  5 7-1 c 
qn,., C q-l. Since T~ + 6, is another discrete Xn-stopping time, 

[ l n ( ~ ~  +6,)] 2 k] also lies in .?"-I, and hence A; E q-l. From this it 
follows that E [ < n k l l c - l ]  = IA;E[&IIG-~] = 0, and so { & k }  is indeed 
a martingale difference, as required. 

5 ( & I ,  (18.7) is a consequence of (18.4). 

Only (18.6) remains to be proved. For each integer q, let 

By (18.3), PB," --t, 1 for each q. For large n, 6, < l / q ,  and then 
T~ + 6, < T~ + l / q  5 m + 1, which implies that 

2 
E I C i k l l z - l l  = IAEank 

k<n(m+l)  k<n(m+l)  

Given t ,  choosej so that ( j - l ) / q  < t 5 j / q .  If t 5 m, t h e n j  5 qm+l,  
and so, on the set B i ,  

Since PB; --tn 1 for each q, (18.6) follows. 0 
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Ergodic Martingale Differences 

Now consider the stationary case. Let 

be a doubly infinite sequence of random variables. It is a martingale 
difference if tn is Fn-measurable and E[&llFn-l] = 0, where F n  = 
a[&: k 5 n]. 

Theorem 18.3. Let (18.8) be a stationary, ergodic martingale 
diflerence for which E[<,] = cr2 is positive and finite. If we take X p  = 
Cklnt & / u f i ,  then X n  =+ W in the sense of D[ 0,oo). 

PROOF. Represent {en} as the coordinate variables on the space 
P O o  of doubly infinite sequences [M22] and put c r i  = E[[ilIFn-l]. 
Then [M22] {a:} is stationary and ergodic. 

= F,, and Now we use Theorem 18.2. Let tnk = & / U f i ,  

unk: 2 = E[[&llq-l] = u;/u2n. By stationarity, 

Hence (18.4). By the ergodic theorem, 

1 
nu2 

l sk lnt  l l k l n t  

Hence (18.3). 0 

Theorem 18.3 also holds if (18.8) is replaced by a one-sided se- 
quence ( t i ,  t 2 , .  . .) for which E[[nll[l,. . . , &1] = 0: Represent the 
process on R+" [M22]. 

SECTION 19. ERGODIC PROCESSES 

The Basic Theorem 

Consider a stationary, ergodic process 
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Represent the process on the space of doubly infinite sequences [ M 2 2 ] ,  
use 1 1  1 1  to denote the L2 norm, let T be the shift, and put 

Theorem 19.1. Assume that (19.1) is s t a t i o n a q  and ergodic, that 
the tn have finite second moments ,  and that 

(19.3) 
n=l 

T h e n  

and the series 
03 

(19.5) 
n=l  

converges absolutely. I f a  > 0 and 
n 

(19.6) S n  = C t k ,  XF = Slnt j  
k = l  

then  Xn + W in the sense of D[O, ca). 

That (19.4) holds is usually obvious a priori. The condition (19.3) 
can be replaced by 

M 

(19.7) 
n=l  

This is simply a matter of reversing time: T-l is ergodic if T is, cg=l t k  has the same distribution as cgZ1 t - k ,  and (19.7) is the same 
thing as c,"=1 I(E[<-n((Go](( < 00. 

If we start with a one-sided sequence ( t o ,  [I,.  . .) that is stationary 
and ergodic and satisfies (19.7), we can construct the two-sided version 
[M22] and still conclude that Xn + W .  

The proof uses Theorem 18.3, on martingale differences. Before 
proceeding to the proof itself, consider two special cases that explain 
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the idea behind it. The first idea is to consider q k  = & - E[&lIFk-1]. 
Now E[qkIJFk- l ]  = O-{qn} is a martingale difference-and Mk = 
C;=, q k  will be approximately normally distributed by the theory of 
the preceding section. On the other hand, the difference S, - M, is 
C;=, E[&II3k-1], and there is no a priori reason why this sum should 
be small (unless, for example, (5,) is a martingale difference to start 
with). But now suppose that the <, are 1-dependent.1 If we redefine 
v k  as 

(19.8) 

then, since E[E[&+i))Fk])JFk--i] = E[&+il lFk-i] = 0, {q,} is again 
a martingale difference. This time, S, = M, + ~~= l (E [&+ l l lFk ]  - 
E [ & ~ ~ F ~ - - i ] ) ,  and the last sum telescopes to E[&+lllF,] - E[&llFo], 
which is small compared with S, and M, (we use a norming factor of 
the order fi). If {&} is 2-dependent, the same argument works for 

( 19.9) vrC = [k -k E[6c+ll( Fk] -k E[<k+2 IlFk] - E[<k ( 1  Fk- 11 - E [ [ k + l ( (  Fk-11.  

The assumption (19.3) makes it possible to  replace the “correction” 
terms in (19.8) and (19.9) by infinite series. 

q k  = I k  + E[Sk+lllFk] - E“kllFk-11, 

PROOF OF THE THEOREM. First [M22(40)], 

(19.10) E[sil lFklTn = E[ti+nIIFk+,]. 

By Schwarz’s inequality, we have IE[&&]I 5 E[l&l IE[&11Fo0]1] 5 
115011 * IIE[&11Fo’o]II, and it follows by (19.3) that the series (19.5) con- 
verges absolutely. If pk = E[Jo&], then, by stationarity, E[S$ = 
npo + 2 Czz:(n - ~ c ) p k .  From 

it now follows that 

The tn are m-dependent if (ti,. . . , (k) and ( ( k + n , .  . . ( j )  are independent when- 

If u = 0, then, by Chebyshev’s inequality, S,,/J;; =+ 0. 
ever n > m. An independent process is 0-dependent. 
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By Lyapounov's inequality again, together with (19.3), 

00 00 

(19.12) E[x IE[&+illFkl] 5 ~ ~ E [ ~ k + i ~ ~ ~ k l ~ ~  < 
i=l i=l 

Define 

(19.13) 
i=l 

Because of (19.12), the series here converges with probability 1. Now 
define q k  = [ k  + 81, - e k - 1  (( 19.8) and (19.9) are special cases). Because 
of (19.12) again, the partial sums of the series in (19.13) are domi- 
nated by an integrable random variable, and so the sum can be inter- 
changed with E[ * ll.Fk-1]: E[ekIl.Fk-l] = CEl E[&+iII.Fk-1]. Therefore, 
E[qk11.Fk-1] = 0, and {qn} is a martingale difference. 

To apply the results of the preceding section, we must show that 
the [n have finite second moments. If = E[&[I.Fo], then E[@] 5 
C& E[IPil . [Pjl] I C;=, llPill - IIPjll, and this is finite by (19.3). 
Therefore, T~ = E[$J is finite, and it is a consequence of Theorem 18.3 
that n-lI2Mn = n-lI2 Cz=l qn + T N .  But Mn = Sn + 8, - 00, and 
since Ilenll = lleoll is finite, lln-lj2(Mn - --t 0. This means in the 
first place that n-1/2Sn + T N ,  and in the second place, that T = CT 
because of (19.11) and the fact that the martingale property implies 
lln-1/2Mn112 = T ~ .  Therefore, S n / U f i  + N .  

In most of the preceding sections, we have proved weak convergence 
by verifying tightness and the convergence of the finite-dimensional 
distributions. But here we can prove it directly by comparing X n  with 
the random function Y n  defined by yt" = MLnt j / a f i ,  and we need 
only tighten the preceding argument and use the full force of Theorem 
18.3. By Theorem 16.7, it is enough to show that, for each m, 

Since E[@] < 00, we have Cn P[ei /n  2 E] = En P[ei 2 ne] < 00, and 
hence, by the Borel-Cantelli lemma, Oz/n --+ 0 with probability 1. But 

1 
n k<mn 

- 

and (19.14) follows from this. 0 
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Example 19.1. Suppose that (19.1) is rn-dependent. If E[&] = 0, 
then IIE[(,1130]11 = 0 for n > rn, and so (19.3) holds. If 5, = Cn - Cn+1, 
where the <, are independent with mean 0 and variance 1, then {&} 
is 1-dependent. In this case, E[@ = 2, but the a2 of (19.5) is 0. 0 

Exumple 19.2. Define an autoregressive process as a sum tn = 
CEO@p"cn-i, where \PI < 1 and the & are independent and iden- 
tically distributed with mean 0 and variance 1. The a-field Fo is 
generated by the & for k I 0 and hence also by the <k for k I 0. 
Since (1.. . Cn are independent of Fo, E [ & ( ( F 0 ]  = E r n  @Cn-i and 
I IE[&~~Fo]~~~ = P2,/(l - P2) .  Therefore, (19.3) holds, and since {&} is 

0 

Uniform Mixing 

Consider three measures of dependence between the a-fields Fk and 
&+, of (19.2) (t E Fk means 6 is Fk-measurable): 

ergodic [PM.495], Theorem 19.1 applies. 

(19.15) an = sup[(P(A n B )  - PA * PB(: A E Fk, B E &+n], 

(19.16) Pn = suP"~rl11:J E Fk, E[t1 = 0, 11t11 I 1, 
rl E GkSn, E[rll = 0, llrlll I 11, 

(19.17) cpn = sup[lP(BIA) - PBI: A E Fk, PA > 0, B E Bk+n].  

These are independent of k if {tn} is stationary. The idea is that, 
if one or another of these quantities is small, then Fk and &+n are 
"almost" independent. If limn an = 0, the sequence {&} is defined to  
be a-mixing, and the notions of p-mixing and cp-mixing are defined in 
the same way. 

The three measures of the rate of mixing are related by the in- 
equalities [M23(46)] 

(19.18) an I Pn I 2 f i n .  

Theorem 19.2. Assume that (19.1) is stationary, that E[&] = 0 
and the tn have second moments,  and that 

( 19.19) 2, Pn < 00. 

Then  the conclusions of Theorem 19.1 follow. 

PROOF. First [M23(48)], IIE[&&Fo]ll I pnll(oll. Therefore, (19.19) 
implies (19.3). We need only prove ergodicity, and for this it suffices 
[M22] to show that the shift satisfies P(A n T n B )  + PA.  PB for 
cylinders A and B. But since an 5 pn, from A E Fi and B E Gj it 

0 follows that (P(A n T n B )  - PA.  PB( 5 < - p j - i + n  --t 0. 
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Example 19.3. Let {en} be a stationary Markov chain with finite 
state space, and let en = f(cn), where f is a real function over the 
states. Let p$) be the nth-order transition probabilities and let pv be 
the stationary probabilities. Suppose that the chain is irreducible and 
aperiodic, so that the p ,  are all positive and [PM.131] 

(19.20) 
(n) I - -  Puv 

I Pu 
1 (<KOn, O < 1  

for all u, TJ, n. Then for cylinders A = [ck- i  = ui, 0 5 i < 11 and 
B = [&+n+i = vi, 0 5 i < m],  we have 

(19.21) IP(A n B) - PA - PBI 5 KOn. PA. PB. 

For fixed A, the class of B satisfying (19.21) is a A-system, and for 
fixed B,  the class of A satisfying (19.21) is also a A-system. Since the 
class of cylinders A and the class of cylinders B are 7r-systems, (19.21) 
holds for A E o[ci, i 5 k] and B E a[ci, i 2 k + n]. Since these last 
a-fields are larger than Fk and &+n, we have yn 5 KOn. And now 

0 

Functions of Mixing Processes 

Let f be a measurable mapping from the space of doubly infinite se- 
quences of real numbers to the real line: f(.  . . , z-1, zo, XI,. . .) E R1. 
Let . . . q-1, qo, r]l . . . be a function of the process (19.1), in the sense 
that 

(19.19) follows by (19.18), so that Theorem 19.2 applies. 

where tn occupies the 0th place in the argument off .  (Although the qn 
are real, the tn could now take values in a general measurable space.) 

Let fk be a measurable map from the space of left-infinite sequences 
to R': f( .  . . ,z-1, Xo) E R1. Put 

(19.23) rlkn = f d  * * ,tn+k-l,<n+k). 

We want to show that {qn} satisfies the conclusions of Theorem 19.1 
if {&} is p-mixing and there exist functions fk for which 

(19.24) 
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Theorem 19.3. Suppose that (19.1) is stationary and En pn < 00. 

Suppose the qn of (19.22) have mean 0 and finite variance and that 
the qkn of (19.23) have second moments  and satisfy (19.24). T h e n  
. . . , rl-1, qo, ql, . . . satisfies the conclusions of Theorem 19.1. 

The qn of (19.22) involves all the ti and hence extends its influence 
into the future of the q-process. But qkn does not involve the for 
a > n + k,  and hence its influence on the future is muted. But (19.24) 
controls the influence of qn itself by ensuring that it is near qkn for 
large k. There is an alternative version of the theorem: Reverse time 
and replace (19.23) by q k n  = fk(fn-k,(n-k+l,. . .). 

PROOF. If q has a second moment and a-fields M and N satisfy 
M C h', then it follows by Jensen's inequality that JIE[vJJM]JJ2 = 

E[(E[E[77lln/l llMl>21 I E[E[(E[~11N~211M11 = llE[qIln/l [ I 2 .  Therefore, 

(19.25) l l ~ ~ ~ l l ~ l l l  I llEb?llNll? IIE[~IlM111 I l l ~ l l ,  
where the second inequality follows from the first. 

Denote the kth term in (19.24) by pk. Since q k 0 ,  as defined by 
(19.23), is &-measurable, it follows by (19.25) that 11qko- E[qollFk]ll = 
IIE[qko - qo113jc]ll I P k .  Therefore, I(qo - E[qo11Fk]ll I 2 P k .  This means 
that if we take 

(19.26) qkn = E['%Il-%+k], 

then (19.24) still ho1ds.t For each k ,  { v k n }  is stationary. Suppose that 
0 < k < n. We have 

IIE[~01l~nlII 5 IIE[~011~nl - E[~kollGnlll + IIE~~kOllGnlII* 

By a second application of (19.25), the first term on the right is at  
most 11qo -qkol l .  Since E[qko] = E[qo] = 0 by the new definition (19.26) 
of q k o ,  the second term on the right is at most [M23(48)] pn-k(lqkol l ,  
and by a third application of (19.25), JlqkoII 5 Ilqol(. This brings us to 
IIE[qo11Gn]ll I llrlo--77/coII+pn-lc(1q011. Take k = [n/21. From (19.24) and 
the assumption cnpn < 00 it now follows that En IIE[qollGn]ll < 00. 

A final application of (19.25): If ?in = a(q,, qn+l,. , .), then ?in c 

00. Since { E n }  is ergodic (being pmixing), {qn} is also ergodic and 
0 

Gn? and hence I I E [ ~ o l I ~ n l l l  I IIEb?ollGnlll. Therefore, c, ~ ~ ~ [ q o ~ ~ ? i n ] ~ ~  < 

hence satisfies the hypotheses of Theorem 19.1 (see (19.7)). 

t The point is that this new qkn is Fn+k-measurable, not that it has the specific 
form (19.23) (although it does in fact have this form: see PM.186, Problem 13.3 and 
the note). 
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Example 19.4. Suppose that the [ n  are independent and identi- 
cally distributed with mean 0 and variance 1 and define 

M 

where we assume that Cia: < 00. If for (19.23) we take 

k 

then the requirement (19.24) becomes 

f~ 2 < oo. 0 
k=l i=k+l 

For the one-sided version of Theorem 19.3, suppose that [ I ,  (2, . . . 
is stationary and define 

and 

Take F n  = a(&, . . . , [ n )  and Gn = a ( [ n , [ n + l , .  . .), and modify (19.15), 
(19.16), and (19.17) by inserting to the left of each supremum another 
supremum extending over positive k. Again assume that Cnpn < 
00, the qn have mean 0 and finite variance, and the qkn have second 
moments; and assume that Ilql-qkl 11 < 00. Then q1, q 2 ,  . . . satisfies 
the conclusions of Theorem 19.3. 

Ezample 19.5. Let P be Lebesgue measure on the unit interval, 
and let [ l (a: ) ,&(a:) ,  . . . be the digits of the dyadic expansion of a:. This 
is a stationary, independent process under P, and hence it is ergodic. 
A random variable qn of the form (19.27) can be regarded as a function 
q n ( 2 )  = f ( T n - b ) ,  where f is a function on the unit interval and T 
is the transformation Ta: = 2z(mod 1). Suppose that f is square- 
integrable and that XI,,& < 00, where @ = ~i(f(a:) - f k ( z ) ) 2 d Z  

and each fk  depends on a: only through the first k digits of its dyadic 
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expansion. It then follows by Theorem 19.3 (one-sided version) that, 
if p = $' f(z) dz, then 

(19.29) 

for the appropriate asymptotic variance a2. And there is the corre- 
sponding functional limit theorem. If there exist such functions fk at 
all, they may be taken to be 

since then fk(.&, . , . &) = E [ q 1 [ 1 3 k ] .  

If f = I p t )  and fk is defined by (19.30), then p k  5 2-k, so that 
(19.29) holds ( p  = t ) .  If t is a dyadic rational, then f = fk for some lc;  
but if t is not dyadic, then f(z) involves the entire expansion of z. 

If f is continuous and fk is defined by (19.30), then @ 5 w;(2-", 
where wf is the modulus of continuity. Therefore, (19.29) holds if 
Ck wf(2-') < 00, a condition which follows if f satisfies a uniform 

1 e  Holder condition of some positive order: If(z) - f(z')l 5 Klz - z I , 
8 > 0. For example, we can take f(z) = z. In this last case, {qn} 
is not 9-mixing (or even a-mixing) at all-to know Tnz is to know 
T~+'z, ~ ~ + ~ z . .  . exactly. 0 

\ 

Diophantine Approximation 

Suppose that R consists of the irrationals in [ 0,1], F consists of the 
linear Bore1 sets contained in R, and P is Gauss's measure: 

(19.31) 

Let T be the continued-fraction transformation: T z  = z-' - [z-'J. 
And let uk(z)  be the lcth partial quotient in the continued-fraction 
expansion of z, so that 

(u1,u2,. . .) will play the role of the (<I,&, . . .) in Theorem 19.3. 
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We need several facts about continued fractions [PM.319-3241. The 
nth convergent to x is 

(19.33) 

where the fraction is in lowest terms, and 

f i r ther ,  

(19.35) 

and 

(19.36) 

Finally, 

(19.37) 

The basic fact [M24] is that {a,} is cp-mixing, where 
(19.38) cpn 5 KOn, O <  1. 

Since En cp1I2 < 00, we have En Pn < 00, as required in Theorem 19.3. 
Let qn(x) = - logTn-lx - p, where p = 7r2/1210g2; this in effect has 
the form (19.27) (& = ai). And take 

qkn(x) = - 1% [ + * * ’ + -1 - 

Then, by (19.35), 
D[ 0,1]  defined by 

11q1 - qklll < 00. If Xn is the random element of 

lntl 1 
(19.39) x p = - > q k  

uf i  k=l 

for the appropriate u,t then Xn + W. 
By (19.36), cizi qk - (log qn - n p ) ,  is bounded, from which it fol- 

lows that (logq, - n p ) / a f i  + N .  This leads to theorems connected 
with Diophantine approximation. A fraction p/q is a best approxima- 
tion to x if it minimizes the form Iq’ . x - p’l over fractions p‘/q‘ with 
denominators q‘ not exceeding q. The successive best approximations 
to x are* just the convergents pn(x)/qn(x), and so the value of the form 

t Which is positive; see Remark 5 on p. 482 of Gordin’s paper [32]. * See, for example, Khinchine [42] or Rockett & Sziisz [58]. 
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for the nth in the series of best approximations is 

d n ( 4  = Ian(.> * - Pn(4l. 

Since 1 - logd,(x) - logq,+l(x)l 5 log2 by (19.34), we arrive at 

(19.40) 1 (- logdn(x) - - nr2 ) + N .  
a f i  12 log 2 

There is the corresponding functional limit theorem. If we define 
Zn by 

then 2” + W in the sense of D[O, 11. By (19.40), k-llogdk =+k -p,  
so that the discrepency &(z) has normal order e - k p .  Call the kth best 
approximation p k  (x) / q k  (x) “superior” if 

- k ~ ~ / 1 2 1 0 g 2  dk(4 < e 

and “inferior” otherwise. If T ~ ( z )  is the fraction of superior ones among 
the convergents 

P l ( 4  P n ( 4  
41(4 ’ .  * ’ ’ Q n ( 4  ’ 

then, by (9.28), 

(19.42) 
2 

P[T, 5 u] + -arcsin& O < u < 1. 
n- 

It is possible to prove Theorem 14.2 for X” and Zn as defined by 
(19.39) and (19,41). To prove that X n  + W still holds if P (defined by 
(19.22)) is replaced by a probability measure Po absolutely continuous 
with respect to it, define X n  by (14.3) with qi in place of ti. If E lies 
in Fk, then 

IP([Xn E A] n E )  - P[Xn E A] * PE( <_ (pp,-k +, 0, 

and so (14.7) holds just as before. Since 7-l = Uk Fk is a field and each 
[X” E A] lies in a(‘FI), we have [M21] P,[Xn E A] + W(A). The rest 
of the proof is the same as that for Theorem 14.2. And Zn is treated 
the same way. It follows, for example, that the P in (19.42) can be 
taken to be Lebesgue measure instead of Gauss’s measure. 



CHAPTER 5. 

OTHER MODES OF CONVERGENCE 

SECTION 20. CONVERGENCE IN PROBABILITY 

There are four major modes of convergence for random variables: 

1": Convergence in distribution. 
2": Convergence in probability. 
3": Convergence with probability 1 (or almost-sure convergence). 
40: Convergence in L2. 

Neither of 3" and 4" implies the other, but each implies 2", and 
2" implies 1". Each of these concepts extends to random elements of 
other metric spaces; 4" for the space C would be E[llX" - Yn1I2] -+ 0, 
where X n  and Yn are random functions defined on the same probability 
space. And the relations between the four carry over as well. That 2" 
implies lo, for example, is the corollary to Theorem 3.1. 

Donsker's theorem and most of the other results of the preceding 
chapters concern convergence in distribution. Instances of convergence 
in distribution, even for random variables, often cannot be strength- 
ened as they stand to convergence in probabi1ity.t But sometimes, if 
rl, + ( cannot be replaced by convergence in probability, it is possible 
to prove (on a new probability space) that qn - tn + 0, where each 
en has the distribution o f t .  In this section and in the next, Donsker's 
theorem will be strengthened in this way. And Strassen's theorem of 
Section 22 concerns the convergence with probability 1, in C ,  of the 
random paths (8 .5 )  with new norming constants; it is a greatly gener- 
alized version of the law of the iterated logarithm. 

In connection with the law of large numbers, 2" is called the "weak" 
law, and 3" is called the "strong" law. For convergence of random 
functions, the terminology in the literature is sometimes confusing. 
A theorem of type 1" concerns "weak convergence" as defined at the 

t Problem 3.8. 
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beginning of this book, the invidious “weak” being an inheritance from 
functional analysis. A theorem of type 2” for random functions is often, 
for contrast, called “strong,)) a term best reserved for theorems of type 
3”. Probably the simplest way out is to use the phrases in 1” through 
4”, either as they stand or converted into adjectives. 

As explained at the end of Section 8, the term “invariance principle” 
(IP) was first applied to Donsker’s theorem (and its earlier forms) to 
indicate that various limit distributions are invariant under changes in 
the distribution common to the summands ti (provided the mean and 
variance do not change). But now “invariance principle” has become a 
catchall phrase applied to a large miscellany of approximation theorems 
in probability; there are IPS in distribution, IPS in probability, almost- 
sure IPS, and L2-IPs. 

Section 22 depends on Theorem 20.1 but not on anything else in 
Sections 20 and 21. 

A Convergence-in-Probability Version of Donsker’s Theorem 

Let , <2, . . . be independent and identically distributed random vari- 
ables on (a, 3, P); suppose they have mean 0 and variance 1. Let 
Sk = CiSk ti, and let X” be the random polygonal function (8.5) (for 
Q = 1): XGn = &I&, and X” is linear between the points iln, i 5 n. 
According to Donsker’s theorem, X” + W in the sense of C = C[  0,1]. 
By Skorohod’s representation theorem-Theorem 6.7-there exist on 
some (new) common probability space random elements X” and w of 
C such that L ( X n )  = L ( X n ) ,  L ( w )  = L(W), and X n ( w )  + w ( w )  for 
each w. But in this construction, the relations between the various X” 
are not carried over to the X”: L ( X n , X ” )  has no connection with 
L(X”,  X”), for example. 

Here we use an entirely different construction, also due to Skorohod. 
Let (a’, F’, P’) be a space on which is defined a standard Brownian 
motion [B(t):O 5 t < 001: The increments are independent, the paths 
are continuous, and B(t)  is normally distributed with mean 0 and 
variance t .  (We reserve W for Brownian motion as a random element 
of C[  0,1]). This is Skorohod’s theorem [PM.519]: 

Theorem 20.1. O n  (a’,3’,P’) there exists a nondecreasing se- 
quence TO = O , q ,  72,  . . . of random variables such that the differences 
<n = B(Tn) - B(7n-1) are independent and have the distribution com- 
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m o n  t o  the Jn (above) and the differences Tn - ~ " - 1  are independent 
and identically distributed with m e a n  1.t  

Let T k  = Cilk<i = B(Tn),  and define a random element Y" of 
C by linear interpolation between the values yZyn = T i / f i  at the 
points i/n. Then the system {[i, T k ,  Y"} on R' is an exact probabilistic 
replica of the system {ti, S k ,  X " }  on R. Define Bn(t) = B ( n t ) / f i  for 
0 5 t 5 1. Then Bn is a random element of C ,  and it has there the 
same distribution as W (check the means and variances). Let 11 . 1 1  be 
the supremum norm on C: 112 - 311 = sup, Iz(t) - y ( t ) I .  

Theorem 20.2. With these definitions and assumptions,  we  have 

(20.1) llYn - Brill * 0. 

Since L(Bn) = L ( W )  and L(Y") = L ( X n ) ,  it follows by the corol- 
lary to Theorem 3.1 that (20.1) implies Donsker's theorem: X n  j W .  
No weak-convergence theory is required for the statement and proof of 
Theorem 20.2 itself. 

PROOF. Define a random element 2" of C by linear interpolation 
between the values Z&, = B"(i/n) at the i/n. A summary of the 
notation: 

These random functions are linear on the subintervals [(i - l) /n,  i /n].  
We prove (20.1) in two steps: 

(20.3) llB" - Znll rj 0 

and 

First [M25(58)] 

(20.5) P'[supsg IB(s)l 2 a] 5 4e-a2/2t7 a 2 0. 

t If the & had variance u2,  the T~ - ~ ~ - 1  would have mean 0'. 
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Since Z"( a )  is Bn(. ) made linear between the i /n,  llBn - Znll is at 
most the maximum over i 5 n of the supremum over t 5 1 /n  of 
21Bn(t + i / n )  - Bn(i/n)I . Since the increments of Brownian motion 
are stationary, (20.5) gives 

(20.6) P'[llB"-Pll 2 €1 I nP'[2suptsl/n IBn(t)I L €1 
= nP'[supssl ~ ~ ( s > l  2 en1/2/2~ 5 4ne-Ean/8 +" 0. 

Hence (20.3). 

(20.7) llyn - = n-1/2 maxisn I ~ ( r i )  - ~ ( i ) l  

Becaue of the polygonal form of Yn and Z", 

= m a i l n  IB"(ri/n) - Bn(i/n)I. 

Since the differences ri - ri-1 are independent and identically dis- 
tributed with mean 1, it follows by the strong law of large numbers 
that ri/i +i 1 with PI-probability 1. This means that ri/n is near i /n  
(i large), and we can use path continuity to  show that Bn(ri/n) is near 
Bn ( i /n )  . 

Let E be given. If we define Bn(t) as B ( n t ) / f i  for all t 2 0 (rather 
than for 0 I t 5 1 only), then it is another standard Brownian motion, 
and so its paths are uniformly continuous over [ 0,2]. Therefore, there 
is a 6 small enough that 

(20.8) P'bPsg,lt-,Is6 IW) - Bn(s)l 2 €1 < E .  

This holds for every n. Since r i / i  +i 1 with probability 1, there is an 
m such that 

Ti i Ti (20.9) P' max >6 < P  sup 7 - 1  >6 < E .  
L i 5 "  I n- n I- 1 - I 2 I 1 

Fix the pair 6,m. If IBn(t) - Bn(s)I < E for s 5 1 and It - sI I 6, and 
if 1ri/n - i/nl < 6 for m I i 5 n, then IBn(ri/n) - Bn(i/n)I < E for 
m I i 5 n. Therefore, by (20.8) and (20.9), 

This holds for all n. But obviously there is an no such that 

And now (20.4) follows from (20.7), (20.10), and (20.11). 
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SECTION 21. APPROXIMATION BY INDEPENDENT 
NORMAL SEQUENCES 

The approximation theorem is this: 
Theorem 21.1. Let {ti} be an independent, identically distributed 

sequence of random variables on  (Q3, P), and assume that E[&] = 0 
and E[<:] = 1. Suppose there is on  (Cl,3, P) a random variable U that 
is independent of {ti} and is uniformly distrubuted over [0,1].  Then 
there exists on  (QF, P) a sequence {qi} of standard normal random 
variables such that 

(21.1) 

For an example, take the probability space to be the unit square 
with Lebesgue measure, and define U ( w 1 , w ~ )  = w2 and & ( ~ 1 , w 2 )  = 
ri(w1), where the ri are the Rademacher functions. Like Theorem 20.2, 
this theorem implies that of Donsker. 

It is impossible to strengthen convergence in probability to con- 
vergence with probability 1 in (2 l . l ) , t  although this is possible if the 
norming factor f i  is replaced by d m  (see (22.25) in the next 
section). The sequences {ti} and {vi} cannot be independent of one 
another, since this would contradict the central limit theorem theorem 
for {ti - qi}. 

We give two proofs of this theorem, and each of them requires some 
preliminary definitions and results. Let S and T be metric spaces with 
Borel 0-fields S and 7. Call S and T Borel isomorphic, and write 
S N T, if there is a one-to-one map cp of S onto T such that cp is 
measurable S / 7  and cp-' is measurable 7 / S .  We need the following 
isomorphism relations: 

(21.2) R' - ( 0 , l )  N [ 0,1] - [ 0,  1]0° - Rm. 

The 
cp of R 
increase 
x1 + 0, 

first one is easy: There are many continuous, increasing maps 
onto (0,l) .  For the second, let zn be points of (0, i) that 
to i, let yn be points of (i, 1) that decrease to $, let cp map 
xn+l + zn, y1 + 1, yn+l + yn, and take cp to be the identity 

elsewhere. 
For the third isomorphism, we construct a map cp:  10° + I ,  where 

I = [ 0,1]. Associate with each point of I a unique binary expansion: 

t Major [45]. 
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Take 0 = -00 . a - and 1 = .11. -, and use the nonterminating expansion 
(say) for points of (0 , l ) .  Let n/ = {1,2,. . .}, take f to be some one- 
to-one map of N onto N x N ,  and let g = f - l .  For y E I write 
y = .y1y2--' ,  and for x = (x1,x2 ,...) E 1" write xi = .xilxi2-. . .  

Define a one-to-one map cp of 1O0 onto I by requiring of y = p(x) that 
yk = x ~ f ( h )  for all k: Intertwine the expansions of the coordinates of 
x to arrive at the expansion of (~(5). Then cp-'(y) = x if and only if 
xij = yg(ij) for all i , j .  Let Z be the Borel a-field in I .  If J is the set 
of points of I whose expansions start with the digits d l ,  . . . ,dm,  then 
cp-'J is the set of x such that zcf(k) = dk for 1 5 k 5 m, a set that lies 
in Z"O. Since these sets J generate Z, cp is measurable P/Z. On the 
other hand, if Ji is the set of points of I whose expansions start with 
the digits di l , .  . . , dimi, then cp( J1 x * - x Ji x I x - a )  consists of those 
y such that yglg(ij) = dij for 1 5 i 5 1 and 1 5 j 5 mi. This set lies in 
Z, and it follows that 9-l is measurable Z/Z"". 

To construct the final isomorphism, take an isomorphism from I 
onto R1 and apply it to each coordinate of the points in Iw. 

In the following lemma, R, S, and T can be any metric spaces that 
are Borel isomorphic to [ 0,1]. In fact, every uncountable, separable, 
complete metric space is Borel isomorphic to [ 0,1] ,t but we have proved 
this result-and need it-only for the spaces in (21.2). In Lemma 2 
below, p is a random element on ($2, F, P) with values in R. In both 
lemmas, a,  T ,  and u are random elements on the same (Q,.F, P), with 
values in S, T ,  [ 0,1], respectively, u is a probability measure on S x T 
with marginal measure p on S, and L(a) = p: 

p E R, u E S, u E [0, I], /L( * )  = V( * X T ) ,  L(u) = /L; T E T. 

Lemma 1. Assume that S and T are Borel isomorphic to  [ 0,1], 
that L(a) = p, that u is  uniformly distributed over [ 0,1], and that u 
and u are independent. Then there is  o n  (Q,3, P) a random element 
T ,  a function of (CY, u) ,  such that L(a, T )  = u. 

Lemma 2. Assume that R, S, T are Borel isomorphic to  [ 0,1], 
that C(a) = p, that u is uniformly distributed over [ 0,1], and that p, u, 
and u are independent. Then  there is on  (QF, P) a random element 
r ,  a function of ( c r , ~ ) ,  such that L(u,T) = u and p is  independent of 
(0, 4.  

t Parthasarathy [48], p. 14. 
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PROOFS. We prove the second lemma first. Assume the result 
holds in the special case R = S = T = [ 0 ,  I ]  = I ,  and let (PR,  ps, (PT 
be isomorphisms of R, S ,  T onto I .  Let ~ S T ( S ,  t )  = ( p ~ ( s ) ,  pT(t)), 
so that  ST is an isomorphism of S x T onto I x I; take v’ = vp&, 
p‘ = pp;’, p’ = p ~ p ,  and a‘ = psa. Then L(a’) = p‘ (the first 
marginal of Y’), and p’, a’, u are independent. By the special case, 
there is a random element T‘ of I ,  a function of (a’,u), such that 
L(a’, 7’) = v’ and p‘ is independent of (a’, u).  If T = pT17’, then T is a 
function of (a, u), L(a, T )  = v and p‘ is independent of (a, u). The point 
is that isomorphic spaces are measure-theoretically indistinguishable, 
and the lemma has to do with measure theory only (no topology). 

In the special case, there is for v a conditional probability dis- 
tribution over the second component of I x I given the first. That 
is, there exists a function p ( s , B ) ,  defined for s E I and B E 1, 
such that, for fixed s, p(s ,  - )  is a probability measure on 1, and for 
A ,  B E 1, p (  , B )  is 1-measurable and v ( A  x B )  = J,p(s, B ) p ( d s ) .  
Define a distribution function F ( s ,  a )  by F ( s ,  z )  = p ( s ,  [ 0 ,  z ] ) ,  and let 
4(s, a )  be the corresponding inverse, or quantile function: 4(s, t )  = 
inf[z: t 5 F ( s , z ) ] ,  so that 4(s, t )  5 z if and only if t 5 F ( s , z ) .  
Then [(s, t ) :  4(s, t )  5 z]  = n r ( [ s :  T 5 F ( s ,  z ) ]  x [T, l ] ) ,  where the in- 
tersection extends over rational T .  Thus 4 is measurable 1 x 1, and 
~(w): = q5(a(w),u(w))  is a random variable. If X is Lebesgue measure 
on I ,  then X [ t : + ( s , t )  5 21 = X [ t :  t 5 F ( s , z ) ]  = F ( s , z )  = p ( s ,  [O,z] ) ,  
and it follows that X [ t :  4(s, t )  E B] = p ( s ,  B )  for B E 1. Since L(a)  = p 
and L(u)  = A, and since t~ and u are independent, L(a,u)  = p x A. 
Therefore, 

p ( s ,  B ) p ( d s )  = X [ t :  4(s, t )  E B]p(ds )  

= ( p  x X)[(S, t ) :  s E A,  4 ( ~ ,  t )  E B] 
= P[a E A,$(a ,u )  E B] = P[o E A , T  E B] : 

(a, T )  has distribtion v. 
In Lemma 2 ,  p is assumed independent of (a,~), and so it is inde- 

pendent of (a, 4(a, u)) = (a, T )  as well. 
For the proof of Lemma 1 ,  simply remove from the preceding ar- 

gument all reference to R and p (or introduce a dummy space R and 
0 

FIRST PROOF OF THEOREM 21.1. The first proof depends on 
for (i and 7; for 

take p = T for some T in R). 

Theorem 20.2. Changing the notation there, write 



214 OTHER MODES OF CONVERGENCE 

B(i )  - B(i - 1); these are defined on the space 0’. Then L({C}) = 

L({&}), C$ = B ( T ~ ) ,  and the qi are independent standard normal 
variables. And by (20.4), (21.1) holds if we replace & and qi (variables 
on n) by 

But we can use Lemma 1 to pull everything back to a. Take 
S = T = Rw and v = L({<i},{qj}), the first marginal of which is 
L({{a}) = L({&}). Take Q = {ti} on (n,.F,P), and use U in the 
role of u. By the lemma, there is on (QF, P) a 7 = {qi}  such that 
L({&}, {qi}) = L({<i}, (7:)). And this {qi} is exactly the sequence we 
want. 0 

and q: (variables on a’). 

This first proof depends on Theorem 20.1. Our second proof is 
intricate but has the advantage that it avoids the Skorohod represen- 
tation theorem.+ 

SECOND PROOF OF THEOREM 21.1.  Suppose E given. Define 

Next define 

(21.4) 

Let Sj = 
that 

By the central limit theorem, there is a ~ o ( E )  such 

(21.5) .(L(j-%j), L ( N ) )  < 2,  j > jO(E), 

where T is the Prohorov distance. And since nk + 00, it follows that 
. (L(&),L(N))  5 8 for k exceeding some kO(E). By Theorem 6.9, 
there exists a probability measure v k  on R1 x R1 that has first and 
second marginal measures L(&) and L ( N ) ,  respectively, and satisfies 

It is possible [PM.265] to define independent random variables 
270, U1, Uz, . . ., each uniformly distributed over [ 0,1] and each a func- 
tion of U, so that, by the hypothesis of the theorem, {Ui} is inde- 
pendent of {ti} and hence of { X i } .  The next step is to construct on 

t Which does not extend in a simple way to vector-valued processes, for example; 
see Monrad & Philipp [46]. 
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(0, 3, P )  an independent sequence Y1, Y2,. . . of standard normal vari- 
ables, each independent of Uo, such that 

(21.7) P[lXk - Y k l  > < c6, k > ~ o ( E ) .  

First apply Lemma 1 for S = T = R1, u = X I ,  u = U1, and v = v1. 
Since X1 and U1 are independent, there is a random variable T = 
Y l 1  a function of ( X l , U l ) ,  such that L(Xl ,Y1)  = vl. Since L(Y1) 
is the second marginal of v1, namely L ( N ) ,  Yl is a standard normal 
variable. Since Y1 is a function of ( X I ,  U1) and hence of ({ti}, U l ) ,  it 
is independent of Uo. 

Suppose that Y1,. . . , Y k  have been defined: They are independent, 
standard normal variables, Y,  is a function of ( X i ,  Ui), and L ( X i ,  Y,) = 
ui (i 5 k). Apply Lemma 2 for R = Rkl S = T = R1, p = 
(Y1,. . . , Y k ) ,  u = Xk+l, u = Uk+l, and v = vk+l. Since p is a function 
of ( X I , .  . . , X k ,  U1,. . . , Uk), the three random elements p, u, u are in- 
dependent. Therefore, there is a random variable T = Yk+1, a function 

(Xk+l,  Yk+1) are independent. Again Yk+1 is a standard normal vari- 
able: L(Yk+1) is L ( N ) ,  the second marginal of vk+l. And Yk+1, being a 
function of ({ti}, Uk+l), is independent of Uo. This gives the sequence 
we want: (21.7) holds because of (21.6). 

Next let ( I , & ,  . . . be an independent sequence of standard normal 
variables on some (new) probability space and set 

of (Xk+l ,  Uk+l), such that .C(Xk+l, Y k + d  = Vk+l, and ( Y l , .  7 Yk) and 

(21.8) 

Apply Lemma 1 again, this time with S = T = RM, u = (Y1, Y2,. . .), 
u = Uo, and v = L({Wk}, {Ci}). Since u and 2~ are independent, there 
exists (on the original (al 3, P)) a random element T = (71,772, .  . .) of 
R"O such that L({Yk},{7i}) = v. This means in the first place that 
the qi (like the ci) are independent standard normal variables, and in 
the second place that the joint law of { Y k }  and {qi} is the same as the 
joint law of { W k }  and {Ci}. But then (21.8) implies that 

(21.9) 

holds with probability 1 on (al 3, P ) .  
To sum up: We have constructed independent standard normal 

variables qi such that the Y k  given by (21.9) satisfy (21.7). Write 
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Sj = C .  a Ij ti and Tj = CiSj qi. To prove (21.1) is to prove that there 
exists an absolute constant K with the property that for each E there 
is an no(€) such that 

(21.10) P[n-1/2maxj5n  IS^ - ~ j l  2 €1 5 K E ,  n > no(€). 

The following argument does prove (21.10), but it leaves a major 
problem: The sequence {qi} we have constructed depends on E it- 
self. Nonetheless, we proceed to prove (21.10), leaving to the end the 
resolution of this problem. 

Define M ,  s, m (functions of n and E) by 

(21.11) tM-1 2 n < t ~ ,  s = [ E - ~ ] ,  m = M - s. 

By the definitions (21.3), for large n we have n t ~ / 4 ,  and so it 
is enough to find an upper estimate for P[maxjS, ISj - T'l 2 7 e t z ] .  
Define 

Then 

And for m < k 5 M ,  each term in this last maximum is at most 

ni IXi-Y,l. Therefore, it will be enough to bound the terms in 
M-1 112 

= I + I1 + I11 + IV + v. 
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We estimate the terms separately. In several places we use the fact 
that 1x1 2 x/2 if x 2 2. We can use Kolmogorov's inequality on the 
first two terms. By (21.3) and (21.11), 

(21.13) I <  ~-~t,$Var[St,] 5 2 ~ - ~ ( 1  + e4)-' 
1 5 2E-2 exp - - E - 5  1og(1+ e4)) 5 2e-2 exp( -ze- l )  < K ~ E ,  < a  

where K1 is a constant large enough that the last inequality holds for 
0 < E < 1. This and the same argument for Tt, give 

(21.14) I < KlE, I1 < KlE. 

By Etemadi's inequality [M19], 

The number of summands here is M - m = s 5 E - ~ .  To estimate 
111, consider separately the terms for i 5 n1l2 and i > n1/2. By 
Chebyshev's inequality, the terms for i 5 n1/2 contribute to I11 at 
most (use (21.11)) 

(21.16) 

where the last inequality holds for n sufficiently large. 

3 ~ - ~ ( ~ t z / 3 ) - ~ n ~ / ~  = 2 7 ~ - ~ t ; n l / ~  - < 2 7 ~ - ~  n -'I2 < E ,  

If k < M and i < nk, then i < n M  = tM+1- t M  and hence 

tM+l-tM (1 + E4)M+1 - (1 + E4)M + 1 2E4 + 2 
(1 + E 4 ) M  (1 + E4)M' 

- <  5 2  
t M  t M  

Since M goes to infinity along with n, i/tM < 4e4 for large n. But 
also, for large n, i > n1/2 implies that i exceeds the k O ( E )  of (21.7), 
and (if e7 < 1/12) it follows that [M25(55)] 
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where K2 is a constant large enough that the last inequality holds for 
0 < E < 1 .  Since the number of summands in (21 .15)  is at most E - ~ ,  

the terms for i > nm contribute to I11 at most ~ E - ~ K ~ E ~  = 3 K 2 ~ .  
Therefore 

And IV satisfies the same inequality. 
To estimate V, note that, by Schwarz's inequality, 

It follows by (21 .7 )  that 

Putting the five estimates into (21 .12)  leads to (21 .10 )  with K = 
2 K 1  + 6K2 + 3 .  We must still find a single sequence {qi} that works 
for every €-satisfies (21 .10)  for every value of E .  

There exists a (new and eventually irrelevant) probability space on 

which are defined random variables i, p 2 1 ,  and U b ) ,  p 2 1 ,  such 

that all are independent of one another, each is distributed like the 

original ti, and each U(P) is uniformly distributed over [ 0 , 1 ] .  Let SF) = 

&k @I. The argument leading to (21 .10)  shows that for each p there 

exists on this probability space an independent sequence (VIP), q?), . . .) 

that, if T t )  = &k $), then there is an no(p)  such that 

of standard normal variables, a function of (U(P), (PI , t2 (PI , . . .), such 

- 1 / 2 s ( p )  - n-l/2T(P)I 2  PI I 2 - ~ ,  (21 .19)  P[maxk<,In k 

for n 2 no(p) .  

By the construction, the sets {&'),$'): i = 1 , 2 , .  . .} for different val- 

ues of p are independent of one another (but SF) and TF' are not 
independent). 

Put T ( V )  = CP5, n o ( p ) ,  and define 

(21 .20 )  c = &\(,), rli I = Tl&r(p)? (PI for T ( P )  < 2 I r ( p  + 1 ) .  



SECTION 21. APPROXIMATION BY NORMAL SEQUENCES 219 

Then {ti} is an independent sequence of random variables, each having 
the distribution of the original ti, and { r ] : }  is an independent sequence 
of standard normal variables. Define S; = CiSk ti and TL = 7;. 
Given E ,  choose po so that 2-P0 < E .  And choose n* large enough that 

(21.21) 

r (u  + 1). Write 

P[n-ll2 maxb<r(po) IS; - T ~ I  2 €1 5 E for n 2 n*. 
Suppose that n > n* V r ( p o ) ,  and choose u so that r(w) < n 5 

If k 5 ~ ( p o ) ,  then 

If r (q)  < k 5 r(q + 1) and q 2 po,  then 

vk 0 -  < vr(P0) 0 + c VrT$+')+Vk r(9) < - Ml(Po)+ c M$)+')+M&,. 

And now, since r(v) < n 5 r (u  + 1) (which, together with n > ~ ( p o ) ,  
implies u 2 PO), 

v k  < &$PO) 
0 -  

PO<P<9 PO<P<9 

r(p+l)  M$ L Ml(po) + c Mr(p)  + M&). 
PO<P<V 

By (21.20), if ~ ( p )  < k 5 r ( p +  l),  then 

Put all this together: 

Mg: = max ln-1/2(Si - q')l 5 max In-1/2(Si - T,)I 
a<n i lr(po) 

By (21.21), P[A 2 E] 5 E. If po 5 p < u, then n > r ( u )  2 no(p + l),  
and hence, by (21.19), P[Bp 2 2-P] 5 2-P. And n > r(w) 2 no(u), 
so that, by (21.19) again, P[C 2 2-"1 5 2-'. It follows that P[M$ 2 

Thus (7:) stands in the desired relation to {ti}. What we want, 
however, is a sequence {qi} on the original ( Q F ,  P )  that stands in this 
relation to the original sequence {ti}. But now we can apply Lemma 

0 

2 4  I f + Cpo<p<v 2 - p  < 2E. 

1 again, just as in the first proof of the theorem. 
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SECTION 22. STRASSEN’S THEOREM 

The Theorem 

Let & ,  (2, . . . be an independent and identically distributed sequence of 
random variables on (0, F, P); suppose the (i have mean 0 and variance 
1. Let Sn = Cis, (So = 0), and let Xn be the random element on 
0, with values in C = C[O, 11, defined by 

for 0 5 t 5 1. This is the random function (8 .5)  of Donsker’s theorem, 
but with a very different norming constant. (We consider (22.1) only 
for n 2 3, so that the square root is well defined.) Strassen’s theorem 
has to do not with the asymptotic distribution of Xn (the approximate 
behavior of X n ( w )  for fixed large n and w varying over 0), but with 
the properties of the entire sequence 

(22.2) ( X 3 ( w ) ,  X 4 ( 4  * * .) 

for each individual w in a set of probability 1. 
Consider elements x of C that are absolutely continuous in the 

sense of having a derivative x‘ outside a set of Lebesgue measure 0, a 
derivative that is integrable and in fact integrates back to x, so that 
x ( t )  - x(0) = x:’(s) ds for 0 5 t 5 1. Let K be the set of absolutely 
continuous functions x in C for which x(0)  = 0 and the associated X I  

satisfies 

(22.3) 

Lemma 1. The set K is compact. 

PROOF. If x E K and s 5 t ,  then by Schwarz’s inequality, 

It follows by the Arzelh-Ascoli theorem that K is relatively compact. 
But K is also closed: Suppose that points x, of K converge to a point 
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z of C. Then there exists [PM.246] a sequence {ni} of integers and a 
function 2‘ on [ 0,1]  such that J;(~’(s))~ds 5 1 and Jt zi,(s)z(s) ds + i  

Ji z’(s)z(s) ds for all square-integrable z on [ 0,1].  (This is the weak 
compactness of the unit ball in L2.)  But then we have z( t )  - z(0) = 

0 1imi(znj(t) - zni(o>) = limi Jo zii(s) cis = Jl z’(s) ds. t 

It is not hard to see that K is convex as well as compact. But 
since the set is nowhere dense (Example 1.3), it bears no resemblence 
to, say, a closed disk in the plane-it is more like a closed line-segment 
in the plane. Strassen’s theorem: 

Theorem 22.1. With probability 1, the sequence (22.2) is rela- 
tively compact and the set of its limit points coincides with K .  

In this section, to say that a property holds with probability 1 
means that, if E is the set of w having the property, then there is an 
F-set F such that F c E and P F  = 1. If (0, F, P) is complete, it 
follows that E E F and P E  = 1. Theorem 22.1 implies the ordinary 
law of the iterated logarithm, and this and other consequences are 
discussed at the end of the section. 

Preliminaries on Brownian Motion 

To simplify the notation, write 

(22.5) L, = &Gii&& 

Let [B(t):  t 2 01 be a standard Brownian motion on some (R, F, P), 
define a random element Bn of C by 

(22.6) B?(w) = L,’B,t(w), 0 5 t 5 1, 

and consider the sequence 

(22.7) ( B 3 ( w ) ,  B4(w) ,  . . .). 

Before proving Theorem 22.1 for the Xn, we prove the analogous result 
for the Bn. 

With probability 1, the sequence (22.7) is rela- Theorem 22.2. 
tively compact and the set of its limit points coincides with K .  

For w in a set of probability 1, the path B( . , w )  is nowhere differ- 
entiable [PM.505], and for no such w can B n ( w )  lie in K ;  the reason 
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why subsequences of (22.7) can approach the points of K is that K is 
nowhere dense. 

PROOF. The proof is in two parts. In the first we show that, with 
probability 1, (22.7) is relatively compact and all its limit points lie in 
K .  In the second part we show that each point of K is such a limit 
point. 

First part. It is enough to show that, with probability 1, for each 
(rational) E we have Bm(w) E K E  for all sufficiently large n. For then 
there is probability 1 that dist(Bn(w),K) -, 0, and there are points 
yn(w) of K such that llB”(w) - yn(w)ll --t 0, which implies that (22.7), 
like {yn(w)} ,  is relatively compact and all its limit points lie in K .  

Given E ,  fix a large positive integer m and a real number T just 
greater than 1, each to be specified later. We have 

m 

(22.8) P[Bn $! K‘] L P [ m x ( B n ( i )  - B n ( m ) ) ’  2-1 2 r2] 
i=l 

Let x& have the X2-distribution with m degrees of freedom. Since 
f i ( B n ( i / m )  - Bn((i  - l)/m)) has variance nL i2  = 1/(2loglogn), 

(22.9) I = P[& 2 2r210glogn] 

- - t(m/2)-le-t/2dt 

as n ---t 00 (l’H6pital). 
Let Zn be the random function obtained by linear interpolation 

between its values Zn(i /m) = Bn(i/m) at the points i /m, 0 5 i 5 
m. The paths of Zn are absolutely continuous, and the derivative is 
(Zn)’(t) = m(Bn(i/m) - Bn((i  - l)/m)) for t in ((i - l ) /m,  i/m). The 
second condition in I1 is exactly the requirement that s,’( (Zn)’(t))2dt < 
r2 ,  which implies r-lZn E K .  Therefore, 

I1 5 P[r-lZn E K ,  Bn $2 K‘] 5 P[r-lZn E K ,  (Ir-lZn - Brill 2 E l .  

Now Ilr-lZn - BnJI L Ilr-lZn - Znll + llZn - and the first term 
on the right, ( r  - l ) ~ ~ r - l Z n ~ ~ ,  is by (22.4) at most r - 1 if r-lZn E K .  
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Choose T close enough to 1 that T - 1 < r/2. Then 

I1 5 P[llzn - 2 €/2]. 

Since 

and the suprema here all have the same distribution, it follows by the 
definition of Zn that 

The T of (22.8) has already been chosen so that 0 < T - 1 < r/2. 
Choose m large enough and then choose c close enough to 1 that 

(22.12) c2m/16 > 1, 1 < c < r2 ,  c < r2m/16. 

By (22.8), (22.9), and (22.11), we have, for all sufficiently large n, 

(22.13) P [ B ~  @ ~ € 1  5 5me-c10g10gn. 

Take nk = 1.". Then nk 2 ck-' for large k, and 

and therefore CkP[Bnk @ K'] < 00. By the Borel-Cantelli lemma, 
there is probability 1 that B n k  E K' for all large enough k. This is 
what we want to prove, but we must also account for n's not of the 
form nk. To do this, we must control the size of 
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and 

For large k, nk-1 2 c ~ - ~ ,  so that nk-1 5 n 5 nk implies t 5 
nkt/n I nktlnk-1 I c2t. Thus 

where 

E2 k-3 14exp --c . [ 4 1 
Therefore, P[A', L c] < 00. Also, for large k [M25(57)], 
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Since xi"=, c(i-1)/2 = ( c ~ / ~  - 1 ) / ( d 2  - l),  we have 

(22.17) 

where a is a constant. Now c was chosen to satisfy (22.12); if we 
move it closer to 1, then the factor in front of the iterated logarithm 
in (22.17) will exceed 1, in which case, & P[Ai 2 E ]  < 00. Therefore, 

The maximum preceding the supremum in (22.16) is at most 
XI, P[Ak 2 €1 < 00. 

By moving c still closer to 1, we can arrange that e2/c2(1 - c - , ) ~  > 
a > 1. Then, for large k, the factor in front of the iterated logarithm 
in (22.18) will exceed a ,  so that Ck P[Bk 2 E ]  < 00. 

Since we have controlled A k  and B k ,  the Mk of (22.14) satisfies 
Xk P[Mk 5 E ]  < 00 for each E ,  and there is probability 1 that Mk +k 0. 
As we already know, there is probability 1 that B n k  E K E  for all large 
k, and hence Bn E K2' for all large n. This completes the first part of 
the proof. 

Second part. Suppose that, for each z in K ,  there is probability 1 
that some subsequence of (22.7) converges to z, or 

liminf llB"(w) - 211 = 0. (22.19) 

There is a countable, dense subset D of K ,  and it follows that, for w 
in a set of probability 1, (22.19) holds for every z in D. Fix such an w.  
For y in K and E arbitrary, there is an z in D such that (Iy - $ 1 1  < E .  

Since (22.19) holds, for infinitely many n we have llBn(w) - 211 < E 

and hence llB"(w) - yII < 2 ~ .  For each y in K ,  this holds for every E ,  

and so a subsequence of (22.7) converges to y. It is therefore enough 
to deal with (22.19) for a single z in K ,  and we can even assume that 

n 

P l  

(22.20) 
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since the z with this property are dense in K .  

6 so that 
Fix such an z and let E be given. First choose m and then choose 

(22.21) me2 > I, < E ,  x(l /m) < E ,  m6 < E ;  

the third condition is possible because z(0) = 0. Let A, = A,(z, m, S) 
be the w-set where 

(22.22) I (.,(A) - B " ( y ) ) - ( z ( ; ) - z ( G ) )  I<  6, 

note that i starts at 2 rather than 1. Write 

Since the distribution of N is symmetric about 0, it follows by the 
definition (22.6) of Bn that 

By (22.4), (z ( t )  - ~ ( s ) ) ~  I (t  - s) J;(z'(~))~du; apply this with 
s = (i - l ) /m  and t = i/m, add, and use (22.20): m C z l d :  I 
J;(~'(u))~du < 1. By reducing 6 still further, we can arrange that 
mC%l(di  + ~ 5 ) ~  < 1. If n is large enough that 6L,,m 2 6, then 
[M25(56) 1 

P[di I L , k N  I di + 61 2 exp[-L:,,(di + 6)2/2] 

= exp[-m(di + s ) ~  log log n], 

and it follows that 

1 
m 

PA, 2 exp[-rn c ( d i  + S)2 log log n] 2 exp[- log log 713 = &. 
a= 1 

Let n k  = mk. If F(s , t )  is the a-field generated by the differences 
B(w) - B(u) for s 2 u 5 v 5 t ,  then A, E F(n/m,n) ,  and A,, E 
F(rn"', m'). Therefore the A,, are independent. (If we had started 
i at 1 instead of at 2 in the definition of A,, then A,, would lie in 
F(O,mk), and we could not have drawn the conclusion that the A,, 
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were independent.) Since PA, 2 1/ logn, X I ,  PA,, = 00, and by the 
Borel-Cantelli lemma, there is probability 1 that infinitely many of the 
A,, occur. For large n we have [M25(55)] 

P[IBn(l/m)I 2 €1 = P"" 2 5 2(logn)-m'2. 

Since me2 > 1 by (22.21), X I ,  PIIBnk(l/m)l 2 E] < 00, and hence, with 
probability 1, lBnk(l/m)l 5 E for all large k. 

We have now shown that, if (22.21) holds, then there is probability 
1 that (22.22) and IBn(l/m)I 5 E both hold for infinitely many values 
of n. Since 1z(l/m)I < E by (22.21), it follows for such an n that 
/Bn( l /m)-z( l /m) l  5 2 ~ .  But now, this and (22.22) imply (Bn(0) = 0) 

(22.23) IBn(i/m) - z(i/m)I 5 m6 + 2E, 0 5 i 5 m. 

We know from the first part of the proof that, with probability 
1 and for large n, llBn - yII 5 E for some y E K ,  so that, by (22.4) 
for y, ~ ~ n ( t )  - ~ ( ( i  - l>/m)I 5 2~ + < 3~ for (i - l) /m 5 
t 5 i/m. Again by (22.4), Iz(t) - x ( ( i  - l)/m)I 5 < E for 
(i - l) /m 5 t 5 i/m. We conclude from (22.21) and (22.23) that 
I)Bn - 211 5 m6 + 6~ < 7 ~ .  13 

Proof of Strassen's Theorem 

We are now in a position to complete the proof of Strassen's theorem; 
the argument remaining is similar to that for Theorem 20.2. We start 
with the sequence {&} on (0'3, P). It is independent, and the t, 
all have the same distribution, with mean 0 and variance 1. Now 
consider the Brownian motion [B(t) : t  2 01 and the stopping times -rn 
of Theorem 20.1. They are defined on a new space (R', 3', P'). Of 
course, Theorem 22.2 applies to this Brownian motion. Define random 
variables <i and TI, as for Theorem 20.2, and define random elements 
Xn, Yn, and Zn of C by linear interpolation between these values at 
the points i/n: 

x,: X;, = L;lSi = L ; ~  &i - <h 

Zn: Z;, = Bn(i/n) = ~ ; l ~ ( i )  (on 0'). 

(on R), 
yn: yn $/, = L-W 12 z - - L - ~  12 Ch<iCh - = L;lB(-rz) (0.W 

This is the same as (20.2), except for the new norming constant, and 
Xn coincides with the random function of (22.1). Since the have the 
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same joint distribution as the <i, the X" will satisfy Theorem 22.1 on 
fl if the Y" satisfy the same theorem on 0'. The B" are now defined 
on 0' rather than on fl, but they do satisfy Theorem 22.2. 

Suppose we can prove that 

(22.25) ((Y" - B"(( + 0 

holds with PI-probability 1. By Theorem 22.2, there is PI-probability 
1 that (B3 ,  B 4 . .  .) is relatively compact and the set of its limit points 
is K .  But then the sequence (Y3 ,Y4 , .  . .) will have the same property 
by (22.25), which will complete the proof. 

We prove (22.25) in two steps: 

(22.26) (IBn - Z"II ---f 0 

and 

(22.27) llY" - Z"ll --f 0 

hold with PI-probability 1. For large n we have [M25(58)] 

Now (22.26) follows by the Borel-Cantelli lemma. 

definitions, and so it is enough to prove that 
As for (22.27), llY" - Znll = L;lmaxis, IB(q) - B(i)l by the 

(22.28) L,llB(T") - B(n)(  * 0 

with PI-probability 1. Let E be given. By the strong law of large 
numbers (recall that the T~ - ~"-1 are independent and identically 
distributed with mean l), there is an no such that, with probability 
exceeding 1 - E ,  we have 17, - n1 < nE for n > no, in which case 
( B ( T ~ )  - B(n)l 5 sup (B( t )  - B(n)\ ,  where the supremum extends over 
(1 - ~ ) n  5 t 5 (1 + ~ ) n .  Define n', a function of n, by n' = [(l + ~ ) n 1 .  
For large n, (1 - ~ ) n / n /  > 1 - 2 ~ ,  and this implies 
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For large n we have L,t/L, < 2, and then 

(22.29) L i l l B ( ~ , )  - B(n)l 5 4 sup Li:IB(sn’) - B(n’)l 
1-2E5S51 

1-2E5S51 

With probability exceeding 1 - E ,  (22.29) holds for all large enough 
n. By Theorem 22.2, there is probability exceeding 1 - 2~ that both 
(22.29) and Bn’ E K E  hold for large n. But then, by (22.4), we have 
IBn’(s) - Bn’(l)l 5 2e + for 1 - 2~ 5 s 5 1. Therefore, with 
probability exceeding 1 - 2 ~ ,  

= 4 sup p q s )  - P’(l)l.  

for all sufficiently large values of n. This shows that (22.28) holds with 
0 probability 1 and completes the proof of Theorem 22.1. 

Applications 

The applications use this result: 

Lemma 2. If 4 is a continuous map from C to R1, then, for w in 
a set of probability 1, the sequence 

(22.30) (6(X3(wh 4(X4(w)), * * )  
is relatively compact and the set of its limit points coincides with the 
closed internal # ( K ) ,  

If z and y are points of C ,  then the function f ( t )  = 
4((1  - t ) z  + ty) on [0 ,1 ]  is continuous and assumes the values ~ ( I c )  
and 4(y) at the endpoints and hence must assume all values between 
the two. Since K is convex, 4 ( K )  is a closed interval. It is easy to see 
that, if (22.2) is relatively compact and the set of its limit points is K ,  
then (22.30) is also relatively compact and the set of its limit points is 

0 

PROOF. 

6 ( K ) .  The result follows by Theorem 22.1. 

Exumple 22.1 Take ~ ( I c )  = z (1 ) .  By (22.4), 1x(1)1 5 1 for IC E K ,  
and since +(x) is +1 and -1 for z ( t )  = t and x ( t )  = -t, we have 
+(K)  = [-1, +1]. And 

(22.31) 

By the lemma, the limit points of the sequence defined by (22.31) 
exactly fill out the interval [-1,+1]. This is the Hartman-Wintner 
theorem. 0 
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Example 22.2 If +(x) = sup, x ( t ) ,  then 4 ( K )  = [0,1], and 

The limit points exactly fill out [0,1]. 0 

Example 22.3 Let f have bounded derivative on [ 0,1] and take 
$(x) = J i x ( t ) f ( t ) d t .  If F ( t )  = Jt f(s)ds  and x E K ,  then par- 

tial integration gives 4(x) = 6 F(t)x ' ( t )  dt. This is an inner product 

(F,z ' )  in L2[0, 11, and under the constraint 11x'11; = Ji(~'(t))~dt 5 1, 
it is maximal for x' = F/llF112 and the maximum is m = l lFll2 = 

[s,' F2(t )  dt]1/2. Therefore, $ ( K )  = [-m, m]. 
We can approximate 4 ( X " )  = J-,l X : f ( t )  dt by 

To see this, note first that 

If A bounds I f 1  and B bounds I f ' [ ,  then the integrand is bounded by 
AIX? - L;'Sil+ Bn-lL;lISi(, and we have 

n n 

By the strong law of large numbers, this goes to 0 with probability 1. 
Therefore, the limit points of {Un} fill out [-m,rn]. 

If f(t)  = c ,  then rn = lcl/fi. If f( t)  = ta,  a > 1, then m = 
0 

Example 22.4. Because of Example 22.1, it is interesting to inves- 
tigate the frequency of the integers i for which LclSa exceeds a fixed 
c.  Define random variables yi by 

((a + 2)(a + 3/2))-lI2. 

(22.34) 
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For 0 < c < 1, there is probability 1 that 

(22.35) l i m s u p - x y i  l n  = 1 -exp(-4($ - 1)). 

n n .  2=3 

The proof of this falls into two distinct parts. Define 

(22.36) vc(x): = X [ t :  x ( t )  2 C h ] ,  s*(c): = sup vc(x), 
xEK 

where X is Lebesgue measure and t is restricted to [ 0,1]. We show first 
that 

(22.37) s*(c) = 1 - exp(-4(cd2 - 1)) 

and second that 

(22.38) 

with probability 1. 
To prove (22.37), we show first that the supremum s*(c) is achieved. 

Suppose that zm + z (in the sense of C) and consider the inequalities 
X[t:z,(t) 2 c&] 5 X [ t :  z( t )  2 c&- k-'1 < X [ t :  x ( t )  2 c&] + E .  Given 
E, choose k so that the second inequality holds; for large m, the first 
holds as well, which proves upper semicontinuity: lim suprn vc(x,) 5 
vc(x). Now choose {xm} in K so that vc(x,) converges to s*(c), and 
by passing to subsequence, arrange that x, + 20. Then zo E K ,  and 
by upper semicontinuity, xo is a maximal point of K :  It achieves the 
supremum s*(c). It will turn out that there is only one of them, but 
for now let xo be any maximal point. 

If s < t and z E K ,  it follows by Jensen's inequality that 

(22.39) 

and there is equality if and only if x is linear over [s, t 1. If z( t )  2 c& 
and t > 0, then (22.39) gives Jl(x'(u))2du 2 ( ~ ( t ) ) ~ / t  2 c2. Therefore, 
since the integral goes to 0 with t ,  we must have z( t )  < c& in some 
interval (0, so). This is true of each x in K ,  and it implies vc(x) > 0. 
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If zo is maximal and p 2  = J i ( z b ( ~ ) ) ~ d u  < 1, then z1 = p - l z o  

lies in K and ~ ~ ( $ 1 )  exceeds vc(zo) (since the latter must be positive). 
Therefore, every maximal zo satisfies 

(22.40) 

Next, the set A = [t:zo(t) > c&] is empty: If 1 E A ,  then there 
is an a > c and a t’ such that zo(t’) = a and zo(t) > a on (t’, 11. 
Redefine zo so that zo(t) = a on [ t ’ , l ] .  This leaves vc(zo) unchanged 
but decreases J ; ( ~ b ( t ) ) ~ d t  by (22.39), which contradicts (22.40). It  
follows that, if A # 8, then there are points tl and t2 such that 0 < 
tl  < t 2  < 1, zo(t1) = c f i ,  z o ( t 2 )  = c f i ,  and z:o(t) > c& on ( t l , t 2 ) .  
Since p ( t )  = c& is strictly concave, zo cannot be linear over [ t l ,  t z ] .  If 
each point of ( t l ,  t2) can be enclosed in an open interval on which zo is 
linear, then by compactness, 20 is linear over [tl + E ,  t2 - E ]  for each E 

and hence is linear over [tl , tz]. Therefore, there is a t o  in ( t l ,  t2) that 
is contained in no open interval over which zo is linear. There is some 
7 small enough that the line segment L connecting ( t o  - 77, zo(t0 - 7 ) )  
to ( t o  + g,zo(to + 77)) lies above the graph of p .  Redefine zo over 
[to-7, to+7] so that its graph coincides with L there. This leaves vC(zo) 
unchanged, and again we have a contradiction of (22.40). Therefore, 
A is indeed empty. 

We know that zo(t) 5 c& for all t ,  and zo(t) < c& on (0,so). 
Take SO to be the infimum of those positive t for which zo(t) = c d ,  
with SO = 1 if there are no such t .  Then ~ ( t )  = t c / f i o  on [ O , S O ] ,  
for if 20 is not linear there, then (22.39) (strict inequality) for z = zo, 
s = 0, t = so contradicts (22.40) once again. We prove below that 
z:o(t) = c& on [so, 11, so that 

(22.41) 

Let us assume this and complete the proof of (22.37). If (22.41) holds 
for the maximizing 20, then, by (22.40), c2 + S , 1 , ( ~ / 2 & ) ~ d t  = 1, and 
this gives SO = so(c),  where so(c):= exp(-4(1 - c - ~ ) ) .  This proves 
(22.37), as well as the fact that 0 < so < 1. 

To prove (22.41), we must eliminate two possibilities. First, s u p  
pose there exist s1 and s2 such that so 5 s1 < s2 5 1, zo(s1) = c f i ,  
zo(s2) = c f i ,  and zo(t) < c& on (s1, s2). Let S = 8 2  - s1 and define 
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a continuous yo by 

If t is a point of [so, s1] and zo(t) 2 cf i ,  then t+6 is point of [s0+6, s2] 
and yo(t + 6) 1 c m  (algebra); if t is a point of [sp, 11, then yo(t) 2 
zo(t) (algebra). Therefore, vC(yo) 2 vC(zo) and yo is a maximal point. 
An easy computation, together with the facts that yh(t) = zb(t - 6) on 
[so + 6, sp] and yh( t )  = zb(t) on [s2,1], shows that 

, -  

(yL(t))2dt = c2, 

J so 

Therefore, by (22.39), 

which contradicts (22.40) and rules out the first possibility. 
The second possibility is that there exists an s1 such that so 5 

s1 < 1, zo(t) = c f i  on   SO,^], and z ~ ( t )  < c& on (s1,1]. Redefine 
20 by taking ~ ( t )  = cJ-S-; on [sl, 11. Since zo is still maximal, (22.40) 
gives so = s l e x p ( - 4 ( ~ - ~  - 1)). But from s1 < 1 follows s1 - so < 
1-exp(-4(~-~-1)).  Since this last quantity is acheived by (22.41)’ the 
redefined zo cannot be maximal, which rules out the second possibility. 

This completes the proof of (22.37). It remains to prove (22.38). 
Suppose we can show that, for 0 < c‘ < c < c” < 1, there is probability 
1 that 

(22.43) 

and 

(22.44) 
l n  

* a=3 
lim sup - C ya 2 s* (c”). 
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This will be enough, since (22.37) shows that s*(c) is continuous and 
decreasing. 

To prove (22.43), first restrict the range of summation to 

(22.45) . ran1 + 1 5 i 5 n, 

where 0 < a < 1. Since this decreases the averaget by at most a ,  if 
we can show that (22.43) holds for the new average, then (22.43) itself 
will follow: Let a decrease to 0 through the rationals. Fix the a and 
take E small enough that c ( l  - E) - 2 ~ / &  > c'. Suppose that i is in 
the range (22.45), that t E IF = [(i - l)/n,i/n], and that n is large 
enough that (log log an/ log log n)lI2 2 1 - E. Then yi = 1 implies 

(22.46) X& = L,%i 2 c ( l  - E ) f i  2 c ( l  - €)A. 
With probability 1, for large n there is an zn in K for which llXn - 
znll < E ,  and then (22.46) implies zn(i/n) 2 c ( l  - E ) &  - E ,  which in 
turn implies zn(t) 2 c( 1 - ~)fi - 2~ for n large enough that fi < E 

(use (22.4)). And finally, (22.45) and t E IF further imply zn(t) 2 
(c(1 - E) - ~E/,/E)& > c'&. To sum up, there is probability 1 that, 
for n large and i in the range (22.45), yi = 1 implies that zn(t) 2 c ' d  
on I?. This means that the average in (22.43) for the new range (22.45) 
is at most X [ t :  zn(t)  2 c'&], which proves the original (22.43). 

As for (22.44), we can restrict the sum by 

(22.47) LanJ - 1 5 i < n, 

since this only decreases the average. Take zo to be the maximal point 
of K for c", and take a less than so(c") as defined after (22.41). Then 

X [ t :  a I t 5 1, zco(t) 2 c v i ]  = X [ t :  zo(t) 2 C ' l A ]  = s*(cI'). 

Now X& > c f l  implies Si > c G L ,  2 c L i  and hence yi = 1. 
With probability 1, there are infinitely many n such that, for i in the 
range (22.47), llXn - zoll < (c" - c ) m  I (d' - c ) G .  Suppose 
that, for such an n and i, we have xo(t)  2 c"& for some t in IF+l. 
Then 

t These are not quite averages, since the number of summands is less than TI. 
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and hence yi = 1. Since [a, 11 is covered by the 
(22.47), it follows that n-l C ~ ~ ~ a n , - l  ”yi is at least 

for i in the range 

This proves (22.44). 

c = 1/2 there is probability 1 that n-l 
As Strassen points out, .99999 < s*(1/2) < .999999. Therefore, for 

”yi exceeds .99999 infinitely 
0 often but exceeds .999999 only finitely often. 
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METRIC SPACES 

We review here a few properties of metric spaces, taking as known the 
very first definitions and facts. 

M1. Some Notation. We denote the space on which the metric is 
defined by S and the metric itself by p ( z , y ) ;  the metric space proper 
is the pair (S,p).  For subsets A of S ,  denote the closure by A - ,  the 
interior by A”, and the boundary by r3A = A- -A”.  The distance from 
z to A is p(z, A )  = inf[p(z, y): y E A ] ;  from p(z,  A )  5 p(z ,  y) + p(y ,  A )  
it follows that p( . , A )  is uniformly continuous. Denote by B(z ,  r )  the 
open r-ball [y: p(z ,  y) < r ] ;  “ball” will mean “open ball,” and closed 
balls will be denoted B(z , r ) - .  The €-neighborhood of a set A is the 
open set A‘ = [ z : p ( x , A )  < € 1 .  
M2. Comparing Metrics. Suppose p and p’ are two metrics on the 
same space S.  To say that the p’-topology is larger than the ptopology 
is to say that the corresponding classes 0 and 0’ of open sets stand in 
the relation 

(1) 0 c 0’. 

This holds if and only if for every II: and r ,  there is an r‘ such that 
B‘(z, r’) c B(z ,  r ) ,  and so in this case the p’-topology is also said to be 
finer than the p-topology. (The term stronger is sometimes confusing.) 
Regard the identity map i on S as a map from (S ,  p’) to  ( S ,  p ) .  Then 
i is continuous if and only if G E 0 implies G = i-lG E 0’-that is, 
if and only if (1) holds. But also, i is continuous in this sense if and 
only if 

p’(z,, z) + O implies p(z,, z) --f 0. 

This is another way of saying that the p’-topology is finer than the 
ptopology. The metric p is discrete if p(z,  y) = 1 for z # y; this gives 
to S the finest (largest) topology possible. 
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Two metrics and the corresponding topologies are equivalent if each 
is finer than the other: (S,p) and (S,p’) are homeomorphic. If p’ is 
finer than p, then the two may be equivalent; in other words, “finer” 
does not mean “strictly finer.” 

M3. Separability. The space S is separable if it contains a countable, 
dense subset. A base for S is a class of open sets with the property 
that each open set is a union of sets in the class. An open cover of A 
is a class of open sets whose union contains A.  

Theorem. These three conditions are equivalent: 
(i) S is  separable. 

(ii) S has a countable base. 
(iii) Each open cover of each subset of S has a countable subcover. 

PROOF. Proof that (i) + (ii). Let D be countable and dense, and 
take V to be the class of balls B(d, r )  for d in D and r rational. Let 
G be open; to prove that V is a base, we must show that, if GI is the 
union of those elements of V that are contained in G, then G = G I .  
Clearly, G1 c G, and to prove G c GI it is enough to find, for a given 
z in G, a d in D and a rational r such that z E B ( d , r )  c G. But 
if z E G, then B ( ~ , E )  c G for some positive E .  Since D is dense, 
there is a d in D such that p(z,d)  < ~ / 2 .  Take a rational r satisfying 
p(z,  d )  < r < ~ / 2 :  z E B(d, r )  c B(z ,  E ) .  

Proof that (ii) + (iii). Let {Vl, V2,. . .} be a countable base, and 
suppose that {G,} is an open cover of A ( a  ranges over an arbitrary 
index set). For each V k  for which there exists a G, satisfying V k  c G,, 
let G,, be some one of these G, containing it. Then A c Uk Gak. 

Proof that (iii) + (i). For each n, [B(z ,n - l ) : z  E S] is an open 
cover of S.  If (iii) holds, there is a countable subcover [B(z,k, n-l): k = 

0 

A subset M of S is separable if there is a countable set D that 
is dense in M ( M  C D-) .  Although D need not be a subset of M ,  
this can easily be arranged: Suppose that { d k }  is dense in M ,  and 
take z k n  to be a point common to B ( d k , n - l )  and M ,  if there is one. 
Given an z in M and a positive E > 0 choose n and then d k  so that 
p(z ,dk)  < n-l < ~ / 2 .  Since B(dk ,n - ’ )  contains the point z of M ,  it 
contains z k n ,  and p(z,zk,) < E .  The z k n  therefore form a countable, 
dense subset of M .  

1 , 2 , .  . .I. The countable set [z,k: n, k = 1 , 2 , .  . .] is dense in S. 

Theorem. Suppose the subset M of S is  separable. 
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(i) There is a countable class A of open sets with the property that, 
i f x E G n M  andGisopen, t h e n x E A c  A - c G  f o r s o m e A i n A .  

(ii) Every open cover of M has a countable subcover. 
PROOF. Proof of (i). Let D be a countable, dense subset of M 

and take A to consist of the balls B(d, r )  for d in D and T rational. 
If z E G n M and G is open, choose 6 so that B ( x ,  E )  c G, then 
choose d in D so that p ( x , d )  < ~ / 2 ,  and finally, choose a rational r 
so that p(z,d)  < r < c/2. It follows that z E B(d, r )  c B(d,r)-  C 

B(z,e)  c G. 
Proof of (ii). Let A = {Al ,  Az, . . .} be the class of part (i). Given 

an open cover {Ga} of M ,  choose for each Ak a G,, containing it (if 
0 

These arguments are essentially those of the preceding proof. Part 
(ii) is the Lindelof property. 

Separability is a topological property: If p and p’ are equivalent 
metrics, then M is pseparable if and only if it is p’-separable. 

M4. Completeness. A sequence { x n }  is fundamental, or has the 
Cauchy property, if 

there is one). Then M C Uk Gak.  

SUP ~ ( z i ,  z j )  +n 0. 
i,j>n 

A set M is complete if every fundamental sequence in M has a limit 
lying in M. A complete set is obviously closed. Usually, the question 
is whether S itself is complete. A fundamental sequence converges if it 
contains a convergent subsequence, which provides a convenient way 
of checking completeness. 

Completeness is not a topological property: S = [I, m) is complete 
under the usual metric (p ’ (s ,  y )  = Iz - 91) but not under the equivalent 
metric p(x,y) = 1z-l - y-’l (or, to put it another way, [l,ca) and 
(0,1] are homeomorphic, although the first is complete and the second 
is not). A metric space (S,p) is topologically complete if, as in this 
example, there is a metric equivalent to p under which it is complete. 

Given a metric p on S, define 

(2) b(x, Y >  = 1 A p(s, Y). 
Since +(t)  = 1 A t is nondecreasing and satisfies +(s + t) <_ $(s) + $(t) 
for s, t 2 0, b is a metric; it is clearly equivalent to p. Further, since 
+(t) 5 t for t L 0 and +(t) = t for 0 5 t 5 1, a sequence is b 
fundamental if and only if it is pfundamental; this means that S is p 
complete if and only if it is bcomplete. The metric b has the advantage 
that it is bounded: b(z,y) 5 1. 
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M5. Compactness. The set A is by definition compact if each open 
cover of A has a finite subcover. An +net for A is a set of points 
{zk} with the property that for each z in A there is an zk such that 
p(z,zk) < E ;  A is totally bounded if for each positive E it has a finite 
E-net (the points of which are not required to lie in A).  

Theorem. These three conditions are equivalent 
(i) A- is compact. 

(ii) Each sequence in A has a convergent subsequence ( the  limit of 

(iii) A is  totally bounded and A- is complete. 
which necessarily lies in A-) .  

PROOF. It is easy to see that (ii) holds if and only if each sequence 
in A- has a subsequence converging to a point in A- and that A is 
totally bounded if and only if A- is. Therefore, we may assume in the 
proof that A = A- is closed. 

The proof is clearer if we put three more properties between (i) 
and (ii): 

(il) Each countable open cover of A has a finite subcover. 
(i2) If A c UnGn, where the Gn are open and G1 C G2 C .,., then 

(i3) If A ., where the Fn are closed and nonempty, then 
A c G, fo r  some n. 

nn Fn is nonempty. 
We first prove that (il), (iz),  (i3), (ii), (iii) are all equivalent. 

Proof that (il) - (i2). Obviously (il) implies (iz). As for the 
converse, if {Gn} covers A, simply replace Gn by UkCn - Gk. 

Proof that (i2) f-f (i3). First, (i2) says that A n G ,  t A implies that 
A n G, = A for some n. And (i3) says that A n Fn J. 0 implies that 
A n Fn = 8 for some n (here the Fn need not be contained in A).  If 
Fn = GZ, the two statements say the same thing. 

Proof that (is) c) (ii). Assume that (is) holds. If {zn} is a sequence 
in A,  take Bn = {zn, z n + l , .  . .} and Fn = B i .  Each Fn is nonempty, 
and hence, if (i3) holds, nn F, contains some z. Since J: is in the closure 
of B,, there is an i, such that in 2 n and p(z,zi,) < n-l; choose the 
in inductively so that 21 < 22 < . .. Then limn p(z,  xi,) = 0: (ii) holds. 
On the other hand, if Fn are decreasing, nonempty closed sets and (ii) 
holds, take zn E Fn and let z be the limit of some subsequence; clearly, 
z E nn Fn: (i3) holds. 

Proof that (ii)+(iii). If A is not totally bounded, then there exists 
a poitive E and an infinite sequence {zn} in A such that p(z,, zn)  2 E 

Fl 3 F2 3 
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for m # n. But then {z,} contains no convergent subsequence, and 
so (ii) must imply total boundedness. And (ii) implies completeness, 
because, if {zn}  is fundamental and has a subsequence converging to  
z, then the entire sequence converges to z. 

Proof that (iii)+(ii). Use the the diagonal method [PM.538]. If 
A is totally bounded, it can for each n be covered by finitely many 
open balls & I , .  . . ,Bnk, of radius n-l. Given a sequence { zm}  in 
A ,  first choose an increasing sequence of integers mil, m12,. . . in such 
a way that zmll, zmlz, . . . all lie in the same B l k ,  which is possible 
because there are only finitely many of these balls. Then choose a 
sequence m21, m22,. . ., a subsequence of mll ,ml2, .  . ., in such a way 
that zmZ1, zmZ2, .  . . all lie in the same B 2 k .  Continue. If ri = mii, then 
zCTn,zrnfl, . . . all lie in the same B,k. It follows that zT1,zTz,. . . is 
fundamental and hence by completeness converges to some point of A.  

Thus (il) through (iii) are equivalent. Since obviously (i) implies 
( i l ) ,  we can complete the proof by showing that (il) and (iii) together 
imply (i). But if A is totally bounded, then it is clearly separable, and 
it follows by the Lindelof property that an arbitrary open cover of A 
has a countable subcover. And now it follows by (il) that there is a 
further subcover that is finite. 0 

Compactness is a topological property, as follows by condition (ii) 
of the theorem. A set A is bounded if its diameter sup[p(z, y): 2, y E A] 
is finite. The closure of a totally bounded set is obviously bounded in 
this sense; the converse is false, since, for example, the closed balls in C 
(Example 1.3) are not compact. On the other hand, a set in Euclidean 
k-space is totally bounded if and only if it is bounded, and so here the 
bounded sets are exacly the ones with compact closure. 

A set A is relatively compact if A- is compact. This is equiva- 
lent to  the condition that every sequence in A contains a convergent 
subsequence, the limit of which may not lie in A.  

A useful fact: The continuous image of a compact set as compact. 
For suppose that f : S --t S’ is continuous and A is compact in S.  If 
{f(zn)} is a sequence in f (A) ,  choose {ni} so that {zn i }  converges to 
a point z of A.  By continuity, { f ( z n i ) }  converges to the point f(z) of 
f (4. 

M6. Products of Metric Spaces. Suppose that (Si,pi), i = 1,2,. . ., 
are metric spaces and consider the infinite Cartesian product S = 
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S1 x 5'2 x a - -. It is clear that 

is a metric, the metric of coordinatewise convergence. 

If each Si is separable, then  S is separable. For suppose that Di 
is a countable set dense in Si, and consider the countable set D in S 
consisting of the points of the form 

(4) 

where k 2 1, xi is a variable point of Di for i 5 k, and xy is some fixed 
point of Si for i > k. Given an E and a point y of S, choose k so that 

2-i < E and then choose points xi of the Di so that pi(y i ,  xi) < E. 
With this choice, the point (4) satisfies p(y ,x )  < 2 ~ .  

If each Sa is complete, then  S is complete. Suppose that xn = 
(xy , xt, . . .) are points of S forming a fundamental sequence. Then 
each sequence xi, x:, . . . is fundamental in Si and hence pi (xa , xi) +n 0 
for some xi in Si. By the M-test, p ( x n , x )  ---t 0. 

If Ai is compact in Si, then A1 x A2 x . . is compact in S .  (This 
is a special case of Tihonov's theorem.) Given a sequence of points 
xn = (x?, xg, . . .) in A,  consider for each i the sequence x t ,  x:, . . . in 
Ai. Since Ai is compact, there is a sequence n1, n2, . . . of integers such 
that xyk +k xi for some xi in Ai. But by the diagonal method, the 
sequence { n k }  can be chosen so that xyk +k  xi holds for all i at the 
same time. And then, x n k  +k ( X I ,  ~ 2 , ~ .  .). 

M7. Baire Category. A set A is dense in B if B c A - .  And A 
is everywhere dense (or simply dense) if S = A - ,  which is true if and 
only if A is dense in every open ball B. And A is defined to be nowhere 
dense if there is n o  open ball B in which it is dense. The Cantor set is 
nowhere dense in the unit interval, for example, but a nowhere-dense 
set can be entirely ordinary: A line is nowhere dense in the plane. 

To say that A is nowhere dense is to say that, for every open ball 
B ,  A fails to be dense in B ,  which in turn is to say that B contains an 
x such that, for some E, the ball B ( x ,  E )  fails to meet A: B(x ,  E )  c A". 
But since B is open, B ( ~ , E )  c B for small enough E: 

( 5 )  B ( ~ , E )  C B n A C .  
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Thus A is nowhere dense if and only if every open ball B contains a ball 
B ( x ,  E )  satisfying ( 5 ) .  This condition is usually taken as the definition, 
although the words “nowhere dense” then lose their direct meaning. 
By making E smaller, we can strengthen ( 5 )  to B(x ,  E ) -  C B fl A“. The 
Baire category theorem: 

Theorem. If S is  complete, then it cannot be represented as a 
countable union of nowhere dense sets. 

PROOF. Suppose that each of A1, A2, .  . . is nowhere dense. There 
is in S an x1 such that B(x1, €1)- c SnA; for some €1. And B ( x ~ , E ~ )  
contains an 2 2  such that B ( 5 2 , ~ ) -  C B ( x l , ~ 1 )  n A; for some €2.  

Continue. The en can be chosen in sequence so that en < 2 - n ,  and 
then, since p(x,,z,+l) < 2-,, the sequence {IC,} is fundamental and 
hence has a limit x. For each k, x lies in B(xk,~k)- and hence lies 

0 

A set is defined to be of the first category if it can be represented as 
a countable union of nowhere-dense sets; otherwise it is of the second 
category. According to Baire’s theorem, the space itself must be of the 
second category if it is complete. 

M8. Upper Semicontinuity. A function f is upper semicontinuous 
at x if for each E there is a 6 such that p(x,  y) < 6 implies f (y) < 
f (x) + E .  It is easy to see that f is everywhere upper semicontinuous 
if and only if, for each real a,  [x: f ( x )  < a] is an open set. Dini’s 
theorem: 

outside Ak: S = Uk A k  is impossible. 

Theorem. If f,(x) 1 0 f o r  each x, and i f  each f, is everywhere up- 
per semicontinuous, then the convergence is  uniform on  each compact 
set. 

PROOF. For each E ,  the open sets G, = [x: f,(z) < E ]  cover S.  If 
0 K is compact, then K C G, for some n, and uniformity follows. 

M9. Lipschitz Functions. A function satisfying a Lipschitz condi- 
tion on a subset A of S can be extended to the entire space. 

Theorem. Supose that f i s  a function on A that satisfies If(.) - 

f (y)J 5 Kp(x,y) for x and y in A .  There is  an  extension g off to S 
that satisfies the same condition: l g (x )  - g ( y ) J  5 Kp(x ,  y) for x and y 
in S.  Iff satisfies I f  I 5 a o n  A,  then g can be taken to satisfy 191 5 a 
o n  S.  
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PROOF. Fix an arbitrary point z of A.  If y E A,  then for all x E S ,  

f ( Y )  + KPhY) = f ( 4  + KP(x,Y) + (f(9) - f ( 4 )  
2 f ( 4  + Kp(x, Y) - K p ( y , z )  2 f ( z )  - K d x ,  4. 

Therefore, the function g(x) = infyEA( f (y) + Kp(z, y)) is well defined 
on S.  If x and y lie in A ,  then f (y)  + Kp(x,y) 2 f(x), with equality 
for y = x: g(x )  = f (x)  for x in A.  

Let x and x‘ be points of S.  Given E, choose y in A so that g(x) 2 
f (y )  + K p ( z , y )  - Then 

g(x’> - 9(4 I f ( Y )  + KP(X’7 Y) - [f ( 3 )  + K d x ,  Y) - El 

= K(p(x’, Y)) - P ( x ,  9 ) )  + E L K&’, 4 + € 7  

and so g(z’) - g(x) 5 K p ( x ’ , x ) .  Interchange x‘ and x to get the 
Lipschitz condition for g. 

0 If a bounds I f 1  on A ,  truncate g above at a and below at -a. 

M10. Topology and Measurability. The Borel a-field S for ( S ,  p )  
is the one generated by the open sets. Let (S’,p’) be a second metric 
space, with Borel a-field S’. If h : S  ---t S’ is continuous, then it is 
measurable S/S’ (in the sense that A‘ E S‘ implies A E S). To prove 
this, it is enough [PM.182] to show that h-’G’ E S if G’ is an open 
set in S‘; but of course h-’G’ is open. In particular, a continuous real 
function on S is S-measurable. 

Let (0, F) be a measurable space, and let hn and h be maps from 
SZ to S.  If each h, is measurable 3 / S ,  and if limn hnx = hx for every 
x, then h is also measurable F / S .  In fact, h-’F c liminf, hi1$‘‘ c 
h-’Fz‘. Intersect over positive, rational E: If F is closed, then h-lF = 
n, lim inf, h;lF‘, which lies in 3. 

The set D h  of points at which h is not continuous lies in S. This is 
true even if h is not measurable S/S’. To prove it, let A,a be the set of 
x in S for which there exist points y and z in S satisfying p(x,  y) < 6, 
p(x,  z )  < 6, and p’(hy, hz)  2 E. Then A,6 is open, and Dh E S because 
Dh = u, 0, A,s ( E  and 6 ranging over the positive rationals). 

Subspaces. A subset So of S is a metric space in its own right. If 
0 and 00 are the classes of open sets in S and SO, then 0 0  = 0 n So 
(= [G n So: G E O]) ,  and it follows [PM.159] that the Borel a-field in 
SO is 

(6) so =snso. 
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If SO lies in S, (6) becomes 

( 7 )  So = [A: A C So, A E S]. 

Product Spaces. Let S’ and S” be metric spaces with metrics p‘ 
and p“ and Borel a-fields S‘ and S”, and consider the product space 
T = S‘ x S”. The product topology in T may be specified by various 
metrics, for example, 

and 

(9) t ( ( d ,  dl ) ,  (y!, y”)) = pyx/, y’) v p y d l ,  y q .  

Under either of these metrics there is convergence (&, z:) + (z’, d’) 
in T if and only if xk t x’ in S‘ and x: --+ x” in S”. Under the metric 
(9) we have, in an obvious notation, 

(10) 

which is convenient. 

Consider the projections d : T --f S‘ and d’ : T + S“ defined 
by d(z ’ ,d ’ )  = x‘ and 7r”(d,d’) = z”; each is continuous. If To is 
countable and dense in T ,  then dT0 and #TO are countable and dense 
in S‘ and S“. On the other hand, if SA and S[ are countable and dense 
in S‘ and S“, then Sl, x S[ is countable and dense in T .  Therefore: T 
is separable af and only if S’ and S” are both separable. 

Let 7 be the Borel a-field in T .  Consider also the product a-field 
S‘ x S”-the one generated by the measurable rectangles, the sets A’ x 
A” for A‘ E S‘ and A“ E S“. Now this rectangle is (n’)-lA’n(n”)-lA”; 
since the two projections are continuous, they are measurable 7 /S ’  
and ‘T/S“, respectively, and it follows that the rectangle lies in T. 
Therefore, S‘ x S“ C 7. On the other hand, if T is separable, then 
each open set in T is a countable union of the sets (10) and hence lies 
in S‘ x S“. It follows that 

~ ~ ( ( d , d ’ ) , r )  = BPt(d , r )  x BPll(z’’,~), 

(11) 

if T is separable.+ 

S’ x S” = T, 

t Without separability, (11) may fail: If S’ = S” is discrete and has power 
exceeding that of the coninuum, then the diagonal [(z,y):z = y] lies in 7 but not 
in S’ x S”. See Problem 2 on p. 261 of Halmos [36]. 
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ANALYSIS 

M11. The Gamma and Beta Functions. The gamma function is 
defined by 

(12) r(a) = Jo F-1 e --I dx 

for positive a. Integration by parts shows that r ( a )  = (a - l)r(a - 1) 
for a > 1, from which it follows that r(m) = (m - l)! for positive 
integers m. 

The gamma-a distribution (with unit scale parameter) has density 

0;) 

over ( 0 , ~ ) .  A calculation with the Laplace transform shows that 
ga and gp convolve to ga+p, from which it follows that ga+p(l)  = 

J; ga(Y)gp(l - Y)  dY, or 

The left side here defines the beta function; the beta-(a, P )  distribution 
has over (0,l) the density y"-'(l - y)P-'r(a + P)/r(a)I ' (P).  
M12. Dirichlet's Formula. Let Dk be the Rk-set defined by the in- 
equalities t l ,  . . . , t k  > 0 and xf=l ti < 1. Dirichlet's integral formula is 

where a = a1 + . . . + a k  and the ai are positive. To prove it, fix 
t 3 , .  . . , t k ,  write a = t 3  + . - .  + t k  (a  = 0 if k = 2), and consider the 
integral 

By (14),  the change of variables tl = (1 - s1)s2, t 2  = s1s2 (with 
Jacobian s2) reduces this to 
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And now (15) follows by induction. 

M13. The Dirichlet Distribution. The random vector X = 
( X I , .  . . , X k )  has the Dirichlet distribution with (positive) parameters 
a1,. . . , Crk if x k  = 1 - k -  1 xi and ( X I , .  . . ,Xk-l) has density 

on the set where t l , .  . . , t k -1  are positive and add to a t  most 1. By 
(14) and (15), (16) does integrate to 1. A change of variables shows 
that, if ai = aj, then the distribution of X remains the same if Xi 
and X j  are interchanged. If the ai are all the same, then X has the 
symmetric Dirichlet distribution; in this case, the distribution of X is 
invariant under all permutations of the components. 

M14. Scheff6’s Theorem. Suppose that g: are nonnegative, that 
C m y &  = Cmgm (finite) for all n, and that y$ jn Ym for all m. 
Then, by the series form of Scheffe’s theorem [PM.215], 

m 

If f is a bounded and continuous real function, then 

m .  m 

For, if A4 bounds f ,  then 

m m 

m m 

To the first sum on the right apply (17) and to the second apply the 
bounded convergence theorem. 

M15. Measurability of Some Mappings. Let 7 be the class of 
Bore1 subsets of T = [ 0,1] .  For each t ,  the projection 7rt from C to R1 
(Example 1.3) is measurable C. Since the mapping 

(19) (z, t )  + 4 4  
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from C x T to R1 is continuous in the product topology, and since 
C x 7 is the a-field of Borel sets for this topology (see ( l l ) ) ,  (19) is 
measurable C x 7/R1. 

For z E C, let h(z)  be the Lebesgue measure of the set o f t  in T for 
which z( t )  > 0. We want to prove that h is measurable C,  and we can 
derive this from a more general result. If TJ is the indicator of (O,m), 
then 

1 

h(z)  = 1 v ( z ( t ) )  d t .  

It will be enough to prove that, if w is Borel measurable, bounded, 
and continuous except on a set of Lebegue measure 0, then (20) is 
measurable C ;  we prove at the same time that it is continuous except 
on a set of Wiener measure 0. 

Since v(z ( t ) )  is a bounded, Borel measurable function of t ,  (20) 
is well defined. And since (19) is measurable C x 7, the mapping 
$ : C x T + R1 defined by $(z, t )  = v(z ( t ) )  is also measurable. Since 
$ is bounded, h(z)  = Jl $(z, t )  d t  is measurable C as a function of z 
[PM.233]. 

If D, is the set of discontinuities of TJ, then, by assumption, AD, = 
0, where X is Lebesgue measure. Let E be the set of (z, t )  for which 
z( t )  E D,. If W is Wiener measure, then W [ z :  (z, t) E El = 0, and it 
follows by Fubini's theorem applied to the measure W x X on C x 7 that 
X [ t :  (2, t) E El = 0 for z @ A ,  where A is a C-set satisfying WA = 0. 
Suppose that zn + z in the topology of C. If z $! A ,  then z( t )  $! D, for 
almost all t and hence, since zn(t) --+ z( t )  for all t ,  v(zn(t))  + v(z(t)) 
for almost all t .  It follows by the bounded convergence theorem that 

Thus h is continuous except at  points forming a set of W-measure 0. 
The argument goes through if W is replaced by a P with the prop- 

erty that P.rr;l is absolutely continuous with respect to Lebesgue mea- 
sure for almost all t .  This is true of W". 

Except in two places, this argument also goes through word for 
word if C is replaced by D. First, if zn + z in the topology of D ,  then 
zn(t)  + z ( t )  for all but countably many t (rather than for all t ) ,  which 
is still enough for (21). Second, the proof that (19) is measurable- 
in this case, that it is measurable 2) x IIRl-requires modification. 
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Figure 1 Figure 2 

Figure 3 Figure 4 

Figure 5 Figure 6 
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Define (see the proof in Section 12 that 7rt is measurable) h,(x,t) as 
~ - ' S , ~ + ' z ( s ) d s  for t 5 and as E-' J , -cx(s)ds  for t > 3. Then h, 
is continuous on D x T ,  and since h,-~(x,t) --tm z ( t )  for all z and t ,  
measurability follows. 

One more function on C remains to be analyzed, namely, the supre- 
mum h(z )  of those t in [0 ,1 ]  for which x ( t )  = 0. Since [x: h(z )  < a] 
is open, h is measurable. If h is discontinuous at x, then h(t)  must 
keep to one side of 0 in (h (z ) , l )  and keep to the same side of 0 in 
( h ( z )  - ~ , h ( z ) )  for some E .  That h is continuous except on a set of 
Wiener measure 0 will therefore follow if we show that, for each t o ,  
the supremum and infimum of W over [to,1] have continuous distri- 
butions. Since Wt - W,, for t ranging over [to, 11 is distributed as a 
Wiener path with a linearly transformed time scale, -Wt, +supt2,, W, 
has a continuous distribution (see (8.20)). This last random variable 
and Wt, are independent, and hence their sum also has a continuous 
distribution. The infimum is treated the same way. 

M16. More Measurability. In Section 14 we defined the mapping 
+ : D  x Do --+ D by +(z,4) = z 0 4  (see (14.11)), and we are to prove it 
measurable 2) x Do/D. Since the finite-dimensional sets in D generate 
D, it is enough to prove that, for each t ,  the mapping 

t 

is measurable D x Do. If &(t)  = [ k @ ( t ) l / k ,  then &(t)  1 d ( t )  for each 
t .  Hence the mapping 

converges pointwise to (22), and it is enough to prove this latter map- 
ping measurable 2) x Do. Now [(x, 4 ) :  x(&( t ) )  I a] is the union of 

(24) [(x, 4 ) :  W )  = 01 n [(x, 4) :  4 0 )  I a] 

with the sets 

If H E R1, then [$ E Do:+(t) E H ]  = DO n TT'H lies in DO, and 
therefore [ (x ,4) :4( t )  E H ]  E D x Do. Similarly, [ (x ,qh):z( t )  E H] E 
D x DO. Thus the sets (24) and (25) all lie in D x DO, which proves 
the measurability of (23). 
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CONVEXITY 

We treat here a few facts about planar convex sets needed for Section 
15. We assume the basic theory (support lines, convex hulls, and 
so on), and the treatment is somewhat informa1.t Every convex set 
considered is assumed to be compact. Denote Euclidean distance by 
d(z,y) = Iz - yI, and write A+' = (A')- = [x: d(z,A) 5 E ] .  

The Hausdorff distance between two compact sets is 

(26) h ( A , B )  = (sup inf )x - yI) V (sup inf )IC - yl). 
x E A  yEJ3 ye B xEA 

Equivalently, h(A, B )  is the infimum of those E for which 

Let T be the space of (compact) convex subsets of the unit square 
Q = [ 0, 112. For the theory of Section 15, we must show that T is h- 
totally bounded, and in fact we need to estimate the size of the smallest 
E-net. 

M17. Preliminaries on Convexity. We first show that T is h- 
complete, which, once it has been shown to be h-totally bounded, will 
imply that T is h-compact. Suppose that {C,} is h-fundamental, and 
define C as the closed set nF,(u,"=i Cj)-; note that, since the union 
decreases with i, the intersection is the same for all n. Suppose we 
have h(C,, Ci) < E for i 2 n. Then uci Cj C C: for i 2 n, and hence 
C c (U,"=,Cj)- C Cz'. On the other hand, if z E C,, then the disc 
B(z ,  E )  meets Ci for each i 2 n, and therefore B ( x ,  E ) -  n (Ugi Cj)- 
is, for i 2 n, a decreasing sequence of nonempty, closed sets; it follows 
that the intersection B(z ,  E ) -  n Cj)- = B(z ,  E ) -  n C is also 
nonempty. This means that IC E C+', and hence C, c 0'. Thus 
h(C,,C) 5 E ,  which shows that h(C,,C) -+ 0. 

It  remains to show that the closed set C is convex. Choose E, 

so that h(C,,C) < E, -+ 0. Suppose that x and y lie in C and 
consider a convex combination z = px + gy. There are points IC, and 
yn of C, such that 12 - xnl < En and (y  - y,I < en, and of course 
z, = PZn + qy, + z .  Also, z, lies in C, and hence lies within E, of a 

t Eggleston [25], for example, has a detailed account of the general theory. He 
defines the Hausdorff distance as a sum rather than a maximum (which gives an 
equivalent metric), and he gives it no name. 
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point z i  of C. This means that zk also converges to z ,  which proves 
that z lies in C. Therefore, the limit set C is convex, and T is indeed 
complete. 

We also need this fact: Suppose that C C C,+l c C, for all n. 
Then: C, 1 C if and only if h(C,C,) I 0. Suppose first that C, 1 C 
but h(C,, C) > E. There is then an z, in C, for which d(z,, C) 2 E .  

Pass to a subsequence along which z, converges to some IC. Then 
d(z,  C) 2 E ,  hence z $! C, hence z $ Cno for some no, and hence 
d(z,Cno) > 0. But z, E C,, for n 2 no, and so z, cannot converge 
to z, a contradiction. Suppose on the other hand that h(C,C,) -, 0. 
Of course, C, 1 A for some A,  and C c A c C, c C+' for large n; let 
€ 1 0 :  A = C .  

We next prove that 

Z ( ~ C ) E  + m2 if C" # 0, 
~ z ( C ) E  + m2 if C" = 8. XC+€ - XC = 

where X denotes two-dimensional Legesgue measure and 1 denotes arc 
length. The case C" = 0 is easy, since then C is a closed line segment, 
dC = C, and X(C) = 0. We show in the course of the proof that dC 
is rectifiable. 

Suppose first that C is a convex polygon. On each side Si of C, 
construct a rectangle R, of height E ,  as shown in Figure 1. Between 
& and &+I lies a fan-shaped region Fi, a sector of a disc of radius E. 

If -yi is the angle at the apex, then xi  yi = 2n, and so xi XFi = r e2 .  
And of course xi XRi = Z(dC)e. Hence (28) for the polygona; case. 

Next, take D to be a polygon inscribed in the general C, and apply 
(28) for E = 1: Z(dD) < XD+l - AD 5 Thus l (8D)  is bounded, 
and d D  is indeed rectifiable. And if C c Q, then Cfl c [-1,212, 
which gives 

(29) Z(X) 5 9 if C c Q. 

(It is intuitively clear that, in fact, Z(dC) 5 4.) 
Before proving the general case of (28)) we show that X(dC) = 0. 

If C" = 8, this is easy. In the opposite case, translate C so that the 
origin is an interior point. The sets cy(dC) are disjoint, and X(cy(dC)) = 
a2X(dC), which is impossible if X(dC) > 0. 

To prove (28) for the general C with nonempty interior, note first 
that each point of C is the limit of points in Go: Given u in C, choose 
z1 and z2 in C" in such a way that u, z1, z2 are not colinear and hence 



252 APPENDIX M 

are the vertices of a triangle V contained in C;  but obviously, V" c C" 
and hence u E avo. Now choose inscribed polygons C, in such a 
way that C, r A,  where C" c A C C. Then Z(aC,) l(8C) (by the 
definition of arc length), and XC, r XA = XC (since X(aC) = 0). Also, 
CL' C C;il C C+'. If z E C', then 12 - yI < E for some y E C". But 
then y E C, for some n, so that d(z ,  C,) < E and 2 E CLe: C' c C;'. 
Thus C;' 1 B ,  where C' C B c C+', and so XC;' t XB = XC+€ 
(since X(aC+') = 0). Hence (28) .  

A further inequality: 

(30) X(ClAC2) I 45h(C1, C2) for C1, C2 EQ. 

Suppose that h(C1, C2) < h. Then C2 n Cf C CTh - C1 and C1 n Cg c 
C:h - C2, and so, by (28 ) ,  X(C1ACz) 5 2(Z(aCl) + Z(dC2))h + 27rh2. 
And now (29)  gives X(ClAC2) 5 36h + 27rh2. Since h(C1, C2) 5 a, 
letting h tend to h(C1,Cz) gives (30). 

A boundary point of a convex set is regular if through it there runs 
only one support line for the set (it is not a "corner" of the boundary). 
Another fact we need is that, if C is convex, then every boundary point 
z of the larger convex set Cf' is regular. Indeed, there is a unique point 
y of C such that Iz- yI = E ,  and B(y,  e ) -  c C+'; since any line through 
z that supports C+' must also support B(y, E ) - ,  there can be only one 
of them. Since h(C,C+') = E, it follows that every convex set can 
be approximated arbirarily closely in the Hausdorff metric by a larger 
convex set whose boundary points are all regular and whose interior is 
nonempty. (Although the boundary of the approximating set has no 
corners, it may contain straight-line segments.) 

M18. The Size of +Nets. The basic estimate: 

Theorem. There is a constant A such that, for 0 < e < 1, there 
exists in T an E-net T ( E )  consisting of N ( E )  convex polygons, where 

logN(E) 5 A -log-. E t  
Further, for each C in T ,  there is a C' in T ( E )  such that C c C' and 
h(C, C') < E (approximation from above). 

It is possible to remove the logarithmic factor on the right in (3l) ,t  
but the proof of the stronger inequality is both more complicated and 

t Dudley [21], p. 62. 
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less intuitive. We prove only the inequality (31) as it stands, since this 
suffices for the application in Section 15. 

PROOF. Let r be a positive integer, later to be taken of the order 
fl. Assume that r 2 8. We want to approximate an element C of 
T by a convex polygon with a limited number of sides, and we proceed 
by constructing a sequence of approximations C1, (72, .  . .. These sets 
may not be contained in Q and hence may not be elements of T ,  but 
we can remedy this at the end by intersecting the last approximation 
with Q. First, we take C1 to be a convex set that has only regular 
boundary points, has nonempty interior, and satisfies C c C1 and 
h(C,C1) < l/r2, as we know we can. 

For z on dC1, let L ( z )  be the (unique) support line through z, 
and let u ( z )  be the unit vector that starts at z, is normal to L ( z ) ,  
and is directed away from C1. If p ( z )  is the endpoint of ~ ( z )  after 
it has been translated to the origin, then p( . )  maps dC1 continuously 
onto the unit circle (it may not be one-to-one, since dC1 may have 
flat places). For 0 5 j < r ,  let wj be a point of dC1 such that p(wj) 
has polar coordinates 1 and 27rj/r. Since C1 may not be contained 
in Q, (29) is not available as it stands. But C1 c [-1,212, hence 
CT' c [-2,312, and the argument leading to (29) gives l(dC1) 5 25. 
Therefore, there are points on dC1, at most 25r of them, such that 
the distance along dC1 from one to the next is at most 1 / ~ .  Merge 
this set with set of the wj. This gives points XO, XI,. . . , Xk-1, ordered 
clockwise (say) around E l ,  such that, first, 1zi-zi+lI 5 1/r ( i+l  = 0 
for i = k - l),  second, the angle Qi between the support lines L(z i )  and 
L(zi+l) satisfies 0 5 Qi 5 27r/r, and third, k 5 26r. Now L(z i )  is the 
boundary of two closed half-planes; let H ( z i )  be the one containing 
C1. Then C2 = flfzi H ( z i )  is a convex polygon which contains C1. 

Suppose at first that all the angles Oi are positive, which implies 
that CZ has exactly k sides. Consider successive points xi and zi+l: 
and let yi be the point where the two lines L(zi )  and L(zi+l) intersect 
(Figure 2). If ai and Pi are the angles at the vertices zi and zi+l of 
the triangle ziyizi+l, and if zi is the foot of the perpendicular from yi 
to the opposite side, then ai +Pi = Qi. From T 2 8 follows Qi 5 27r/r 5 
7r/4 and therefore,t Iyi - ziI = 1zi - ziI t ana i  5 1zi - zi+ll tanQi 5 
( 1 / ~ )  tan(2nlr)  5 47r/r2. This implies that ea,ch point of the segment 
from zi to yi is within distance 16/r2 of a point on dC1. The same 
argument applies to the segment from zi to the corresponding point 

If 0 5 t 5 ~ / 4 ,  then cost 2 114, and so tant 5 t/cost 5 2t.  
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yi-1 on the other side. The segment from yi-1 to yi is one of the k sides 
of C2, and each of its points is within 16/r2 of 8Ci. Since C1 C C2, it 
follows that h(C1, C2) 5 16/r2. 

If a Bi is 0, join the sides lying on L(z i )  and L(zi+l) (lines which 
coincide in this case) into one longer side. If we do this for each i such 
that Bi = 0, we see that C2 now has 26r or fewer noncollinear sides 
(k 5 26r), and the angle between each side and the next is at  most 
27r/r. 

There are infinitely many possibilities for the polygon C2, because 
there is no restriction on the vertices. The next step is to replace 
the vertices of C2 by elements of the lattice C, of points of the form 
( i / r 2 , j / r 2 )  (i and j integers), which will lead to a convex polygon C3 
for which there are only finitely many possibilities. 

Consider a vertex yi joining adjacent sides Si and Si+l of C2 (Figure 
3 ) .  We want to move yi to a nearby element of C,. Extend Si and 
Si+l past yi to get rays Ri and R: from yi; let Ai be the open region 
bounded by Ri and Ri. Since r > 4 ,  so that 27r/r < 7r/2, the angle 
between Ri and R: is obtuse. It is clear that, for p > l / r 2 ,  any disc 
of radius p contains a point of L=, in its interior. Consider the disc of 
radius p that is tangent to the rays & and R;. Since the angle at yi is 
obtuse, Iyi - a\ < p = \ b  - a\,  and so Jyi - bl < 2 p .  Take p = 4/3r2: Ai 
contains a point y: that lies in C, and satisfies Iyi - yll < 4/r2 .  

Let C3 be the convex hull of the points y:. (Some of the yi may 
be interior to C3.) Since y: lies in the open set Ai, a ray (Figure 4 )  
starting from y: and passing through yi will enter the interior of C2 
and will eventually pass between a pair 9; and (or through one of 
them). This means that yi lies in the triangle with vertices y;, y;, and 
y;+l and hence lies in the convex hull C3. And since this is true for 
each vertex of the polygon C2, it is a subset of C3. Finally, since each 
yi is within 4/r2 of a point of C2, we arrive at h(C2,C3) < 4/r2.  

The successive Haudorff distances from C to C1 to C2 to C3 are less 
than l / r 2 ,  16/r2, and 4/r2 ,  and therefore, h(C,Cs) < 21/r2. And the 
sets are successively larger. How many of these convex polygons C3 are 
there? Although C3 may extend beyond Q, it is certainly contained in 
[-1, 212. The number of points of C, in this larger square is less than 
9(r2 + 1 ) 2  and hence less than 36r4. Since each of the 26r or fewer 
vertices of C3 is one of these points, the number of polygons C3 is a t  
most 

Mr = c y  ( 36r4 ) 5 26r( 36r4 2 6 r )  5 26r(36r4)26'. 
a = 1  
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(The first inequality holds if 26r is less than half of 36r4, which only 
requires r > 1.) Clearly, log Mr 5 Br log T for a constant B. 

If C4 = Q n C3, then C4 is a convex polygon containing C;  then 
h(C, C4) < 21/r2,  and MT bounds the number of these special elements 
of T .  Given an E ,  take r an integer such that r > 2 r - 1. Then 
21/r2 < E ,  and if E is small enough, then r 2 8 (a condition used in 

0 

Suppose that C is in T ,  and choose a polygon C: in T ( E )  in such a 
way that C c C! and h(C, C:) < E .  Now let C: = [z: d(z,  (C:)') 2 E ] .  

Then C: is convex and closed. And we can show that C: c C ,  that 
is, that 2 $ C implies d(z ,  (C:)') < E .  Since this inequality certainly 
holds if z 4 C:, assume that z E C: - C. If y is the point of C nearest 
to IC (Figure 5 ) ,  then C is supported by the line through y that is 
perpendicular to the segment from y to z. Extend this segment until 
it meets aC: at the point z .  Then y is the point of C nearest to z ,  
and since h(C, C:) < E, we have Iy - z (  < E ,  and hence d(z,  (C:)") < E .  

Therefore, C: C C C Cr. 
A simple argument shows that X(C:-C:) 5 l(aC:)~ 5 9 ~ :  On each 

side of the convex polygon C: construct a rectangle that has height E 

and overlaps C: (Figure 6 ) .  The extra factor of 9 can be eliminated by 
starting over with ~ / 9  in place of E and noting that replacing E by ~ / 9  in 
(31) gives a function of the same order.+ (It is not true that h(C:, Cr) 
is always small: Take C: to be an isosceles triangle with angle E at the 
apex.) 

To sum up: If C is an element of T ,  there are an element C: of 
T ( E )  and a companion convex set C:, such that 

the construction). Since r 5 2 m ,  (31) follows. 

Since C: is completely determined b y  C:, it follows that the number of 
possible pairs (CL, C:) is N ( E ) .  

Let TO be the countable class of finite intersections of sets contained 
in U, T ( l / n ) .  If Cn = Cy,kl then Cn E To and h(C,Cn) 3 0, 
and since C c Cn+l c Cn, it follows that CT1 1 C. 

t In marking examination papers, Egorov (of Egorov's theorem) used to take off 
a point if a student ended up with 2~ instead of c. 
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PROBABILITY 

M19. Etemadi’s Inequality. If S1,. . . , S n  are sums of independent 
random variables, then 

To prove this, consider the sets Bk where 
j < k. Since the B k  are disjoint, 

2 3a  but lSjl < 30 for 

M20. Bernstein’s Inequality. Suppose that 171,. . . , qn are indepen- 
dent random variables, each with mean 0 and variance 02, and each 
bounded by 1. Let S = 171 + + + qn; it has mean 0 and variance 
s2 = no2. Then 

This is a version of Bernstein’s inequality. 

Then, since 17: 5 7: for r 1 2, 
To prove (33), suppose that 0 < t < 1 and put G ( t )  = 1/(1 - t ) .  

By independence, 
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and therefore, for positive y, 

ets > etY] I e-tyE[etS] 5 exp[3G(t) t2s2 - ty] , P[S 2 y] = P [  - 

We want to bound the probability on the left, and the method will be 
clear if at first we operate as though G(t)  were constant:G(t) = G. 
This makes it easy to minimize the right side over t .  The minimum is 
at  

(34) 

and substitution 

(35) 

gives 

Y t = -  
s2G' 

Although this argument is incorrect, a modification of it leads a 
good bound. Replace the G in (34) by 1/(1 - t )  and solve for t :  t = 
y/(s2 + y). Since this t is between 0 and 1! (35) does hold if we replace 
the G there by 1/(1 - t )  = ( s 2  + y)/s2: 

Replace y by xJ;I and use s2 = no2; the resulting inequality, together 
with the symmetric inequality on the other side, gives (33). 

M21. R6nyi Mixing. Events Al,A2,. . . in ( Q , F ,  P )  are mizing in 
the sense of Re'nya if 

(36) P(A, n E )  -+ aP(E) 

for every E in 3. In this case, P(A,) + a. Suppose that 30 is a field 
in 3, and let 3 1  = ~ ( 3 0 ) :  30 C 31 C 3. 

Theorem. Suppose that (36) holds for every E in 30 and that 
A, E 3 1  for all n. Then 

(37) 

holds af g is 3-measurable and P-integrable; in particular, (36) holds 
for all E in 3. And af P dominates PO,  a second probability measure 
o n 3 ,  then 

(38) Po(&)  + a. 
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PROOF. The class of 3-sets E satisfying (36) is a X-system (use the 
M-test) which contains the field 30 and therefore [PM.42] contains 31. 
It follows that (37) holds if g is the indicator of an 31-set and hence 
if it is a simple, F1-measurable function. If g is 31-measurable and 
P-integrable, choose simple, F1-measurable functions g k  that satisfy 
19k1 I 191 and 9k + 9. Now 

Let n + 00 and then let k --f 00: (37) follows by the dominated 
convergence theorem. 

Now suppose that g is 3-measurable and P-integrable and use con- 
ditional expected values. Since A, € 3 1  and E[g((.Fl] satisfies (37), it 
follows that 

L , g d P = L n  E[gll31] dP + f2 1 E[gJl31]d p = f2 1 9 d P ;  

(37) again holds. To prove (38), take g = dPo/dP. 0 

M22. The Shift Operator. Let R+03 be the space of doubly infinite 
sequences z = (. . . , ~ - ~ ( z ) , ~ o ( ~ ) , ~ ~ ( z ) ,  . . .) of real numbers; the Jk are 
the coordinate variables. Take 72:" to be the field of finite-dimensional 
sets (cylinders), and let R+" = o(R$"). Let T be the (left) shift 
operator, defined by the equation &(Tz) = En+1(z). If 6 is a function 
on R+", define BT as the function with value B(Tz) at z; for example, 

Define R", R", and ",r as in Example 1.2: z = ( ~ { ( x ) , & ( z ) ,  . . .). 
Let T' be the shift operator here: <L(T'z) = tk+l(z) for n 2 1. 

Any stochastic process . . .q-1, 770, 771,. . . can be realized on the 
space (R+03, R+"), in the sense that, by Kolmogorov's existence the- 
orem, there is a probability measure P, on ",+" under which the 
coordinate process {&} has the same finite-dimensional distributions 
as { qn}.  Since all convergence-in-distributions results depend only on 
the finite-dimensional distributions, {qn} and {&} are equivalent for 
our purposes. Now (7,) is stationary if and only if T preserves P, on 
R+03: P,T-l = P,. And by definition, (77,) is ergodic if T is ergodic 
under P,. Similarly, a one-sided process (771,772, . . .) can be realized on 
(R', R", Pb) for the appropriate Pb; the original process is stationary 
if and only if T' preserves Pb and is by definition ergodic if T' is ergodic 
under P,. 

SnT = En+l. 
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But if (71, 7 2 , .  . .) is stationary, it can also be represented on the 
space (RS", RS", P,) if, under P,, (&, . . . , &) has the distribution of 
(71 . . . , q1+2)--2L) for all u and v. Thus a stationary one-sided process 
can be extended to a stationary two-sided process with the same finite- 
dimensional distributions. And T ,  T', and the two processes are all 
ergodic or none is. This is because ergodicity depends only on the 
finite-dimensional distributions: For example, if T is ergodic under P, 
then it follows by the ergodic theorem and the bounded convergence 
theorem that 

1 ,  
- C P(A n T - ~ B )  -+ P(A)P(B) 
n (39) 

k=l 

for all A and B in R+". Conversely, this implies ergodicity: If A = B 
is invariant, then PA is 0 or 1. And (39) holds in general if it holds for 
A and B in Rt": Given A and B in R+" and an E ,  choose sets A, 
and B, in R:" in such a way that P(AAA,) < E and P(BAB,) < E ,  

and prove (39) by approximation. 
If E[&ll<ll . .  . , <,-I] = 0, so that ((I ,&, . . .) is a stationary mar- 

tingale difference, then the two-sided extension satisfies the condidtion 
E[&ll&k,. . . ,&-I] = 0 for each k 2 1, and it follows by a standard 
convergence theorem [PM.470] that E[&ll. . . , &-2, &-1] = 0. 

If F is a a-field in RSm, let T-lF be thz a-field of sets T-lA for 
A E F. Suppose that P is preserved by T .  If 8 (measurable R+") is 
integrable and A E Fl then, by change of variable, 

and therefore, 

(40) E[OllF]T = E[8T(IT-1F]. 

If Fn = a [ & : k  5 n], then T-'F, = &+I,  and if the coordinate 
variables & are integrable, then (40) gives 

(41) E[JillFnlT = E[<Z+l Il-Tn+ll. 

In particular, 
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For any 0, {OTn: n = 0, f l ,  . . .} is a stationary stochastic process, and 
[PM.495] if T is ergodic, so is this new process. Thus {E[<n113n-1]} 
and { E[<z/I.Fn-l]} (for 4; integrable) are ergodic processes. 

M23. Uniform Mixing. Let 1 1  . 1 1  stand for the L2 norm, and write 
5 E A if 4 is A-measurable. There are three standard measures of 
dependence between o-fields A and l?: 

(43) a(A, B) = S U ~ [ J P ( A  n B )  - P A .  PBJ:  A E A, B E l?], 

These measures are successively stronger; specifically, 

To prove the left-hand inequality, simply take < = I A  - PA and 77 = 

The right-hand inequality in (46) is harder to prove. It is enough 
to consider simple random variables E = xi u ~ I A ~  and q = xj v j I ~ ~ ,  
where {Ai) and {Bj} are finite decompositions of R into A-sets and 
&sets, respectively. By Schwarz's inequality 

I B  - PB. 

Hence it is enough to prove that 
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a j 

(47) will follow if we show that 

C IP(BjlAi) - PBjI I 2 d A , B )  

holds for each i. If C z  [C,:] is the union of those Bj for which the 
difference P(Bj(Ai) - PBj is positive [nonpositive], then C z  and Ct- 
lie in 13, and therefore, 

j 

C IP(Bj1Ai) - PBjl = [P(CTIAi) - PCT] + [PCF - P(CJAi)] 
j 

I 2 d A ,  a). 
This proves the right-hand inequality in (46). (It is easy to strengthen 
the inequality between the first and third members of (46) to a(A, 23) 5 
$44 a).) 

(48) 

Finally, if q is B-measurable and has a second moment, then 

IIE[rllldI - E[rllll I P(A,B)llrl - E[77111. 

We may assume that E[q] = 0. By the definition (44)) IE[qllA]q]l 5 
p(d,B)llE[q11A]II . 11q11. But the left side here is IE[E[qllA]qllA]]I = 
lE[(E[qllA])2]1 = IIE[q11d]J12, from which (48) now follows. 

M24. The Gauss-Kuamin-L6vy Theorem. The theorem is this: 

Theorem. Suppose that fo has two continuous derivatives o n  [ 0,1] 
and that f o ( 0 )  = 0 and fo(1)  = 1. Define f l ,  f 2 , .  . . b y  the recursion 

(49) 
W 

f n + d t )  = C[fn(') 3 - f n ( L ) ]  3 + t  
j=1 

Then,  fo r  n 2 0 and 0 I t I 1, 

and 



262 APPENDIX M 

where Is,(t)l v Is;(t)l I K B ~ ,  K > 0, o < B < I.+ 

(19.38). Let 
This can be used for a simple proof of the uniform mixing condition 

(52) A = [z: u ~ ( z )  = ai, 1 1. i 5 k], 

and define fn(t) as the conditional probability P([X:T"~Z 5 t](A), 
where P is Gauss's measure (19.22). Since 

1 00 

j=1 j + t  3 

it follows by countable additivity that the f, satisfy (49). Let a(t)  
[,f3(t)] be the smaller [larger] of fi+. - .+& and G+. . .+d-. 
Then, since x = d m  + + d a k ( x )  + Tkx ,  A n [x: Tkx 5 t] is the 
set of irrationals in [ ~ ( t ) ,  @(t)] .  Therefore, 

and fo satisfies the conditions of the Gauss-Kuzmin-Levy theorem. 
+ d a  + - *, it follows by the 

uniqueness of the partial quotients in an expansion that the general 
element of the a-field &+, = a ( ~ k + ~ , a ~ + , + l ,  . . .) has the form B = 
[x: Tk+n-lx E HI for H E R'. Therefore, by (50), 

Since Tk+,-lz = 

P(B1A) = fL-l(t) d t  = P H  + &-l, s, 
where 18,-11 5 KOn-'. But P H  = PB by stationarity, and it follows 
that 

(53) IP(A n B )  - PA.  PBI 5 KBn-lPA 

holds if A has the form (52) and B E .Fk+n. The class of sets A sat- 
isfying (53) is closed under the formation of countable disjoint unions, 
and each element of %k = ~ ( a l , .  . . , a h )  is such a union of sets (52). 
Therefore, (53) holds for A E 7-lk and B E &+,, which proves (19.38). 

~ ~~ ~ ~ ~~ 

t See Rockett&Sziisz [58], p. 152 for the proof. They do not give (50) (which 
obviously implies (51)) as part of the statement of the theorem, but it follows from 
their method of proof. 
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M25. Normal Tails. For x > 0, 

Therefore, for x > 0, 

(54) 

This obviously follows from (54) if x 2 l/G. In the opposite case, 
we have P[N 

For an inequality in the opposite direction, assume that 0 5 x < y. 
Since the normal density exceeds e - Y 2 / 2 / f i  on (x, y) ,  we have 

x] 5 i < e-1f4R 5 e-"f2. 

Y - x e - y 2 / 2  

& 
P[x < N < y ]  2 - 

If [B(s):O 5 s 5 t]  is a Brownian motion and a 2 0, then, by 
symmetry and the reflection principle (see (8.20)), 

P[sup,,t IB(s)I 2 a] = 2P[SUP,<t - B(s )  2 a] = 4P" 2 a/&].  

Combine this with (54) to get 

Combine it with (55) to get 



SOME NOTES ON THE PROBLEMS 

1.11. Given E and a compact K ,  cover K by finitely many balls 
B(xi ,  ri), i 5 k, for which xi E K ,  ri < ~ / 2 ,  and B(zi, ~ i ) -  is compact; 
take G = UiB(zi , r i )  and K1 = G-. Choose 6 so that 6 < ~ / 2  and 
p(K,GC)  > 6. Then K C Kb C K1 C K'. If f(x) = (1 - p(x ,K) /6 )+ ,  
then IK 5 f 5 I K ~ ,  and hence the uniformly continuous f has compact 
support. If Pf = Qf, then PK < Pf = Qf 5 QK1 5 QK'. It follows 
that PK 5 QK and (symmetry) PK = QK. 

1.17. Suppose that L is locally compact and dense in the open 
ball B,  and arrange that B- n L is compact; choose points x, of B so 
that p(zm, 2,) 2 E > 0 for m # n, then choose points yn of B- L so 
that p ( y n , x n )  < ~ / 3 ,  and conclude that B- n L is not compact. 

1.18. Take T = (0,1].  Let X be a Hamel basis for [l, GO) that 
contains 1 [PM.198], and take U to consist of the reciprocals of the 
elements of X\{l}. Consider the elements of Cb(T) defined by zU(t)  = 
sin(27r/ut) for u E U .  Choose a and p so that 0 < a/27r < p/27r < 
1/4. Then, for each distinct u and 2) in U ,  there is (Hardy&Wright 
[36], Theorem 443) a t in T such that ({ l /u t} ,  {l/vt}) E (0, a / 2 ~ )  x 
(p/27r, i), where the brackets denote fractional part. But then we have 
lxu(t)-xv(t)l  2 sinp-sina > 0. The I[xU-x2,11 are therefore bounded 
away from 0. 

2.8. If { x n }  contains a subsequence converging to 2, then P = 6, 
is easy to prove. Suppose on the other hand that {z,} contains no con- 
vergent subsequence. Then, for each k, {z,} contains no subsequence 
converging to xk, hence there is an rk such that z, $ B(zk, rk)  for in- 
finitely many n, and hence P(B(xk ,  r k ) )  < lim inf, bZn(B(zk, Q ) )  = 0. 
But if F consists of the xk and G = F C ,  then F is closed (no sequence 
in F converges) and G is open, so that P G  < liminf, 6,,G = 0. But 
now S = G U uk B(Q,  ~ k ) ,  a countable union of sets of P-measure 0. 

2.9. Let F p  be the field (Problem 2.5) of P-continuity sets. If F 
is closed, then F E  J F and F' E F p  for all but countably many 6 .  The 
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field F p  therefore generates S, and [PM.169] for each A in S and each 
E ,  P ( A A B )  < E for some B E Fp. But P(B-  - B )  = 0: For each 
A in S and each E ,  P(AAF)  < E for some closed F .  If Plfl < 00, 

there is, for given E ,  a simple hl = Ci&lAi (ti # 0) such that 
P ( f  - hll < E .  Choose closed sets Fi such that P(AiAFi) < €/It i lk  
and set h2 = &IF,; then Plf - h2l < 26 .  Now choose 6 so that 
PFi 5 PF,“ < PFi + ~/lti(lc for each i. Let gi(x) = (1 - p(x ,  Fi) /S)+ 
and g = C tigi.  Show that Plf - g1 < 3 ~ .  

3.8. It would follow that (Szn - Sn)/fi = fiS2n/d% - Sn/fi 
converges in distribution to N and in probability to (fi - 1)q. But 
then r] and (a- l )q  would have the same distribution as N ,  which is 
impossible. 

4.2. Assume that X n  * X (on A ) .  To show that ( X Y , X ; )  * 
( X l , X 2 ) ,  define pij(x,y) as xy/( l  - x) if x # 1; if x = 1, take it to be 
1 or 0 as j = i + 1 or not. Let J consist of the pairs of distinct positive 
integers and let J k  consist of the (z , j )  in J for which i , j  I k .  Suppose 
that f is bounded and continuous on R2. By Theorem 3.5, it will be 
enough to show that 

k 

That this holds if J is replaced by J k  is clear. From C J p i j ( X ? ,  Xj”) = 
C J p i j ( X i , X j )  = 1, it follows that CJ, .p i j (X? ,Xj”)*CJkcpi j (X, ,Xj ) .  
Therefore, for given E and r ] ,  there exist k and no such that n 2 no im- 
plies P[CJL p i j ( X 1 ,  Xj”) > E ]  < r ] .  Now use the fact that f is bounded 

to derive (1). 
4.3. Let G and ll have the GEM and Poisson-Dirichlet distri- 

butions, so that pG =d n. In the argument leading to Theorem 
4.4, we showed that aZn * G and concluded by Theorem 4.1 that 
pZn = puZn + pG =d n. But now (see the preceding problem) 
apZn * an and apZn =d aZn + G, so that an =d G. And 

5.12. (a) The class of Bore1 sets in Q has the power of the con- 
tinuum [PM.36]. (d) I f f  is bounded and uniformly continuous, then 

aG =d =d U n  =d G. 

where wf is the modulus of continuity. 
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6.4. Consider the functions p'(z, a ) .  

6.5. It is easy to show that P, --+ P (weak*) implies P, J O  PO. 
Suppose now that P, JO Po and that f is bounded and continuous 
(and hence S-measurable). If we can, for given r ] ,  construct a bounded, 
continuous, So-measurable g such that f 5 g and Pg 5 Pf + r ] ,  then 
P, -P P (weak*) will follow without difficulty. Assume that 0 < f < 1, 
and choose points ti such that 0 = t o  < * . .  < tl, = 1, ti - ti-1 < r ] ,  
and P[f = ti] = 0. If Fi = [ti-l 5 f 5 ti], then f 5 Cit i IFi  and 

Define gi by (6.1) with Fi in place of F ( M  supports P ) ,  and take g = xi t igi .  Then f 5 g and Pg 5 xi tiP(((F;>" n M)' )  = Xi tiP(F;) < 

Ci t iPF i  5 Pf + 7. Choose c SO that C i t i P ( F t )  < Ci t iPF i  + q. 

tiPFi + 7 5 Pf + 2 ~ .  
7.2. See Dudley [23], p. 40. 
8.1. Show that every locally compact subset of CO = [x E C: z(0) = 

01 is nowhere dense and that each ball in CO has positive Wiener mea- 
sure. 



BIBLIOGRAPHICAL NOTES 

Since this second edition is more a textbook than a research mono- 
graph, I think few historical notes are needed. In [6] (the first edition 
of this book) there are some notes of this kind; for more extensive ac- 
counts of the history, see Dudley [23], Ethier & Kurtz [26], Hall & Heyde 
[35], Jacod & Shiryaev [39], and Pollard [53]. 

Books devoted pimarily to weak convergence are Davidson [15] 
(for students of economics), Ethier & Kurtz [26], Jacod & Shiryaev (391, 
Parthasarathy [48], Pollard [53], Shorack & Wellner [SO], and van der 
Waart & Wellner [65]. Books partly devoted to weak convergence are 
Dudley [23], Durrett [24], Hall & Heyde [35], Karatzas & Shreve [40], 
and Strook & Varadhan [63]. 

Section 4. Vervaat [66], p. 90, shows that (4.13) has (4.14) as its 
Laplace transform and connects it with limit theory for record values. 
Griffiths [33], p. 145, gives the joint moments for the density (4.15); 
this generalizes (4.17). For a different approach to Theorem 4.4, see Ar- 
ratia, Barbour, &Tavark [4]. For the case of cycle lengths (0 = l ) ,  the 
result is due to Shepp & Lloyd [59]. Theorem 4.5 was proved in [8]; the 
proof given here is that of Donnelly& Grimmet [17]. For the proof of 
Theorem 4.5 itself, the argument in [8] is the most straightforward, but 
the Donnelly-Grimmet approach is better because it puts the result in 
a very general and interesting context; see Arratia, Barbour, & Tavar6 
[3] and [4], and also Arratia [2]. For more on computation, see Griffiths 
[33] and [34]. The arguments at the end of Section 4 are laborious but 
require only calculus. 

Section 5. Prohorov’s fundamental paper is (561. The proof of 
Theorem 5.1 given here is from [7]; for a similar construction on locally 
compact spaces, see Halmos [36], p. 231. The construction in Problem 
5.12 is due to Leger; see Choquet [13]. In this connection, see also 
Preiss [55]. 

Section 6. “Weak’ly” can be pronounced “weak-circly.” 
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Section 7. The second proof of Theorem 7.5 is due to Wichura [67]. 

Section 10. The maximal inequalities of this section are from [6]. 
The proofs here, much easier than those in [6], are due to Michael 
Wichura. See Bickel & Wichura [5] for extensions to multidimensional 
time. 

Section 11. Theorem 11.1 is from a manuscript version of [6]; it 
was cut to keep the book short. For generalizations, see Gonz6les 
Villalobos [30]. For a different approach to functional limit theorems 
for lacunary series, see Philipp & Stout [52]. 

Section 12. Skorohod’s basic paper is [61]. 
Section 14. The proofs here all follow the same pattern: We prove 

weak convergence of the finite-dimensional distributions and then ver- 
ify tightness. Some patterns of proof circumvent the tightness issue. 
An application of Theorem 12.6, for example, requires no consideration 
of tightness, since that is effectively built into its hypothesis; see the 
proof of Theorem 17.3. Theorem 19.4 of [6] is another example. For a 
systematic treatment of this approach, see Ethier & Kurtz [26]. 

Section 15. Theorem 15.1 is from Dudley [20] and Theorem 15.2 
from Bolthausen [ll]. The proof in [ll] uses the theory of analytic 
sets, but as the proof here shows, this is unnecessary. The theorem on 
the size of €-nets [M18] is due to Dudley [21]. 

Section 16. The development is based on Lindvall [43] and Aldous 

Section 17. Theorem 17.2 is another result cut from [6] for reasons 
of space. For a different approach to these problems, see Philipp [49]. 
De Koninck and Galambos [16] have a result related to Theorem 17.3; 
they prove convergence of the finite-dimensional distributions but do 
not formulate a functional limit theorem. 

Section 18. For statistical applications of martingale limit theo- 
rems, see Hall & Heyde [35]. 

Section 19. In [6], thirty pages (Sections 20 and 21) were necessary 
to cover what is achieved very simply and efficiently in this section by 
the use of Gordin’s method of approximating stationary processes by 
martingales; see Gordin [31]. Although convergence to diffusions was 
briefly treated in [6] (see the comments on Section 14 above), it has 
become a subject of its own, and I omit any account of it here. See 
Ethier&Kurtz [26] for a systematic treatment; a good place to start 
is Durrett [24]. I have cut Section 22 of [6], on empirical distribution 
functions for dependent random variables. 
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Section 20. For a survey of various kinds of invariance principles, 
see Philipp [51]. Theorem 20.2 can be found in Breiman [12], p. 279, 
and in Freedman [29], p. 83. 

Section 21. The second proof of Theorem 21.1 was shown to me 
by Walter Philipp; it is based on [50]. 

Section 22. The proof is from Strassen [62] and (on several points) 
Freedman [29]. 
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Aldous’s tightness criterion, 176 
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Arratia, Barbour, & Tavark, 269 
Arzel&-Ascoli theorem, 81, 159 

Baire category theorem, 241 
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Barbour, 269 
Base for a topology, 237 
Bernstein’s inequality, 256 
Beta function, 245 
Bickel & Wichura, 270 
Bohr, 10 
Bolthausen, 270 
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Borel a-field, 7 
Boundary, 236 
Bounded set, 240 
Breiman, 271 
Brownian bridge, 93, 100 
Brownian motion, 87 

Cadlag function, 121 
Cauchy sequence, 238 
Chaining, 165 
Choquet, 269 
Compact set, 241 
Complete set, 240 
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Continuity set, 15 

Convergence, in distribution, 25 
in probability, 27 

Convergence-determining class, 18 
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Coordinate variables 86 
Coupling theorem, 73 
Cover, 237 
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Davidson, 269 
De Konick & Galambos, 270 
8, 2, 236 
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De Moivre-Laplace theorem, 1 
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Dini’s theorem, 242 
Diophantine approximation, 205 
Dirichlet distribution, 246 

formula, 245 
Discontinuity of the first kind, 121 
Discrete metric, 236 
Distribution function, 25 
Distribution of a function on the line, 33 
Distribution of a random element, 24 
Dominated measures, 148 
Donnelly & Grimmett, 269 
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Egorov, 255 
Empirical distributions, 149 
Empirical processes, 156, 161 
€-net, 239 
Equicontinuity, 81 
Equivalent metrics, 237 
Erdos, 182 
Ergodic process, 197, 260 
Ergodic theorem, [PM.314] 
Etemadi’s inequality, 256 
Ethier & Kurtz, 269, 270 
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Golambos, 270 
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