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Abstract
We extend the viscosity solution characterization proved in [5] for

call/put American option prices to the case of a general payoff func-
tion in a multi-dimensional setting: the price satisfies a semilinear re-
action/diffusion type equation. Based on this, we propose two new nu-
merical schemes inspired by the branching processes based algorithm of
[8]. Our numerical experiments show that approximating the discontinu-
ous driver of the associated reaction/diffusion PDE by local polynomials is
not efficient, while a simple randomization procedure provides very good
results.

Keywords : American options, Viscosity solution, Semilinear Black and Sc-
holes partial differential equation, Branching method, BSDE.

1 Introduction
An American option is a financial contract which can be exercised by its holder
at any time until a given future date, called maturity. When it is exercised, the
holder receives a payoff that depends on the value of the underlying assets.

Putting this problem in a mathematical context, let us first consider the
case of a single stock (non-dividend paying) market under the famous Black
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and Scholes setting, [6]. Namely, let (Ω,F , (Ft)t≥0,P) be a filtered probability
space carrying a standard one dimensional Brownian motionW and let us model
the stock price process X as

Xs = x exp
(
(r − σ2

2
)(s− t) + σ(Ws −Wt)

)
, s ≥ t,

under the risk natural probability. Here, x > 0 is the stock price at time t, r > 0
is the risk-free interest rate and σ > 0 is the volatility. Then, the arbitrage free
value at time t of an American option maturing at T ≥ t is given by

V (t, x) = sup
τ∈T[t,T ]

E[e−r(τ−t)g(Xτ )] (1)

where T[t,T ] is the collection of [t, T ]-valued stopping times, and g is the pay-
off function, say continuous, see e.g. [7] and the references therein. Typical
examples are

g(x′) =

{
(x′ −K)+, for a call option
(K − x′)+, for a put option,

where K > 0 denotes the strike price.
By construction, V (·, X) ≥ g(X), and the option should be exercised only

when V (·, X)=g(X). This leads to define the following two regions:

• the continuation region:

C = {(t, x) ∈ [0, T )× (0,∞) : V (t, x) > g(x)}

• the stopping (or the exercise) region:

S = {(t, x) ∈ [0, T )× (0,∞) : V (t, x) = g(x)}.

These are the basics of the common formulation of the American option price
as a free boundary problem, which already appears in McKean [15]: V solves
a heat-equation type linear parabolic problem on C and equals g on S, with
the constraint of being always greater than g. Another formulation is based
on the quasi-variational approach of Bensoussan and Lions [3]: the price solves
(at least in the viscosity solution sense) the quasi-variational partial differential
equation {

min (rϕ− LBSϕ,ϕ− g) = 0, on [0, T )× (0,∞)

ϕ(T, ·) = g, on (0,∞)

in which LBS is the Dynkin operator associated to X:

LBS = ∂t + rxD +
1

2
σ2x2D2

where D and D2 are the Jacobian and Hessian operators.
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In this paper, we focus on another formulation that can be found in [5], see
also [4] and the references therein. The American option valuation problem can
be stated in terms of a semilinear Black and Scholes partial differential equation
set on a fixed domain, namely:{

rϕ− LBSϕ = q(·, ϕ), on [0, T )× (0,+∞)

ϕ(T, ·) = g, on (0,∞)
(2)

where q is a nonlinear reaction term defined as

q(x, ϕ(t, x)) = c(x)H(g(x)− ϕ(t, x)) =

{
0 if g(x) < ϕ(t, x)

c(x) if g(x) ≥ ϕ(t, x),

in which c is a certain cash flow function, e.g. c = rK for a put option, and H
is the Heaviside function.

Note that this semilinear Black and Scholes equation does not make sense if
we consider classical solutions because of the discontinuity of y → q(x, y). It has
to be considered in the discontinuous viscosity solution sense, see e.g. Crandall,
Ishii and Lions [11]. Namely, even if V is continuous, the supersolution property
should be stated in terms of the lower-semicontinuous envelope of q, the other
way round for the subsolution property. This means in particular that the super-
and subsolution properties are not defined with respect to the same operator.
Still, thanks to the very specific monotonicity of y → q(x, y), it is proved in
[5] that, within the Black and Scholes model, the American option price in the
unique solution of (2) in the appropriate sense.

In this work, we first extend the characterization of [5] in terms of (2) to
a general payoff function and to a general market model, see Section 2. Then,
we suggest two numerical schemes based on this formulation. The general idea
consists in (formally) identifying the solution V of (2) to the solution (Y,Z) of
the backward stochastic differential equation

Y = e−rT g(XT ) +

∫ T

·
e−rsq(Xs, e

rsYs)ds−
∫ T

·
ZsdWs

by e−r·V (·, X) = Y . In the first algorithm, we follow the approach of Bouchard
et al. [8] and approximate the nonlinear driver q by local polynomials so as to be
able to apply an extended version of the pure forward branching processes based
Feynman-Kac representation of the Kolmogorov-Petrovskii-Piskunov equation,
see [13, 14]. Unfortunately, our numerical experiments show that this algorithm
is quite unstable, see Section 3.1. In the second algorithm, we do not try to
approximate q by local polynomials but in place regularize it with a noise by re-
placing q(X, er·Y ) by c(X)1{g(X)+ε≥er·Y }, in which ε is an independent random
variable. When the variance of ε vanishes, this provides a converging estima-
tor. For ε given, the corresponding Y is estimated by using the approach of
Bouchard et al. [8] with (random) polynomial (t, x, y, y′) 7→ c(x)1{g(x)+ε≥erty′}
and particles that can only die (without creating any children). This algorithm
turns out to be very precise, see Section 3.2.
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2 Non-linear parabolic equation representation
From now on, we take Ω as the space of Rd-valued continuous maps on [0, T ]
starting at 0, endowed with the Wiener measure P. We let W denote the
canonical process and let (Ft)t≤T be its completed filtration. Given t ∈ [0, T ]
and x ∈ (0,∞)d, we consider a financial market with d stocks whose prices
process Xt,x evolves according to

Xt,x = x+

∫ ·
t

rXt,x
s ds+

∫ ·
t

σ(s,Xt,x
s )dWs (3)

in which r ∈ R is a constant1, the risk free interest rate, and σ : [0, T ]×(0,∞)d 7→
Rd×d is a matrix valued-function that is assumed to be continuous and uniformly
Lipschitz in its second component. We also assume that σ̄ : (t′, x′) ∈ [0, T ] ×
(0,∞)d 7→ diag[x′]−1σ(t′, x′) is uniformly Lipschitz in its second component and
bounded, where diag[x′] stands for the diagonal matrix with i-th diagonal entry
equal to the i-th component of x′. This implies that Xt,x takes values in (0,∞)d

whenever x ∈ (0,∞)d.
We also assume that P is the only (equivalent) probability measure under

which e−r(·−t)Xt,x is a (local) martingale, for (t, x) ∈ [0, T ] × (0,∞)d. Then,
given a continuous payoff function g : (0,∞)d → R, with polynomial growth,
the price of the American option with payoff g is given by

V (t, x) = sup
τ∈T[t,T ]

E[e−r(τ−t)g(Xt,x
τ )],

in which T[t,T ] is the collection of [t, T ]-valued stopping times. See [7].

Remark 2.1. The fact that (t, x) ∈ [0, T ] × Rd+ 7→ V (t, x) is continuous with
polynomial growth follows from standard estimates under the above assumptions.
In particular, the set {(t, x) ∈ [0, T ]× Rd+ : V (t, x) = g(x)} is closed.

The aim of this section is to prove that V is a viscosity solution of the
non-linear parabolic equation

rϕ− Lϕ− q(·, ϕ) = 0 on [0, T )× (0,∞)d

ϕ(T, ·) = g on (0,+∞)d,
(4)

for a suitable reaction function q on (0,∞)d × R. In the above, L denotes the
Dynkin operator associated to (3):

Lϕ(t′, x′) = ∂tϕ(t′, x′) + 〈rx′, Dϕ(t′, x′)〉+
1

2
Tr[σσ>D2ϕ](t′, x′),

for a smooth function ϕ. To be more precise, we define the function q by

q(x, y) =

{
0 if g(x) < y

c(x) if g(x) ≥ y , (x, y) ∈ (0,∞)d × R,

where c is a measurable map satisfying the following Assumption 2.2.
1It should be clear that this assumption is only made for simplicity. Also note that a

dividend rate could be added at no cost.
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Assumption 2.2. The map c : (0,∞)d 7→ R+ is continuous with polyno-
mial growth. Moreover, g is a viscosity subsolution of rϕ − Lϕ − c = 0 on
{(t, x) ∈ [0, T )× (0,∞)d : V (t, x) = g(x)}.

Before providing examples of such a function c, let us make some important
observations.

Remark 2.3. First, {(t, x) ∈ [0, T )×(0,∞)d : V (t, x) = g(x)} ⊂ {x ∈ (0,∞)d :
g(x) > 0} if V > 0 on [0, T ) × (0,∞)d, which is typically the case in practice
(e.g. because g is non-negative and the probability that g(X) > 0 on [0, T ] is
positive). In particular, if g is C2 on {g > 0} then one can choose c = [rg−Lg]+

on {g > 0}. Second, if g is convex, then it can not be touched from above by a C2

function at a point at which it is not C1, which implies that one can forget some
singularity points in the verification of Assumption 2.2 above. In Section 3, we
shall suggest Monte-Carlo based numerical methods for the computation of V .
One can then try to minimize the variance of the estimator over the choice of c.
However, it seems natural to choose the function c so that g is actually a viscosity
solution of rϕ−Lϕ−c = 0 on {(t, x) ∈ [0, T )× (0,∞)d : V (t, x) = g(x)}. In the
numerical study of Section 3, this choice coincides with the c with the minimal
absolute value, which intuitively should correspond to the one minimizing the
variance of the Monte-Carlo estimator. We leave the theoretical study of this
variance minimization problem to future researches.

Example 2.4. Let us consider the following examples in which σ̄ is a constant
matrix with i-th lines σ̄i. Fix K,K1,K2 > 0 with K1 < K2.

• For d = 1 and a put g : x ∈ (0,∞) 7→ [K − x]+, the function c is given by
the constant rK. This is one of the cases treated in [5]. ‘

• For d = 1 and a strangle g : x ∈ (0,∞) 7→ [K1 − x]+ + [x − K2]+, the
function c can be any continuous function equal to rK1 on (0,K1) and
equal to −rK2 on (K2,∞), whenever V > 0.

• For d = 2 and a put on arithmetic mean g : x ∈ (0,∞)2 7→ [K− 1
2

2∑
i=1

xi]+,

we can take c = rK.

• For d = 2 and a put on geometric mean g : x ∈ (0,∞)2 7→ [K −
√
x1x2]+,

c can be taken as

x ∈ (0,∞)2 7→ [rK − 1

8
(‖σ̄1‖2 + ‖σ̄2‖2 − 2〈σ̄1, σ̄2〉)

√
x1x2]+.

Since q is discontinuous, we need to consider (4) in the sense of viscosity solu-
tions for discontinuous operators. More precisely, let q∗ and q∗ denote the lower-
and upper-semicontinuous envelopes of q. We say that a lower-semicontinuous
function v is a viscosity supersolution of (4) if it is a viscosity supersolution of

rϕ− Lϕ− q∗(·, ϕ) = 0 on [0, T )× (0,∞)d

ϕ(T, ·) = g on (0,+∞)d.
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Similarly, we say that a upper-semicontinuous function v is a viscosity subsolu-
tion of (4) if it is a viscosity subsolution of

rϕ− Lϕ− q∗(·, ϕ) = 0 on [0, T )× (0,∞)d

ϕ(T, ·) = g on (0,+∞)d.

We say that a continuous function is a viscosity solution of (4) if it is both a
viscosity super- and subsolution

Then, we have the following characterization of the American option price,
which extends the result of [5] to our context. Recall Remark 2.1

Theorem 2.5. Let c be as in Assumption 2.2. Then, V is a viscosity solution
of (4). It has a polynomial growth.

Proof. We just follow the arguments of [5].
a. First note that V ≥ g, so that2 q∗(·, V ) = 0. Hence, the supersolution
property is equivalent to being a supersolution of

rϕ− Lϕ = 0 on [0, T )× (0,∞)d and ϕ(T, ·) = g on (0,+∞)d,

which is standard.
b. Fix (t, x) ∈ [0, T ] × (0,∞)d and a smooth function ϕ such that (t, x)

achieves a maximum on [0, T ] × (0,∞)d of V − ϕ and (V − ϕ)(t, x) = 0. If
t = T , then the required result holds by definition. We now assume that t < T .
If (t, x) belongs to the open set C := {V > g}, recall Remark 2.1, then one can
find a [t, T ]-valued stopping time τ such that (· ∧ τ,Xt,x

·∧τ ) ∈ C, and it follows
from the dynamic programming principle, see e.g. [9], that

ϕ(t, x) ≤ E
[
e−r(τε−t)ϕ(τε, Xτε)

]
in which τε := τ ∧ (t+ ε) for ε > 0. Then, standard arguments lead to

0 ≥ rϕ(t, x)− Lϕ(t, x) = rϕ(t, x)− Lϕ(t, x)− q∗(x, ϕ(t, x)).

Let us now assume that (t, x) ∈ S := {V = g}. In particular, ϕ(t, x) = V (t, x) =
g(x) and therefore q∗(x, ϕ(t, x)) = q∗(x, V (t, x)) = c(x). Since V ≥ g, (t, x) is
also a maximum of g − ϕ and ϕ satisfies

0 ≥ rϕ(t, x)− Lϕ(t, x)− c(x) = rϕ(t, x)− Lϕ(t, x)− q∗(x, ϕ(t, x)),

by Assumption 2.2.

This viscosity solution property can be complemented with a comparison
principle as in [5]. Combined with Theorem 2.5, it shows that V is the unique
viscosity solution of (4) with polynomial growth.

2Note that this is an important consequence of using q∗ instead of q.
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Proposition 2.6. Let the conditions of Theorem 2.5 hold. Let v and w be
respectively a super- and a subsolution of (4), with polynomial growth. Then,
v ≥ w on [0, T ]× (0,∞)d.

Proof. We adapt the arguments of [5]. As usual, one can assume without loss of
generality that r > 0, upon replacing v by (t, x) 7→ e−ρtv(t, x) and w by (t, x) 7→
e−ρtw(t, x) for some ρ > |r|. Fix p ≥ 1 and C > 0 such that |v(t, x)|+|w(t, x)| ≤
C(1 + ‖x‖p) for all (t, x) ∈ [0, T ] × (0,∞)d. Set ψ(t, x) := e−κt(1 + ‖x‖2p) for
(t, x) ∈ [0, T ]× (0,∞)d, for some κ large enough so that ψ is a supersolution of
−Lϕ = 0 on [0, T )× (0,∞)d, which is possible since σ̄ is bounded. Set

φεn(t, x, y) := w(t, y)− v(t, x)− n‖x− y‖2p − λψ(t, y)− ε∏d
i=1 x

i
− ε∏d

i=1 y
i

for n ≥ 1, ε > 0, (t, x, y) ∈ [0, T ] × (0,∞)2d, and a given λ > 0. Assume that
sup[0,T ]×(0,∞)2d (w −v) > 0. Then one can find ε◦, λ > 0 and δ > 0 such that

sup
[0,T ]×(0,∞)2d

φεn ≥ δ, for ε ∈ (0, ε◦) and n ≥ 1. (5)

Clearly, φεn admits a maximum point (tεn, x
ε
n, y

ε
n) on [0, T ] × (0,∞)2d. More-

over, it follows from standard arguments that (tεn, x
ε
n, y

ε
n) converges to some

(tn, xn, yn) ∈ [0, T ]× Rd+ as ε→ 0, possibly along a subsequence, and that

lim
ε→0

(
ε∏d

i=1(xεn)i
+

ε∏d
i=1(yεn)i

) = 0 , lim
n→∞

n‖xn − yn‖2p = 0, (6)

lim
ε→0

(w(tεn, y
ε
n), v(tεn, x

ε
n)) = (w(tn, yn), v(tn, xn)) (7)

lim
n→∞

yn = ŷ, for some ŷ ∈ Rd+, (8)

possibly along subsequences, see e.g. [7, Proof of Theorem 4.5] and [11]. Com-
bining Ishii’s Lemma, see e.g. [11], with the super- and subsolution properties
of v, ψ and w, we obtain

0 ≥r(w(tεn, y
ε
n)− v(tεn, x

ε
n))− q∗(yεn, w(tεn, y

ε
n)) + q∗(x

ε
n, v(tεn, x

ε
n))

−O(n‖xεn − yεn‖2p)− ηnε

in which, thanks to the left-hand side of (6), ηnε → 0 as ε→ 0, for all n ≥ 1. By
the right-hand side of (6), the discussion just above it, and (7), sending ε → 0
and then n→∞ leads to

0 ≥ lim sup
n→∞

{r(w(tn, yn)− v(tn, xn))− q∗(yn, w(tn, yn)) + q∗(xn, v(tn, xn))}

and therefore

lim inf
n→∞

{q∗(yn, w(tn, yn))− q∗(xn, v(tn, xn))} ≥ rδ
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by (5). Recall that c is non-negative and that w(tn, yn) − v(tn, xn) ≥ δ by
(5). If, along a subsequence, g(xn) > v(tn, xn) for all n, then q∗(yn, w(tn, yn))−
q∗(xn, v(tn, xn)) ≤ c(yn)−c(xn) for all n, leading to a contradiction since c(xn)−
c(yn) → 0 as n → ∞ (recall (6) and (8)) and r > 0. If, along a subsequence,
g(xn) ≤ v(tn, xn) for all n, then g(yn) ≤ v(tn, xn) + δ/2 ≤ w(tn, yn) − δ/2 for
all n large enough and the above liminf is also non-positive. A contradiction
too.

3 Monte-Carlo estimation
The solution of (4) is formally related to the solution (Y,Z) ∈ S2 × L2 of the
backward stochastic differential equation

Y = e−rT g(XT ) +

∫ T

·
e−rsq(Xs, e

rsYs)ds−
∫ T

·
ZsdWs

by e−r·V (·, X) = Y . In the above, S2 denotes the space of adapted processes ξ
such that E[sup[0,T ] ‖ξ‖2] <∞ and L2 denotes the space of predictable processes
ξ such that E[

∫ T
0
‖ξt‖2dt] <∞.

Remark 3.1. Note that, if (Y, Z) satisfies the above BSDE, then

Y0 = E[e−rT g(XT ) +

∫ T

0

e−rsq(Xs, e
rsYs)ds].

In the case where c = rg − Lg, on {(t, x) ∈ [0, T )× (0,∞)d : V (t, x) = g(x)},
this corresponds to the early exercise premium formula. Recall Assumption 2.2
and see [5, Section 6].

In practice the above BSDE is not well-posed because q is not continuous.
However, it can be smoothed out for the purpose of numerical approximations.
In the following, we write Es[·] to denote the expectation given Fs, s ≤ T .

Proposition 3.2. Let the condition of Theorem 2.5 hold. Let (qn)n≥1 be a
sequence of continuous functions on (0,∞)d × R that are Lipschitz in their
last component3. Assume that (qn)n≥1 is uniformly bounded by a function with
polynomial growth in its first component and linear growth in its last component.
Assume further that

lim sup
n → ∞

(x′, y′) → (x, y)

qn(x′, y′)≤q∗(x, y) and lim inf
n → ∞

(x′, y′) → (x, y)

qn(x′, y′)≥q∗(x, y) (9)

for all (x, y) ∈ (0,∞)d×R. For (t, x) ∈ [0, T ]× (0,∞)d, let (Y t,x,n)n≥1 be such
that

Y t,x,ns = Es[e−rT g(Xt,x
T ) +

∫ T

s

e−ruqn(Xt,x
u , eruY t,x,nu )du],

3See below for examples.
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for s ∈ [t, T ], and set Vn(t, x) := ertY t,x,nt . Then, (Vn)n≥1 converges pointwise
to V as n→∞.

Proof. Each BSDE associated to qn admits a unique solution (Y t,x,n, Zt,x,n) ∈
S2×L2, and it is standard to show that Vn is a continuous viscosity solution of

rϕ− Lϕ− qn(·, ϕ) = 0 on [0, T )× (0,∞)d and ϕ(T, ·) = g on (0,∞)d.

Moreover, (Vn)n≥1 has (uniformly) polynomial growth, thanks to the uniform
polynomial growth assumption on (qn)n≥1. See e.g. [16]. By stability and (9),
see e.g. [2], it follows that the relaxed limsup V ∗ and liminf V∗ of (Vn)n≥1 are
respectively sub- and super-solutions of (4). By Proposition 2.6, V ∗ ≤ V ≤ V∗
and therefore equality holds among the three functions.

Therefore, up to a smoothing procedure, we are back to essentially solving
a BSDE. In the next two sections, we propose two approaches. The first one
consists in smoothing q into a a smooth function qn to which we apply the local
polynomial approximation procedure of [8]. This allows us to use a pure forward
Monte-Carlo method for the estimation of Vn, based on branching processes. In
the second approach, we only add an independent noise in the definition of q,
which also has the effect of smoothing it out, and then use a very simple version
of the algorithm in [8]. As our numerical experiments show, the first approach
is quite unstable while the second one is very efficient.

3.1 Local polynomial approximation and branching pro-
cesses

Given Proposition 3.2, it is tempting to estimate the American option price by
using the recently developed Monte-Carlo method for BSDEs, see [10] and the
references therein. Here, we propose to use the forward approach suggested by
[8], which is based on the use of branching processes coupled (in theory) with
Picard iterations.

The first step consists in approximating the Heaviside function H : z 7→
1{z≥0} by a sequence of Lipschitz functions (Hn)n≥1 and to define qn by

qn : (x, y) 7→ c(x)Hn(g(x)− y).

Then, qn is approximated by a map (x, y) 7→ q̄n(x, y, y) of local polynomial
form:

q̄n : (x, y, y′)→
j0∑
j=1

l0∑
l=0

aj,l(x)ylφj(y
′) (10)

where (aj,l, φj)l≤l0,j≤j0 is a family of continuous and bounded maps satisfying

|aj,l| ≤ Cl0 , |φj(y′1)− φj(y′2)| ≤ Lφ|y′1 − y′2| and |φj | ≤ 1,

for all y′1,y′2 ∈ R, j ≤ j0 and l ≤ l0, for some constants Cl0 , Lφ ≥ 0. The
elements of (aj,l(x))l≤l0 should be interpreted as the coefficients of a polynomial
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approximation of qn on a subset Aj , in which (Aj)j≤j◦ forms a partition of R
and the φj ’s as smoothing kernels that allow one to pass in a Lipschitz way from
one part of the partition to another one, see [8].

Then, one can consider the sequence of BSDEs

Ȳ t,x,n,k+1
s =Es[e−rT g(Xt,x

T )]

+ E[

∫ T

s

e−ruq̄n(Xt,x
u , eruȲ t,x,n,k+1

u , eruȲ t,x,n,ku )du], k ≥ 1,

with Ȳ t,x,n,1 given as an initial prior (e.g. er·g(Xt,x)). Given Ȳ t,x,n,k, Ȳ t,x,n,k+1

solves a BSDE with polynomial driver that can be estimated by using branching
processes as in the Feynman-Kac representation of the Kolmogorov-Petrovskii-
Piskunov equation, see [13, 14]. We refer to [8] for more details.

In practice, we use the Method A of [8, Section 3]. We perform a numerical
experiment in dimension 1, with a time horizon of one year, and a risk-free
interest rate set at 6%. We consider the Black and Scholes model with one
single stock whose volatility is 40%. We price a put option which strike is
K := 40. At the money, the American option price is around 5.30, while the
European option is worth 5.05. In view of Example 2.4, we take c = rK4. We
first smooth the driver with a centered Gaussian density with variance κ−2, so
as to replace it by 0.5rKe−rterfc(κ ∗ (y − e−rtg(x))) with κ = 10. See Figure
3.1. Then, we apply a quadratic spline approximation. In actual computation,
as it is impossible to apply spline approximation on the whole half real line,
we limited the domain of y for the driver function to [0, 40(1 − e−0.06)]. We
partition this bounded domain into 20 intervals with equal-distant points and
define a piecewise polynomial on this domain by assigning a quadric polynomial
to each intervals. Finally, we match the values and derivatives of our piecewise
polynomial at each point of the grid to the original function (except at the right-
end where the derivative is assumed to be zero). The truncation of domain will
not alter the computational result as our limited domain includes the maximum
payoff for the put option. The resulting approximation is indistinguishable from
the original function displayed on Figure 3.1.
We also partition [0, T ] in 10 periods. As for the grid in the x-component, we
use a 25-point uniform space-grid on the interval [e−20, 80].
We estimate the early exercise value by first using 1.000 Monte-Carlo paths. As
can be seen on Figure 3.2, the results are not good and this does not improve
much with a higher number of simulations. The algorithm turns out to be quite
unstable and not accurate. It remains pretty unstable even for a large number
of simulated paths. This is not so surprising. Indeed, as explained in [8], their
approach is dedicated to situations where the driver functions is rather smooth,
so that the local polynomial’s coefficients (aj,l)j,l are small, and the supports of
the φj ’s are large and do not intersect too much. Since we are approximating
the Heaviside function, none of these requirements are met.

4Note that, for this payoff, the constant rK is the function with the smallest absolute value



11

Figure 3.1: Approximation of y 7→ 1{y≤0.5}.

Figure 3.2: Branching with local polynomial approximation. Upper graph:
Early exercise premium (plain line obtained by a pde solver, dashed line es-
timated). Lower graph: Error on the early exercise premium estimation.
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3.2 Driver randomization
In this second approach, we enlarge the state space so as to introduce an inde-
pendent integrable random variable ε with density f such that z 7→ (1+|z|)f ′(z)
is integrable. We assume that the interior of the support of f is of the form
(mε,Mε) with −∞ ≤ mε < Mε ≤ ∞. Then, we define the sequence of random
maps

q̃n(x, y) := c(x)1{g(x)+ ε
n≥y}

as well as

qn(x, y) :=c(x)n
{

[g(x) +Mε/n− y]+f(Mε)− [g(x) +mε/n− y]+f(mε)
}

− c(x)n

∫
[g(x) + z/n− y]+f ′(z)dz

so that
qn(x, y) = E[q̃n(x, y)]

for n ≥ 1. If c is non-negative, continuous and has polynomial growth, then the
sequence (qn)n≥1 matches the requirements of Proposition 3.2.

We now let τ be an independent exponentially distributed random variable
with density ρ and cumulative distribution 1 − F̄ . Then, Y t,x,n defined as in
Proposition 3.2 satisfies

Y t,x,ns =Es

[
e−rT

g(Xt,x
T )

F̄ (T − t)
1{T−t≤τ} + 1{T−t>τ}

e−rτ q̃n(Xt,x
t+τ , e

rτY t,x,nt+τ )

ρ(τ)

]
.

This can be viewed as a branching based representation in which particles die
at an exponential time. When a particle die before T , we give it the (random)
mark q̃n(Xt,x

t+τ , e
rτY t,x,nt+τ ). In terms of the representation of Section 3.1, this

corresponds to j0 = 1, l0 = 0, to replacing a1,0(x)φ1(y′) by q̃n(x, y′), and to not
using a Picard iteration scheme.

On a finite time grid π ⊂ [0, T ] containing {0, T}, it can be approximated
by the sequence vπn defined by vπn(T, ·) = g and

vπn(t, x) =E

[
e−rT

g(Xt,x
T )

F̄ (T − t)
1{T−t≤τ}

]
(11)

+ E

[
1{T−t>τ}

e−rτ q̃n(Xt,x
φπt+τ

, erτvπn(φπt+τ , X
t,x
φπt+τ

))

ρ(τ)

]
,

where φπs := inf{s′ ≥ s : s′ ∈ π} for s ≤ T . Showing that vπn(φπt , x) converges
point-wise to Y t,x,nt as the modulus of π vanishes can be done by working along
the lines of [1, Section 4.3] or [12]. In view of Proposition 3.2, vπn converges
point-wise to V as |π| → 0 and n→∞. A similar analysis could be performed
when considering a grid in space, which will be necessary in practice.

among the functions c satisfying the requirements of Assumption 2.2.
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Then, (11) provides a natural backward algorithm: given a space-time grid
Π := (ti, xj)i,j , (11) can be used to compute vπn(ti, xj) given the already com-
puted values of vπn at the later times in the grid, by replacing the expectation
by a Monte-Carlo counterpart.

Let us now consider a put option pricing problem within the Black-Scholes
model as in the previous section. The interest rate is 6%, the volatility is 20%
and the strike is 25. The partition π of [0, T ] is uniform with 100 time steps.
However, we update vπn only every 10 time steps (and consider that it is constant
in time in between). The fine grid π is therefore only used to approximate
Xt,x
τ by Xt,x

φπτ
accurately. We use a 40-points equidistant space-grid on the

interval [5, 50]. The random variable ε/n is exponentially distributed, with
mean equal to 10−100, while τ has mean 0.6. In Figures 3.3, 3.4 and 3.5, we
provide the estimated prices, the estimated early exercise premium as well as the
corresponding relative errors. The statistics are based on 50 independent trials.
The reference values are computed with an implicit scheme for the associated
pde, with regular grids of 500 points in space and 1.000 points in time (we
also provide the European option price in the top-left graph, for comparison).
The relative errors are capped to 10% or 40% for ease of readability. These
graphs show that the numerical method is very efficient. The relative error for
a stock price higher that 30/35 are not significant since it corresponds to option
prices very close to 0. For 10.000 simulated paths, it takes 12 secondes for one
estimation of the whole price curve with a R code running on a Macbook 2014,
2.5 GHz Intel Core i7, with 4 physical cores.

We next consider a strangle with strikes 25 and 27, see Example 2.4. The
results obtained with 50.000 sample paths are displayed in Figures 3.6.

Note that we do not use any variance reduction technique in these experi-
ments.
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Figure 3.3: Branching with indicator driver. Put option, 1.000 sample paths.
Plain lines=true values, crosses=estimations.
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Figure 3.4: Branching with indicator driver. Put option, 10.000 sample paths.
Plain lines=true values, crosses=estimations.
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Figure 3.5: Branching with indicator driver. Put option, 50.000 sample paths.
Plain lines=true values, crosses=estimations.
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Figure 3.6: Branching with indicator driver. Strangle option, 50.000 sample
paths. Plain lines=true values, crosses=estimations.
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