
Stochastic Target Problems and Applications

Bruno Bouchard
ENSAE-ParisTech and University Paris-Dauphine

bouchard@ceremade.dauphine.fr

UT-Austin Portugal Summer School and Workshop in Mathematics
Mathematical Finance and Stochastic Control

Lisbon 2012

1



Contents

I Motivation 7

1 Application in financial mathematics: super-hedging problems
8

1.1 Large investor model . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Model with proportional transaction costs . . . . . . . . . . . 10
1.3 Model with price impact . . . . . . . . . . . . . . . . . . . . . 12

2 Extension to pathwise constraint 14

3 Extension to constraints in expectation - controlled loss 16

II Geometric dynamic programming and PDE characterization for stochas-

tic target problem in P− a.s. form 20

2



1 A simple Markovian framework 22

2 The GDPP 23
2.1 V (t) ⊂ V (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 V (t) ⊃ V (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The GDPP in the monotonic case 26

4 Informal PDE derivation 28

5 PDE derivation 30
5.1 Super-solution property . . . . . . . . . . . . . . . . . . . . . 31
5.2 Sub-solution property . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Boundary condition when G = {(x, y) : y ≥ g(x)} . . . . . . . 38

6 Example: Super-hedging under constraint 40

7 The GDPP with pathwise constraints 42

3



7.1 Problem and GDPP . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 PDE characterization . . . . . . . . . . . . . . . . . . . . . . 43

III Stochastic target problem with constraint in expectation 45

1 Problem reduction 46

2 Example #1: quantile hedging in the BS model 48
2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 PDE in the domain . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 51
2.4 Explicit resolution . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Example #2: shortfall pricing in models with proportional
costs 56
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Informal PDE derivation . . . . . . . . . . . . . . . . . . . . . 58

4



3.3 PDE characterization . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Boundary condition at T . . . . . . . . . . . . . . . . . . . . 60
3.5 Boundary condition at ∂Im(ψ) . . . . . . . . . . . . . . . . . 62
3.6 Boundary condition at ∂Im(ψ) and t = T , . . . . . . . . . . . 65

4 Multiple constraints 66

5 Link with standard stochastic control problems 68

IV Optimal control under stochastic target constraints in controlled loss

form 69

1 Problem reduction 70

2 Weak dynamic programming principle 72

3 PDE characterization 81

5



V Stochastic target games 88

1 Problem formulation 88

2 How to get the Geometric dynamic programming principle... 93

3 Markovian framework 94

4 The GDP 96

6



Part I

Motivation

Probability space: (Ω,F ,P), W a d-dimensional Brownian motion, F =

(Fs, 0 ≤ s ≤ T ) the filtration generated by W .

Set of controls: An abstract set U .

Controlled process: A map : (t, z, ν) ∈ [0, T ]×Rd+1×U0 7→ Zν
t,z a cadlag

F-adapted process satisfying Zν
t,z(t) = 0.

Target : G a Borel subset of Rd+1.

Problem: Compute

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z(T ) ∈ G P− a.s.}.
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1 Application in financial mathematics: super-hedging problems

In “classical” financial market, one can rely on dual formulations that relate
prices to singular optimal control problems. What if the notion of “martingale
measure” does not apply ?
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1.1 Large investor model

Set of controls: U is the set of F-predictable process with values in U ⊂ Rd.

Controlled process: Zν = (Xν, Y ν) ∈ Rd × R with

dXν = µX(Xν, ν)dr + σX(Xν, ν)dW , dY ν = ν ′µX(Xν, ν)dr + ν ′σX(Xν, ν)dW .

⇒Xν = stocks or factors, Y ν = wealth, ν = number of stocks in the portfolio.

Target: G := {(x, y) ∈ Rd × R : y ≥ g(x)}.

Super-hedging price:

γ(t, x) := inf{y ∈ R : (x, y) ∈ V (t)}

where

V (t) := {(x, y) ∈ Rd+1 : ∃ ν ∈ U s.t. Y ν
t,x,y(T ) ≥ g(Xν

t,x(T )) P− a.s.}.
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1.2 Model with proportional transaction costs

Set of controls: U is the set of adapted non-decreasing process (component
by component) in R2.

Controlled process:

X1(s) = x1 +

∫ s

t

X1(r)µdr +

∫ s

t

X1(r)σdW 1
r

X2,ν(s) = x2 +

∫ s

t

X2,ν(r)

X1(r)
dX1(r)−

∫ s

t

dν1
r +

∫ s

t

dν2
r

Y ν(s) = y +

∫ s

t

(1− λ)dν1
r −

∫ s

t

(1 + λ)dν2
r .

⇒ X1 = stock, X2,ν = value invested in the stock, Y ν = value invested in
cash, ν1

t = cumulated amount of stocks sold, ν2
t = cumulated amount of stocks

bought, λ > 0 is the proportional transaction cost coefficient.
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Controlled process:

X1(s) = x1 +

∫ s

t

X1(r)µdr +

∫ s

t

X1(r)σdW 1
r

X2,ν(s) = x2 +

∫ s

t

X2,ν(r)

X1(r)
dX1(r)−

∫ s

t

dν1
r +

∫ s

t

dν2
r

Y ν(s) = y +

∫ s

t

(1− λ)dν1
r −

∫ s

t

(1 + λ)dν2
r .

Target: G := {(x, y) ∈ R2 × R : y ≥ gc(x
1) and x2 ≥ gd(x

1)}.

Super-hedging price:

γ(t, x1, x2) := inf{y ∈ R : (x1, x2, y) ∈ V (t)}

where

V (t) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. (Y ν
t,x,y(T ), X2,ν

t,x (T )) ≥ (gc, gd)(X
1,ν
t,x (T )) P−a.s.}.
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1.3 Model with price impact

Set of controls: U is the set of adapted cadlag piecewise constant non-
decreasing process in R.

Controlled process:

dX1,ν = µX(X1,ν)dr + σX(X1,ν)dW + β(X1,ν,∆ν)1∆ν 6=0

dX2,ν = ∆ν

dY ν = γ(X1,ν,∆ν)1∆ν 6=0 .

⇒ X1,ν = stock, Y ν = cumulated buying cost (negative), ∆ν = number of
stocks bought at time t, β(X1,ν,∆ν) = immediate impact factor, γ(X1,ν,∆ν) =

buying cost of ∆ν shares (negative).
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Controlled process:

dX1,ν = µX(X1,ν)dr + σX(X1,ν)dW + β(X1,ν,∆ν)1∆ν 6=0

dX2,ν = ∆ν

dY ν = γ(X1,ν,∆ν)1∆ν 6=0 .

Target: G := {(x, y) ∈ R2 × R : y ≥ −K and x2 = N}.

Super-hedging of a target buying cost

γ(t, x1, x2) := inf{y ∈ R : (x1, x2, y) ∈ V (t)}

where

V (t) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. Y ν
t,x,y(T ) ≥ −K and X2,ν

t,x (T ) = N P−a.s.}.
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2 Extension to pathwise constraint

Initial problem: Compute

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z ∈ O}.

Pathwise constraint: A family {O(s), s ≤ T} of Borel subsets.

Problem with path constraint:

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z ∈ O on [t, T ]}.

Example: Super-hedging with credit limit

V (t, p) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. Y ν
t,x,y(T ) ≥ g(Xν

t,x(T )) and Y ν
t,x,y ≥ −κ}.

for
O := R× [−κ,∞)1[0,T ) + {(x, y) : y ≥ g(x) ∨ (−κ)}1{T}.
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Initial problem: Compute

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z ∈ O}.

Pathwise constraint: A family {O(s), s ≤ T} of Borel subsets.

Problem with path constraint:

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z ∈ O on [t, T ]}.

Example: Super-hedging of American options

V (t, p) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. Y ν
t,x,y ≥ g(Xν

t,x) on [t, T ]}.

for
O := {(x, y) : y ≥ g(x) ∨ (−κ)}.
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3 Extension to constraints in expectation - controlled loss

Initial problem: Compute

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z ∈ O}.

Relaxed problem: Given a Borel measurable map ` and p ∈ R, compute

V (t, p) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. E
[
`(Zν

t,z(T ))
]
≥ p and Zν

t,z ∈ O}.

Remark : Could compute w(t, z) = supν E
[
`(Zν

t,z(T ))
]
and look for z such

that w(t, z) ≥ p. But it is indirect and might lead to additional numerical
instability
One can put several constraints in expectation at the same time, e.g. to impose
constraints on a terminal P&L distribution (B. and T. N. Vu [9]).
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Application to liquidation with a target costs constraint

Set of controls: U is the set of adapted cadlag piecewise constant non-
decreasing process in R.

Controlled process:

dX1,ν = µX(X1,ν)dr + σX(X1,ν)dW + β(X1,ν,∆ν)1∆ν 6=0

dX2,ν = ∆ν

dY ν = γ(X1,ν,∆ν)1∆ν 6=0 .

⇒ X1,ν = stock, Y ν = cumulated buying cost (negative), ∆ν = number of
stocks bought at time t, β(X1,ν,∆ν) = immediate impact factor, γ(X1,ν,∆ν) =

buying cost of ∆ν shares (negative).
Example: Quantile hedging of a target buying cost

V (t, p) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. P
[
Y ν
t,x,y(T ) ≥ −K

]
≥ p , X2,ν

t,x (T ) = N}.

for
`(x, y) := 1y≥−K and O := R31[0,T ) + {(x, y) : x2 = N}1{T}.
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Application to liquidation with a target costs constraint

Set of controls: U is the set of adapted cadlag piecewise constant non-
decreasing process in R.

Controlled process:

dX1,ν = µX(X1,ν)dr + σX(X1,ν)dW + β(X1,ν,∆ν)1∆ν 6=0

dX2,ν = ∆ν

dY ν = γ(X1,ν,∆ν)1∆ν 6=0 .

⇒ X1,ν = stock, Y ν = cumulated buying cost (negative), ∆ν = number of
stocks bought at time t, β(X1,ν,∆ν) = immediate impact factor, γ(X1,ν,∆ν) =

buying cost of ∆ν shares (negative).
Example: Expected loss pricing of a target buying cost

V (t, p) := {(x, y) ∈ R3 : ∃ ν ∈ U s.t. E
[
(Y ν

t,x,y(T ) + K)−
]
≤ −p , X2,ν

t,x (T ) = N}.

for
`(x, y) := −(y + K)− and G := {(x, y) : x2 = N}.
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4 Robust criteria - parameter uncertainty

Game version:

V (t, p) := {z ∈ Rd+1 : ∃ u ∈ U s.t. E
[
`(Z

u[ϑ]
t,z (T ))

]
≥ p for all ϑ ∈ V}.

Adverse control / Knightian uncertainty: ϑ ∈ V can be interpreted as
a control of a parameter by the “nature” (e.g. volatility, correlation, default
time, etc...). Can be used to model Knightian uncertainty.

Strategy : u ∈ U : ϑ ∈ V 7→ u[ϑ] ∈ U is non-anticipating, ie u[ϑ1]·∧t =

u[ϑ2]·∧t on ϑ1
·∧t = ϑ2

·∧t.

Remark: When the adverse control is volatility, this relates toG-expectation
of Peng [15] and 2BSDEs of Soner, Touzi and Zhang [20]: find u such that

Y
u[ϑ]
T ≥ g(Xϑ

T ) P− a.s. ∀ ϑ

where Xϑ
T = x +

∫ T
0 ϑsdWs and Y

u[ϑ]
T = y +

∫ T
0 u[ϑ]sdX

ϑ
s .
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5 Optimal control under risk constraint

General probem

w(t, x, p) := sup
ν∈U(t,x,p)

F (t, x; ν)

where
F (t, x; ν) := E

[
f (Xν

t,x(T ))
]

and
U(t, x, p) :=

{
ν ∈ U t : G(t, x; ν) := E

[
g(Xν

t,x(T ))
]
≤ p
}
.

Idea: turn it into a “standard” optimal control problem with state constraint,
the domain being given by the stochastic target problem associated to the
constraint.
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Part II

Geometric dynamic programming and PDE
characterization for stochastic target problem
in P− a.s. form

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U s.t. Zν
t,z(T ) ∈ G P− a.s.}.

21



1 A simple Markovian framework

Notations: Let Ft = (F t
s, t ≤ s ≤ T ) denote the augmented filtration

generated by (Ws −Wt, t ≤ s ≤ T ). Let T t denote the set of Ft-stopping
times and U t the set of Ft-predictable elements of U .

Problem:

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z(T ) ∈ G P− a.s.}.

Controls: U the set of progressively measurable processes with values in a
compact set U ⊂ Rκ (viewed as a subset of L2([0, T ]× Ω)).

Controlled process : Zν
t,z solution of

Z(s) = z +

∫ s

t

µ(Z(r), νr)dr +

∫ s

t

σ(Z(r), νr)dWr, t ≤ s ≤ T,

with µ and σ Lipschitz, uniformly in the control.
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2 The GDPP

Problem:

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z(T ) ∈ G P− a.s.}.

Theorem: (Soner and Touzi [17]) Let {θν, ν ∈ U t} be a family of T t.
Then,

V (t) = V (t)

where

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z(θ

ν) ∈ V (θν) P− a.s.}.
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2.1 V (t) ⊂ V (t)

Fix zo ∈ V (t). Then, ∃ ν ∈ U t such that

P
[
Zν
t,z(T ) ∈ G

]
= 1.

Then (flow property),

P
[
Zν
θν ,ξ(T ) ∈ G | F t

θν
]

= 1 P− a.s.

where ξ := Zν
t,z(θ

ν). Thus, for P-a.e. ω ∈ Ω∫
1{

Zνω
θν(ω),ξ(ω)

(T )(ω′)∈G
}dP (ω′) = 1

where νω : ω′ ∈ Ω 7→ ν(ω1[0,θν(ω)] + (ω′ − ω′θν(ω))1(θν(ω),T ]) ∈ U θ
ν(ω).

Thus, Zν
t,z(θ

ν)(ω) ∈ V (θν(ω)) for P-a.e. ω ∈ Ω. Hence,

z ∈ V (t) = {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z(θ

ν) ∈ V (θν) P− a.s.}.
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2.2 V (t) ⊃ V (t)

Let z ∈ V (t) and ν ∈ U t be such that

Zν
t,z(θ

ν) ∈ V (θν).

Lemma: There exists a Borel measurable map φ : (t′, z′) ∈ [t, T ]×Rd+1 7→
φ(t′, z′) such that

φ(t′, z′) ∈
{
ν ′ ∈ U t′ : Zν′

t′,z′(T ) ∈ G P− a.s.
}
µν − a.e.

where µν(B) = P
[
(θν, Zν

t,z(θ
ν)) ∈ B

]
. Moreover, there exists ν ∈ U t such

that
φ(θν, Zν

t,z(θ
ν)) = ν , dt× dP−a.e.

Take
ν̃ := ν1[t,θν) + ν1[θν ,T ].

Then,

Z ν̃
t,z(T ) = Zν

θν ,ξ(T ) = Z
φ(θν ,ξ)
θν ,ξ (T ) ∈ G P− a.s.
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3 The GDPP in the monotonic case

Problem:

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z(T ) ∈ G P− a.s.}.

Monotonicity assumption:

(i) Zν
t,x,y = (Xν

t,x, Y
ν
t,x,y) ∈ Rd × R

(ii) (x, y) ∈ G implies (x, y′) ∈ G for y′ ≥ y.

Consequence: (x, y) ∈ V (t) implies (x, y′) ∈ V (t) for y′ ≥ y

26



Value function: γ(t, x) := inf{y ∈ R : (x, y) ∈ V (t)}.

Theorem : Let {θν, ν ∈ U t} be a family of T t. Then,

(GDP1) If y > γ(t, x), then there exists ν ∈ U t such that

Y ν
t,x,y(θ

ν) ≥ γ(θν, Xν
t,x(θ

ν) P− a.s.

(GDP2) If y < γ(t, x), then for all ν ∈ U t

P
[
Y ν
t,x,y(θ

ν) > γ(θν, Xν
t,x(θ

ν)
]
< 1.

Proof. y > γ(t, x)⇒ (x, y) ∈ V (t)⇒ y ≥ γ(t, x).
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4 Informal PDE derivation

Assume γ smooth and y = γ(t, x) implies that there exists ν ∈ U t such that

Y ν
t,x,y(θ

ν) ≥ γ(θν, Xν
t,x(θ

ν)) P− a.s.

For θν = t+:
Y ν
t,x,y(t+) ≥ γ(t+, Xν

t,x(t+)) P− a.s.

i.e. (with LνX the Dynkin operator associated to Xν)

(µY (x, y, νt)− LνtXγ(t, x)) dt + (σY (x, y, νt)−Dγ(t, x)σX(x, νt)) dWt ≥ 0.

This implies

σY (x, y, νt)−Dγ(t, x)σX(x, νt) = 0 and µY (x, y, νt)− LνtXγ(t, x) ≥ 0.

Hence,

Hγ(t, x) := sup
u∈N0γ(t,x)

{µY (x, γ(t, x), u)− LuXγ(t, x)} ≥ 0

where N0γ(t, x) := {u ∈ U : σY (x, γ(t, x), u) = Dγ(t, x)′σX(x, u)}.
28



By optimality

H0γ(t, x) := sup
u∈N0γ(t,x)

{µY (x, γ(t, x), u)− LuXγ(t, x)} = 0

where N0γ(t, x) := {u ∈ U : σY (x, γ(t, x), u) = Dγ(t, x)′σX(x, u)}.
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5 PDE derivation

Technical issue: The operator

(t, x, ϕ, ∂tϕ,Dϕ,D
2ϕ) 7→ H0ϕ(t, x)

may not be continuous.

Relaxation: Set

Hε(x, y, q, p, A) := sup
u∈Nε(x,y,p)

{
µY (x, y, u)− q − µX(x, u)′p− 1

2
Tr[σXσ

′
X(x, u)A]

}
with

Nε(x, y, p) := {u ∈ U : |σY (x, y, u)− p′σX(x, u)| ≤ ε} .

Define

H∗(x, y, q, p, A) := lim sup
(ε,x′,y′,p′,A′)→(0,x,y,p,A)

Hε(x
′, y′, q, p′, A′)

H∗(x, y, q, p, A) := lim inf
(ε,x′,y′,p′,A′)→(0,x,y,p,A)

Hε(x
′, y′, q, p′, A′).

30



5.1 Super-solution property

Theorem: (Soner and Touzi [18], B., Elie and Touzi [4]) Assume that γ
is locally bounded, then its lower-semicontinuous envelope γ∗ is a
viscosity super-solution on [0, T )× Rd of

H∗ϕ(t, x) = 0.

Proof. For simplicity, we assume γ = γ∗ (the general case is obtained by
considering (tn, xn)→ (to, xo) such that γ(tn, xn)→ γ∗(to, xo)).
Fix (to, xo) that achieves a strict local minimum of γ − ϕ such that (γ −
ϕ)(to, xo) = 0. Assume that

H∗ϕ(to, xo) < 0.

Then, there exists a neighborhood B, r > 0 and ε > 0 s.t.

sup
u∈Nε(x,y,Dϕ(t,x))

{µY (x, y, u)− LuXϕ(t, x)} ≤ 0 (∗)

for (t, x) ∈ B and |y − ϕ(t, x)| ≤ r.
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Fix ι ∈ (0, r) and let yo := γ(to, xo)+ι. Then, by (GDP1), there exists ν ∈ U to
such that

Yo(θ) ≥ γ(θ,Xo(θ)) ≥ ϕ(θ,Xo(θ)) (∗∗)

with Zo := Zν
to,xo,yo

, and θ the minimum of

θB := inf{s ≥ to : (s,Xo) /∈ B} , θr := inf{s ≥ to : |Yo(s)−ϕ(s,Xo(s))| ≥ r}.

Note that (**) implies that Yo(θ) = ϕ(θ,Xo(θ)) + r on {θ = θr}.
Moreover, after possibly changing r > 0, we can assume that

γ ≥ ϕ + r on ∂B.

Thus
Yo(θ) ≥ ϕ(θ,Xo(θ)) + r (∗ ∗ ∗).

32



Set
χs := [µY (Zo(s), νs)− LνsXϕ(s, Zo(s))] |δs|−2δs1A(s)

where
δ := σY (Zo, ν)−Dϕ(·, Zo)′σX(Xo, ν) , A := {|δ| > ε}.

One has
sup

u∈Nε(x,y,Dϕ(t,x))

{µY (x, y, u)− LuXϕ(t, x)} ≤ 0 (∗)

for (t, x) ∈ B and |y − ϕ(t, x)| ≤ r, with

Nε(x, y,Dϕ(t, x)) = {u ∈ U : |σY (x, y, u)−Dϕ(t, x)′σX(x, u)| ≤ ε}.

This implies
χs ≤ 0 on Ac(s) = {|δs| ≤ ε}
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Define L by

L = 1−
∫ ·
to

LsχsdWs.

Then,

Lθ(Yo(θ)− ϕ(θ,Xo(θ))) = ι +

∫ θ

to

Ls

≤0︷ ︸︸ ︷
[µY (Zo(s), νs)− LνsXϕ(s,Xo(s))]1Ac(s)ds

+ Mθ −Mto.

Recalling that
Yo(θ) ≥ ϕ(θ,Xo(θ)) + r (∗ ∗ ∗),

this implies

ι ≥ E [Lθ(Yo(θ)− ϕ(θ,Xo(θ)))] ≥ r.

We obtain a contradiction since ι < r.
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5.2 Sub-solution property

Definition: Let C(t, x) be the C1,2 functions ϕ s.t. : ∀ ε > 0 and
B open s.t. (x, ϕ(t, x), Dϕ(t, x)) ∈ B and N0 6= ∅ on B, and all ũ ∈
N0(x, ϕ(t, x), Dϕ(t, x)), ∃ B′ ⊂ B and a locally Lipschitz map û such that
|û(x, ϕ(t, x), Dϕ(t, x))− ũ| ≤ ε and û ∈ N0 on B′.

Remark Assume σY depends only on x and u, σX does not depend on u,
and that u ∈ U 7→ σY (x, u) is invertible + regularity, then ϕ ∈ C(t, x) if
σ−1
Y (x,Dϕ(t, x)′σX(x)) ∈ int(U).
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Theorem: Assume that γ is locally bounded, then its upper-semicontinuous
envelope γ∗ is a viscosity sub-solution on [0, T )× Rd of

H∗ϕ(t, x)1ϕ∈C(t,x) = 0

Proof. We assume that γ = γ∗ for simplicity. Fix (to, xo) that achieves a
strict local maximum of γ − ϕ such that (γ − ϕ)(to, xo) = 0. Assume that
ϕ ∈ C(to, xo) and

H∗ϕ(to, xo) > 0

Then, by definition of C, one can find a Lipschitz continuous map û, an open
ball B 3 (to, xo), and r > 0 such that

µY (x, y, û(t, x, y)) ≥ Lû(t,x,y)
X ϕ(t, x)

σY (x, y, û(t, x, y)) = Dϕ′σX(t, x, û(t, x, y)) (2 )

for (t, x) ∈ B and |y − ϕ(t, x)| ≤ r.
Take ι ∈ (0, r), set yo := γ(to, xo) − ι. Let (Xo, Yo) be associated with the
initial conditions (to, xo, yo) and the Markovian control induced by û.
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Let θ be the minimum of

θB := inf{s ≥ to : (s,Xo) /∈ B} , θr := inf{s ≥ to : |Yo(s)−ϕ(s,Xo(s))| ≥ r}.

By (2 ) and ι < r, we have

Yo(θ) ≥ −ι + ϕ(θ,Xo(θ)) + r1{θ=θr} ≥ γ(θ,Xo(θ)) + r − ι

where r can be chosen such that γ−ϕ ≤ −r on ∂B. This implies that Yo(θ) >

γ(θ,Xo(θ)) since r > ι, while yo < γ(to, xo). This contradicts (GDP2).
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5.3 Boundary condition when G = {(x, y) : y ≥ g(x)}

Notations: Set

N(x, y, p) := {r ∈ R : r = |σY (x, y, u)− p′σX(x, u)| for some u ∈ U} ,

and

δ := dist (0,Nc)− dist (0,N) ,

Then,

0 ∈ int (N(x, y, p)) iff δ(x, y, p) > 0 .

Remark: Note that γ∗ is a super-solution of δ∗ϕ ≥ 0.

Example : Assume that σY (x, y, u) = u′σ and σX(x, u) = σ is invertible.
Then, δϕ := δ(·, ϕ,Dϕ) ≥ 0 ⇔ Dϕ ∈ U , while δϕ > 0 ⇔ Dϕ ∈ int(U).
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Theorem: Assume that γ is locally bounded, then γ∗(T, ·) and γ∗(T, ·)
are respectively super- and subsolution on Rd of

min{ϕ− g∗, δ∗ϕ} ≥ 0

and
min{ϕ− g∗, δ∗ϕ}1ϕ∈C(T,·) ≤ 0.

Proof. a. Supersolution: Take (tn, xn, γ(tn, xn)) → (T, x, γ∗(T, x)) with tn <
T and yn := γ(tn, xn) + n−1. Then,

γ∗(T, x) = lim
n
Y νn
tn,xn,yn(T ) ≥ lim inf

n
g(Xνn

tn,xn(T )) ≥ g∗(x).

Moreover, γ∗ is a supersolution on [0, T ) × Rd of δ∗ϕ ≥ 0, which propagates
at the boundary.
b. Subsolution: If δ∗ϕ(x) > 0 then N0 is non-empty on a neighborhood
of (x, ϕ(x), Dϕ(x)). One appeals to the definition of C and argue as in the
interior of the domain.
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6 Example: Super-hedging under constraint

Model: Given σ invertible:

dX = diag[X ]σdW and dY ν = ν ′dX = ν ′diag[X ]σdW.

Simplication: u ∈ N0(x, y, p) ⇔ p = u ∈ U .

Support function of U : Assume that U is closed, convex and contains 0.
Set

δU(ζ) := sup
u∈U

ζ ′u.

Then,
p ∈ U ⇔ G(p) := inf

|ζ|=1
(δU(ζ)− ζ ′p) ≥ 0

and
p ∈ intU ⇔ G(p) > 0.
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The PDE and the terminal condition become

min {−LXϕ , G(Dϕ)} = 0 on [0, T )× (0,∞)d

and (for g continuous)

min {ϕ− g , G(Dϕ)} = 0 on (0,∞)d.

Compare with, e.g., Cvitanic, Pham and Touzi [11] and Soner and Touzi [19].
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7 The GDPP with pathwise constraints

7.1 Problem and GDPP

Problem: Let {O(s), t ≤ s ≤ T} be a family of Borel sets.

V (t) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. Zν
t,z ∈ O on [t, T ] P− a.s.}.

Assumption: tn ↓ t and zn → z with zn ∈ O(tn) implies z ∈ O(t) (upper
hemicontinuous from the right in time).

Theorem: (B. and Vu [8]) Let {θν, ν ∈ U t} be a family of T t. Then,

V (t) = V (t),

where V (t) is the set of initial conditions z ∈ Rd+1 such that ∃ ν ∈ U t

satisfying

Zν
t,z(θ

ν ∧ s) ∈ O(s)1s<θν + 1s≥θνV (θν) ∀ s ∈ [t, T ] P− a.s..
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7.2 PDE characterization

Domain:
D := {(t, x, y) : (x, y) ∈ O(t)}.

In the interior: For (t, x, γ(t, x)) ∈ intD, the characterization for the prob-
lem without constraint holds true.

In the domain: Assume thatD ∈ C1,2 (or intersection of C1,2 domains) and
take δ ∈ C1,2 such that δ > 0 in int(D), δ = 0 on ∂D and δ < 0 elsewhere.

The state constraint imposes dδ(t, Zν
t,z(t)) ≥ 0 if (t, z) ∈ ∂D.

As above it implies:

LνtZδ(t, x, γ(t, x)) ≥ 0 and Dδ(t, x, γ(t, x))′σZ(x, y, νt) = 0

when (t, x, γ(t, x)) ∈ ∂D.
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Define
N in
ε ϕ := {u ∈ Nε(·, ϕ) : |Dδ(·, ϕ)′σZ(·, ϕ, u)| ≤ ε}

and
Hin
ε ϕ := sup

u∈N in
ε ϕ

min {µY (·, ϕ, u)− LuX , LuZδ(·, ϕ)} .

The super-solution property is stated as in the unconstrained case on D (the
fact that the constraint does not appear at the super-solution level is standard,
and usually harmless), but for (t, x, γ∗(t, x, )) ∈ ∂D (t < T ), the subsolution
property reads

Hin
∗ ϕ ≤ 0.
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Part III

Stochastic target problem with constraint in
expectation

V (t, p) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. E
[
`(Zν

t,z(T ))
]
≥ p}.
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1 Problem reduction

Assume that ` has quadratic growth.

Let At denote the set of Ft-progressively measurable square integrable pro-
cesses with values in Rd. Define

Mα
t,p := p +

∫ ·
t

α′sdWs.

Let ν ∈ U t be such that p := E
[
`(Zν

t,z(T ))
]
≥ p. Then, there exists α ∈ At

such that
`(Zν

t,z(T )) = Mα
t,p(T ) ≥Mα

t,p(T ).

Conversely, let (ν, α) ∈ U t×At be such that `(Zν
t,z(T )) = Mα

t,p(T ) ≥Mα
t,p(T ).

Then,
E
[
`(Zν

t,z(T ))
]
≥ E

[
Mα

t,p(T )
]

= p.
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Proposition: (B., Elie and Touzi [4])

V (t, p) := {z ∈ Rd+1 : ∃ (ν, α) ∈ U t×At s.t. `(Zν
t,z(T )) ≥Mα

t,p(T ) P−a.s.}.

We are back to the previous part, for an enlarged system.

Proposition (GDP): Fix {θφ, φ ∈ U t ×At} ⊂ T t. Then,

V (t, p) := {z ∈ Rd+1 : ∃ φ ∈ U t×At s.t. Zφ
t,z(θ

φ) ∈ V (θφ,Mφ
t,p(θ

φ)) P−a.s.}.

Additional difficulty: α coming from the martingale representation theorem
can not be assumed to take values in a compact !

PDE characterization: Remains the same for the enlarged system, except
that a boundary layer phenomena may happen at T .
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2 Example #1: quantile hedging in the BS model

2.1 Problem

γ(t, p) := inf{y ≥ 0 : ∃ ν ∈ U t s.t. P
[
Y ν
t,y(T ) ≥ g(Xt,x(T ))

]
≥ p}.

where

dX = X(µdt + σdW ) and dY ν = νY νdX/X = νY ν(µdt + σdW ).

with σ > 0, U = R and g ≥ 0 continuous (poly. growth).
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2.2 PDE in the domain

Hε(x, y, r, q, A)

=

sup
(u,a)∈Nε(x,y,q)

{
uyµ− r − xµqx − 1

2

(
x2σ2Axx + a2App + 2xσaAxp

)}
with

Nε(x, y, q) :=
{

(u, a) ∈ R2 : |uyσ − xσqx − aqp| ≤ ε
}
.

Thus, for qp > 0,

Hε(x, y, r, q, A)

=

−r + sup
a∈R,|ξ|=1

{
µ
σ(εξ + aqp)− 1

2

(
x2σ2Axx + a2App + 2xσaAxp

)}
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The above is +∞ is App < 0. For App > 0,

H∗(x, y, r, q, A) = H∗(x, y, r, q, A)

=

−r + sup
a∈R

{
µ
σaqp −

1
2

(
x2σ2Axx + a2App + 2xσaAxp

)}
=

−r +
(µσqp−xσAxp)

2

2A2
pp

− 1
2x

2σ2Axx

In particular: γ∗ is a subsolution of Dppϕ ≥ 0, hence γ∗ is convex.

Remark: If γ is smooth and convex then its p-Fenchel transform

γ̃(t, x, q) := sup
p∈[0,1]

pq − γ(t, x, p)

solves
−γ̃t −

1

2
(x2σ2γ̃xx + 2xqσλγ̃xq + q2λ2γ̃qq) = 0

with λ := µ/σ, at points such that γ̃q(t, x, q) ∈ (0, 1).
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2.3 Boundary conditions

Intuition: The natural boundary condition is

γ(T, x, p) = g(x)1p>0,

which is not continuous. But, since γ∗ is convex in p, one should have

γ∗(T, x, p) ≤ pγ∗(T, x, 1) + (1− p)γ∗(T, x, 0).

Moreover, one can show that

γ∗(·, 1) = γ∗(·, 1) = w and γ∗(·, 0) = γ∗(·, 0) = 0,

where w(t, x) = γ(t, x, 1) is the Black and Scholes hedging price.
Thus

γ∗(T, x, p) ≤ pγ∗(T, x, 1) + (1− p)γ∗(T, x, 0) = pw(T, x) = pg(x).
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Conversely, take (tn, xn, pn, yn := γ(tn, xn) + n−1)→ (T, x, p, γ∗(T, x, p)) and
νn, αn such that

1{Yn(T )≥g(Xn(T ))} ≥Mn(T ) ≥ 0,

with (Xn, Yn,Mn) = (Xtn,xn, Y
νn
tn,xn,yn,M

αn
tn,pn). Then, (recall that g ≥ 0)

Yn(T ) ≥Mn(T )g(Xn(T )).

Letting Ln be the solution of

Ln = 1−
∫
tn

λLn(s)dWs

one has

Ln(T )Yn(T ) ≥Mn(T )g(x) + Mn(T ) (Ln(T )g(Xn(T ))− g(x))

and (|Mn(T )| ≤ 1)

γ∗(T, x, p)← yn ≥ pg(x)− E [|Ln(T )g(Xn(T ))− g(x)|]→ pg(x).

Proposition: γ∗(T, x, p) = γ∗(T, x, p) = pg(x).
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2.4 Explicit resolution

The upper-semicontinuous p-Fenchel transform

γ̃∗(t, x, q) := sup
p∈[0,1]

pq − γ∗(t, x, p)

is a viscosity subsolution of

−ϕ̃t −
1

2
(x2σ2ϕ̃xx + 2xqσλϕ̃xq + q2λ2ϕ̃qq) = 0 on [0, T )× (0,∞)2

with λ := µ/σ, and satisfies

γ̃∗(T, x, q) ≤ (q − g(x))+.

Hence,
γ̃∗(t, x, q) ≤ EQ [(Qt,q(T )− g(Xt,x(T )))+

]
where

dQ/Q = λdWQ and dQ = (1/Q0,1(T ))dP
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Then,

γ∗(t, x, p) ≥ sup
q>0

(
pq − EQ [(Qt,q(T )− g(Xt,x(T )))+

])
= pq̂ − EQ [(Qt,q̂(T )− g(Xt,x(T )))+

]
with

p = EQ
[
Qt,1(T )1{Qt,q̂(T )≥g(Xt,x(T ))}

]
= P[

=:A︷ ︸︸ ︷
Qt,q̂(T ) ≥ g(Xt,x(T ))].

Hence,

γ∗(t, x, p) ≥ EQ [Qt,q̂(T )1A − (Qt,q̂(T )− g(Xt,x(T )))1A] = EQ [g(Xt,x(T ))1A] .

Since p = P [A], we conclude
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Proposition:

γ(t, x, p) = EQ [g(Xt,x(T ))1At,x
]
.

where
At,x := {Qt,q̂t,x(T ) ≥ g(Xt,x(T ))}

and q̂t,x such that p = P[At,x].

One retrieves the result of Föllmer and Leukert [12].
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3 Example #2: shortfall pricing in models with proportional costs

3.1 Model

Set of controls: U is the set of adapted continuous and non-decreasing
processes (component by component) in R2.

Controlled process:

X1(s) = x1 +

∫ s

t

X1(r)µdr +

∫ s

t

X1(r)σdWr

X2,ν(s) = x2 +

∫ s

t

X2,ν(r)

X1(r)
dX1(r)−

∫ s

t

dν1
r +

∫ s

t

dν2
r

Y ν(s) = y +

∫ s

t

(1− λ)dν1
r −

∫ s

t

(1 + λ)dν2
r .
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Price under shortfall constraint: γ(t, x, p) defined as the inf over y such
that ∃ ν ∈ U t for which

Y ν
t,y + l(X2,ν

t,x ) ≥ −κ and E
[
ψ
(
Y ν
t,y(T ) + l(X2,ν

t,x (T ))− g(X1
t,x(T ))

)]
≥ p

where l(x2) = x2− λ|x2| is the liquidation value of the position in stock, ψ is
bounded, non-decreasing.

Reformulation: γ(t, x, p) defined as the inf over y such that ∃ (ν, α) ∈
U t ×At for which

Y ν
t,y + l(X2,ν

t,x ) ≥ −κ and ψ
(
Y ν
t,y(T ) + l(X2,ν

t,x (T ))− g(X1
t,x(T ))

)
≥Mα

t,p(T )
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3.2 Informal PDE derivation

Assume γ smooth and y = γ(t, x, p) implies that there exists (ν, α) ∈ U t such
that

Y ν
t,x,y(θ) ≥ γ(θ,Xν

t,x(θ),Mα
t,p(θ)) P− a.s.

For θ = t+:

Y ν
t,x,y(t+) ≥ γ(t+, Xν

t,x(t+),Mα
t,p(t+)) P− a.s.

i.e.

0 ≤ −LαtX,Mγ(t, x, p)dt− (Dxγ(t, x, p)′xσ + αtDpγ(t, x, p)) dWt

+ ((1− λ) + Dx2γ(t, x, p)) dν1
t + (−(1 + λ)−Dx2γ(t, x, p)) dν2

t

This implies

Dxγ(t, x, p)′xσ + αtDpγ(t, x, p) = 0 and − LαtX,Pγ(t, x, p) ≥ 0

or
max {(1− λ) + Dx2γ(t, x, p) , −(1 + λ)−Dx2γ(t, x, p)} > 0.

58



3.3 PDE characterization

Set
Hϕ := −LâϕX,Mϕ , âϕ := −Dxϕ

′xσ/Dpϕ

and
Gϕ := max {(1− λ)−Dx2ϕ , −(1 + λ) + Dx2ϕ} .

Proposition: γ∗ and γ∗ are respectively super- and subsolution of

max {Hϕ , Gϕ}1{Dpϕ>0} ≥ 0

and
min

{
ϕ + l(x2) + κ , max{Hϕ , Gϕ

}
}1{Dpϕ>0} ≤ 0.
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3.4 Boundary condition at T

If
ψ
(
Y ν
t,y(T ) + l(X2,ν

t,x (T ))− g(X1
t,x(T ))

)
≥Mα

t,p(T )

then

y + zx2 ≥ EQ [ψ−1(Mα
t,p(T )) + g(X1

t,x(T ))
]
∀ z ∈ [1− λ, 1 + λ].

If ψ−1 is convex, then

y + l(x2) ≥ ψ−1(p) + EQ [g(X1
t,x(T ))

]
→ ψ−1(p) + g(x1) as t→ T

Conversely, for y = ψ−1(p + η) + g(x1), η > 0, we can find ε > 0 such that
for all t ∈ [T − ε, T ]

E
[
ψ
(
Y 0
t,y(T ) + l(X2,0

t,x (T ))− g(X1
t,x(T ))

)]
≥ p.
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Proposition: For all p ∈ int(Im(ψ)),

γ∗(T, x, p) = γ∗(T, x, p) = max{ψ−1(p) + g(x1) , −κ} − l(x2).
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3.5 Boundary condition at ∂Im(ψ)

Without loss of generality, we can assume that Im(ψ) = [0, 1].
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a- Boundary condition at p = 0:

One has: γ(t, x, 0) = −κ− l(x2).

Step 1. If ϕ is a test function for γ∗ at (t, x, 0) then

min
{
ϕ + κ + l(x2) , max{Hϕ , Gϕ

}
}1{Dpϕ>0} ≤ 0

where

Hϕ = −LXϕ−
1

2
(Dxϕ

′xσ/Dpϕ)
2
Dppϕ+(Dxϕ

′xσ/Dpϕ)σ(x1Dx1pϕ+x2Dx2pϕ)

Step 2. If φ is a test function for (t, x) 7→ γ∗(t, x, 0) at (to, xo, 0) then one
can construct a sequence of test functions ϕn and test points (tn, xn, pn) →
(to, xo, po) such that

Dpϕn(tn, xn, pn) > 0 , (Dppϕn/Dpϕ
2
n, Dxpϕn/Dpϕn)(tn, xn, pn)→ 0,

and the other derivatives converges to the corresponding derivatives of φ at
(to, xo). Passing to the limit leads to

min
{
φ + κ + l(x2) , max{−LXφ , Gφ

}
} ≤ 0.
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b- Boundary condition at p = 1: One has: γ(t, x, 1) = w(t, x) the super-

hedging price of g(X1
t,x(T )) starting from x2. Clearly, γ∗(t, x, 1) ≤ w∗(t, x).

One can show by similar argument as above that (t, x) 7→ γ∗(t, x, 1) is a
supersolution of

min {φ− w∗ , max{−LXφ , Gφ}} = 0
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3.6 Boundary condition at ∂Im(ψ) and t = T ,

Problematic: typically discontinuous... need to regularize the criteria.

Natural boundary conditions: γ(T, ·, 1) = ĝ where ĝ ≥ g − l(x2) is the
cost of the cheapest buy-and-hold strategy, and γ(T, ·, 0) = −κ− l(x2).

Discontinuity: γ(T, ·, 1−) = max{ψ−1(1) + g(x1) , −κ} − l(x2) and
γ(T, ·, 0+) = max{ψ−1(0) + g(x1) , −κ} − l(x2)

Regularization: Assume ψ(r) = (r−∨−1)+1, g ≥ 0, κ > 1. Then, replace
ψ(y + l(x2) − g(x1)) by ∆ε(x, y) such that ∆−1(x, ·) is continuous on [0, 1],
∆−1
ε (x, 1) = ĝ and ∆−1

ε (x, 0) = −κ− `.

Such a technic is applied in B. and Vu [9] for quantile hedging under portfolio
constraint (more previsely for a P&L matching version).
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4 Multiple constraints

One can similarly handle problems of the form

V (t, p) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. E
[
`i(Zν

t,z(T ))
]
≥ pi ∀ i ≤ κ}.

In this case, the corresponding martingale M is κ dimensional.

See B. and Vu [9] for a P&L matching problem under portfolio constraint:

V (t, p) := {z ∈ Rd+1 : ∃ ν ∈ U t s.t. P
[
Y ν
t,z(T )− g(Xt,x(T )) ≥ −γi

]
≥ pi ∀ i ≤ κ}

with
γ1 < γ2 < · · · < γκ

and
0 ≤ p1 ≤ p2 ≤ · · · ≤ pκ.
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This leads to multiple boundary conditions on boundary of sets of the form

DIJ = {p ∈ [0, 1]κ : pi = 0 if i ∈ I, pi = 1 if i ∈ J, 0 < pi < 1 otherwise}

One considers πIJ the projection on DIJ and vIJ(t, x, p) := γ(t, x, πIJ(p)).
For each vIJ , the PDE is obtained in the domain [0, T )×Rd ×DIJ as before
and boundary conditions are given on [0, T )×Rd× ∂DIJ in terms of the vI ′J ′
with I ′ ⊃ I and J ′ ⊃ J .
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5 Link with standard stochastic control problems

Let us consider:
w := inf

ν∈U
E [f (Zν(T ))] .

Let A denote the set of P − a.s. square integrable progressively measurable
processes such that Mα

0,p is a martingale. Then,

w = w := inf{p : ∃ (ν, α) ∈ U ×A s.t. f (Zν(T )) ≤Mα
0,p(T )}

Proof. Given ν, we can find α such that

f (Zν(T )) = Mα
0,p(T ) for p := E [f (Zν(T ))] .

Thus p ≥ w. For p → w, this leads to w ≥ w. Conversely, for p > w,
∃ (ν, α) ∈ U ×A such that

f (Zν(T )) ≤Mα
0,p(T )

and therefore w ≤ E [f (Zν(T ))] ≤ p. Hence w ≥ w.
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Part IV

Optimal control under stochastic target
constraints in controlled loss form

w(t, x, p) := sup
ν∈U(t,x,p)

F (t, x; ν)

where
F (t, x; ν) := E

[
f (Xν

t,x(T ))
]

and
U(t, x, p) :=

{
ν ∈ U t : G(t, x; ν) := E

[
g(Xν

t,x(T ))
]
≤ p
}
.
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1 Problem reduction

Assumption: g(Xν
t,x(T )) ∈ L2 for all ν ∈ U and (t, x).

Proposition:

U(t, x, p) =
{
ν ∈ U t : ∃ α ∈ At s.t. g(Xν

t,x(T )) ≤Mα
t,p(T )

}
.

Corollary: (B., Elie and Imbert [3]) By the (GDPP),

w(t, x) = sup
(ν,α)∈Γ(t,x,p)

J(t, x; ν)

where

Γ(t, x, p) := {(ν, α) ∈ U t ×At s.t. Xν
t,x ∈ V (·,Mα

t,p) on [t, T ] P− a.s.}

and

V (t, p) := {x ∈ Rd : (ν, α) ∈ U t ×At s.t. g(Xν
t,x(T )) ≤Mα

t,p(T )}.
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We are back to a “standard” state constraint problems for a domain defined as

D := {(t, x, p) ∈ [0, T ]× Rd × Im(g)
c

: x ∈ V (t, p)}

which requires to solve the stochastic target problem associated to V first.

Technical issue: V is typically not smooth, and can even be not continuous.
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2 Weak dynamic programming principle

“Weak” ? : in terms of test function rather than in term of w itself.

Why ? : to make profit of the regularity of test functions (and measurabil-
ity).

Proposition: Let ϕ+ ≥ w be a smooth function. Let {θφ, φ ∈ U t×At}
be a family of stopping times such that (Xφ

t,x,M
φ
t,p) is bounded on

[t, θφ]. Then,

w(t, x, p) ≤ sup
φ∈Γ(t,x,p)

E
[
ϕ+(θφ, Xφ

t,x(θ
φ),Mφ

t,p(θ
φ))
]
.

In the above, we just use the measurability of ϕ+.
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Proof. Take ν ∈ U(t, x, p) and let α ∈ At be such that g(Xν
t,x(T )) ≤Mα

t,p(T ).
We write φ = (ν, α).

F (t, x, p; ν) = E
[
E
[
f (Xν

θφ,Xν
t,x(θφ)

(T )) | Fθφ
]]

with
E
[
f (Xν

θφ,Xν
t,x(θφ)

(T )) | Fθφ
]

(ω) = F (θφ(ω), Xν
t,x(θ

φ)(ω); νω)

where
νω : ω̃ → ν(ω1[0,θφ(ω)] + 1(θφ(ω),T ](w̃ − w̃θφω)).

Assuming νω ∈ U(θφ(ω), Xν
t,x(θ

φ)(ω),Mα
t,p(θ

φ)(ω)), then

F (θφ(ω), Xν
t,x(θ

φ)(ω); νω) ≤ γ(θφ(ω), Xν
t,x(θ

φ)(ω),Mα
t,p(θ

φ)(ω))

≤ ϕ(θφ(ω), Xν
t,x(θ

φ)(ω),Mα
t,p(θ

φ)(ω))

and therefore

F (t, x, p; ν) ≤ E
[
ϕ(θφ, Xν

t,x(θ
φ),Mα

t,p(θ
φ))
]
.

Conclude by taking the sup over Γ(t, x, p).
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It remains to check that νω ∈ U(θφ(ω), Xν
t,x(θ

φ)(ω),Mα
t,p(θ

φ)(ω)).
But, g(Xν

t,x(T )) ≤Mα
t,p(T ) implies

G(θφ(ω), Xν
t,x(θ

φ)(ω); νω) = E
[
g(Xν

θφ,Xν
t,x(θφ)

(T )) | Fθφ
]

(ω) ≤Mα
t,p(θ

φ)(ω).
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Assumption: For any ν ∈ U , the maps (t, x) 7→ F (t, x; ν) and (t, x) 7→
−G(t, x; ν) are lower-semicontinuous (on the right in time).

Proposition: Fix δ > 0 and let ϕ− ≤ w be a smooth function. Let
{θφ, φ ∈ U t × At} be a family of stopping times such that (Xφ

t,x,M
φ
t,p)

is bounded on [t, θφ]. Then,

sup
φ∈Γ(t,x,p)

E
[
ϕ−(θφ, Xφ

t,x(θ
φ),Mφ

t,p(θ
φ))
]
≤ w(t, x, p + δ).

Remark: We make two relaxations w → ϕ and p→ p+ δ. We will play on
the upper-semicontinuity of ϕ− only.
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Proof. Fix ε > 0. By the above continuity properties, one can find open radius
ri > 0, points (ti, xi, pi) and controls νi ∈ U(ti, xi, pi) such that

F (·; νi) + ε ≥ F (ti, xi; νi) ≥ w(ti, xi, pi)− ε ≥ ϕ− 2ε on Bi

and
G(t, x; νi)− ε ≤ G(ti, xi; νi) ≤ pi ≤ p + ε for (t, x, p) ∈ Bi

where
Bi := ([ti, ti + ri)×Bri(xi, pi)) ∩D

and
∪i≥1Bi ⊃ B

a compact set which the controlled process does not exit.
It follows that

F (t, x; νi) ≥ ϕ(t, x)− 3ε and G(t, x; νi) ≤ p + 2ε for (t, x, p) ∈ Bi.
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Since

F (t, x; νi) ≥ ϕ(t, x, p)− 3ε and G(t, x; νi) ≤ p + 2ε for (t, x, p) ∈ Bi.

considering ν defined by

ν =

{
ν on [t, θφ]

ν̃ = νi on (θφ, T ] if (θφ, Xν
t,x(θ

φ),Mα
t,p(θ

φ)) ∈ Bi

,

where φ = (ν, α) ∈ Γ(t, x, p), leads to

F (θφ, Xν
t,x(θ

φ); ν̃) ≥ ϕ(θφ, Xν
t,x(θ

φ),Mα
t,p(θ

φ))− 3ε

and

G(θφ, Xν
t,x(θ

φ); ν̃) ≤Mα
t,p(θ

φ) + 2ε.

Thus,

F (t, x; ν) = E
[
F (θφ, Xν

t,x(θ
φ); ν̃)

]
≥ E

[
ϕ(θφ, Xν

t,x(θ
φ),Mα

t,p(θ
φ))− 3ε

]
and

G(t, x; ν) = E
[
G(θφ, Xν

t,x(θ
φ); ν̃)

]
≤ p + 2ε.
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This implies that

w(t, x, p + 2ε) ≥ F (t, x; ν) ≥ E
[
ϕ(θφ, Xν

t,x(θ
φ),Mα

t,p(θ
φ))− 3ε

]
.

Given δ > 0 and 2ε < δ, we have w(t, x, p+ δ) ≥ w(t, x, p+ 2ε). Remains to
take the sup over the control φ on the right and send ε→ 0.

Remark: We do not have to do infinite (countable) pasting as above, but
only finite pasting, this leads to an additional ε...
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Theorem (Weak DPP): (B. and Nutz [6], B. and Touzi [7])Let ϕ− ≤ w ≤
ϕ+ be smooth functions and fix ε > 0. Let {θφ, φ ∈ U t × At} be a
family of stopping times such that (Xφ

t,x,M
φ
t,p) is bounded on [t, θφ].

Then,

sup
φ∈Γ(t,x,p)

E
[
ϕ−(θφ, Xφ

t,x(θ
φ),Mφ

t,p(θ
φ))
]
≤ w(t, x, p + ε)

and
w(t, x, p) ≤ sup

φ∈Γ(t,x,p)

E
[
ϕ+(θφ, Xφ

t,x(θ
φ),Mφ

t,p(θ
φ))
]
.

Corollary: With the same notations and assumptions:

sup
φ∈Γ(t,x,p)

E
[
w∗(θ

φ, Xφ
t,x(θ

φ),Mφ
t,p(θ

φ))
]
≤ w(t, x, p + ε)

and
w(t, x, p) ≤ sup

φ∈Γ(t,x,p)

E
[
w∗(θφ, Xφ

t,x(θ
φ),Mφ

t,p(θ
φ))
]
.

79



Remark: The same arguments allows one to prove a weak GDPP for prob-
lems of the form:

γ(t, x, p) := {y ∈ R : ∃ ν ∈ U t s.t. E
[
`(Xν

t,x(T ), Y ν
t,x,y(T ))

]
≥ p}.

Proposition (Weak GDP): Fix {θφ, φ ∈ U t ×At} ⊂ T t. Then,

(GDP1) If y > γ(t, x, p), then there exists φ := (ν, α) ∈ U t × At such
that

Y ν
t,x,y(θ

φ) ≥ γ(θφ, Xν
t,x(θ

φ),Mφ
t,p(θ

φ)).

(GDP2) If there exists φ := (ν, α) ∈ U t ×At such that

Y ν
t,x,y(θ

φ) > γ(θφ, Xν
t,x(θ

φ),Mφ
t,p(θ

φ)),

then y ≥ γ(t, x, p− ε) for all ε > 0.
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3 PDE characterization

In the domain D: In the interior of

D = {(t, x, p) ∈ [0, T ]× Rd × Im(g)
c

: x ∈ V (t, p)}

the state constraint does not play any role. We have the usual HJB equation,
but in terms of (t, x) and p !
Set

Hϕ = − sup
(u,a)∈U×Rd

Lu,aX,Mϕ

Proposition: w∗ and w∗ are respectively super- and sub-solution on D of

H∗ϕ(t, x, p) ≥ 0 if (t, x, p) ∈ int(D)

and

H∗ϕ(t, x, p) ≤ 0 if (t, x, p) ∈ int(D).
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On the boundary:

To obtain a characterization, we define the value function γ associated to V :

γ(t, x) := inf{p ∈ Im(g)
c

: ∃ (ν, α) ∈ U t ×At s.t. g(Xν
t,x(T )) ≤Mα

t,p(T )}.

Assuming that γ is smooth, the (GDPP) for γ implies that the only possible
controls on ∂D (boundary on [0, T )) are such that

αt − σX(x, νt)
>Dγ(t, x) = 0 and − LνtXγ(t, x) ≥ 0,

where LuX denotes the Dynkin operator of X

Hence, w should satisfy on ∂D

Hv
inw := − sup

(u,a)∈Θv
in

Lu,aX,Mw = 0

with

Θv
in = {(u, a) ∈ U × Rd : a− σX(·, u)′Dv = 0,−LuXv ≥ 0}.
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a- Sub-solution part: We define

W∗(t, x) = {φ ∈ C1,2([0, T ]×Rd) s.t. (γ−φ) > (γ−φ)(t, x) = 0 near (t, x)}.

N φ
0 (t, x) is again defined as the set of points (u, a) ∈ U × Rd such that

a = σX(x, u)′Dφ(t, x) and − LuXφ(t, x) ≥ 0 .

Finally, we set

Hφ
inϕ := − sup

(u,a)∈N φ
0

Lu,aX,Mϕ

Proposition: Assume that γ is continuous on [0, T ) × Rd and that U is
compact. Then, w∗ is a subsolution on D of

sup
φ∈W∗(t,x)

Hφ
inϕ ≤ 0 if (t, x, p) ∈ ∂D.
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b- Super-solution part: Since γ may not be smooth, we need to use the
notion of test functions.

Set

W∗(t, x) = {φ ∈ C1,2([0, T ]×Rd) s.t. (γ−φ) < (γ−φ)(t, x) = 0 near (t, x)}.

Then, for φ ∈ W∗(t, x), we define the set N ϕ
0 (t, x) as the set of points (u, a) ∈

U × Rd such that

a = σX(x, u)′Dφ(t, x) and − LuXφ(t, x) ≥ 0 .

We let C(t, x) be defined as above but with respect to N φ
0 (t, x) in place of the

former N0(x, φ(t, x), Dφ(t, x)).
Finally, we set

Hφϕ := − sup
(u,a)∈N φ

0

Lu,aX,Mϕ

For φ ∈ W∗(t, x), we define Hφ∗
in as the upper semi-relaxed limit as the point,

gradient and Hessian converge (all the parameters except φ).
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Proposition: Assume that γ is continuous on [0, T ) × Rd. Then, w∗ is a
supersolution on D of

inf
φ∈W∗(t,x)∩C(t,x)

Hφ∗
inϕ ≥ 0 if (t, x, p) ∈ ∂D.

Remark: We will use the fact that

∂D = {(t, x, p) : p = γ(t, x)}

when γ is continuous.
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Proof. Assume w = w∗ for simplicity. Let (to, xo, po) ∈ ∂D be a strict mini-
mum point of w − ϕ (equal to 0) on D. If

inf
φ∈W∗(t,x)∩C(t,x)

Hφ∗
inϕ(to, xo, po) < 0

then, we can find φ ∈ W∗(t, x), a locally Lipschitz map (û, â), r > 0 such
that

−L(û,â)
X,Mϕ ≤ 0 , −LûXφ ≥ 0 and â = σX(·, û)′Dφ on B := Br(t, x, p).

Let (Xo,Mo) be the process associated to the initial condition (to, xo, po) and
the Markovian control (û, â). Let θ be the first exit time of (·, Xo,Mo) from
B. Then,

w(to, xo, po) = ϕ(to, xo, po) ≤ E [ϕ(θ,Xo(θ),Mo(θ))] ≤ E [w(θ,Xo(θ),Mo(θ))]−ι

with ι > 0 (minimun of w − ϕ on ∂B). If the Markovian control associated
to (û, â) is admissible, this contradicts the weak DPP.
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By (GDP1) for γ, it suffices to show that Mo(θ) > γ(θ,Xo(θ)). But, by the
above system, and the fact that (to, xo, po) ∈ ∂D implies po = γ(to, xo) =

φ(to, xo),
Mo(θ) ≥ φ(θ,Xo(θ)) > γ(θ,Xo(θ)).

Remark: We appealed only to (GDP1) whose proof does not require any
measurable selection argument.
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Part V

Stochastic target games

1 Problem formulation

Determine the viability sets

V (t, p) := {z : ∃ u ∈ U s. t. E
[
`(Z

u[ϑ],ϑ
t,z (T ))

]
≥ p ∀ ϑ ∈ V}

In which:

• V is a set of admissible adverse controls

• U is a set of admissible strategies : u ∈ U : ϑ ∈ V → u[ϑ] ∈ U .

• Zu[ϑ],ϑ
t,z is an adapted Rd-valued process s.t. Zu[ϑ],ϑ

t,z (t) = z

• ` is a given loss/utility function

• p a threshold.
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In finance : Z
u[ϑ],ϑ
t,z = (X

u[ϑ],ϑ
t,x , Y

u[ϑ],ϑ
t,x,y ) where

• Xu[ϑ],ϑ
t,x models financial assets or factors with dynamics depending on ϑ

• Y u[ϑ],ϑ
t,x,y models a wealth process

• ϑ is the control of the market : parameter uncertainty (e.g. volatility),
adverse players, etc...

• u[ϑ] is the financial strategy given the past observations of ϑ.

Flexible enough to embed constraints, transaction costs, market impact, etc...
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Examples

V (t, p) := {z : ∃ u ∈ U s.t. E
[
`(Z

u[ϑ],ϑ
t,z (T ))

]
≥ p ∀ ϑ ∈ V}

Almost sure constraint:

V (t) := {z : ∃ u ∈ U s.t. Zu[ϑ],ϑ
t,z (T ) ∈ O P− a.s. ∀ ϑ ∈ V}

for `(z) = 1z∈O, p = 1.

⇒ Super-hedging in finance for O := {y ≥ g(x)}.

Compare with Peng (G-expectations) and Soner, Touzi and Zhang (2BSDE).
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Examples

Constraint in probability:

V (t, p) := {z : ∃ u ∈ U s.t. P
[
Z

u[ϑ],ϑ
t,z (T ) ∈ O

]
≥ p ∀ ϑ ∈ V}

for `(z) = 1z∈O, p ∈ (0, 1).
⇒ Quantile-hedging in finance for O := {y ≥ g(x)}.
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Examples

V (t, p) := {z : ∃ u ∈ U s.t. E
[
`(Z

u[ϑ],ϑ
t,z (T ))

]
≥ p ∀ ϑ ∈ V}

Expected loss control for `(z) = −[y − g(x)]−

Can impose several constraint : B. and Thanh Nam (discrete P&L constraints).

Give sense to problems that would be degenerate under P− a.s. constraints :
B. and Dang (guaranteed VWAP pricing).
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2 How to get the Geometric dynamic programming principle...

The original problem:

V (t, p) := {z : ∃ u ∈ U s.t. E
[
`(Z

u[ϑ],ϑ
t,z (T ))

]
≥ p ∀ ϑ ∈ V}

Key point: Submartingale property: for u fixed

Su,ϑ
s := ess inf

ϑ̃∈V
E
[
`(Z

u[ϑ⊕sϑ̃],ϑ⊕sϑ̃
t,z (T ))|Fs

]
defines a family of submartingales parameterized by ϑ.

Doob-Meyer decomposition: ∃ a family of martingales {Mu,ϑ, ϑ} such that
Su,ϑ ≥Mu,ϑ with Mu,ϑ(t) = p.

GDP for target games: z ∈ V (t, p) if and only if there exists u ∈ U and a
family of martingales {Mϑ, ϑ} with Mϑ(t) = p such that

`(Z
u[ϑ],ϑ
t,z (T )) ≥Mϑ(T ) P− a.s. ∀ ϑ ∈ V .
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3 Markovian framework

Strategies: U is the set of maps u : V → U such that {ϑ1 =(0,t] ϑ2} ⊂
{u[ϑ1] =(0,t] u[ϑ2]} for all ϑ1, ϑ2 ∈ V and t ≤ T .

State processes: Zu,ϑ
t,z = (Xu,ϑ

t,x , Y
u,ϑ
t,x,y) is the strong solution of

Z(s) = z +

∫ s

t

µ(Z(r), u[ϑ]r, ϑr)dr +

∫ s

t

σ(Z(r), u[ϑ]r, ϑr)dWr.

(Lipschitz coefficients + controls valued in bounded sets)

Controlled martingales: {Mα
t,p, α ∈ A} with

Mα
t,p := p +

∫ ·
t

αsdWs

Martingale strategies: A the set of maps a[·]: V 7→ A such that {ϑ1 =(0,t]

ϑ2} ⊂ {a[ϑ1] =(0,t] a[ϑ2]} for ϑ1, ϑ2 ∈ V and t ≤ T .
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Target

Given a continuous map (with poly growth) ` : (x, y) ∈ Rd−1×R 7→ `(x, y) ∈
R, non-decreasing in its y-variable, define

I(t, z, u, ϑ) := E
[
`
(
Zu,ϑ
t,z (T )

)
|Ft
]

and J(t, z, u) := ess inf
ϑ∈V

I(t, z, u, ϑ).

and

γ(t, x) := inf
{
y ∈ R : ∃ u ∈ U s.t. J(t, x, y, u) ≥ p P− a.s.

}
.

For later use:

K(t, z) := esssup
u∈U

J(t, z, u)

which can be shown to be deterministic, see [10].
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4 The GDP

Theorem
(GDP1) If y > γ(t, x, p+ ε) with ε > 0, then ∃ u ∈ U and {αϑ, ϑ ∈ V} ⊂ A
s.t.

Y u,ϑ
t,x,y(τ ) ≥ γ∗

(
τ,Xu,ϑ

t,x (τ ),Mαϑ

t,p (τ )
)

P-a.s.

for all ϑ ∈ V , τ ∈ Tt.

(GDP2)Fix a bounded open set O 3 (t, x, y, p), (u, a) ∈ U × A and let τϑ

denote the first exit time of (·, Xu,ϑ
t,x , Y

u,ϑ
t,x,y,M

a[ϑ]
t,p ), ϑ ∈ V . Assume that there

exists η > 0 and a continuous function ϕ ≥ γ such that

Y u,ϑ
t,x,y(τ

ϑ) ≥ ϕ
(
τ,Xu,ϑ

t,x (τϑ),M
a[ϑ]
t,p (τϑ)

)
+ η P− a.s. for all ϑ ∈ V .

Then, y ≥ γ(t, x, p− ε) for all ε > 0.
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Sketch of proof for GDP1

Assume
Su,ϑ
s := ess inf

ϑ̃∈Vs
E
[
`(Z

u[ϑ⊕sϑ̃],ϑ⊕sϑ̃
t,z (T ))|Fs

]
is such that Su,ϑ

t ≥ p.

It admits a càlàg decomposition (up to a modification),+ Doob-Meyer-type
decomposition : Su,ϑ ≥Mu,ϑ a càdlàg martingale.

K(τ, Zu,ϑ
t,z (τ )) ≥Mu,ϑ (τ )

which leads to

Zu,ϑ
t,z (τ ) ∈ V

(
τ,Mu,ϑ (τ )− ε

)
P− a.s.

Ok for stopping times τ with values in a countable set. Pass to the limit.
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Sketch of proof for GDP2

τϑn an approximation of τϑ on a sequence of finite grids πn.

If
Zu,ϑ
t,z

(
τϑ
)
∈ V̊ι

(
τϑ,Mϑ

(
τϑ
))

P− a.s.

then
Zu,ϑ
t,z

(
τϑn
)
∈ V

(
τϑn ,M

ϑ
(
τϑn
))

on Eϑ
n for all ϑ ∈ V

with P
[
Eϑ
n

]
→ 1 as n→∞ (uniformly in ϑ).

Hence,
K(τϑn , Z

u,ϑ
t,z (τϑn )) ≥Mϑ(τϑn ).

Regularity + covering: there exists uε ∈ U such that

E
[
`(Zuε,ϑ

t,z (T ))|Fτϑn
]
≥Mϑ(τϑn )− ε.

which implies
E
[
`(Zuε,ϑ

t,z (T ))|Ft
]
≥ p− ε.
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