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Part 1

Motivation

Probability space: (€2, F,P), W a d-dimensional Brownian motion, F =
(Fs, 0 < s <T) the filtration generated by W.

Set of controls: An abstract set U.

Controlled process: A map : (t,z,v) € [0,T] x R™ x Uy — Z}, a cadlag
F-adapted process satisfying Z; (t) = 0.

Target : G a Borel subset of R+,

Problem: Compute

V(t)={zeR™"™: Jvcls.t. Zi (T) € GP—as.}.



1 Application in financial mathematics: super-hedging problems

In “classical” financial market, one can rely on dual formulations that relate

prices to singular optimal control problems. What if the notion of “martingale

measure’ does not apply 7



1.1 Large investor model

Set of controls: U is the set of F-predictable process with values in U C R%

Controlled process: Z” = (X”,Y") € R? x R with
dX" = pux (X, v)dr + ox (X", v)dW |, dY" =V ux (X", v)dr + v'ox (X", v)dW .

= X" = stocks or factors, Y” = wealth, v = number of stocks in the portfolio.

Target: G :={(z,y) €eRIxR:y > g(x)}.
Super-hedging price:

v(t,x) :=infly e R : (x,y) € V(t)}

V(t) :={(z,y) e R"": JveUUst V), (T)> g(X/(T)) P—as.}.



1.2 Model with proportional transaction costs

Set of controls: U is the set of adapted non-decreasing process (component

by component) in R?.

Controlled process:

X(s) =z +/ XY 7“,ud7“+/ X r)odW!

X*(s) = o* + t );f / dv; +/ dv?
y¥(s) = y+[< ! —/t<1+x>

= X! = stock, X?" = value invested in the stock, Y = value invested in

cash, v} = cumulated amount of stocks sold, v? = cumulated amount of stocks

bought, A > 0 is the proportional transaction cost coefficient.

10



Controlled process:
X(s) =z +/ Xr ,uerr/ X r)odw!

XQV
X*(s) = 2° + Xm / dv! +/ dv>
t

Y”(s)—y+/:( A)du—/t (1+MN)d

Target: G := {(z,y) ER* xR :y > g.(z!) and 2* > gy(x')}.

Super-hedging price:
vt 2t 2% = inf{y eR : (z', 2% y) € V(t)}

where

V(t):={(z,y) eR®: Jv el st (Y, (1), X(T)) 2 (9, 9a) (X,

t,x

11

(T)) P—a.s.}.



1.3 Model with price impact

Set of controls: {f is the set of adapted cadlag piecewise constant non-

decreasing process in R.

Controlled process:

dX" = px(XM)dr + ox(XT)dW + BX, Av)1az
dX*" = Av
dY"? = ’}/<X1’V7AV)]-AI/7£O .

= X1 = stock, Y” = cumulated buying cost (negative), Av = number of
stocks bought at time ¢, 3(X'", Av) = immediate impact factor, v(X1", Av) =

buying cost of Av shares (negative).

12



Controlled process:

dX" = pux(X")dr + ox(X")dW + B(X, Av) a0
dX? = Av
dY" = ’y(Xl’V,AV>1AV?gO.

Target: G :={(z,y) eR*xR:y> —K and 2> = N}.
Super-hedging of a target buying cost

v(t,zt 2?) =inf{y €R : (2, 2% y) € V(t)}
where

V(t) ={(z,y) eR*: JveclUst. (T) > —K and X;7/(T)

txy

13

= N P—as.}.



2 Extension to pathwise constraint

Initial problem: Compute

V() ={zcR"™: Jveclst Zy . € O}

Pathwise constraint: A family {O(s),s < T} of Borel subsets.

Problem with path constraint:
V(t)={zeR™: Jveclst Zy., € Oon [t T}
Example: Super-hedging with credit limit

Vt,p) ={(z,y) eR’: Iveclst. Y/

t,x,y

(T) > g(X;,(T)) and Y, > —K}.

tax7y -

for
O =R x[=k,00)1o) +{(z,y) : y>g()V(=kK)}1.

14



Initial problem: Compute

V(t)={zeR™: Jveclst Zy. € OfF.

Pathwise constraint: A family {O(s),s < T'} of Borel subsets.

Problem with path constraint:
V(t)={zeR"™: Jveclst Zy., € Oon[t,T]}.
Example: Super-hedging of American options

Vt,p) ={(z,y) €R’: IveclUst Y/

LyY

> g(Xy,) on [t, T}

for

O :={(z,y) : y=>gx)V (=K}

15



3 Extension to constraints in expectation - controlled loss

Initial problem: Compute

V() ={zcR"™: Jveclst Zy . € O}

Relaxed problem: Given a Borel measurable map ¢ and p € R, compute

Vt,p):={z e R"™": JveUst E[((Z].(T))] >pand Z;. € O}.

Remark : Could compute w(t, z) = sup, E [((Z},(T))] and look for z such
that w(t, z) > p. But it is indirect and might lead to additional numerical
instability

One can put several constraints in expectation at the same time, e.g. to impose
constraints on a terminal P&L distribution (B. and T. N. Vu |9]).

16



Application to liquidation with a target costs constraint

Set of controls: {f is the set of adapted cadlag piecewise constant non-

decreasing process in R.

Controlled process:

AXY = px(XH)dr + ox (X)W + (X, Av)1a,
dX*" = Av
dY" = y(X" Av)1a,4 -
= X = stock, Y” = cumulated buying cost (negative), Av = number of
stocks bought at time ¢, B(X1", Av) = immediate impact factor, v(X1", Av) =

buying cost of Av shares (negative).

Example: Quantile hedging of a target buying cost
Vit,p) :={(z,y) eR’: Jvelst P/

t,x,y

(T)>—-K] >p, X;7(T)=N}.

for
E(aj,y) = 192_[( and O = Rgl[oyT) + {(:U, y> : 332 = N}l{T}.

17



Application to liquidation with a target costs constraint

Set of controls: {f is the set of adapted cadlag piecewise constant non-

decreasing process in R.

Controlled process:

dX" = pux(X")dr + ox(X")dW + B(XH Av) 1 a0
dX*" = Av
dY" = y(X" Av)1a,4 -
= X = stock, Y” = cumulated buying cost (negative), Av = number of
stocks bought at time ¢, 3(X1", Av) = immediate impact factor, v(X1", Av) =

buying cost of Av shares (negative).

Example: Expected loss pricing of a target buying cost

V(t,p) :={(z,y) eR’: JvelUst E[(Y/

t,x,y

(T)+K)"] <—p. X;7(T) = N}.

for

l(z,y) = —(y+ K) and G = {(x,y) : 2°=N}.
18



4 Robust criteria - parameter uncertainty

(Game version:

V@my:{wﬂwﬂzHueﬂﬁﬁE{aZ@ﬂw}ZprMﬁEV}

Adverse control / Knightian uncertainty: ¢ € V can be interpreted as
a control of a parameter by the “nature” (e.g. volatility, correlation, default

time, etc...). Can be used to model Knightian uncertainty.

Strategy : u € U : 9 € V — u[d] € U is non-anticipating, ie u[d'].; =
u[192]./\t on 19-1/\75 — 19-2/\75'

Remark: When the adverse control is volatility, this relates to G-expectation
of Peng [15] and 2BSDEs of Soner, Touzi and Zhang |20]: find u such that

Y;M > g(XH) P —as VI

where X2 =z + [[" 0.dW, and Yo" = ¢ + [ u[9].dX?.
19



5 Optimal control under risk constraint

General probem

witir.p) = swp Fit.z:0)
vel(t,z,p)

where

P(t,z;v) :=E [f(X;,(T))]

and
Ult,z,p) ={velU : Gt,zv)=E |g(X/(T))] <p}.

Idea: turn it into a “standard” optimal control problem with state constraint,
the domain being given by the stochastic target problem associated to the

constraint.

20



Part 11
(Geometric dynamic programming and PDE
characterization for stochastic target problem

in P — a.s. form

V(t)={zeR™ : Jveclst Z{ (T) € GP—as.}.

21



1 A simple Markovian framework

Notations: Let F* = (F!,t < s < T) denote the augmented filtration
generated by (W, — Wi, t < s < T). Let 7' denote the set of Fl-stopping
times and U’ the set of Fl-predictable elements of .

Problem:
V(t)={zeR"™: FJveU' st Z/.(T)e GP—as}.

Controls: U the set of progressively measurable processes with values in a
compact set U C R* (viewed as a subset of L*([0,T] x Q)).

Controlled process : Z}, solution of

Z(s)=z+ /ts u(Z(r), v )dr + /ts o(Z(r),v)dW,, t<s<T,

with p and o Lipschitz, uniformly in the control.
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2 The GDPP

Problem:

V(it)={zeR™': JveU st Z/(T)e GP—as.}.

Theorem: (Soner and Touzi [17]) Let {6”, v € U'} be a family of T".
Then,
V(t)=V(?)

where

V() ={zeR": Ivel st. Z/.(0") e V()P —as.}.

23



2.1 V() V()
Fix z, € V(t). Then, 3 v € U" such that
P|Z/.(T)e G| =1.
Then (flow property),
P|Zp(T)eG| Fp| =1 P—as

where § := Zy (0”). Thus, for P-a.e. w €

’ P
/1{Zgg(w),g(w)(T)(w’)eG}dP<W) =1

where v, : W' € Q= v(wlp gy + (W' — wéy(w))l(gy(w)ﬂ) e UY’"w.
Thus, Zy (0")(w) € V(8" (w)) for P-a.e. w € €. Hence,

2eV(t)={zeR"™: JveU st Z/.(0") e V()P —as.}.

24



2.2 V() > V)
Let z € V(t) and v € U! be such that
Zy-(0") € V(0”).

Lemma: There exists a Borel measurable map ¢ : (¢, 2') € [t,T] x R
o(t', 2") such that

o(t', 2 e {V’ cu’ t”//Z/(T) eGP - a.s.} [y, — a.e.
where p,(B) = P |(0”,Z7.(0")) € B]. Moreover, there exists 7 € U" such

that
(0", Z; (0")) =V, dt x dP—a.e.
Take
V= Vl[tﬁy) + ley,T].
Then,

ZIAT) = Z5, (1) = 23, (1) € G P—as.

25



3 The GDPP in the monotonic case

Problem:

V(it)={zeR™': JveU st Z/(T)e GP—as.}.

Monotonicity assumption:

Yl/

t,x,y

(1) 2, = (XY

txy t,x?

)ERY X R
(ii) (z,y) € G implies (x,y') € G for iy > y.

Consequence: (x,y) € V(t) implies (x,y") € V(¢) for vy >y

26



Value function: ~(t,z):=inf{ly e R : (z,y) € V(¢)}.

Theorem : Let {6, v € U'} be a family of 7'. Then,

(GDP1) If y > ~(¢, ), then there exists v € U’ such that
Ve, (0) 2 A0, X0,(6) P — as.
(GDP2) If y < ~(t, x), then for all v € U’
P (Y}, ,(07) > ~(0", X7,.(0")] < 1.

Proof. y > ~(t,z) = (z,y) € V(t) =y > (t, x).

27



4 Informal PDE derivation

Assume 7 smooth and y = (¢, z) implies that there exists v € U such that
YI/

t,x,y

(0") > (0", X/ (07) P — as.
For 0" = t+:
Vi () > (4, X7 (t+)) P — as.
i.e. (with £% the Dynkin operator associated to X")
(py(x,y,v) — LEy(t, x)) dt + (oy(z,y, 1) — Dy(t,x)ox(x,vy)) AWy > 0.
This implies
oy(z,y,vy) — Dvy(t,x)ox(x,vy) =0 and py(z,y,ve) — LE(t, ) > 0.

Hence,

Hy(t,x) = sup {uy(x,v(t,z),u) — LSyt z)} >0
ueNyy(t,x)

where Noy(t,z) = {u e U : oy(x,y(t,x),u) = Dy(t,x)ox(x,u)}.
28



By optimality
HO’Y(t, JZ) ‘= Sup {II’LY('CU7 fy<t7 CC), U) o %V(u :E)} =0
ueNyy(t.z)

where Noy(t,2) .= {u e U : oy(z,v(t,z),u) = Dy(t,z) ox(z,u)}.

29



5 PDE derivation

Technical issue: The operator

(t, %, ¢, 0p, Dip, D*p) = Hop(t, x)
may not be continuous.
Relaxation: Set

1
H.(x,y,q,p,A) = sup {uy(«fb’, ysu) = ¢ = px(x, w)p — STrloxo (z, U)A]}
u€ Ne(2,y,p)

with
N.(z,y,p) ={uelU : |oy(z,y,u) —pox(z,u) <e}.

Define
H*(z,y,q,p, A) = lim sup H.(z", v, q,p, A"
(e,2"y 0/ A" )= (0,2,y,p,A)
Ho(z,y,q,p,A) = lim inf H(2',y' q,p0, A).

(e.2"y p/ A")—=(0,2,y,p,A)

30



5.1 Super-solution property

Theorem: (Soner and Touzi |18], B., Elie and Touzi |1|) Assume that ~
i1s locally bounded, then its lower-semicontinuous envelope 7, is a

viscosity super-solution on [0,7) x R? of

Hp(t,x) = 0.

Proof. For simplicity, we assume v = -, (the general case is obtained by
considering (t,,, T,) = (to, T,) such that y(t,, x,) — V«(to, o).

Fix (t,,z,) that achieves a strict local minimum of v — ¢ such that (y —
©)(ty, x,) = 0. Assume that

H*o(t,, x,) < 0.

Then, there exists a neighborhood B, r > 0 and € > 0 s.t.

sup {uy(z,y,u) — Lxp(t, )} <0 (%)
u€N:(x,y,Dp(t,x))

for (t,x) € B and |y — o(t, )| < r.
31



Fix ¢ € (0,7) and let y, := v(to, o) +¢. Then, by (GDP1), there exists v € U'°
such that
Yo(0) > 7(0, Xo(0)) = (0, Xo(0)) (%)

with Z, .= 27

{ woyer and 0 the minimum of

Op =inf{s >t,:(s,X,) & B}, 0, :=1inf{s > t,: |Y,(s)—p(s, Xo(s))| > r}.

Note that (**) implies that Y,(0) = (0, X,(0)) +r on {0 = 0,.}.

Moreover, after possibly changing » > 0, we can assume that
v > p+rondB.

Thus
Y,(0) > (0, X,(0)) + 7 (x5 ).

32



Set
Xs = [y (Zo(s), vs) — Lyp(s, Zo(s))] 05/ 7%0:1a(s)

where

6 :=o0y(Zyv)— Do(-, Z,) ox(X,,v), A:={|d] > ¢c}.
One has
sup (@, y,u) = Lye(t, )} <0 (%)
u€Ne(z,y,De(t,r))
for (t,z) € B and |y — p(t,z)| < r, with
N.(z,y, Do(t,z)) ={u e U : |oy(z,y,u) — Do(t,z)ox(xz,u)| < e}.

This implies
Xs < 0 on A%(s) = {[0s] <€}

33



Define L by |
L=1-— / Ly dWs.
Then, )
0 S
Lo(Y,(0) — (0, X,(0))) = ¢ +/ Ly Ty (Z,(s), vs) — L%0(s, Xo(8))] Lac(s)ds
v M= M,

Recalling that
Y,(0) 2 (0, X,(0)) +7 (% %),

this implies
v = B [Lg(Yo(0) — (6, Xo(0)))] = T

We obtain a contradiction since ¢ < r.
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5.2 Sub-solution property

Definition:  Let C(¢,x) be the C'? functions ¢ st. @ V e > 0 and
B open st. (z,p(t,z), Dp(t,x)) € B and Ny # () on B, and all @ €
No(z,¢(t,x), Dp(t,x)), 3 B" C B and a locally Lipschitz map @ such that
[u(x, p(t, x), Do(t,x)) —u| <eand u € Ny on B’

Remark Assume oy depends only on x and u, ox does not depend on u,
and that u € U — oy(x,u) is invertible + regularity, then ¢ € C(t,z) if
oy (@, Do(t, z)ox(x)) € int(U).
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Theorem: Assume that v is locally bounded, then its upper-semicontinuous

envelope 7* is a viscosity sub-solution on [0,7) x R? of

Hap(t, )1 pec(try = 0

Proof. We assume that v = ~* for simplicity. Fix (¢,,x,) that achieves a
strict local maximum of v — ¢ such that (v — ¢)(t,, z,) = 0. Assume that
¢ € C(ty, z,) and

Hap(to, o) > 0

Then, by definition of C, one can find a Lipschitz continuous map 4, an open
ball B 5 (t,,,), and r > 0 such that

) = Lt @)

) = Dy'ox(t,z,u(t,z,y)) (O)

for (t,z) € B and |y — p(t,z)| < 7.
Take ¢ € (0,7), set y, := Y(t,, x,) — t. Let (X,,Y,) be associated with the

initial conditions (t,, x,, ¥,) and the Markovian control induced by .

Y Y

/LY(:EJ Y, Zl(t 2
t,x

y)
O-Y(xa Y, ’ll( ) y)
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Let 6 be the minimum of
Op =inf{s >t,:(s,X,) & B}, 0, :=inf{s > t,: |Y,(s)—p(s, Xo(s))| > r}.
By (O) and ¢ < r, we have

Yo(0) > =14 (0, X,(0)) + rlyp—g,y > (0, X,(0)) +17 — 1

where 7 can be chosen such that y—¢ < —r on dB. This implies that Y,(6) >
(0, X,(0)) since r > ¢, while y, < v(t,, z,). This contradicts (GDP2).

37



5.3 Boundary condition when G = {(z,y) : y > g(z)}
Notations: Set
N(z,y,p) == {r eR: r=|oy(z,y,u) — p'ox(x,u)| for some u € U} ,
and
0 = dist (0,N°) — dist (0, N) ,
Then,
0 € int (N(z,y,p)) iff o(x,y,p) > 0.

Remark: Note that v, is a super-solution of 0*p > 0.

Example : Assume that oy(x,y,u) = v'o and ox(z,u) = o is invertible.
Then, dp := (-, 0, Dp) > 0 < Dy € U, while §p > 0 < Dy € int(U).
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Theorem: Assume that 7 is locally bounded, then ~,(T, -) and v*(T, -)

are respectively super- and subsolution on R? of

min{¢ — g, 8 p} >0

and

min{e — g%, 0.0} oec(r,) < 0.

Proof. a. Supersolution: Take (t,,, x,, Y(tn, ,)) — (T, x,v(T, x)) with £, <
T and y,, ;== v(t,, x,) +n~ 1. Then,

V(T,z) = limY, "  (T) > liminf g(X;", (T)) > g.(z).

tn,Tn,Yn

Moreover, 7, is a supersolution on [0,7) x R? of §*p > 0, which propagates
at the boundary.

b. Subsolution: If d.p(x) > 0 then Ny is non-empty on a neighborhood
of (z,¢(x), Dp(x)). One appeals to the definition of C and argue as in the

interior of the domain.
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6 Example: Super-hedging under constraint

Model: Given o invertible:
dX = diag[X]odW and dY" = V'dX = V'diag[X|odWV.

Simplication: u € Ny(z,y,p) & p=ucU.

Support function of U: Assume that U is closed, convex and contains 0.

Set
oy (¢) = sup ('u.
uelU
Then,
pelU&G(p) = |é‘n:ﬂ(&f(é“) —('p) >0
and

p € intU < G(p) > 0.

40



The PDE and the terminal condition become
min {—Lxy , G(Dg)} =0on [0,T) x (0, 00)"
and (for g continuous)
min {¢ — g, G(Dy)} =0 on (0, 00)".

Compare with, e.g., Cvitanic, Pham and Touzi |1 1| and Soner and Touzi |19)].
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7 The GDPP with pathwise constraints

7.1 Problem and GDPP

Problem: Let {O(s),t < s < T} be a family of Borel sets.
V() ={zcR"™: Jvecust. Zy, €0 on|t,T|P—as.}.

Assumption: t, | t and z, — 2z with 2z, € O(t,) implies z € O(t) (upper

hemicontinuous from the right in time).

Theorem: (B. and Vu [3]) Let {6”, v € U'} be a family of T'. Then,
V(t)=V(t)

where V() is the set of initial conditions z € R*"! such that 3 v € U/’
satisfying

Z{ (0" Ns) € O(s)Lycpr + LoV (0") Vs e [t,T] P—as..

42



7.2 PDE characterization

Domain:
D ={({t,zy): (z,y) € O)}.
In the interior: For (¢,z,v(t,x)) € intD, the characterization for the prob-

lem without constraint holds true.

In the domain: Assume that D € C'? (or intersection of C1? domains) and
take 6 € C1? such that § > 0 in int(D), § = 0 on 9D and § < 0 elsewhere.

The state constraint imposes do(t, Z¢(t)) > 0 if (¢,2) € OD.

As above it implies:
L76(t,x,y(t,x)) >0 and DO(t, z,v(t, x)) oz(z,y, 1) =0

when (¢, x,v(t,z)) € OD.
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Define
/\/2”90 = {’LL S N&?(agp) : |D6<'7§0>,O-Z<'7907u)| S 5}

and

H:Lengo = Sup min {MY<'7 QO,U) R 15( ) %5(7 90)}
ueN "y

The super-solution property is stated as in the unconstrained case on D (the
fact that the constraint does not appear at the super-solution level is standard,
and usually harmless), but for (¢, z,v*(¢t,x,)) € D (t < T'), the subsolution

property reads
H"p < 0.
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Part 111
Stochastic target problem with constraint in

expectation

Vit,p) ={zeR™: Jvcust E 4z (T))] > p}.

45



1 Problem reduction

Assume that ¢ has quadratic growth.

Let A" denote the set of Fl-progressively measurable square integrable pro-

cesses with values in R?. Define
M, =p +/ aldW.
'

Let v € U' be such that p:= E [£(Z},(T))] > p. Then, there exists a € A’
such that

(2 .(T)) = Mip(T) = M,(T).
Conversely, let (v, o) € U* x A" be such that £(Z} (T')) = M(T) > M¢,
Then,

E [¢(Z;.(T))] > E[M(T)] =p.
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Proposition: (B., Elie and Touzi [1])

V(t,p) ={zeR™: I (v,a) e U'x A’ s.t. Uz (T) > M, (T) P—a.s.}.

We are back to the previous part, for an enlarged system.

Proposition (GDP): Fix {0 ¢ € U' x A'} C T'. Then,

Vit,p) = {z e R FpcU'xA st. Z7.(0°) € V(6°, M, (67)) P—as.}.

Additional difficulty: o coming from the martingale representation theorem

can not be assumed to take values in a compact !

PDE characterization: Remains the same for the enlarged system, except

that a boundary layer phenomena may happen at T
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2 Example #1: quantile hedging in the BS model

2.1 Problem

y(t,p) =inf{y >0: Jvel st. PV (T) > g(X;.(T))] > p}.

where
dX = X(udt + cdW) and dY"” =vY"dX/X = vY"(udt + odW).

with 0 > 0, U = R and g > 0 continuous (poly. growth).
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2.2 PDE in the domain

H.(z,y,r,q,A)

sup {U?JM — = TUqy — % (xQUQAm +a* Ay, + 25’30@149317)}
(u,a)ENg(:L‘,y,q)

with
N.(z,y,q) = {(u,a) ER® : |uyo — wogq, —ag,| < e} .
Thus, for g, > 0,

H.(z,y,7,q,A)

—r+ sup {L(e€+aqy) — 5 (2%0% Ay, + a® Ay, + 2x0aA,)) }
a€R,[E]=1
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The above is 400 is A, < 0. For A,, > 0,

H.(x,y,r,q,A) = H*(x,y,7r,q, A)

—7 + sup {gaqp — % (x2U2Am + Q2App + 2560&14371?) }
acR

(EQp_xUAxp)z 1,.2 2
pp

In particular: v* is a subsolution of D,,p > 0, hence v* is convex.

Remark: If v is smooth and convex then its p-Fenchel transform

Y(t,x,q) == sup pq —(t,z,p)
p€(0,1]

solves

1 N N N
—% = (@0 s + 2090 Mg + X gq) = 0
with A := p/o, at points such that 7,(¢,z,q) € (0,1).
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2.3 Boundary conditions
Intuition: The natural boundary condition is
(T, z,p) = g(x)1p>0,
which is not continuous. But, since v* is convex in p, one should have
VAT, z,p) < py (T, 2, 1) + (L= p)y™ (T, 2,0).
Moreover, one can show that
V(1) =% 1) = w and 47(-,0) = (-, 0) = 0,

where w(t, x) = (¢, z, 1) is the Black and Scholes hedging price.
Thus

YT, 2,p) < py*(T,2,1) + (1 — p)y* (T, 2,0) = pw(T, x) = pg(z).
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Conversely, take (t,, Zn, Pn, Yn = Y(tn, ) + 0 ) = (T, z, p,v(T, x,p)) and

Up, Oy, Such that
Ly (m)zg(xa(ryy = Ma(T) 2 0,
with (X, Y, My,) = (X4, 2,, Y. M ). Then, (recall that g > 0)

tnyTn,yn? tn,pn

Yo(T) = Mo (T)g(Xn(T)).
Letting L, be the solution of
L,=1- / AL, (s)dIV.
one has ’
L(T)Y,(T) = Mp(T)g(z) + Mp(T) (Ln(T)g(Xn(T)) — g(x))
and (|M,(T)| < 1)
V(T 2, p) = Yo = pg(x) — E[|L,(T)g(Xn(T)) — g(2)|] = pg(z).

Proposition: ~*(T, z,p) = %(T, z,p) = pg(x).
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2.4 Explicit resolution

The upper-semicontinuous p-Fenchel transform

Y*(t,x,q) = sup pq — V(t,z,p)

p€l0.1]
is a viscosity subsolution of
1
—Qp — §<$202@J;x +20G0 N2y + N Pyy) = 0 0on [0,T) x (0, 00)?

with A := u/o, and satisfies

(T, 2,q) < (¢ — g(z))*".

Hence,
Vi (t 2, q) <EC[(Qug(T) — g(Xio(T)))"]

where

dQ/Q = AW and dQ = (1/Qo,(T))dP
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Then,

Yult,z,p) = sup (pg — B [(Qrg(T) — 9(X:.2(T)))"])

q>0

= pj— E? [(Qu4(T) — 9(X;.(T)))"]

with
—A

7\

p=E" [Qt,l(T>l{Qt@(T)Zg(Xt,x(T))}} = P[Q14(T) > g(X;.(T))).

Hence,

Yt 2, p) > E%[Qug(T)1a — (Qug(T) — 9(Xeo(T))1a] = E° [9(X00(T))14] .

Since p = P[A], we conclude
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Proposition:

vt z,p) = E? [g(Xi.(T))14,,] -

where

At = 1@, (T) 2 9(Xe.(T))}
and ¢, such that p = P[4, ,].

One retrieves the result of Follmer and Leukert |12].
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3 Example #2: shortfall pricing in models with proportional costs

3.1 Model

Set of controls: U is the set of adapted continuous and non-decreasing

processes (component by component) in R?.

Controlled process:

X(s) = x —1—/ XY udr+/ X (r)odW,
2

XZV
X2(s) = x* + XT(r / dv! —I—/ dv>
t

Y¥(s) y—l—/:( )\)du—/t 1+ A\)d
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Price under shortfall constraint: ~(t, x,p) defined as the inf over y such
that 3 v € Y for which

Yy, XY = =k and B o (Y2 (T) + UX(T)) = g(X1(T) | = p

where [(z?) = 2° — \|z?| is the liquidation value of the position in stock, ¥ is

bounded, non-decreasing.

Reformulation: (¢, z,p) defined as the inf over y such that 3 (v, ) €
Ut x A' for which

t,x

Vi, + U > = and o (Y2(T) + UXEAT)) = g(XE(T))) > Mgy (T)
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3.2 Informal PDE derivation

Assume v smooth and y = (¢, x, p) implies that there exists (v, a) € U such
that
YV

1,2,y

(9) > 7(97 Xty,x<(9)7 Mto,ép(e» P—as.
For 6 = t+:

Vi () >yt X (E+), MY (t+)) P — as.
l.e.

0 < —E%’Mv(t, z,p)dt — (Dy(t, z,p)xo + e Dyy(t, x, p)) dW;

This implies
Dy(t, 2, p)wo + a;Dyy(t, z,p) = 0 and — LY py(t, z,p) > 0

or
ma“X{<1 o )\> + D$2"y(t,$,p> ) _<1 + >\> o DxQ")/(t,ZE,p)} > 0.
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3.3 PDE characterization

Set
Hp = —E%Mgp , Gy, = —D,pxo/D,yp

and
G =max{(1—=X) — D2, —(1+ X))+ D,2p}.

Proposition: ~, and v* are respectively super- and subsolution of

max{Hy , Go} Lip,p=0y = 0

and
min {¢ +1(2%) + £, max{He , G} p,em0p < 0.
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3.4 Boundary condition at T

If
v (Y1) + UXZ(D)) = g(XL(T))) > My,
then

y+ za® > E° [ (MP(T)) + g(X}(T))] Vze[l—X1+ A
If 1)~ is convex, then

y+1Ux%) > (p) + E° [g(X}(T)] = ¢ (p) +g(z') ast — T

Conversely, for y = ¥ (p+n) + g(z!), n > 0, we can find € > 0 such that
forallt € [T —e,T)|

E |v (Y5,(T) + UXET) = g(XL ()| = p.
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Proposition: For all p € int(Im(¢))),

7*<T7 va) — %(T,a},p) - max{¢_1(p) + g<5131> ) _/{} o l(SCQ)
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3.5 Boundary condition at dlm(v))

Without loss of generality, we can assume that Im(v) = [0, 1.
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a- Boundary condition at p = 0:
One has: y(t,z,0) = —k — [(2?).
Step 1. If o is a test function for v* at (¢, x,0) then

min {¢ + £ + I(z%) , max{Hp Go} 3 1ip, =0 <0

where

1
Ho = —[,Xgp—§ (ngOIZEO'/ngO)Q Do+ (Dyp’xo/ Dy) a(xle1pg0—|—$2Dx2pgo)

Step 2. If ¢ is a test function for (t,x) — ~*(¢t,x,0) at (t,, x,,0) then one
can construct a sequence of test functions ¢, and test points (tn, T pn) —
(to, To, Po) such that

Dyon(tn; nspn) >0, (DppSpn/DpSpgm Dpon/ Dyon) (tn, T, pn) — 0,

and the other derivatives converges to the corresponding derivatives of ¢ at

(to, T,). Passing to the limit leads to
min {¢ + k + (z°) , max{—Lx¢ , Gp}} <O0.
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b- Boundary condition at p = 1: One has: y(¢,z,1) = w(t, z) the super-
hedging price of g(X/,(T)) starting from z*. Clearly, v*(t,x,1) < w*(t, x).

One can show by similar argument as above that (f,z) — ~.(f,z,1) is a

supersolution of

min {¢ — w, , max{—Lx¢ , Go}} =0
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3.6 Boundary condition at 0lm(¢) and t =T,

Problematic: typically discontinuous... need to regularize the criteria.

Natural boundary conditions: (T,-,1) = g where g > g — [(z?) is the
cost of the cheapest buy-and-hold strategy, and v(T',-,0) = —x — I(z?).
Discontinuity:  (T,-,1—) = max{¢"'(1) + g(z') , —x} — I(2?) and
YT+, 04) = max{y~(0) + g(') , —r} —1(z?)

Regularization: Assume ¢(r) = (r~V—1)+1,9 > 0, x > 1. Then, replace
Yy + 1(x?) — g(zh)) by A(z,y) such that A=z, ) is continuous on [0, 1],
ANz, 1) =gand AZYz,0) = —k — L.

Such a technic is applied in B. and Vu |9] for quantile hedging under portfolio

constraint (more previsely for a P&L matching version).
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4 Multiple constraints

One can similarly handle problems of the form
Vit,p) ={zeR™: Jvcu st E 0(ZY (T))] > p' Vi<k}
In this case, the corresponding martingale M is k dimensional.
See B. and Vu |9] for a P&L matching problem under portfolio constraint:
Vit,p) ={zeR™: Jvecu st P VAT) — g(Xeo(T)) = —vi] > p'Vi<k}

with
1<V <<k
and

0<p' <p’<--- <P~
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This leads to multiple boundary conditions on boundary of sets of the form
Diy={pecl0,1]":p=0ificI, p=1ificJ, 0<p <1 otherwise}

One considers 77y the projection on Dy and vyy(t, z,p) == ~(t, x, 715(p)).
For each vy, the PDE is obtained in the domain [0,7) X RY x D;; as before
and boundary conditions are given on [0,7) x R? x @Dy in terms of the vy
with I’ D I and J' D J.
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5 Link with standard stochastic control problems

Let us consider:
w = inf E[f(Z"(T))].
veld

Let A denote the set of P — a.s. square integrable progressively measurable

processes such that My, is a martingale. Then,

w="1w:=nf{p: 3 (v,a) €U x A st. f(Z/(T)) < M, (T)}

Proof. Given v, we can find « such that
f(Z7(T)) = Mg, (T) for p = E[f(Z"(T))].

Thus p > w. For p — w, this leads to w > w. Conversely, for p > w,
3 (v,a) € U x A such that

f(Z7(T)) < My, (T)
and therefore w < E [f(Z7(T))] < p. Hence w > w.
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Part 1V
Optimal control under stochastic target

constraints in controlled loss form

w(t,x,p) = sup F(t,z;v)
vel(t,z,p)
where
F(t,z;v) =E | f(X](T))]
and

U(t,x,p) = {V cU' . Gt,x;v) =E [g(Xfx(T))} < p} .
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1 Problem reduction

Assumption: g(X/, (T)) € L* for all v € U and (t, ).
Proposition:

Ut,z,p)={vel" : Iae A st. g(X/,(T)) < M{(T)}.

Corollary: (B., Elie and Imbert [3|) By the (GDPP),

w(t,z)= sup J(t,z;v)
(r,o)€l(t,x,p)

where
L(t,z,p) ={(v,a) eU' x A" st. X/, € V(-, M) on [t,T] P—as.}
and

V(t,p) ={z €eR" : (v,a) eU' x A" s.t. g(X/(T)) < M{,(T)}.
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We are back to a “standard” state constraint problems for a domain defined as
D = {(t,z,p) € [0,T] x R x Tm(g)” : = € V(t,p)}

which requires to solve the stochastic target problem associated to V' first.

Technical issue: V is typically not smooth, and can even be not continuous.

71



2 Weak dynamic programming principle

“Weak” 7?7 : in terms of test function rather than in term of w itself.

Why 7 : to make profit of the regularity of test functions (and measurabil-
ity).

Proposition: Let ¢, > w be a smooth function. Let {0?, ¢ € U’ x A'}

be a family of stopping times such that (X ¢ pr) is bounded on

[
t,0°]. Then,

wit,e,p) < sup B o (8%, X7,(0%), M, (6)]
oel(t,x,p)

In the above, we just use the measurability of o .
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Proof. Take v € U(t, x, p) and let v € A" be such that g( X7, (1)) < M (T).
We write ¢ = (v, a).

Fit,,piv) = E [E | F(X} (7)) | Fio]]
with
E | F(Xgo o o0y (T)) | Foo| () = P(6°(w), X, (6°)(); )
where
Uy, W — V(wl[oﬁgb(w)] + 1(9¢(w)7T]( 0 —Wys)).
Assuming v, € U(0%(w), X7, (0°)(w), M, (09)(w)), then

F(0°(w), X7,(07)(w); )

and therefore
F(t,z,p;v) < E[p(6° X/ ,(67), M (6))] .

Conclude by taking the sup over I'(¢, x, p).
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It remains to check that v, € U(07(w), X7,(07)(w), M, (07)(w)).
But, g(Xt”’x(T)) < Mt(j‘p(T) implies

GO%(w), X1, (07)(@)i ) = B [9(X50 xp g0y (T)) | Fio| (@) < M, (6)(w).
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Assumption: For any v € U, the maps (t,z) — F(t,x;v) and (¢, x) —

—G(t, ;v) are lower-semicontinuous (on the right in time).

Proposition: Fix 0 > 0 and let o < w be a smooth function. Let
{60°,¢ € U' x A'} be a family of stopping times such that (X}, M")
is bounded on [t,§°]. Then,

sup B [ (07, X7,(0°), M, (0°))| < w(t,,p+0).
oel(t,x,p)

Remark: We make two relaxations w — ¢ and p — p+ 9. We will play on

the upper-semicontinuity of ¢_ only.
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Proof. Fix e > 0. By the above continuity properties, one can find open radius

r; > 0, points (t;, x;, p;) and controls v; € U(t;, x;, p;) such that

F(v)+e> F(ti,xivi) > w(ti, i, pi) —€ > ¢ — 2 on B;

and
G(t,z;v;) —e < Gty xiv) < pi <p+eftor(t,x,p) €B;
where
B; = ([ti, ti + i) X By (x4, pi)) N D
and

Uilei OB

a compact set which the controlled process does not exit.
[t follows that

F(t,z;v;) > o(t,z) — 3c and G(t,z;v;) < p+2 for (t,z,p) € B;.
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Since
F(t,z;v;) > o(t,z,p) — 3¢ and G(t,z;v;) < p+2 for (t,z,p) € B,.

considering 7 defined by

_ v on [t 0]
V = )
V= Vv, 0Ol ((9¢7 T] it ((9¢, ng(QQS), Mﬁp(@gb)) < BZ

where ¢ = (v, ) € I'(t, x, p), leads to
F(6°, X167 9) > ol0°, X[, (6°), M, (6°)) — 32
and
G(6°,X7,(0°);7) < M[,(6°) + 2e.
Thus,
F(t,z;7) =E [F(6°, X/ ,(6°);0)] > E [¢(6?, X/ ,(6°), M{,(67)) — 3¢]

and
G(t,z;v) =E [G(6°, X/ ,(0°);0)] <p+ 2e.
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This implies that
w(t,z,p+2e) > F(t,z;7) > E [p(6°, X/, (0°), M,(67)) — 3¢] .

Given 0 > 0 and 2e < §, we have w(t, x,p+ ) > w(t,z,p + 2¢). Remains to
take the sup over the control ¢ on the right and send € — 0.

Remark: We do not have to do infinite (countable) pasting as above, but

only finite pasting, this leads to an additional €...
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Theorem (Weak DPP): (B. and Nutz |6], B. and Touzi |7|)Let ¢ < w <
¢, be smooth functions and fix ¢ > 0. Let {6% ¢ € U’ x A’} be a
family of stopping times such that (X pr) is bounded on [t,6].

t,x?
Then,
sup E [y (6%, X7,(60%), M{(6°))| < wit,z,p+e)
oel(t,x,p)

and

wit,e,p) < swp B o (67, X7,(6%), M, (6°)]
o€l (t,z,p)

Corollary: With the same notations and assumptions:
sup E [w, (6, X7,(0%), M7,(0°)| < w(t,zp+e)
oel(t,x,p)

and

wit,e,p) < sup B [w(0% X7, (6°), M{,(6°))]
oel'(t,x,p)
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Remark: The same arguments allows one to prove a weak GDPP for prob-

lems of the form:

¥t,z,p) ={yeR: Jvecl' st E [K(XZ:C(T), Yt”xy(T))] > p}.

Proposition (Weak GDP): Fix {6?, ¢ € U' x A'} C T'. Then,

(GDP1) If y > 7(t,z,p), then there exists ¢ := (v,a) € U' x A’ such
that
Vi (07) 2 7(07, X, (07), My, (67)).

(GDP2) If there exists ¢ := (v,a) € U' x A’ such that
Y, (07) > (07, X7, (07), M7, (6°)),

then y > 7(t,z,p — ¢) for all € > 0.
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3 PDE characterization

In the domain D: In the interior of

D={(t,z,p) €[0,T] xR x Im(g) : z € V(tp)}

the state constraint does not play any role. We have the usual HJB equation,
but in terms of (¢,z) and p !
Set

Hp=— sup LY,
(u,a)€UxRA

Proposition: w, and w* are respectively super- and sub-solution on D of
Ho(t,x,p) >0 if (t,x,p) € int(D)
and

Hoo(t,z,p) <0 if (¢, x,p) € int(D).
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On the boundary:

To obtain a characterization, we define the value function v associated to V:
V(t, o) == inf{p € Im(g) : 3 (v,@) €U' x A's.t. g(X7,(T)) < M(T)}.

Assuming that 7 is smooth, the (GDPP) for v implies that the only possible
controls on @D (boundary on [0,7)) are such that

a; — ox(x, ) Dy(t,z) =0 and — LY(t,x) >0,

where L5 denotes the Dynkin operator of X
Hence, w should satisfy on 0D

Hpw:=— sup Lyw=0
(u,a)€0]

with

0) ={(u,a) €U xR :a —ox(-,u)Dv=0,—L%v > 0}.
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a- Sub-solution part: We define

W,(t,z) = {p € CY*([0, T] xRY) s.t. (v—¢) > (y—¢)(t,x) = 0 near (¢,z)}.

Nf(t, ) is again defined as the set of points (u,a) € U x R? such that
a=ox(x,u)Do(t,z) and — L%d(t,z) > 0.

Finally, we set

Hf;gp = —  Sup S%’?Mgp
(u,a)E./\/gj

Proposition:  Assume that 7 is continuous on [0,7) x R? and that U is

compact. Then, w* is a subsolution on D of

sup ango <0 if (t,x,p) € ID.
GEWk(t,x)

83



b- Super-solution part: Since v may not be smooth, we need to use the

notion of test functions.

Set
WHt, z) = {¢ € CH[0, T|xRY) s.t. (v—¢) < (y—¢)(t,z) = 0 near (t,z)}.

Then, for ¢ € W*(t, x), we define the set Ny (¢, z) as the set of points (u,a) €
U x R? such that

a=ox(z,u)Do(t,z) and — LY¢(t,x)>0.

We let C(t, x) be defined as above but with respect to N'(¢, ) in place of the
former Ny(z, ¢(t,z), Do(t, x)).
Finally, we set

H%p .= — sup ,CSL(’?MQO
(u,a)e./\/'g)

For ¢ € W*(t, x), we define Hfﬁf as the upper semi-relaxed limit as the point,

gradient and Hessian converge (all the parameters except ¢).
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Proposition: Assume that v is continuous on [0,7) x R?. Then, w, is a

supersolution on D of

inf H>*o >0 if (t,z,p) € OD.
qSeW*(zlf,g)ﬂC(t,x) m$ 20 i (& 2,p)

Remark: We will use the fact that

0D = {(t,z,p) : p=~(t,2)}

when y is continuous.

85



Proof. Assume w = w, for simplicity. Let (¢,, o, po) € 0D be a strict mini-

mum point of w — ¢ (equal to 0) on D. If

inf HO* to, o, Do) < 0
GEW* (t,2)NC(t,x) ! Po)

then, we can find ¢ € W*(¢,x), a locally Lipschitz map (u,a), r > 0 such
that

—ﬁg?:]@go <0, L% >0and a=o0x(-,4)D¢ on B := B,(t,x,p).

Let (X,, M,) be the process associated to the initial condition (t,, x,, p,) and
the Markovian control (@, a). Let 6 be the first exit time of (-, X, M,) from
B. Then,

w<t07 $Oapo) — 90<t07 3707]90) <K [@(97 X0<9>7 M0<9))] <E [w(97 X0<9)7 M0<8)>]_[’

with ¢ > 0 (minimun of w — ¢ on dB). If the Markovian control associated
to (@, a) is admissible, this contradicts the weak DPP.
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By (GDP1) for ~, it suffices to show that M,(0) > (0, X,(#)). But, by the
above system, and the fact that (¢,,x,,p,) € 0D implies p, = Y(to, o) =

P(to, o),
M,(0) > ¢(0, X,(0)) > (6, Xo(0)).

Remark: We appealed only to (GDP1) whose proof does not require any

measurable selection argument.
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Part V

Stochastic target games

1 Problem formulation

Determine the viability sets
Vt,p) ={z:3ucis t. E [g(zgj?WT))] >pV e V)
In which:
e )V is a set of admissible adverse controls
e §l is a set of admissible strategies : u € U : 9 €V — uly] € Y.
o7, [219]719 is an adapted R%valued process s.t. Z; Lﬁ]’ﬁ(t) =z

e / is a given loss/utility function

e p a threshold.
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In finance : Z; Lﬁ]’ﬁ = (X, [;9]’19, Ytﬂ@“) where

° X;f ?]’19 models financial assets or factors with dynamics depending on
o VUM 116dels a wealth process

1,2,y

e ¥ is the control of the market : parameter uncertainty (e.g. volatility),

adverse players, etc...

e ul] is the financial strategy given the past observations of 9.

Flexible enough to embed constraints, transaction costs, market impact, etc...
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Examples

V@my:{uaueusﬁmﬂaszgw}szﬁev}

Almost sure constraint:

V(t):={z:3uedst. 2V (T)c OP —as. ¥V eV}

z

for £(z) = 1.co, p= 1.

= Super-hedging in finance for O == {y > g(z)}.

Compare with Peng (G-expectations) and Soner, Touzi and Zhang (2BSDE).
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Examples
Constraint in probability:
V(t,p)={z:3ucist P [z;j[fW(T) c 0} >pvd eV

for £(z) = 1.eo, p € (0,1).
= Quantile-hedging in finance for O := {y > g(x)}.
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Examples

V(t,p) = {z:Fucist E [az;j?W(T))} >pVe V)

Expected loss control for £(z) = —|y — g(z)]

Can impose several constraint : B. and Thanh Nam (discrete P&L constraints).

Give sense to problems that would be degenerate under P — a.s. constraints :
B. and Dang (guaranteed VWAP pricing).
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2 How to get the Geometric dynamic programming principle...

The original problem:
vumy:{maueuspmﬂaszaw}szﬁev}

Key point: Submartingale property: for u fixed

S;“? = essinf E [Z(ZZ gﬁ@sﬁ]’ﬁ@sﬁ(T))\Fs}
vey

defines a family of submartingales parameterized by .

Doob-Meyer decomposition: 3 a family of martingales {M™? 9} such that
SwY > MUY with MY(t) = p.

GDP for target games: z € V(t,p) if and only if there exists u € U and a
family of martingales { MV, 9} with M?(t) = p such that

0Z(TY > MY(T)P — as. VI € V.

t,z
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3 Markovian framework

Strategies: 4 is the set of maps u : V — U such that {t =(0.4] e} C
{ulth] =g u[ds]} for all V1,9, € Vand t <T.

State processes: Z; - (X} ad ﬁuxﬁy) is the strong solution of

Z(s) = z+/ M(Z(’r),u[ﬁ]r,ﬁr)err/ o(Z(r),ud],, d,)dW,.
t t
(Lipschitz coefficients + controls valued in bounded sets)

Controlled martingales: {M{, o € A} with

Mt(j‘p ::p—|—/ o, dW,
¢

Martingale strategies: 2 the set of maps af-|: V +— A such that {0, =
192} C {a[z?l] =(0,4] a[ﬁg]} for V1,99 € Vand t <T.
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Target

Given a continuous map (with poly growth) £ : (z,7y) € RT™Ix R+ f(z,y) €

R, non-decreasing in its y-variable, define

I(t,z,u,9) =FE {f (Z;’f(T)) \ft} and J(t,z,u) = essérg} I(t,z,u,9).

and
v(t, z) := inf {y eR: dJueldst J(t,z,y,u) >pP— a.s.}.
For later use:

K(t,z) = esssup J(t, z,u)

ueil

which can be shown to be deterministic, see |10].
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4 The GDP

Theorem
(GDP1) If y > ~(t,,p+¢) with e > 0, then Ju € Y and {a’,9 € V} C A
S.tT.
w9 w1 0419
Y, (T) > s (7‘, X (1), My, (7‘)) P-a.s.

t,x,y

foralld e V, 7 €T,

(GDP2)Fix a bounded open set O > (t,2,v,p), (u,a) € & x A and let 7

denote the first exit time of (-, Xzf, th‘gfy, Mtc;[)ﬁ]), ¥ € V. Assume that there

exists 7 > 0 and a continuous function ¢ > v such that

t,x,y » S tp

YA (7)) > (7‘, thjf(Tﬁ) Ma[ﬁ](Tﬁ)) +nP—as. forall d eV.

Then, y > ~(t,x,p —¢) for all € > 0.
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Sketch of proof for GDP1

Assume

S*Y = essinf E [E(Zuw@sﬁ]’ﬁ@sﬁ(T))]]-}}

< t,z
VEVs
is such that Sf’ﬁ > p.

[t admits a calag decomposition (up to a modification),+ Doob-Meyer-type

decomposition : S*¥ > M"Y a cadlag martingale.

K(r, 2 (1)) = M* (1)
which leads to
ZZ? () eV (r,M* (1) —¢) P—as.

Ok for stopping times 7 with values in a countable set. Pass to the limit.

97



Sketch of proof for GDP2

V

7V an approximation of 7V on a sequence of finite grids .

If
A (Tﬁ) S VL (7'19, MY (7‘19)) P — a.s.

t,z
then
Z2 () e V (72, M7 (7)) on EY for all ¥ € V

with P |EY| — 1 as n — oo (uniformly in o).

Hence,
K(r), 2} () = MP(7)).

Regularity + covering: there exists u. € 4 such that
E |02 (D) Fg] = M'(x) - =

which implies

E (212" (1)1 7] 2 p—e

9
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