
Poisson process and actuarial sciences
Mid term exam (2015-2016)

March 16, 2016

The quality of the redaction will be taken into account. Be clear and concise in your
answers.

Questions. [Answer in maximum 3 lines] (5 points)

1. Give the definition of a standard counting process. [1pt]

2. What it a renewal process ? [1pt]

3. What are the properties of the increments of a mixed Poisson process ? [1pt]

4. What is the Markov property for a Poisson process ? What does it mean ? [1pt]

5. What is the law of the first n jump times of a Poisson process N given that Nt = n
? [1pt]

In the following problem, most of the questions can be answered independently but
results from the previous ones (given in the text) will often be useful. You can therefore
skip the questions you can not answer, but read all of them !

Problem.(19 points) The number of vehicles entering a roundabout (rond point) is
modeled by a Poisson process N of parameter λ > 0. Namely, Nt is the number of
vehicles that have entered the roundabout during the first t minutes. The corresponding
sequence of jump times is (Ti)i≥1.

1. Given that exactly ` vehicles entered the roundabout within the first t minutes,
give the probability that at least k vehicles have entered the roundabout within
the first s minutes, with ` ≥ k and t > s. Express the result in terms of s, t, `
and k. [1,5pt] Show that it can be interpreted in terms of a binomial distribution.
[0,5pt]

2. Because of works on the roundabout, its access will be closed during a time duration
of h minutes starting from time to. Vehicles will still arrive according to N but will
have to queue and wait. We want to ensure that the maximal number of vehicles
queuing is strictly less than K ≥ 1 with probability p ∈ (0, 1).

(a) What it the probability that a vehicle arrives exactly at time to ? [1pt]
(b) Set

δ̃i := TNto+i − (TNto+i−11{i≥2} + to1{i=1}).

Show that δ̃1 is distributed according to an exponential distribution of pa-
rameter λ.[1,5pt] Then, show that (δ̃i)i≥1 is an iid sequence, by induction.
[1,5pt]
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(c) Set

T̃n :=
n∑
i=1

δ̃i and Ñt :=
∑
i≥1

1{T̃i≤t}.

Justify that Ñ is a Poisson process with parameter λ. [0,5pt]
(d) Provide a condition in terms of element(s) of (T̃n)n≥1 ensuring that the max-

imal number of vehicles queuing on the time interval [to, to + h] is strictly less
than K ≥ 1 with probability (at least) p ∈ (0, 1). [0,5pt]

(e) How can we approximate the maximal possible duration h by simply using
the quantiles of the Gaussian distribution if K is large ? [1,5pt]

(f) Explain why a good approximation of the number of vehicles queuing is hλ if
h is large. [1pt]

3. We now assume that the size of the vehicles arriving at the roundabout is given
by a sequence of iid random variable (ξi)i≥1. Namely, ξi is the size of the vehicles
arriving at time Ti. We assume that (ξi)i≥1 is independent of N . We set

ξ̃i = ξNto+i.

(a) Show that (ξ̃i)i≥1 is an iid sequence independent of Nto , with the same law as
(ξi)i≥1.[1,5pt]

(b) Given two bounded functions f and g, and k, ` ∈ N, show that

E[f(ξ̃1, . . . , ξ̃k)g(δ̃1, . . . , δ̃`)] = E[f(ξ̃1, . . . , ξ̃k)]E[g(δ̃1, . . . , δ̃`)],

[1,5pt] and deduce that (ξ̃i)i≥1 is independent of Ñ . [0,5pt]
(c) Set m := E[ξ1]. The total length of the queue is given by the process

S̃t =
∑
i≥1

ξ̃i1T̃i≤t.

Show that S̃ is a compound Poisson process of parameter λ.[0,5pt] What is
the expected queue length after h minutes ?[1pt]

(d) What is the a.s. limit of S̃h/h as h→∞. [0,5pt]

4. We finally discuss approximations in the case λ→∞. From now on, we write Ñλ

and S̃λ for Ñ and S̃ to insist on the fact that they depend on λ.

(a) Let M be a Poisson process with intensity γ > 0. Given c > 0, show that
M̄ := (Mct)t≥0 is a Poisson process with intensity cγ. [1pt]

(b) Deduce from the above that S̃λh/λ converges a.s. as λ → ∞ and identify the
limit. [1pt]

(c) Assume that σ := var[ξ1]
1
2 <∞. What can we say about

√
Ñλ
h (S̃λh/Ñ

λ
h −m)

as λ→∞ ? [2pt]
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Correction

1. We need to compute P[Ns ≥ k|Nt = `] =
∑`

j=k P[Ns = j|Nt = `] =
∑`

j=k P[Ns =
j,Nt − Ns = ` − j]/P[Nt = `]. By independence and the stationnarity of the
increments of N ,

P[Ns = j,Nt −Ns = `− j] = [Ns = j]P[Nt −Ns = `− j]

=
[sλ]j

j!
e−λs

[(t− s)λ]`−j

(`− j)!
e−λ(t−s),

and therefore

P[Ns ≥ k|Nt = `] =
∑̀
j=k

[sλ]j

j!
e−λs

[(t− s)λ]`−j

(`− j)!
e−λ(t−s) `!

[tλ]`
eλt

=
∑̀
j=k

Cj
`

sj(t− s)`−j

t`
.

Since 1−s/t = (t−s)/t, this corresponds to a Binomial distribution of parameters
(`, s/t).

2. (a) We need to compute P[∃ n ≥ 1 : Tn = to] =
∑

n≥1 P[Tn = to] = 0 because
each Tn has a density.

(b) We first compute, for h ≥ 0,

P[δ̃1 ≥ h] =
∑
k≥0

P[δ̃1 ≥ h,Nto = k]

=
∑
k≥0

P[δ̃1 ≥ h, Tk ≤ to < Tk+1]

= P[T1 − to ≥ h] +
∑
k≥1

P[Tk+1 − to ≥ h, Tk ≤ to < Tk+1]

= P[T1 − to ≥ h] +
∑
k≥1

P[Tk+1 − to ≥ h, Tk ≤ to],

because (Tk, Tk+1) has a density. Then, since Tk+1 − Tk is independent of Tk,

P[δ̃1 ≥ h] = e−λ(h+to) +
∑
k≥1

P[Tk+1 − Tk ≥ h+ to − Tk, Tk ≤ to]

= e−λ(h+to) +
∑
k≥1

∫ to

0

e−λ(h+to−y) λ
kyk−1

(k − 1)!
e−λydy

= e−λ(h+to) +

∫ to

0

λe−λ(h+to−y)dy

= e−λh.
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Hence δ̃1 has an exponential distribution of parameter λ. Let us assume that
δ̃1, . . . , δ̃n are iid, and show that it is true for δ̃1, . . . , δ̃n+1. Fix (hi)1≤i≤n+1 ⊂
[0,∞)n+1. Then,

P[∩n+1
i=1 {δ̃i ≥ hi}] =

∑
k≥0

P[∩n+1
i=1 {δ̃i ≥ hi} ∩ {Nto = k}]

=
∑
k≥0

P[{Tk+1 − to ≥ h1} ∩n+1
i=2 {δk+i ≥ hi} ∩ {Tk ≤ to}].

Since δk+n+1 is independent of (Tk, Tk+1, (δk+i)2≤i≤n), we obtain

P[∩n+1
i=1 {δ̃i ≥ hi}] =

∑
k≥0

P[∩n+1
i=1 {δ̃i ≥ hi} ∩ {Nto = k}]

=P[δk+n+1 ≥ hn+1]

×
∑
k≥0

P[{Tk+1 − to ≥ h1} ∩ni=2 {δk+i ≥ hi} ∩ {Tk ≤ to}],

which, by our induction hypothesis and the same argument as above, leads to

P[∩n+1
i=1 {δ̃i ≥ hi}] = e−λhn+1

∑
k≥0

P[∩ni=1{δ̃i ≥ hi} ∩ {Nto = k}] =
n+1∏
i=1

e−λhi .

This proves the required result.

(c) Ñ is a Poisson process with parameter λ because (δ̃i)i≥1 is an iid sequence
distributed according to an exponential distribution of parameter λ.

(d) The condition is P[Ñh < K] ≥ p which is equivalent to P[T̃K > h] ≥ p.

(e) By the strong law of large numbers, (T̃K −Kλ−1)/(
√
K/λ)→ N(0, 1) in law

as K → ∞, in which N(0, 1) is the centered and reduced Gaussian distri-
bution. Let cp be the solution of P[X > cp] = p if X ∼ N(0, 1). Then,
the maximal duration ĥp is approximated by cp = (ĥp − Kλ−1)/(

√
K/λ),

i.e. ĥp := cp
√
Kλ−1 +Kλ−1.

(f) One can apply the law of large numbers for N : Nh/h → λ a.s. as h → ∞.
This means that Nh is approximately hλ for h large.

3. (a) Take two bounded functions f, g and let us compute

E[f(ξ̃1, . . . , ξ̃n)g(Nto)] = E[E[f(ξNto+1 , . . . , ξNto+n)|Nto ]g(Nto)].

But, (ξNto+1 , . . . , ξNto+n) given Nto has the same law as (ξ1, . . . , ξn) because the
ξi’s are iid and independent of Nto . This implies that

E[f(ξ̃1, . . . , ξ̃n)g(Nto)] = E[E[f(ξ1, . . . , ξn)]g(Nto)] = E[f(ξ1, . . . , ξn)]E[g(Nto)].
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For g = 1, this implies that E[f(ξ̃1, . . . , ξ̃n)] = E[f(ξ1, . . . , ξn)], which, by arbi-
trariness of f and n, shows that (ξ̃i)i≥1 and (ξi)i≥1 have the same distribution.
Combined with the above equalities, this in turn implies that

E[f(ξ̃1, . . . , ξ̃n)g(Nto)] = E[f(ξ̃1, . . . , ξ̃n)]E[g(Nto)],

so that (ξ̃i)i≥1 is independent of Nto , by arbitrariness of f, g and n.
(b) The equality will imply that (ξ̃i)i≥1 and (δ̃i)i≥1 are independent. Since Ñ

depends only on (δ̃i)i≥1, this will show that it is dependent of (ξ̃i)i≥1. Let us
now check the required equality.

E[f(ξ̃1, . . . , ξ̃n)g(δ̃1, . . . , δ̃n)]

= E[E[f(ξ̃1, . . . , ξ̃n)g(δ̃1, . . . , δ̃n)|Nto ]]

= E[E[f(ξNto+1, . . . , ξNto+n)g(TNto+1 − to, δNto+2, . . . , δNto+n)|Nto ]].

But, given Nto , (TNto+1 − to, δNto+2, . . . , δNto+n) and (ξNto+1, . . . , ξNto+n) are
independent, thus

E[f(ξ̃1, . . . , ξ̃n)g(δ̃1, . . . , δ̃n)]

= E[E[f(ξNto+1, . . . , ξNto+n)|Nto ]E[g(TNto+1 − to, δNto+2, . . . , δNto+n)|Nto ]].

Since (ξNto+1 , . . . , ξNto+n) given Nto has the same law as (ξ1, . . . , ξn) because
the ξi’s are iid and independent of Nto ,

E[f(ξ̃1, . . . , ξ̃n)g(δ̃1, . . . , δ̃n)] = E[f(ξ1, . . . , ξn)]E[g(TNto+1 − to, . . . , δNto+n)]

= E[f(ξ̃1, . . . , ξ̃n)]E[g(δ̃1, . . . , δ̃n)].

(c) We know from the above that Ñ is a Poisson process of parameter λ and that
(ξ̃i)i≥1 is iid and independent of Ñ . Hence, by definition, S̃ is a compound
Poisson process of parameter λ. We have E[S̃h] = E[E[S̃h|Ñh]] = E[Ñhξ1]
because (ξ̃i)i≥1 is iid, independent of Ñ and has the same law as (ξi)i≥1. Since
Ñh is independent of (ξi)i≥1, because so is N , and is a Poisson process of
parameter λ, we obtain E[Ñh]E[ξ1] which is equal to λhm.

(d) By the law of large numbers for the compound Poisson process, it converges
to λm.

4. (a) Mct ∼ P(ctλ) because M is a PP(λ). The fact that the increments of M̄ are
independent and stationary follows from the fact that it holds for M .

(b) Let us set N̄t := Ñλ
t/λ so that Ñλ

t = N̄λt and S̃λh =
∑Ñλ

h
i=1 ξ̃i =

∑N̄λh
i=1 ξ̃i where N̄

is a PP(1), see the above question. Then, N̄λh/λ → h a.s. as λ → ∞. Since
n−1

∑n
i=1 ξ̃i → m a.s. and N̄λh →∞ a.s., we deduce that

S̃λh/λ =
N̄λh

λ

1

N̄λh

N̄λh∑
i=1

ξ̃i → hm a.s. as λ→∞.
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(c) Set Y λ :=
√
Ñλ
h (S̃λh/Ñ

λ
h −m). Let φ denote the Fourrier transform of the law

of ξ̃1. We have, for u ∈ R,

E
[
eiuY

λ]
= E

[
E[e

iu
√
Ñλ
h

(
S̃λh
Ñλ
h

−m
)
|Ñλ

h ]
]

= E
[
E[e

iu
ξ̃1√
Ñλ
h |Ñλ

h ]Ñ
λ
h e−iu

√
Ñλ
hm
]

= E
[
φ(i

u√
Ñλ
h

)Ñ
λ
h e−iu

√
Ñλ
hm
]
.

Since Ñλ
h →∞ a.s. as λ→∞, a Taylor expansion leads to

Ñλ
h lnφ(i

u√
Ñλ
h

)− iu
√
Ñλ
hm

= Ñλ
h

i u√
Ñλ
h

φ′(0)− u2

2Ñλ
h

(φ′′(0)− (φ′(0))2) + o(1/Ñλ
h )

− iu√Ñλ
hm

→ −u
2

2
σ2

since m = φ′(0) and σ2 = φ′′(0) − (φ′(0))2. By dominated convergence, we
obtain

E
[
eiuY

λ]→ e−
u2

2
σ2

as λ→∞.

It follows that Y λ converges in law to N(0, σ2).
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