Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n°4 : Ruin theory

In all exercises that use the Cramer-Lundberg model, we denote by ¢ > 0 the pre-
mimum rate, we denote by A > 0 the intensity of the Poisson process that models the
number of claims and we denote by u > 0 the initial wealth of the insurer.

Exercise 1.
1. Show that the following distribution are thin tailed :

(a) the distribution of a nonnegative bounded random variable.
Correction : If X is bounded by M, then P(X > z) =0 for all z > M.

(b) the Gamma distribution.
Correction : Let X ~ I'(«, 3). Recall that the density of this law is given by

flz) = %xo‘_le_ﬂxlbo. We observe that sup,.; 2% te=#%/2 < co. Therefore,

f(z) < e7P*/2 uniformly over all x > 1, so that there exists M > 0 such that
P(X >a) <M [ e P/2dy = M2e P2 /p.

(c) the Weibull distribution, with parameters C' > 0, > 1. The density function
of a Weibull distribution with parameters C, is

flz) = Oy exp(—C2")1(zs0).

Correction : We observe that sup,., 27 exp(—C1z7/2) < oo, therefore f(z) <
e~¢*"/2 yniformly over all > 1. Since v > 1, e ¢*"/2 < ¢=¢*/2_ Hence, there
exists M > 0 such that P(X > x) < M2e~*/2/C.

2. Show that the following distributions are sub-exponential :

(a) the Pareto distribution with parameters a > 0,8 > 0 (f(z) = af*/(8 +
z)*t x> 0).
Correction : We have P(X > z) = (8 + z)"“ ~ %~ * so that X has a
sub-exponential tail.

(b) the Weibull distribution with parameters C' > 0,y < 1.
Correction : We apply Pitman’s theorem. Let ¢(z) = f(x)/P(X > x). A
simple calculation yields P(X > z) = e~ “*" so that ¢(z) = Cy2?~L. Therefore,
q is non-increasing and x + €@ f(z) = 277 1e~¢(=7)2" i5 integrable since
0 <~ < 1. By Pitman’s theorem, we deduce that X is sub-exponential.

Exercise 2. The parameters ¢ > 0, A > 0 et 8 > 0 are fixed throughout. For every
integer k € N*, we consider the Cramer-Lundberg model, where the costs of the claims
are distributed according to a I'(k,3) distribution. Set 1(*)(u) for the ruin probability
of this model. Show that for every u > 0 and every k € N*,

®) (u) < pFH (u).
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Correction : Here
N(t)

SHOED PP o
=1

where

— (XF) are iid ~ T'(k, B),

— N is a renewal process, independent of X* X :=1/E[r] > 0.
Prime p(t) = ct. Risque process U*(t) := u + ct — S¥(t).

k
Xk >zl Zl, iid ~EN).
j=1

Set
YF(u) :==P[3t >0, U*(t) < 0|U(0) = u],
since

N(t)

Sk+1<t) _ ZXikH

= (Z Zj+ me)
i=1 \j=1

N(#)

= Sk(t) + Z Zka
i=1

> S8(1),

we have UF1(t) < U*(t), thus
Y (u) < 9 (u)

Exercise 3. We condider the Cramér-Lundberg model, where the costs of the claims
follow an exponential distribution with parameter v > 0. The safety loading p is positive.

We wish to give en explicit formula for the ruin probability ¢ (u).

1. Show that the exponential distribution is thin tailed and compute the correspon-

ding adjustment coefficient R.

Correction : Let X ~ £(7). Then, P[X > x] = ¢* and therefore e2*P[X >
x] — 0 as x — oo, which means that it is thin tailed. We now compute R > 0

such that
E[eR(Xfc(S)] -1

with § ~ £()) independent of X. This is equivalent to E[e?¥]E[e~f] = 1 which
leads to (1 — R/v)"'(1+ Re/A\)™' =1 and R = v — \/c which is > 0 under the

net profit condition.



2. Derive a “good” upper bound for the ruin probability thanks to Lundberg inequa-
lity.

Correction : Lundberg inequality implies that t(u) < e~
3. Write the renewal equation satisfied by u s ef®1)(u).

Correction : Set f(u) := e (u). The renewal equation for ¢ is

1 _
¢(U):m(1— 1+p/¢u—$F (z)dx
with p:= ey/A — 1, F(z) = P[X > z] and F(z) := =7 [ F(y)dy. Hence,
flu) = e (1— F(u))+ TR /u e B0 f(y — 2)F(x)dx
1+p 1+p 0
_ )\e(R Y)u / fu (R Ve g

—zu .
fu—xe <*d

4. Solve the equation and compute 1(u) as a function of 7, p and u.

Correction : The solution is given by

— Zu u — % (u—z)
Flu) = e . / e A Jr
cy 0 oy ¢

as this corresponds to a £(\/c) distribution. Hence,

e
1+p

V() = S (u) =

since p > 0.



Exercise 4. We consider the setting of the Cramer-Lundberg model, where the costs
X;,1 > 1 follow a Pareto distribution with index o > 1, § =1, i.e.

Fx(e)=(1+2)° z>0.

1. Compute p = E[X;] and the associated safety loading p. For which values ¢ do
we have p > 07
Correction : We have

OO_ o0 1
u:/'mesz/‘u+x>%x=
0 0

a—1"

Then, p = C(QT_I) — 1 which is strictly positive iff ¢ > A/(a — 1).

2. Show that fooo e Fx, ;(dx) = oo for every u > 0. Derive that Fly, ; is not thin
tailed.
Correction : By definition

1 [ 1
FXI’](.T) = ;/ ]P)(Xl > y)dy = ;(1 — Oé)il((l + l’)lia — 1) = (1 — (1 + .77)17&) .
0
Now, Fx, s(dx) = (a — 1)(1 + x)~*dx so that, for any u > 0, there exists C' > 0
such that
sup e"/?(1+2)™* > C,
x>0

and consequently
/ e Fx, 1(dx) > (o — 1)0/ ey = oo .
0 0

3. Show that F, ; is subexponential. What can we say about the ruin probability
Y(u) as u — 0o?
Correction :Since FXIJ(JE) ~ 217% as x — 0o, we deduce that Fx, 1 is subexpo-
nential. As a consequence,

wwwwc“MF&me

A

by Theorem 3.19 in Gantert’s lecture notes.

Exercise 5. We work in the Cramer-Lundberg setting.
Partie A. The r.v. X;,7 > 1 that model the cost claims have a density

1
2\/x

1. Compute p = E[X;] and Fx, (z),z > 0.

flz) = e V¥ 103




Correction :

2. For every z > 0, set Fy, ;(z) = p~* [ Fx,(y)dy and

(a) Show that

_ Fx,(2)/p
Q(ZE) - FXl,I(l') :

/ e Vidy = 26_\/5(\/54— 1), Vx>0,

and derive a simple expression for ¢(z).

Correction :

Thus :

o] +oo
/ e Vidy = / 2ze *dz
x vz

BP oz +1)e V7.

e VE/2

1= L[TP(X; > y)dy

e V)2
1— 3 [ e Vidy

e VT /2
1-3 ( 0+°O e Vidy — f;oo e*\/@dy)
e VT2

1—3(2-2(z+1)eV7)

1
2(Va +1)

5



(b) Derive that F, ; is the cumulative distribution function of a subexponential
distribution.

Correction : Let f(x) := Fx,(z)/u. Notice that

+oo
/ Fx,(z)/udx =1,
0

and by denoting Y a random variable with density f , we have

f(x)

q(z) = m

We apply Pitman Theorem since
— q is descreasing,
— we have
) (2) = ZerET

which is integrable on R™.
3. Give an equivalent of the ruin probability ¥ (u) as u — co. Express this equivalent
as a function of f and the parameters c, \.

Correction Since Fx, ;(z) = p~* [" Fx,(y)dy is the cumulative distribution of
a sub-exponential distribution, we have (cf Gantert Theorem 3.19)

¢(u> ~ FXLI(U)?

<
A

Thus
2\ —

Y(u) ~ =5 Fxr(u).

Partie B. We now assume that the X;,7 > 1 have density
a2
g(x) = 2ze™" 1soy-
1. Show that p = /7/2.

Correction

2. Show that X is thin tailed.
Correction : Cf Ex. 1 : Weibull distribution with v = 2.
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3. Prove the existence of the adjustment coefficient R.
Correction : We aim at solving

A
Bla) = B[e*1 )] = Ble M ]Ble*"] = - B[] = 1.
Notice that
+o0 9
E[e**] = / 2ee™" e dx
0
2 +oo 2
— [_e—m eax]a—oo+/ aeame—m dl’
0

+oo
=1 +/ ae~(@=a/2? ga?/4 g,
0

+oo
=1 +/ ae’y26a2/4dy

a/2
2 +oo 2
:1—|—ae“/4/ e Y dy
—a/2
Then,
A
¢(a) = Py &CE[eaxl] — 400, a = +00

and

since the net profit condition is satisfied. Thus, there exists a positive solution to
¢(a) = 1.

4. Express the integral fooo yel=v*dy as a function of ¢, A and R. Derive an expression
for [° eRv=v*dy as a function of ¢, A and R.

Correction :

0 1
/ yel =V dy = B[]
. 2

1
_ §E[67Rc7'1]71
A+ Re

2\

Notice that .
/ (R—2y)e™V'dy = -1,
0

by setting I := fooo eRy*dey, we get

)\+Rc_

I —
h A

—1

thus, I = 1.



5. Compute dFx,; and give the renewal equation satisfied by the function
u — effih(u), and check that the required conditions are satisfied here.
Correction :

1—
dFx, ((z) := ;Fxl(a:)da:

2 [t >
= ﬁ / 2ye™ Y dydx

2
— o dg.

Nz

Assumptions : Cramer-Lundberg, X; has a density, net profit condition, thin tailed
and the adjustment coefficient exists. Thus :

eR“(l — FX171<U

) =

! - /ou P(u—y)e™ TV dFR(y),

with . N
C
=& 1 Fale) = —— | eMvdFy ().
= r(T) 1+p/0 x1.1(y)

6. Give the asymptotic behaviour of the ruin probability ¢(u) as u — oo as a function
of ¢, \, R and 7.

Correction :
+oo Ry _
Ru € (1 FX1,I<y))
— A dy =: K,
() — e [ ety
with
—+oco
Py ::/ xdFgr(x)
0
2 Foo
= _)\_,u/ zefe=" dg
VT e Jo
A+ Rc
2
Thus

+00 +oo
2 Ry le’Zdedy

" A+ Re ¢ g . VT

2 A (T2 L [P g
— R dyd
res sl A
2c N [T

e (e — 1)dz

" X+ RcRe ),

L EA ()
A+ Re Re 2

B 2c\ c T

" Re(M + Re) <X‘T)'
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Exercise 6.

1. Part 1
An insurer has a risky portfolio with risks which are partitioned into two classes :
the big claims, denoted by X},i > 1 and the small claims, denoted by X2 i > 1.
It is moreover assumed that the two kind of risks are independent. The total claim
amount of the insurer at time ¢ is denoted by

S, = S} + 52

where S} = Zﬁl X} is the total claim amount of the first kind (big claims) and

St

= Zf\fl X? is the total claim amount of the second kind (small claims).

The processes (N);—12 are independent Poisson processes with intensities \,
and they are independent of the different costs X}, X? i > 1. We assume that
(X}1,i > 1) are i.i.d. with distribution F! and that the (X2 ,i > 1) are i.i.d. with
distribution F? .

(a)

Compute the value of the moment generating function Mg, of S}, the moment

generating function of S? and derive the moment generating function of S;.

Correction : A s (1))
Mg (u) = E[My; (u)™] = & "t

1

and

A (M

X (U)*l)e/\Qt(Mg (w)—1)

1
1

Mg, (u) =e

Check that S is a compound Poisson process that will be written in the form
Ny
St = Z Yia 13 Z Oa
i=1

where N is a Poisson process with intensity A = A + A% and Y;,i > 1 are
i.i.d. with distribution I being a mixture of F'! and F?. Compute the mixture
coefficients explicitly.

Correction : The sum of the two Poisson processes is a Poisson process of
parameter A' + A\? (compute the Laplace transform). The moment generating
function of S; corresponds to the one of compound Poisson process associated
to N and an iid sequence (Y;);>1 with

Al A2
My, (u) = mell(u)Jr = mef (u),

i.e. law of X| with probability p := A'/(A'+\?) and law of X? with probability
q:= N/ (A1 + )%,

We now assume that F! = &(v) is the exponential distribution with pa-
rameter v > 0 and F? = Par(a,1) is the Pareto distribution with para-

meters «, 1, with @ > 1. Compute in that case the function Fyl (y) =
E[Yi]™! [J(1 — Fy,(t))dt, the expectation E[Y;] and the coefficient ¢(y) =

MO g
LR with fi(v) = 0,53, (v).




Correction : Recall that Par(a,x,) has cumulated distribution function
(1= (z/25)"%)1z>4,. Then, (for y > 0)

i(y) =pye ™ + qay !

Fy(y)=1—pe " —qy™*

(0%
Ev) =2+ 2
v o oa—1
: PP q
F =EYV] H(F — Ze W — gyt
v, (y) = E[Y1] (7 € v )
pe W +qy"

q(y) = 11— ]E[Yﬂ*l(% _ z_;eﬂy _ ﬁyfaJrl)

(d) Consider the Cramer-Lundberg model
Utzu—l—ct—St, tZO

where u > 0 is the initial wealth of the company. We assume that the safety
loading coefficient p is the same for each class and we take as premimu rate

c:= (14 r)E[Yy]; with &> 0.

Under the assumption of Question (c), compute ¢ as a function of the model
parameters and compute an asymptotic equivalent (7).

Correction :

c= (1+,0)(§+ aq_al).

Since Fy, is sub-exponential (y*~1(1 — Fy, (y)) — —1-), we have that

o) o p
Fyl(’f’) l_p

for r large, with p := ¢/(AE[Y;]) — 1.

2. Part 2.

The insurer decides to mix the two groups adding an insurance excess a > 0. This
means that the insurer only pays for claims with a cost greater than a threshold
a > 0, and for a claim with cost Z > a, the insurer only covers the amount (Z —a)

We consider the Cramer -Lundberg model

Ny
U =u-+ct—S; where St:ZYZ.“ and Y= (Z;—a)"

i=1
N being a Poisson process with intensity .

(a) Compute p = E[Y{] = E[(Z; — a)*t]. when the claims have a cost Z following
a &(vy) distribution.

Correction : p=e 7%
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(b)

Compute Myg, the moment generating function of Y}, and derive the moment
generating function of S;.

Correction : For u < A,

ye e
y—u

Mya(u) = / ve tdt —i—/ e Ve Edt = (1 — e77) +
0 a

MS (U) — e}\t(Myla(u)fl)
A .

Show that Mg, (u) = Mg (u) where

Ni
52 = Z Z;
i=1

N/ being a Poisson process with intensity A exp(—~va) independent of the Z;’s.
Correction :

Mg () = &7 10n 0D = MU0 - b (u),
t

Derive that the processes S and S’ have the same distribution.

Correction : Same moment generating function.

Derive that the risk process U has the same distribution as U’ defined as
U=u+ct—S5,, t>0.

Show that ¢(u) = P[infi> U; < 0] = Plinf;>o U/ < 0] and compute an asymp-
totic equivalent for 1 (u).

Correction : They have the same laws (any n-uplets in time) since the same
marginals (by the above) and independent and stationary increments. We are
thus in the case of small risks. We can use exercise 3 to obtain an explicit
formulation of ¥ (u). One can otherwise use that (see lectures)

eLap(u) = pE[Z)]/(L /0 " el By (2)d2)

with L the adjustment coefficient, Fz, (2) = e™* and p := ¢/(E[Z;]Ae™) — 1.
We have

E[Z)] = At
1

> Lz 1 _ > (L—v)z o
2" Fy (2)dz = / ze dz = ——
/0 ( 0 v—L
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