
Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n◦4 : Ruin theory

In all exercises that use the Cramer-Lundberg model, we denote by c > 0 the pre-
mimum rate, we denote by λ > 0 the intensity of the Poisson process that models the
number of claims and we denote by u ≥ 0 the initial wealth of the insurer.

Exercise 1.

1. Show that the following distribution are thin tailed :

(a) the distribution of a nonnegative bounded random variable.
Correction : If X is bounded by M , then P(X > x) = 0 for all x > M .

(b) the Gamma distribution.
Correction : Let X ∼ Γ(α, β). Recall that the density of this law is given by
f(x) = β

Γ(α)
xα−1e−βx1x>0. We observe that supx>1 x

α−1e−βx/2 <∞. Therefore,

f(x) . e−βx/2 uniformly over all x > 1, so that there exists M > 0 such that
P(X > x) ≤M

∫∞
x
e−βy/2dy = M2e−βx/2/β.

(c) the Weibull distribution, with parameters C > 0, γ ≥ 1. The density function
of a Weibull distribution with parameters C, γ is

f(x) = Cγxγ−1 exp(−Cxγ)1{x>0}.

Correction : We observe that supx>1 x
γ−1 exp(−Cxγ/2) <∞, therefore f(x) .

e−Cx
γ/2 uniformly over all x > 1. Since γ ≥ 1, e−Cx

γ/2 ≤ e−Cx/2. Hence, there
exists M > 0 such that P(X > x) ≤M2e−Cx/2/C.

2. Show that the following distributions are sub-exponential :

(a) the Pareto distribution with parameters α > 0, β > 0 (f(x) = αβα/(β +
x)α+1, x > 0).
Correction : We have P(X > x) = βα(β + x)−α ∼ βαx−α so that X has a
sub-exponential tail.

(b) the Weibull distribution with parameters C > 0, γ < 1.
Correction : We apply Pitman’s theorem. Let q(x) = f(x)/P(X > x). A
simple calculation yields P(X > x) = e−Cx

γ
so that q(x) = Cγxγ−1. Therefore,

q is non-increasing and x 7→ exq(x)f(x) = xγ−1e−C(1−γ)xγ is integrable since
0 < γ < 1. By Pitman’s theorem, we deduce that X is sub-exponential.

Exercise 2. The parameters c > 0, λ > 0 et β > 0 are fixed throughout. For every
integer k ∈ N∗, we consider the Cramer-Lundberg model, where the costs of the claims
are distributed according to a Γ(k, β) distribution. Set ψ(k)(u) for the ruin probability
of this model. Show that for every u > 0 and every k ∈ N∗,

ψ(k)(u) ≤ ψ(k+1)(u).

1



Correction : Here

Sk(t) =

N(t)∑
i=1

Xk
i ,

where
— (Xk

i ) are iid ∼ Γ(k, β),
— N is a renewal process, independent of Xk, λ := 1/E[τ1] > 0.

Prime p(t) = ct. Risque process Uk(t) := u+ ct− Sk(t).

Xk
i
law
=

k∑
j=1

Zi
j, Z

j
i , iid ∼ E(λ).

Set
ψk(u) := P[∃t ≥ 0, Uk(t) < 0 |U(0) = u] ,

since

Sk+1(t) =

N(t)∑
i=1

Xk+1
i

=

N(t)∑
i=1

(
k∑
j=1

Zi
j + Zi

k+1

)

= Sk(t) +

N(t)∑
i=1

Zi
k+1

≥ Sk(t),

we have Uk+1(t) ≤ Uk(t), thus
ψk(u) ≤ ψk+1(u)

Exercise 3. We condider the Cramér-Lundberg model, where the costs of the claims
follow an exponential distribution with parameter γ > 0. The safety loading ρ is positive.
We wish to give en explicit formula for the ruin probability ψ(u).

1. Show that the exponential distribution is thin tailed and compute the correspon-
ding adjustment coefficient R.

Correction : Let X ∼ E(γ). Then, P[X ≥ x] = e−γx and therefore e
γ
2
xP[X ≥

x] → 0 as x → ∞, which means that it is thin tailed. We now compute R > 0
such that

E[eR(X−cδ)] = 1

with δ ∼ E(λ) independent of X. This is equivalent to E[eRX ]E[e−Rcδ] = 1 which
leads to (1 − R/γ)−1(1 + Rc/λ)−1 = 1 and R = γ − λ/c which is > 0 under the
net profit condition.
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2. Derive a “good” upper bound for the ruin probability thanks to Lundberg inequa-
lity.

Correction : Lundberg inequality implies that ψ(u) ≤ e−Ru.

3. Write the renewal equation satisfied by u 7→ eRuψ(u).

Correction : Set f(u) := eRuψ(u). The renewal equation for ψ is

ψ(u) =
1

1 + ρ
(1− F̂ (u)) +

γ

1 + ρ

∫ u

0

ψ(u− x)F̄ (x)dx

with ρ := cγ/λ− 1, F̄ (x) = P[X > x] and F̂ (x) := γ
∫ x

0
F̄ (y)dy. Hence,

f(u) =
eRu

1 + ρ
(1− F̂ (u)) +

γ

1 + ρ
eRu

∫ u

0

e−R(u−x)f(u− x)F̄ (x)dx

=
λe(R−γ)u

cγ
+
λ

c

∫ u

0

f(u− x)e(R−γ)xdx

=
λe−

λ
c
u

cγ
+
λ

c

∫ u

0

f(u− x)e−
λ
c
xdx

4. Solve the equation and compute ψ(u) as a function of γ, ρ and u.

Correction : The solution is given by

f(u) =
λe−

λ
c
u

cγ
+

∫ u

0

λe−
λ
c

(u−x)

cγ

λ

c
dx

as this corresponds to a E(λ/c) distribution. Hence,

ψ(u) = e−Ruf(u) =
e−Ru

1 + ρ
(< e−Ru),

since ρ > 0.
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Exercise 4. We consider the setting of the Cramer-Lundberg model, where the costs
Xi, i ≥ 1 follow a Pareto distribution with index α > 1, β = 1, i.e.

FX1(x) = (1 + x)−α, x ≥ 0.

1. Compute µ = E[X1] and the associated safety loading ρ. For which values c do
we have ρ > 0 ?
Correction : We have

µ =

∫ ∞
0

FX1(x)dx =

∫ ∞
0

(1 + x)−αdx =
1

α− 1
.

Then, ρ = c(α−1)
λ
− 1 which is strictly positive iff c > λ/(α− 1).

2. Show that
∫∞

0
euxFX1,I(dx) = ∞ for every u > 0. Derive that FX1,I is not thin

tailed.
Correction : By definition

FX1,I(x) =
1

µ

∫ x

0

P(X1 > y)dy =
1

µ
(1− α)−1((1 + x)1−α − 1) = (1− (1 + x)1−α) .

Now, FX1,I(dx) = (α − 1)(1 + x)−αdx so that, for any u > 0, there exists C > 0
such that

sup
x≥0

eux/2(1 + x)−α > C ,

and consequently∫ ∞
0

euxFX1,I(dx) ≥ (α− 1)C

∫ ∞
0

eux/2dx =∞ .

3. Show that FX1,I is subexponential. What can we say about the ruin probability
ψ(u) as u→∞ ?
Correction :Since FX1,I(x) ∼ x1−α as x→∞, we deduce that FX1,I is subexpo-
nential. As a consequence,

ψ(u) ∼ µ
c
λ
− µ

FX1,I(u) ,

by Theorem 3.19 in Gantert’s lecture notes.

Exercise 5. We work in the Cramer-Lundberg setting.

Partie A. The r.v. Xi, i ≥ 1 that model the cost claims have a density

f(x) =
1

2
√
x
e−
√
x1{x>0}.

1. Compute µ = E[X1] and FX1(x), x ≥ 0.
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Correction :

µ =

∫ +∞

0

√
x

2
e−
√
xdx

=

∫ +∞

0

y2e−ydy

= Γ(3) = 2.

FX1(x) =

∫ +∞

x

1

2
√
y
e−
√
ydy

=

∫ +∞

√
x

e−zdz

= e−
√
x.

2. For every x ≥ 0, set FX1,I(x) = µ−1
∫ x

0
FX1(y)dy and

q(x) =
FX1(x)/µ

FX1,I(x)
.

(a) Show that ∫ ∞
x

e−
√
ydy = 2e−

√
x(
√
x+ 1), ∀x ≥ 0,

and derive a simple expression for q(x).

Correction : ∫ ∞
x

e−
√
ydy =

∫ +∞

√
x

2ze−zdz

IBP
= 2(

√
x+ 1)e−

√
x.

Thus :

q(x) =
e−
√
x/2

1− 1
2

∫ x
0
P(X1 > y)dy

=
e−
√
x/2

1− 1
2

∫ x
0
e−
√
ydy

=
e−
√
x/2

1− 1
2

(∫ +∞
0

e−
√
ydy −

∫ +∞
x

e−
√
ydy
)

=
e−
√
x/2

1− 1
2

(
2− 2(

√
x+ 1)e−

√
x
)

=
1

2(
√
x+ 1)

.
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(b) Derive that FX1,I is the cumulative distribution function of a subexponential
distribution.

Correction : Let f̃(x) := FX1(x)/µ. Notice that∫ +∞

0

FX1(x)/µdx = 1,

and by denoting Y a random variable with density f̃ , we have

q(x) =
f̃(x)

P(Y > x)
.

We apply Pitman Theorem since
— q is descreasing,
— we have

exq(x)f̃(x) =
1

2
e

x
2(
√
x+1)

−
√
x
,

which is integrable on R+.

3. Give an equivalent of the ruin probability ψ(u) as u→∞. Express this equivalent
as a function of f and the parameters c, λ.

Correction Since FX1,I(x) = µ−1
∫ x

0
FX1(y)dy is the cumulative distribution of

a sub-exponential distribution, we have (cf Gantert Theorem 3.19)

ψ(u) ∼ µ
c
λ
− µ

FX1,I(u),

Thus

ψ(u) ∼ 2λ

c− 2λ
FX1,I(u).

Partie B. We now assume that the Xi, i ≥ 1 have density

g(x) = 2xe−x
2

1{x>0}.

1. Show that µ =
√
π/2.

Correction

µ =

∫ +∞

0

2x2e−x
2

dx

y=
√

2x
=

∫ +∞

0

1√
2
y2e−

y2

2 dy

=
√
π

∫ +∞

0

1√
2π
y2e−

y2

2 dy

=
√
π/2.

2. Show that X1 is thin tailed.

Correction : Cf Ex. 1 : Weibull distribution with γ = 2.
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3. Prove the existence of the adjustment coefficient R.

Correction : We aim at solving

φ(a) := E[ea(X1−cτ1)] = E[eaX1 ]E[e−acτ1 ] =
λ

λ+ ac
E[eaX1 ] = 1.

Notice that

E[eaX1 ] =

∫ +∞

0

2xe−x
2

eaxdx

= [−e−x2eax]+∞0 +

∫ +∞

0

aeaxe−x
2

dx

= 1 +

∫ +∞

0

ae−(x−a/2)2ea
2/4dx

= 1 +

∫ +∞

−a/2
ae−y

2

ea
2/4dy

= 1 + aea
2/4

∫ +∞

−a/2
e−y

2

dy

Then,

φ(a) =
λ

λ+ ac
E[eaX1 ] −→ +∞, a→ +∞

and
φ′(0) = µ− c

λ
< 0,

since the net profit condition is satisfied. Thus, there exists a positive solution to
φ(a) = 1.

4. Express the integral
∫∞

0
yeRy−y

2
dy as a function of c, λ and R. Derive an expression

for
∫∞

0
eRy−y

2
dy as a function of c, λ and R.

Correction : ∫ ∞
0

yeRy−y
2

dy =
1

2
E[eRX1 ]

=
1

2
E[e−Rcτ1 ]−1

=
λ+Rc

2λ
.

Notice that ∫ +∞

0

(R− 2y)eRy−y
2

dy = −1,

by setting I :=
∫∞

0
eRy−y

2
dy, we get

RI − λ+Rc

λ
= −1

thus, I = c
λ
.
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5. Compute dFX1,I and give the renewal equation satisfied by the function
u 7→ eRuψ(u), and check that the required conditions are satisfied here.

Correction :

dFX1,I(x) :=
1

µ
FX1(x)dx

=
2√
π

∫ +∞

x

2ye−y
2

dydx

=
2√
π
e−x

2

dx.

Assumptions : Cramer-Lundberg,X1 has a density, net profit condition, thin tailed
and the adjustment coefficient exists. Thus :

eRuψ(u) =
eRu(1− FX1,I(u))

1 + ρ
+

∫ u

0

ψ(u− y)eR(u−y)dFR(y),

with

ρ :=
c

λµ
− 1, FR(x) =

1

1 + ρ

∫ x

0

eRydFX1,I(y).

6. Give the asymptotic behaviour of the ruin probability ψ(u) as u→∞ as a function
of c, λ,R and π.

Correction :

eRuψ(u) −→ λR

∫ +∞

0

eRy(1− FX1,I(y))

1 + ρ
dy =: K,

with

λ−1
R :=

∫ +∞

0

xdFR(x)

=
2√
π

λµ

c

∫ +∞

0

xeRxe−x
2

dx

=
λ+Rc

2c
.

Thus

K =
2c

λ+Rc

λµ

c

∫ +∞

0

eRy
∫ +∞

y

2√
π
e−z

2

dzdy

=
2c

λ+Rc

λµ

c

∫ +∞

0

2√
π
e−z

2

∫ z

0

eRydydz

=
2c

λ+Rc

λ

Rc

∫ +∞

0

e−z
2

(eRz − 1)dz

=
2c

λ+Rc

λ

Rc

(
I −
√
π

2

)
=

2cλ

Rc(λ+Rc)

(
c

λ
−
√
π

2

)
.

8



Exercise 6.

1. Part 1

An insurer has a risky portfolio with risks which are partitioned into two classes :
the big claims, denoted by X1

i , i ≥ 1 and the small claims, denoted by X2
i , i ≥ 1.

It is moreover assumed that the two kind of risks are independent. The total claim
amount of the insurer at time t is denoted by

St = S1
t + S2

t

where S1
t =

∑N1
t

i=1X
1
i is the total claim amount of the first kind (big claims) and

S2
t =

∑N2
t

i=1X
2
i is the total claim amount of the second kind (small claims).

The processes (N i)i=1,2 are independent Poisson processes with intensities λi,
and they are independent of the different costs X1

i , X
2
i , i ≥ 1. We assume that

(X1
i , i ≥ 1) are i.i.d. with distribution F 1 and that the (X2

i , i ≥ 1) are i.i.d. with
distribution F 2 .

(a) Compute the value of the moment generating function MS1
t
, of S1

t , the moment
generating function of S2

t and derive the moment generating function of St.
Correction :

MS1
t
(u) = E[MX1

1
(u)Nt ] = e

λ1t(M
X1

1
(u)−1)

and
MSt(u) = e

λ1t(M
X1

1
(u)−1)

e
λ2t(M

X2
1

(u)−1)

(b) Check that S is a compound Poisson process that will be written in the form

St =
Nt∑
i=1

Yi, t ≥ 0,

where N is a Poisson process with intensity λ = λ1 + λ2 and Yi, i ≥ 1 are
i.i.d. with distribution F being a mixture of F 1 and F 2. Compute the mixture
coefficients explicitly.

Correction : The sum of the two Poisson processes is a Poisson process of
parameter λ1 + λ2 (compute the Laplace transform). The moment generating
function of St corresponds to the one of compound Poisson process associated
to N and an iid sequence (Yi)i≥1 with

MY1(u) =
λ1

λ1 + λ2
MX1

1
(u)+ =

λ2

λ1 + λ2
MX2

1
(u),

i.e. law of X1
1 with probability p := λ1/(λ1+λ2) and law of X2

1 with probability
q := λ2/(λ1 + λ2).

(c) We now assume that F 1 = E(γ) is the exponential distribution with pa-
rameter γ > 0 and F 2 = Par(α, 1) is the Pareto distribution with para-
meters α, 1, with α > 1. Compute in that case the function F̂Y1(y) :=
E[Y1]−1

∫ y
0

(1 − FY1(t))dt, the expectation E[Y1] and the coefficient q(y) =
f̂Y1 (y)

1−F̂Y1 (y)
with f̂Y1(y) = ∂yF̂Y1(y).
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Correction : Recall that Par(α, x◦) has cumulated distribution function
(1− (x/x◦)

−α)1x≥x◦ . Then, (for y > 0)

f̂Y1(y) = pγe−γy + qαy−α−1

FY1(y) = 1− pe−γy − qy−α

E[Y1] =
p

γ
+

qα

α− 1

F̂Y1(y) = E[Y1]−1(
p

γ
− p

γ
e−γy − q

α− 1
y−α+1)

q(y) =
pe−γy + qy−α

1− E[Y1]−1( p
γ
− p

γ
e−γy − q

α−1
y−α+1)

(d) Consider the Cramer-Lundberg model

Ut = u+ ct− St, t ≥ 0

where u ≥ 0 is the initial wealth of the company. We assume that the safety
loading coefficient ρ is the same for each class and we take as premimu rate

c := (1 + κ)E[Y1]; with κ > 0.

Under the assumption of Question (c), compute c as a function of the model
parameters and compute an asymptotic equivalent ψ(r).

Correction :
c = (1 + ρ)(

p

γ
+

qα

α− 1
).

Since F̂Y1 is sub-exponential (yα−1(1− F̂Y1(y))→ q
α−1

), we have that

ψ(r)

F̂Y1(r)
∼ ρ

1− ρ

for r large, with ρ := c/(λE[Y1])− 1.

2. Part 2.

The insurer decides to mix the two groups adding an insurance excess a > 0. This
means that the insurer only pays for claims with a cost greater than a threshold
a > 0, and for a claim with cost Z > a, the insurer only covers the amount (Z−a)

We consider the Cramer -Lundberg model

Ut = u+ ct− St where St =
Nt∑
i=1

Y a
i and Y a

i = (Zi − a)+

N being a Poisson process with intensity λ.

(a) Compute µ = E[Y a
1 ] = E[(Z1 − a)+]. when the claims have a cost Z following

a E(γ) distribution.

Correction : µ = e−γa.
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(b) Compute MY a1
, the moment generating function of Y a

1 , and derive the moment
generating function of St.

Correction : For u < λ,

MY a1
(u) =

∫ a

0

γe−γtdt+

∫ ∞
a

eu(z−a)γe−γzdt = (1− e−γa) +
γe−γa

γ − u
.

MSt(u) = e
λt(MY a1

(u)−1)
.

(c) Show that MSt(u) = MS′t
(u) where

S ′t =

N ′t∑
i=1

Zi

N ′t being a Poisson process with intensity λ exp(−γa) independent of the Zi’s.
Correction :

MS′t
(u) = eλe

−γat(MZ1
(u)−1) = eλe

−γat( γ
γ−u−1) = MSt(u).

(d) Derive that the processes S and S ′ have the same distribution.

Correction : Same moment generating function.

(e) Derive that the risk process U has the same distribution as U ′ defined as

U ′t = u+ ct− S ′t, t ≥ 0.

Show that ψ(u) = P[inft≥0 Ut < 0] = P[inft≥0 U
′
t < 0] and compute an asymp-

totic equivalent for ψ(u).

Correction : They have the same laws (any n-uplets in time) since the same
marginals (by the above) and independent and stationary increments. We are
thus in the case of small risks. We can use exercise 3 to obtain an explicit
formulation of ψ(u). One can otherwise use that (see lectures)

eLuψ(u)→ ρE[Z1]/(L

∫ ∞
0

zeLzF̄Z1(z)dz)

with L the adjustment coefficient, F̄Z1(z) = e−γz and ρ := c/(E[Z1]λe−γa)− 1.
We have

E[Z1] = λ−1eγa∫ ∞
0

zeLzF̄Z1(z)dz =

∫ ∞
0

ze(L−γ)zdz =
1

γ − L

11


