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Chapter 1

Introduction

Consider a claim g, sold at time ¢ > 0 of maturity 7" > ¢, with underlying X ,
satisfying X (f) = x. In case of European option, the seller of the claim has
to deliver the payoff g(X;.(T)) at terminal date T to the buyer. The natural
question arising then is to determine a price m to be paid at time ¢ to the seller
which will satisfy both the seller and the buyer, so that the risk transfer may be done.

In the so-called complete market case of [Black 73, Ansel 92, Delbaen 94,
Harrison 81|, the seller may replicate the payoff of the claim by dynamically trading
on the market. That is, under good integrability conditions on Srg(X¢ (7)), where
B stands for the discount factor process, one can find a predictable process v such
that

T
Brg (Xoa(T)) = B2 [Brg (Xoa(T)) | F] + / vy AW,

where Q is the unique martingale measure, and W< is a (Q, F)-Brownian motion.
The unique fair price is then EQ[Brg(X;.(T)) | Fi], since it would allow for
arbitrage otherwise.

In the more realistic situation of incomplete market, when there are e.g.
intrinsic, non traded sources of risk, both the valuation and the hedging prob-
lems may become highly non-trivial issues. Considering then the condition of
no-arbitrage leads to an infinity of viable prices (see e.g. |[Delbaen 94|). The
risk taker needs thus to define the amount of money he has to invest at time
t to be able to construct a financial portfolio that will reduce the risk in an
acceptable way. On the other hand, the risk adverse agent has to be able to
determine the amount of money he is willing to pay to accept the transfer. The
pricing of contingent claims hence requires a description of preferences of buyers
and sellers. Among the different approaches one could think of, we refer to
[Broadie 98, Cvitani¢ 99, Cvitani¢ 96, Cvitani¢ 93, El Karoui 95, Karatzas 98] for
the super-replication in incomplete markets, [Davis 97| for the marginal utility ap-
proach, [Bouleau 89|, |[Duffie 91|, [Sondermann 85|, [Schweizer 88|, [Schweizer 91] or
[Schweizer 99| for the quadratic methods, [Cvitani¢ 00], [Follmer 99] or [Fo6llmer 00]
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for the quantile hedging and shortfall risk minimization.

The aim of this thesis is to contribute in this field.

1.1 The stochastic Target in Finance and Insurance

In a geometric form, a stochastic target problem can be formulated as follows. Let G
be a Borel subset of a metric space (Z,dz), and Zy , a Z-valued controlled process
with initial conditions at time ¢t Z},(t) = z € Z. We are interested in the so-called
reachability set A(t) of initial conditions z € Z such that Zy,(T) € G P-as. for
some v € U, with U the set of admissible controls:

A(t) :={z€ Z: there exists v €U s.t. Z{ (T) € G P-as.} . (1.1.1)

This set was introduced in [Soner 02a], where they proved that it satisfies a dynamic
programming principle, the so-called Geometric Dynamic Programming Principle
(hereafter GDP). This GDP allows then to perform the derivation of the associated
dynamic programming equation, as it usual in optimal control (see e.g. [Lions 82,
Lions 83]).

As we shall see below, since the original treatment of this problem by Soner
and Touzi, [Soner 02¢, Soner 00, Soner 02a, Soner 03a], this theory seems to be now
well established. Considering all the practical applications of this technology, this
class of (non-standard) stochastic control problems may be seen as a part of the
general tool box in optimal control. At first sight, relying on different dynamic
programming principles, stochastic target problems and optimal control in standard
form should have to be discussed separately. However, Bouchard and Dang have
shown in [Bouchard 12a] that any optimal control problem in standard form admits
a simple and natural representation in terms of a stochastic target problem.

1.1.1 The P-almost sure criterion

Fix Z:=R! xR, Z := (X,Y) and G := {z := (z,9) € R x Rs.t. ¥(z,y) > 0}
for some Borel measurable map . Consider furthermore that both y — ¥(-,y) and
y — Y}, ,(T) are non-decreasing, for all v € Y. The set A(t) can then be identified
to {(z,y) € R x R:y > y(t,x)}, with

y(t,z) :=inf {y € R : there exists v € U s.t. ¥ (X, (T),Y},,(T)) >0 P-as.},

whenever the above infimum is achieved.

Soner and Touzi were the first to propose a treatment of this problem in its
primal form. They were mainly motivated by applications to financial mathemat-
ics. Formulated as above, this problem may be seen as a generalization of the
so-called super-replication problem, see e.g. [Broadie 98, Cvitani¢ 99, Cvitani¢ 96,
Cvitani¢ 93, El Karoui 95, Karatzas 98].
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In the literature, the super-replication problem is usually solved by convex dual-
ity. The idea is to start with applying the duality in order to retrieve a classical opti-
mal control problem, see [Jouini 95, El Karoui 95, Cvitani¢ 93, Follmer 97|. Hence,
one may use classical dynamic programming to obtain the PDE characterization of
the value function y. However, this dual approach does not allow to deal with a
general framework, since it heavily relies on the fact that the wealth dynamics is
linear in the control, and that the stock prices are not influenced by the trading
strategy. In particular, it does not apply to large investor models or to more gen-
eral dynamics or constraints, such as gamma constraint, where the primal approach
of [Soner 02¢, Soner 00, Soner 03b, Soner 02b, Cheridito 05, Soner 03b] does. The
GDP of [Soner 02a] permits to obtain the PDE characterization directly from the
initial formulation, without using the duality.

This approach was further exploited in [Touzi 00], Bouchard and Touzi
[Bouchard 00], and extended to locally bounded jumps in [Bouchard 02], and to
path dependent constraints in Bouchard and Vu [Bouchard 10c].

1.1.2 The moment constraint

The approach developed in Section 1.1.1 is very powerful to study a large family
of non-standard stochastic control problems in which a target has to be reached
with a probability one at time 7. It was however limited to that case un-
til Bouchard, Elie and Touzi [Bouchard 09], when the authors relaxed the P-
a.s. criterion W(X{,(T),Y}, ,(T)) > 0 into a moment constraint of the form
E[W(X{,(T),Y ,(T))] = p, with p € R a given threshold.

This new approach opened the door to a wide range of applications, especially
in mathematical finance. Indeed, in most of the cases, the superhedging price leads
to an unbearable cost, which is not reasonable in practice, where the expectation
criterion allows to consider a large spectrum of risk criteria, as exemplified in
Section 1.1.3.

The work of Bouchard, Elie and Touzi was extended to unbounded jumps in
[Moreau 11|, which is the object of Chapter 2.

We conclude this section with some references of recent advances in this field. In
Bouchard and Dang [Bouchard 10a], the authors give a PDE characterization of a
singular with state constraints version of the stochastic target problems. This work
perfectly allows to treat the case of market models with proportional transaction
costs, and more specifically to order book liquidation issues.

In [Bouchard 11¢|, Bouchard and Vu provide a PDE characterization of the
minimal initial endowment required so that the terminal wealth of a financial agent
can match a set of constraints in probability. Their original idea was to consider that
the agent has a rough idea on the type of P&L he can afford, and has as a target.
It was motivated by the fact that, if the attitude of the financial agent toward risk
is usually described in academic literature in terms of utility or loss function, this is
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in practice not so trivial for an agent to characterize precisely their "utility function".

Having in mind a version of stochastic target robust to model uncertainty, we
give in [Bouchard 12¢| a weak formulation of a game version of stochastic target,
in the same spirit of those of Bouchard and Touzi [Bouchard 11b] or Bouchard and
Nutz [Bouchard 11a| for the standard optimal control. This work is developed in
Chapter 4, see Sections 1.3, 1.4 and 1.4.2 for its introduction.

We finally refer to Bouchard, Elie and Reveillac [Bouchard 12b| for a BSDE for-
mulation of this moment criterion, and to Bouchard, Elie and Imbert [Bouchard 10b]
for an optimal stochastic control problem under stochastic target constraint.

1.1.3 Application of the moment criterion in Finance and Insur-
ance

We shall briefly present in this section the possible applications of stochastic
target in finance and insurance. This will be done within the framework of
Bouchard, Elie and Touzi [Bouchard 09], but it can of course be extended into the
mixed diffusion case of Chapter 2 or into the robust formulation of Chapter 4. We
refer to chapters 3 and 4 for an example of explicit resolution in chosen applications.

Let X¥ be a process denoting roughly the risks in the portfolio of an agent (One
might think of stocks, but also a fixed number of non-tradeable idiosyncratic sources
of risks). Fix g, a map defined on R such that g(X{,(T)) has enough regularity.
The quantity g(X},(T)) may be seen as the random payoff of a European claim,
given the initial condition X}, (¢) = x. The process Y}, , shall represent the wealth
of the agent, of initial value y at time ¢, where v denotes his strategy in terms of
XV. Fix finally x € Ry U {+o0}, such that —k represent a finite credit line, and
consider the value function

Velt,z,p) :=inf {y > —k:Jv el st. B[V (X}, (T),Y},,(T)] >p}. (1.12)

For p=1 and
U (2,y) — Liy>g))s

the value function (1.1.2) represents the super-replication price of the claim
g(X{,(T), as discussed above. If p € (0, 1), the value function (1.1.2)

Ve(t,z,p) :=inf{y > —k:Jv el st PV, (T)>g (X7, (T))] >p}, (1.1.3)

allows for a treatment of the quantile hedging introduced in Féllmer and Leukert
[Follmer 99], in a more general framework. The formulation (1.1.3) describes
perfectly the quantile hedging problem in a general framework where the strategy
of the agent may influence the value of the risks (large investor). It also permits
to deal with more general investment policy, where the original treatment of the
problem by Fdlmer and Leukert relies on the fact that this strategy is linear.
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Consider now the case where p € R and ¥ belongs to some general class of utility
functions. More precisely, for an utility function U : R — R and

U (z,y) € RTX R +— Uy — g(x)),
the problem (1.1.2) reads
Velt,z,p) :=inf{y > —k:TJveUst. E[U (Y, ,(T)—g(X{.(T)))] =p}.

That is, finding the minimum amount of money the investor has to invest in some
strategy v in order to have its expected utility above a given threshold p. If p
happens to be chosen as
p:=sup E [\Ij (07}/;‘/1,/:;,1;0 (T))] )
v'eld
a straightforward reformulation of this problem defines the value function y, as the
utility indifference price of the claim g:

Ve(t,z,p) =inf {y > —k: Ivel st. B[ (X7 (T),Y . +y(T))] =1}

Finally, with some minor modifications in the previous reasoning allows to consider
the case where sV belongs to some class of risk functions

U (2,y) € RYx R— —p(y — g(x)),

such as convex non-decreasing loss function p : R — R, or the success ratio of
[Follmer 99

U (2,y) € RY X R Liy)<yy(2,9) + ﬁx)ﬂgw»yw'

The chapter 3 is dedicated to an example of such treatment in a mixed diffusion
case.

Remark 1.1.1. Asit was notified in the beginning of this section, one could consider
(at least for the formulation of the problem) the game version stated in Chapter 4
in all the previous examples. The adverse control may be interpreted as a model
uncertainty. If the agent is an insurance company, the adverse control has the natural
interpretation of moral hazard. An application in this framework is developed in
Section 77.

1.2 The Geometric Dynamic Programming Principle

As it has been emphasized previously, the treatment of an optimal control problem
consists in the characterization of the PDE satisfied by the value function. This
characterization relies on the dynamic programming principle, and in the stochastic
target problem, on the GDP of Soner and Touzi [Soner 02a]. The GDP stated in
[Soner 02a] allows for a direct treatment of the problem in the P-a.s. case. The use
of this GDP in the controlled expected loss case requires to reformulate the problem
into the class of standard stochastic target problem. This reformulation has been
proposed in Bouchard, Elie and Touzi [Bouchard 09].
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1.2.1 The Geometric Dynamic Programming in P-a.s. criterion

Recall the geometric formulation (1.1.1) of a stochastic target problem of Section
1.1.1. For Z := R? The GDP allowed Soner and Touzi [Soner 02a] to derive the PDE
satisfied, in the viscosity sense, by the characteristic function of this reachability set,
by using similar methods as in [Barles 93, Chen 91, Evans 91, Soner 93].

The GDP reads as follows. Under good assumptions on the state process Z
(e.g. if Z is Markovian) and on the set of controls U (stability under concatenation,
and under measurable selection, which is the case if U is separable, cf. [Soner 02a,
Lemma 2.1]), the reachability set

A(t)={z€ Z:Z{,(T) € G P-as. for some admissible v}
coincides with the set A
A(t) :=={z € Z,Z{ () € A(T) P-as. for some admissible v},

for all stopping times 7. This GDP has been extended, along the lines of [Soner 02a],
to path dependent constraints. The scheme of the proof is to introduce, for each
stopping time 7 with values in [¢,T], the set

A(t) := {Z e R% Zy (1) € A(T)P-a.s. for some v € Z/{} ,
and to show the double inclusion A(t) C A(t) and A(t) C A(t).

The first inclusion A(t) C A(t) is straightforward since, under a "Flow-like"
Assumption and (z,v) € R? x U such that Zy (T) € G P-as., we have

Zlg (T)eG  P-as.

The result is obtained using the pull-back of the probability P under the map
(1, Z¢.(7))- _
The other inclusion is the "tricky one". For (t,z) € A(t), there is v € U such
that
Zy (1) € A7) P-a.s.

Roughly speaking, the idea is that, depending on the realization of (7, Z{,(7)), we
may pick an admissible control 7 allowing to reach the target P-a.s. at time 1" start-
ing from time 7. Once this is achieved, the conclusion of the proof is straightforward
considering the stability of controls under concatenation.

The existence of the control 7 is performed with the Jankov-Von Neumann selec-
tion Theorem (see [Bertsekas 78, Proposition 7.49]), and under the Assumption of
stability under measurable selection. We refer the interested reader to [Soner 02a]
for the proof (see [Bouchard 10c| for the proof of the obstacle version), and go on
with the idea, which is important to understand the need to state only a weak
version in game settings, as exposed in Chapter 4.
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Let S denote the initial conditions in both time and space. If S xU happens to be
Borel, for every analytic subset B of S x U, the Jankov-von Neumann Theorem (see
[Bertsekas 78, Proposition 7.49]) states that there exists an analytically measurable
map ¢ : Projg(B) — U such that Gr(¢) C B, with Gr(¢) := {(¢/,2,¢(t',7')) €
SxU|(t',Z') € Projs(B)}. If B is taken as the subset of elements (¢',2/,0) € S xU
allowing to reach the target:

B:={(t,7,0)eSxUst. <Z; ,(T)eG Pas.}, (1.2.1)

and if B is an analytic subset of S XU, then we can pick in an analytically measurable
way from (t,2') € Projgs(B) an admissible control allowing to steer the target G
P-a.s. at time T, if starting from (¢, 2’).

At this point, we need however more measurability on the map ¢. This is done
in [Soner 02a] with the universal o-algebra of [Bertsekas 78, Definition 7.18|. By
assumption, (7,Zy,(7)) € Projs(B) P-a.s. Then, with y being the measure on S
induced by (7, Z{ (7)), we need more specifically ¢ to be Bs(u)-measurable, where
Bs(p) is the completion of the Borel o-field of & under u. This is performed with
[Bertsekas 78, Corollary 7.42.1], which essentially gives that ¢ is universally measur-
able, and hence Bgs(ft) for every probability measure on (S, Bs), and in particular
for . Then ¢ = ¢, p-a.e., and the proof is concluded by stability under measurable
selection.

Remark 1.2.1. As we tried to explain clearly here, for the measurable selection
argument to hold , one need the set B defined in 1.2.1 to be an analytic subset of the
Borel set S x . When extending the problem (1.1.1) to Differential Game settings,
as it will be discussed in Section 1.4.2 and Chapter 4, this is not trivial how this can
hold. Indeed, as we will introduce in Section 1.3, the player controlling v will have
to choose a strategy, that is a function of the adverse control, and cannot restrict to
pick a control anymore. one need then a suitable topological structure on this set
of strategy for the measurable selection argument to hold.

1.2.2 The Geometric Dynamic Programming in moment criterion

When dealing with stochastic target problems with controlled expected loss as in-
troduced in Section 1.1.2, the underlying reachability set (although it was not in-
troduced explicitly in Bouchard, Elie and Touzi [Bouchard 09]) is now

A(t) == {(z,p) e R? x R: there exists v € U s.t. E (v (ZfZ(T))] > p} _

When trying to apply directly the GDP of Soner and Touzi described in the previous
section, one might think to establish a GDP of the following form

A = (z,p) € RY x R : there exists v € U and some process M
B st (Z,(1), Myp(7)) € A1) P-as. ’

t,z

with M, being some process with initial value p at time ¢. The original idea in
[Bouchard 09, Proposition 3.1] (extended to the mix diffusion case in Proposition
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2.3.2) was to determine this process with the martingale representation Theorem.
We may hence write the reachability as

A(t) == {(z,p) e R x R : there exists v, o, x €U s.t. U (ZzZ(T),MgZ’)X(T)) > O} ,

where ¥ : (z,p) € R x R — U(z) — p, and we refer to Section 2.2.1 for the
definition of the set .

The dynamic programming PDE is then derived from the GDP of [Soner 02a]
up to non-trivial difficulties. In a Brownian filtration, (where the only additional
control is «), the major difficulties comes from the fact that this additional control
has no a priori boundedness properties. The usual HJB operator fails then to have
the required semicontinuity. This is handled in [Bouchard 09] with a local relaxation
of this operator.

1.2.3 The mixed diffusion case

In Chapter 2, we extend the results of [Bouchard 09| presented in the previous
section into the mixed diffusions case. Namely, for 0 < ¢t < T, we are given
two controlled diffusion processes {X},(s),t < s <T} and {Y}, ,(s),t < s < T}
with values respectively in R? and R. These processes satisfy the initial condition
(X7, Yt”xy(t)) = (x,y), and are R? x R-valued strong solutions of the stochastic
differential equations

dX(s) = pix (X(s),v >ds+ax<x< vs) AW,

+ | Bx (X(s—),vi.vi(e),e) J(de,ds)
E

dY (s) = py (Z(s),vs) ds + oy (Z(s),vs) dW

+ [ By (2(s). vk 2(e).€) T (de. ds)

We consider in Chapter 2 a filtration F generated by a Brownian motion W and a
E-marked right continuous point process J, compared to [Bouchard 09], where the
filtration FF is generated by the Brownian motion W, and Sx = By = 0. We shall
see briefly below that this has non-trivial impacts on both the formulation and the
derivation of the associated partial differential equations.

Let ¥ be some measurable map. For a given threshold p, the aim of the controller
is to determine the minimal initial condition y for which it is possible to find a control
v satisfying E [W (X/,.(T), Yt”my(T))] > p. Namely, he wants to compute:

y(t,z,p) :=inf {y > —k : E [ (X7, (T),Y/,

e y(T))] > p for some control v}(1.2.2)

where k € Ry. As explained in previous section, increasing the dimension of both
the state and the control processes allows Bouchard, Elie and Touzi [Bouchard 09]
to reduce this problem into a standard problem of super-replication. It implies in
the Brownian controlled SDEs case to deal with a possibly unbounded control a. In
the mixed diffusion case, the martingale representation Theorem gives birth to an
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additional control (a, x), where « is as in [Bouchard 09], but x is a process taking
values in a set of unbounded measurable maps on E.
In order to clarify these issues, we consider the following SDEs:

<J\)4(};UX(2)> N (i) " /t S M/](jféf:))f(ge) dr + /t S (U (Xty’iér)’”)> dw,

[ L)

1/tl,/w,y(s) =y + [ wy (Xt,z( )a }/t,:c,y(’r)v 1/7") dr + /t oy (XZI(T)’ Ytl,/m,y(r)v VT’) dW,

+ / /E By (X2, (r), Y, (1), v €) J(de, dr),

where A is the predictable intensity kernel of J, and (X{,(s), M;;X(s)) stands for
the augmented state process, and (v, «, x) for the augmented control. The possible
unboundedness of the additional control o can be handled as in Bouchard, Elie and
Touzi [Bouchard 09] with a local relaxation of the usual HJB operator. The viscosity
supersolution (resp. subsolution) is then stated in terms of upper semicontinuous
envelop H* (resp. lower semicontinuous envelop H,) of the HJB operator H. In
the mixed diffusions case, this relaxation is however not enough to guarantee this
semicontinuity. This can be seen in the proof of the supersolution property, where
we may lose the local properties with an unbounded jump. The non-local relaxation
of test function will allow us "to control the distance between the value function
and the test function". For a test function ¢ : [0,7] x RY x R — R, the relaxed

operators are then

H*(©,p) = limsup H.,(0',v) H,.(©,p) = liminf Hen(@’ )

£\0,0' >0 £\0,0'—
n—0,p—p n—>0,w—><p
u.c. e
where, in a very informal way, © = (t',2",p", v, ¢t 4z, Gp, Gzw+ Qup, Gpp) cOnVerges

toward (¢, x,p,y) and the local partial derivatives of ¢ at this point (the local re-
laxation), ¢ > 0 and n € [—1, 1] are numbers controlling the volatility and the size
of the jump, and the non-local relaxation stands in the convergence of a "relaxed"
test function ¢ toward ¢ uniformly on compact subset.

We are then able to derive the associated PDE as well as the terminal condition,
see Theorems 2.2.5, 2.2.9 and Corollaries 2.3.7, 2.3.17.

1.3 The Differential Games

Being interested in Chapter 4 in the statement of a game version of the GDP of
Soner and Touzi, we were confronted as already mentioned earlier to non-trivial
measurable issues. The aim of the present section is to introduce the theory of
differential games.
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The theory of two-controller, zero sum differential games was initiated by Isaacs
[Isaacs 65]. (In the game theory literature, the term player rather than controller
is frequently used) Early rigorous theory of differential game value made use of
time discretization, see for example [Friedman 71]. They were superseded by the
more convenient Elliott-Kalton differential Game values [Elliott 72a|, affected by
two controllers with opposite goals.

1.3.1 The deterministic case and non-anticipative strategies

The intuitive idea is that there are two players [ and II. Each of these players have
opposite goals. One aims at maximizing some objective function, where the other
aims at minimizing it, no matter which action is chosen by the other. The controls
of the players are denoted by v and 9.

The main difficulty lies in the fact that the players play in continuous time,
and observe each other continuously, so that instantaneous switches of v and 9 are
possible. To overcome this problem in the deterministic case (¢ = 0) or in the
special stochastic cases (0 = 0(Z)), Fleming |Fleming 64, Fleming 61|, Friedman
[Friedman 71], Elliott and Kalton [Elliott 74a, Elliott 74b| or Subbotina, Subbotin
and Tret’Jakov [N.N. 85| introduced two approximate games, namely, a lower and
an upper one.

In each of these games, one player has an instantaneous information advantage.
In the lower game, player II is allowed to know vg before choosing ¥4, while in the
upper game, player I chooses vy knowing ;.

Using arguments from the theory of viscosity solutions of Hamilton-Jacobi equa-
tions introduced by Crandall and Lions [Crandall 83| (see also [Crandall 92|) Bar-
ron, Evans and Jensen [Barron 84|, Evans and Souganidis [Evans 84| and Souganidis
[Souganidis 85a, Souganidis 85b| established the existence of the lower value and the
upper value for the deterministic case, and in the case where the Isaacs’ condition
holds, they showed that the game has a value.

In the Elliott-Kalton definition of upper value (resp. lower value), the minimizing
player (resp. maximizing player) chooses a control, and the other player chooses a
strategy. However, since we wish to formalize the fact that no player can guess in
advance the future behavior of the other player, we have to require that such a map
is non-anticipative. Non anticipative strategies were introduced by [Varaiya 67],
|Roxin 69|, Elliott and Kalton |Elliott 72a, Elliott 72b|, and were extensively used
in the viscosity solution approach of differential games and, in particular, in the
former work of Evans and Souganidis [Evans 84].

In order to put the game into the so-called normal form, one should be able to
say that, for any pair of non-anticipating strategies (u, v), there is a unique pair of
controls (v,1) such that

u(d) =v o(v) =19. (1.3.1)

The pair (v,9) would be the natural answer of the players to the strategies (u,v).
Unfortunately, this is not possible, as we may find either an infinite number of such
controls, or none of them would.
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The asymmetric roles of maximizing and minimizing in this definition have also
sometimes been criticized within the game theory community. We may then find
different notions of strategies to overcome some of these issues, such as the subclass
of Elliott-Kalton strategies consisting in the strictly progressive strategies (see e.g.
[Fleming 06, Chapter XI, Section 9]), Delay strategies, or Random strategies.

1.3.2 The stochastic case

Fleming and Souganidis were the first to study in a rigorous manner two-player
zero-sum stochastic differential games, in the so-called Bolza form. Their work
has translated the results from the deterministic into the stochastic framework.
We refer to [Buckdahn 05, Rainer 07, Tang 07, Mataramvura 08, Cardaliaguet 09,
Buckdahn 11| for advance researches in the field of stochastic differential games.
We also refer to Biswas [Biswas 10|, who has extended the results of Fleming and
Souganidis, stated on the Wiener space Co([t, T]; RY), into the Poisson-Wiener space.

Once the notion of upper and lower value functions has been introduced,
the main step is to establish that these functions are viscosity solutions of the
associated Bellman-Isaacs’ equations. As usual, this would immediately follow from
the fact that these functions satisfy the dynamic programming principle. However,
as we have in Chapter 4, they have encountered some non-trivial measurability
issues, and hence were able to establish only half of the desired inequalities for
some restrictions of the value functions (with the so-called r-strategies). In fact,
combining these inequalities with a discretization argument (see the definition of
m-controls), and the uniqueness result of Ishii [Ishii 89], they were able to show
that the lower and the upper value functions are the unique viscosity solutions of
the HJBI equations, and that they hence satisfy the DPP.

1.4 Weak formulations of dynamic programming princi-
ples

As underlined in Section 1.1, the link between an optimal control problem (either
in deterministic or in the stochastic cases) and the HJB equation heavily relies on
Dynamic Programming Principle (hereafter DPP), which relates problem at time ¢
with the same problem stated at a later time 7. The proof of the DPP requires in
general some regularity property on the value function of the problem. The aim of
Bouchard and Touzi [Bouchard 11b| and Bouchard and Nutz [Bouchard 11a] in the
state constraint case was to provide a weak formulation of this DPP when the value
fails to have the needed regularity, which avoids the use of measurable selection.
When considering a game version of stochastic target problems, the lack of topo-
logical structure on the set of non-anticipative strategies makes the use of a measur-
able selection impossible. We have instead stated a weaker formulation of the GDP,
similar to those of [Bouchard 11b, Bouchard 11a]. This formulation turned out to
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be enough for the derivation of the dynamic programming equation in the Markov-
diffusion case, when considering stochastic target problem in controlled expected
loss.

1.4.1 Weak formulations of dynamic programming principle in op-
timal control

Given a set of admissible controls v € U, a controlled state process Z;, with values
in R? of initial value Z}_(t) = z, a time horizon T' > 0, and g a function defined on
R?. An optimal control problem usually takes the following form

u(t, z) = ilelgE [g (Zt”Z(T))] ) (1.4.1)
A formal statement of the DPP would be, for any stopping time 7 with values in
[t,T7:
v(t,z) =supE [v (1, Z{ (1))] . (1.4.2)
vel
If we consider the problem (1.4.1) from a financial point of view, one could think of
an agent who wishes to maximize a reward function by dynamically trading on the
market, when starting from initial wealth 2z at time ¢.
The proof of (1.4.2) usually requires some measurability on the value function v.
In [Bouchard 11b], Bouchard and Touzi avoid this assumption by stating a weaker
DPP. Namely, they show that, for any stopping time 7 with values in [t, T'|, one has

zszlelgE [’U* (7’, Zé’z(T))} >o(t,z) > ZSEBE [g@ (7’, ZZz(T))]

for every upper-semicontinuous minorant ¢ of v,

where v* is the upper semicontinuous envelope of v. Although this DPP is weaker
than (1.4.2), thinking of the viscosity solutions, and the fact that they are stated
in terms of semicontinuous envelope of a locally bounded value function, this
formulation turns out to be enough for the derivation of the corresponding dynamic
programming equations in Markov settings. The proof relies on an appropriate
covering argument, and avoids the measurable selection argument, which will be of
important use for us in Chapter 4.

In the same spirit, Bouchard and Nutz [Bouchard 11a| give a weak formulation of
DPP for a stochastic optimal control problem under generalized state constraint. In
a classical form, the problem of optimal control with state constraint is a problem of
the form (1.4.1), with the additional constraint that the state process has to remain
in a given subset O of the state space. For the corresponding PDEs, we refer to
[Ishii 96, Soner 86a, Soner 86b| for the first order, and to [Katsoulakis 94, Lasry 89|
for the second order.

However, the weak DPP of Bouchard and Touzi [Bouchard 11b| does not apply
directly in that case. Intuitively, the idea is based on the fact that a control v may
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be optimal from an initial condition (t,2) (i.e. the state process Zy, remains in
), but it may violate this state constraint for another position 2’ of z. The key
idea in order to tackle this issue is to introduce some continuity assumption. If the
set O is open, for an optimal control v for (¢, z) and 2’ sufficiently close to z, the
probability that Zy ,» remains in O is small enough. This idea leads Bouchard and
Nutz to consider state constraints in expectation form E[f(Z;,(T)] < m which,
with the same idea of those of [Bouchard 09], can be formulated dynamically with
an appropriate family of martingales.

Similar arguments are used in the weak version of the GDP, see Chapter 4.

1.4.2 The game version of the Geometric Dynamic Programming
Principle

In Chapter 4, we are interested in a stochastic game problem. Since the GDP of
Soner and Touzi does not apply in this particular case, we need its game version.

Consider still a finite time horizon 7" > 0, a Borel subset of a metric space
(2,dz) and a Z-valued process Z; ¥ with initial conditions Z; Y (t) = 2, controlled
now by two players. Our aim is to investigate a game version of the reachability set:

A(t) == {z € Z : there exists u s.t. Z;[Zﬂ]’ﬁ(T) € G P-as. for all 19} .

The aim of the player controlling u is to reach the target G P-a.s., whatever could the
player controlling ¥ do to prevent it. We introduce, as in Fleming and Souganidis
[Fleming 89|, the notion of non-anticipating strategies. For each ¢ € V, an admis-
sible strategy for player I associates, in a non-anticipating way, a control u[¢] € U.
The set of admissible strategies for player I is denoted by L.

We introduce a continuity Assumption on the target, through the consideration
of a continuous function ¢, and we allow the controls to depend on information
occurring before the beginning of the game. The reachability set then becomes

(z,p) € Z x R : there exists v € U s.t.
A(#) = essinf E [6 (ZVWW(T)> \}'t} >pPas. (-

eV bz

By analogy with [Bouchard 09], an informal version of the GDP should be that A(t)
coincides with the set of elements (z,p) € A(t) for which there exists an admissible
strategy and a family {MY,9 € V} C M, such that (ZZ[jLﬁ(T),Mﬂ(T)) € A(7)
P-a.s. for all ¥ € V and stopping times 7. In the above, M, ), is a suitable set of
martingales starting from p at time t.

We hence provide a weak version of this assertion, divided in two parts, usually
called (GDP1) and (GDP2). More precisely, our GDP is stated in terms of the sets

() = (z,p) € Z X R : there exist (t,, 2n, Pn) — (t,2,D)
" | such that (z,,pn) € At,) and t, >t for all n. > 1
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and
A(t) == {(z,p) € ZxR: (¢',7,p') € B,(t,z,p) implies (2',p) € A(t')},

where B,(t,z,p) denotes the open ball of [0,7] x Z x R with center (¢, z,p) and
radius ¢ > 0. The proof of this GDP heavily relies on a result from [Buckdahn 08|,
where it is stated that, in a Brownian framework, and with Z = R¢, the map

(t,z) € [0,T] X Z+— esssupessinfE [E (Zf[zm’ﬁ(T)) \]—}}
veyt 9V '
is deterministic. We then begin to state the GDP, in an abstract framework, with
strong regularity assumptions on this map K, and finally relax these assumptions,
using the fact that the GDP is stated in a weak version.
For (z,p) € A(t), the key idea is to construct a family of cadlag martingales
{M?,9 € V} such that, for all ¥ € V and stopping times 7,
(21(r), M(r)) € A(r).
Given the strategy v € 4 induced by (z,p) € A(t), we start with the con-
struction of a family of martingales {M?,9 € V} which bounds from below
{ess infgevE[Z(Ztljf@’“ﬁ(Tﬂfr)],19 € V}. Fix now, for each n € N a discrete stop-
ping time 7, taking values in {t!',i <n} C (¢,T] such that 7, | 7 as n — o0, and a
countable covering (Bj);jen of Z. We construct thus an admissible e-optimal strat-

egy starting from (¢, z;) on the event {7, = t7, Ztyf@mﬂ(m) € Bj}, where z; is a

given representant of B; for each j € N. The end of the proof is then performed by
continuity of the map K, with a suitable concatenation of the e-optimal strategies,
and using the relaxed form of A(7). Observe that in this proof, the fact that K is
deterministic is crucial, since it allows us to avoid the non-trivial issue of P-null sets
encountered when constructing the e-optimal strategy.

As for the second part of the GDP, starting from

(2079, M (7)) € Au(r)

allows to construct a strategy which 1is e-optimal when starting in
B,(77, ZZLﬁ}’ﬂ(Tﬂ),Mﬂ(Tﬂ)). Considering then an appropriate sequence of
stopping times T,’f , good estimates on (Z, M) uniformly in ¢ € V (recall the abstract
settings), and continuity of K, the required result is obtained by controlling the

probability that

0 9
(70, 20 D, MO (7)) € B (7, 202 (r7), MO (7))
Remark 1.4.1. We shall point out that, when allowing the controls to depend
on information occurring before the beginning of the game, the value functions are
defined as combination of essential supremum and essential infimum, see Chapter 4,
and are a priori random variables. Our results in Chapter 4 however crucially relies
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on the fact that they are deterministic. To address this issue, one might refer to
the method developed in Peng [Peng 97| (see also [Li 09, Theorem A.1]). However,
this method introduced for value functions involving only control processes, does
not apply very well for value functions involving strategies, since strategies do not
have, in general, any continuity property.

In [Buckdahn 08, Proposition 4.1, Lemma 4.1|, the authors handle this issue for
the stochastic differential games in the framework of Brownian controlled SDEs.
In |Buckdahn 10|, the authors pointed out that this method does not apply in a
more general mixed diffusion framework. They hence provide a new argument for
the framework of Stochastic Differential Games driven by Brownian motion and
Poisson random measure, see [Buckdahn 10, Lemma 3.1, Lemma 3.2].

1.4.3 Derivation of the Hamilton-Jacobi-Bellman-Isaacs’ equation

The game version of the GDP allows to derive the PDEs associated to two given
problems introduced in [Soner 02c¢, Soner 02al, in a Brownian framework, for
controls taking their values in bounded subsets of R%. The first is a game version
of the characteristic function of the complement of the reachability set A, whereas
the second is a game version of the problem (1.2.2). In these two particular cases,
the weak version of the GDP seems tailor-made for the derivation of the PDEs in
the viscosity sense.

Chapter 4 is concluded with an interesting application. We indeed consider the
example of controlling the hedging loss of an investor having sold an European claim
of payoft g(Xg?x(T), provided that he has a utility function W. The adverse control
stands here for the realized drift and volatility (u,9) of the underlying X”. Define
lx,y) :=¥(y — g(z)), and for a finite credit line —x < 0:

» y>—k: Jrvedst foraldeV
ve(t, z,p) :=in i [(ng(T) Y (T)) ‘]:t} >pPas. [’

Pty

Under relatively mild assumptions, this problem ends up in a "relaxed" superhedging
price of the claim g.
Namely, we prove that

vr(t, x,p) = max <5§50E [g (X?x(T)) |ft} + U L(p), —/{) , (1.4.3)

where V? denotes the subset of adverse controls such that u = 0. This essentially
coincides with a degenerate super-replication price of the claim g.

1.5 Hybrid claims : Between Finance and Insurance

During the last years, insurance products being a combination of both insurance
risk (e.g. mortality or longevity, or yield of crop) and financial risk (such as the
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value of a portfolio or the price of a given good) have appeared. These insurance
liabilities cannot be priced neither using the usual actuarial principles, nor by
no-arbitrage argument only. The interested reader could find a review of the
interplay between the two fields in Embrechts [Embrechts 00].

Any insurer is well aware of the definitions of fair insurance premium as well as
the necessary loading (see e.g. [Buhlmann 70|, [Gerber 79]) or [Bowers 86]. Moti-
vated by the use of the strong law of large number, a premium principle prescribes
charging the fair or so-called actuarial value of a claim G, equal to E [G], with E
standing for the expectation with respect to the historical measure P, by some safety
loading SL(G), so that the premium 7(G) is 7(G) := E[G] + SL(G). Some of the
most usual principle are

e the principle of equivalence, SL(G) = 0;

e the expected value principle, SL(G) = aE [G];

e the standard deviation principle, SL(G) = GWQ
e the variance principle, SL(G) = aVar|G]|.

There are also the exponential principle, the Esscher principle or the generalized
(1 — «)-percentile principle, which states that the premium should be calculated
respectively as

o 7(G) = %logE [en“];

B[Gerc].

o 7(G) =
e 7(G)=cE[G]+ (1 —e)F (1 — a),

with F*< being the generalized inverse of the distribution function of G.

Utility theory enters as a natural (though perhaps academic) tool to provide
insight into decision making in the face of uncertainty. Considering the decision
maker’s preference for various distributions of outcomes, one could use a utility
based pricing rule, such as

U(z) =E[U(z + 7 — G)]

where x stands for the initial wealth of the insurer, and U is an increasing concave
twice differentiable function satisfying the Inada conditions. By Jensen’s inequality
and the concavity of U,

©(G) > E[G],

and in the case where U is linear, we have the equality.

Let us step now from the insurance to the financial framework. As in the
insurance framework, we might use the actuarial premium principle E [G] in order to
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price a claim G. However, in the finance context, the whole argument against using
E [G] as a premium is based on the notion of no arbitrage (see [Delbaen 94]). In a
complete financial market, the problem of pricing and hedging a given contingent
claim has a clear and unique solution (see e.g. [Ansel 92, Delbaen 94, Harrison 81]):
the prices of a claim is the expectation of its discounted payoff under the martingale
measure, which is unique. A risk neutral probability measure Q changes the original
measure P, and from an insurance point of view, it could be seen as a way to
give more weight to unfavorable events in a risk averse environment. In insurance
mathematics, it should explain the safety loading.

Examples of hybrid products such as unit-linked life insurance contracts, catas-
trophe insurance futures and bonds, integrated risk-management solution or even
agricultural revenue coverage introduced these last few years in both life or non-life
insurance justifies the interest of both insurance and financial mathematics. Let the
stochastic process (St)¢>0, defined on a given filtered probability space, denote the
value at time ¢ of a stock. Typically, the agents are interested in pricing claims of
the following form

N
G, = Z f(8,GY, (1.5.1)
i=1
where for i € {1,---, N}, the G’ are independent and identically distributed random

variables, N denotes the number of unit claims f(S,G?) sold, and f being some
measurable function. In 1.5.1, one could think e.g. of unit-linked contract,

£(S,G") = 1ygismySr,
unit-linked with guarantee,
f(S,GH = 1{gis7y max(Sr, K),
guaranteed annual return
T
f(S,G") = K> 1gis ) max (1 + m 1+ @-) :

j=1 Si-1

with

ijl
being the return in year j on the asset S, and d; the guaranteed return in year j,
provided that the customer i is still alive, or even a revenue guarantee

£(S,GY) := (max(Sr, Ks)Ke — SrG)) ",

which is a guarantee that the customer ¢ would have the expected revenue from his
expected production K¢ sold at the better price max(Sr, Kg).
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Such contracts, and especially unit-linked contracts have been studied by actu-
aries since the late sixties, and Brennan and Schwartz [Brennan 79a, Brennan 79b|
proposed valuation principles consisting in combining law of large number with fi-
nancial valuation. They first replaced the insured risk by their expected value, so
that the modified claim only contains financial uncertainty. Namely, it remains to
the insurer to price and hedge the following modified claim

N
Gni=>» E[f(S,G")|F?], (1.5.2)

i=1

where F° denotes the filtration of the market. In most cases, the hedging
strategy of this kind of claims only consists in buy and hold strategy which
consist in buying a number of shares of stocks or liquid options depending on the
structure of the payoff f. This strategy has been widely used in practice, see e.g.
[Boyle 03, Milevsky 00, Milevsky 06].

We are interested in the sequel in the pricing of such claims, and the establish-
ments of sufficient conditions for this trivial pricing rule to fail, or to hold.

1.6 Utility indifference Pricing

1.6.1 Introduction

As introduced in the very beginning of this manuscript, in the incomplete markets
case, the agents have to define their attitude toward risk.

We shall focus in this Section on the framework where the preference of the
agents are described by a concave utility function U. As discussed in Section 1.1.3,
the stochastic target problem in controlled expected loss allows to treat this situation
in some particular settings. However, when using more complex probabilistic models
of financial assets such as non-Markovian diffusion or semimartingale models, direct
methods from stochastic optimal control discussed previously become increasingly
difficult to handle.

1.6.2 Maximizing utility of terminal wealth

Consider an agent whose goal is to trade dynamically in a financial market up to
horizon T, in order to achieve maximum expected utility.

The preferences of the investor are represented by a Von Neumann-Morgenstern
utility function U : R — [—o0,00) which must be not identical to —oo, increasing
and concave. No consumption occurs before time T. The agent has the initial
endowment = and can invest in the financial market. The resulting optimization
problem is

sup E[U(Xr)] (1.6.1)
XeX(x)
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where X(x) is the set of random wealths which can be obtained at time 7" with
initial wealth . The formulation of the problem with random endowment, namely
when the agent receives at T' an additional cashflow G is the following

sup E[U(Xr+G)]. (1.6.2)
Xex(z)

The study of 1.6.1 requires a specification of
1. the financial market model and the admissible terminal wealths
2. the technical assumption on U

3. some joint condition on the market model and the utility function.

1.6.2.1 Financial market model

The financial market model considered is frictionless and consists of N risky assets
globally indicated with S := (S%,---,S%"), and one risk free asset (money market
account) assumed equal to 1 (i.e. the prices are discounted). The trading can occur
continuously in [0, 7], S is in fact a R"V-valued, continuous time process, defined on
filtered probability space (€2, F, (Ft)y<;<p » P)- Since the wealth from an investment
in this market is a (stochastic) integ_ra_l, S is assumed to be a semimartingale, so
that the object "integral with respect to S" is mathematically well defined. For
expository reasons, S is a locally bounded semimartingale. This class of models is
already very general, as all the diffusions are locally bounded semimartingales, as
well as any jump-diffusion processes with bounded jumps.

There are no restrictions on the quantities the agent can buy, sell or sell short. H;
is the random vector with the number of shares the agent holds in the infinitesimal
interval [t,t + dt]. To be technically precise, H must be a predictable process. As
there is no consumption and no infusion of money in the trading period, the wealth
from the strategy H is the process X that solves

t
0

As usual in continuous time trading, to avoid phenomena like doubling strategies,
not every self-financing H is allowed. A self-financing strategy H is said admissible
only if during the trading the losses don’t exceed a finite credit line, i.e. H is
admissible if there exists some constant £ > 0 such that

t
for all t € 0,77, / H,-dS, > —k P-as., (1.6.3)
0

so that for any x, the wealth process is also bounded from below. Maximizing
expected utility from terminal wealth means in fact maximizing expected utility
from the set X(x) of those random variables X7 that can be represented as X =
x+ fOT H; - dS; with H admissible in the sense of 1.6.3.
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As shown by [Delbaen 94|, a financially relevant set of probabilities is M€. Under
each probability Q € M¢, S is a (local) martingale, and thus Q is a risk-neutral
probability. This is the theoretical justification of the use os each of these Qs as a
pricing measure for any derivative claim B.

But we need the less restrictive set M* of the absolutely continuous (local)
martingale probabilities Q for S as this is the set which will show up in the dual
problem. The set M® can be characterized in the following way

T
M= {Q <P: EC U H, - dSu] < 0 for all admissible H} . (1.6.4)
0
Therefore, given any Xp € X(x) and any Q € M,

T
EQ[X7] = EV [g;+/ Hu-dsu} <.
0

1.6.2.2 Hypothesis on U

Regarding U, it is here required that:

e U is strictly concave, strictly increasing and differentiable over R

e U satisfies the Inada conditions.

Also, U must satisfy the reasonable asymptotic elasticity condition introduced in
|[Kramkov 99| and [Schachermayer 01|. In the cited references, it is also shown that
this condition is necessary and sufficient for the duality to work properly if U is
fixed and one considers all possible financial markets.

1.6.2.3 The joint condition
The convex conjugate V' of U is the function
V(y) =supU(z) — xy,
x

and, apart from some minus signs, it coincids with the Fenchel conjugate of U. So
V is a convex function, which is identically equal to 400 when y < 0. It is also
differentiable on (0, 00) and its derivative is —I = (U’)~!. Note that

Ux) = ;r;% xzy + V(y). (1.6.5)

Let us recall that a probability Q absolutely continuous w.r.t. P is said to have finite

entropy (or, also, finite divergence) if its density % is integrable when composed

with V' a0

The joint condition required between preferences and the market is actually a con-
dition between V and the set of probabilities M?, that is

0
3Q° e M*st. E [v (‘Z%ﬂ < 0. (1.6.6)
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1.6.3 Duality in incomplete market models

Suppose the market is arbitrage free. Let us recall the primal problem (1.6.1):

uw) = sup E[U(X7)),
XeX(x)

where u(z) denotes the optimal level of the expected utility.

It has been stated in [Kramkov 99| in case of utility function defined on R4
(extended in [Schachermayer 01] in the case of utility functions defined on the whole
real line, and in [Owen 02] for the case where the terminal wealth is affected by a
random endowment) that, if the utility function has reasonable asymptotic elasticity,
then the primal and the dual problem coincide. Namely,

u(w) = inf {o(y) +y(z + G},
y>

whith

dQ
inf E|\V y— if 0
v(y) = { Qem { (ydP)] nvs
400 otherwise.

1.6.4 Utility Asymptotics - Pricing of hybrid claims

In Chapter 6, we investigate the problem of the price of a claim combining both
insurancial risks and pure financial risks as introduced in Section 1.5. In principle,
these liabilities cannot be priced neither by applying the usual actuarial principles
of diversification, nor by arbitrage-free replication arguments. Still, it has been
often proposed in the literature (and widely used in practice) to combine these two
approaches by suggesting to hedge a pure financial payoff computed by taking the
mean under the historical /objective probability on the part of the risk that can be
diversified.

Consider an insurance company selling to the client ¢ a claim with discounted
payoff ¢’, paid at maturity 7', whose value depends on the evolution of some tradable
financial assets S = (S;);>0 and some additional idiosyncratic risk. The g'’s are
usually not unconditionally independent, but still independent conditionally to S.
In such a situation, and if the financial market formed by the assets S is complete,
it is tempting to play on the ability to diversify the conditionally idiosyncratic risks
and cover the systemic pure financial risk by dynamically trading on the market.
If the ¢%’s are independent and identically distributed given S, then the price of
each of these contingent claims could be defined as p := E2[g(S5)] where g(9) :=
E [gi\S] does not depend on ¢, and Q denotes the unique martingale measure on
the pure financial market (i.e. restricted to S). The rationality behind this is the
following: by an informal application of the law of large numbers conditionally to
S, we obtain the convergence Gy, /n := > 1, ¢'/n — §(S) a.s. for a large number
n of sold contracts. In the above, the payoff g(.S) only depends on S and can thus
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be hedged dynamically by trading on the (complete) pure financial market. Hence,
by replicating the mean payoff g(S), we end up with a zero net position in mean
(under the initial probability measure P).

This solution seems to ignore the fact that playing with the law of large numbers
on the diversifiable part of the risk requires selling a large number of contracts, and
therefore may lead to huge positions on the financial market. If the law of large
numbers does not operate well enough, then the losses may be leveraged by an
unfavorable evolution of the financial market.

On some complete filtered probability space (€2, F,F,P), with a locally bounded
cadlag semi-martingale S, we denote as usual the set M of P-equivalent local mar-
tingale measures such that S is a (F,Q)-local martingale. We are interested in
this paper in the pure incomplete market case, but intend to study the so-called
half-complete market defined as follows, for some fixed Q* € M, and with FS the
filtration generated by S (we do not impose that F3 = F).

Definition 1.6.1. We say that the pure financial market is complete, in short
(HCM) holds, if

EY [¢] = EQ¢] for all Q € M and € € L°(F3),

where Loo(fr_,s) denotes the set of essentially bounded fﬁ—measumble random vari-
ables.

We first give simple counterexamples where the trivial pricing rule defined as
above does not apply. Consider for example an aggregated claim

n
G, = Zgi, n>1,
i=1

where the ¢%’s have the same law and are independent conditionally to ]::*ﬁ under P,
and (HCM) holds. Then the trivial pricing rule does not apply neither for an utility
function with bounded from below domain, or for the exponential utility. In the
latter, the trivial pricing rule under (HCM) has been established in [Becherer 03]
for a sequence of exponential utility functions with vanishing risk aversion. These
two counterexamples lead us to consider a sequence of utility functions defined on
the whole real line, with absolute risk aversion converging to 0 at infinity.

We are hence interested in establishing conditions for this pricing rule to hold.
Consider a sequence (Up)nen of utility function defined on the whole real line
and satisfying the usual assumptions (Inada, reasonable asymptotic elasticity, see
[Schachermayer 01]). Assume furthermore that M # () and that for each n € N, the
corresponding dual problem (see e.g. [Schachermayer 01]) is finite. The unit utility
indifference prices p,(Gy,U,) given by

pn(Gp,U) :==inf{p e R: Sglpr [U(X +np—Gn)] > s;l(pE [U(X)]},
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are well defined for any n > 1 and existence for the optimal dual probability and
multiplier, given by

dQ

@) = argmin {8 |1 (v ) |- 0@ € (0,00 x 0]

is guaranteed. In the above, for each n, the function V,, is the usual convex conjugate
of U,. Under the additional assumptions

Sup |G /] = < o,
n>1

and U ()
. . Un(=
n|7rn oo - 0, with 7, 12— U ()’

with |rp| = sup,cr |rn ()|, we state that,
lim pn(Gn,Up) = lim E@ [G,,/n],
n—oo n—oo

where the limit has to be understood as liminf and limsup. As a byproduct, under
the weaker condition ||7,||c — 0, and whenever the sequence (Gy,)p>1 is assumed to
be uniformly bounded in L, this provides a general convergence result for bounded
sequences of contingent claims when the absolute risk aversion vanishes in the sup
norm, which is of own interest.

Focus now on limy, o E@n [G,,/n], and the sequence of optimizers (Q°),ex. Un-
der (HCM), and if Gy, /n — g as n — oo, we prove that

lim E [G,/n] = E2"[g].

n—o0

In order to deal with the general incomplete market case, we introduce the following
Assumption.

Assumption 1.6.1. There exist two sequences of strictly positive numbers (7),11)71>1

and (n%)nZI converging toward O such that
0<n<rp(x)<nl forall x€R and n>1,
Jimnf /= 1
With Q¢ the element of M that minimizes the relative entropy E[‘;%log ‘fl%],
and under Assumption 1.6.1, we proved that

lim E% (@, /n] = E¥[g],

n—oo
Assumption 1.6.1 may seem to be quite strong, since it basically says that the
sequence of utility functions behave asymptotically as an exponential type utility
function. It however gives a good insight on the asymptotical behavior of an utility
function satisfying r, — 0 as n — oo uniformly in z.

1.7 Organization of this manuscript
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The work presented in this chapter is taken from [Moreau 11|, and has been
accepted for publication in STAM, Journal on Control and Optimization.

2.1 Introduction

We are interested in this chapter in the stochastic target problem with expected
loss discussed in Sections 1.1.2, 1.1.3, and 1.2.2. We focus now on the framework
introduced in Section 1.2.3.

For 0 <t < T, and given two controlled diffusion processes {X;’ L(8),t<s<T }
and {Y}", ,(s),t < s < T} with values respectively in R? and R, satisfying the
initial condition (ng(t),thw’y(t)) = (z,y). We are interested in finding the
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minimal initial condition gy for which it is possible to find a control v satisfy-
ing E [¥ (Xt”z(T),Yt”my(T)ﬂ > p for some given Borel measurable map ¥, non-
decreasing in the y-variable, and for a threshold p. Namely, we want to characterize
the value function:

o(t,2,p) :=inf {y > —k : E [¥ (X{,(T), Yt”zy(T))] > p for some v},  (2.1.1)
in the mixed diffusion case. If ¥(z,y) := l{y_y(z)>0} and p € (0,1),
o(t,z,p) =inf {y > —k : P[V (X} ,(T), Yt',’w’y(T)) > 0] > p for some v} , (2.1.2)

this problem coincides with the quantile hedging problem discussed in [Fo6llmer 99],
in the context of financial mathematics. In this paper, the process X represents the
prices of some given securities. The process Y models the wealth of an investor,
based on some portfolio strategy v. Importantly, the coefficients of the diffusion Y
are linear in the control variable and the process X is not affected by the control
v. In this context, Féllmer and Leukert [Follmer 99| used a duality argument to
convert this problem into a classical test problem in mathematical statistics.

In order to deal with the problem (2.1.2) in a more general case, Bouchard, Elie
and Touzi [Bouchard 09] introduced an additional controlled diffusion process Py},
which appears to (essentially) correspond to the conditional probability of reaching
the target V (X;’x(T),Ytl’my(T)) > 0. This allowed them to rewrite the problem
2.1.2 in the form

o(t, z,p) = inf {y > —K: 1{V(X{Z(T),Y;’I,y(T))ZO} > P, (T) for some (v, a)} ,

where « is a predictable square integrable process coming from the martingale repre-
sentation of P [V (X{,(T),Y%, (1)) > 0| F] = P2, :=po+ [, as - dWs, for some
po > p. The key point is that this reformulation reduces the original problem 2.1.2
into a classical stochastic target problem of the form

o(t,@,p) = inf {y >~ V (X7,(T), PE,(T), V2,

tw,y,(T)) > 0 for some v, a} ,

as studied in [Soner 02a, Soner 02c|, for an augmented system (X,Y,P) and an
augmented control (v, «). The major difference being that the new control « can no
longer be assumed to take values in a compact set, as it is given by the martingale
representation theorem.

Up to a non-trivial relaxation, Bouchard, Elie and Touzi [Bouchard 09] were
able to provide a PDE characterization for the value function ¢ in the sense of
discontinuous viscosity solutions, for a discontinuous operator which corresponds to
the one used in [Soner 02a| and [Soner 02c].

The aim of this chapter is to extend the work of Bouchard, Elie and Touzi
[Bouchard 09] to the setting of jump diffusions, in its more general form 2.1.1.

Diffusing the conditional expectation E [¥ (X7, (T), Y/, ,(T)) | Fs] for s € [t,TY,
and considering it as an additional controlled state variable P/)* will allow us to
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convert this problem into a singular stochastic target problem. Here, the additional
control x comes from the jump part of the martingale representation.

This leads to technical difficulties, mainly because of this new control y. The
first one was already handled in [Bouchard 02|, and consists in the consideration of
an additional (non-local) term in the PDE characterization. Secondly, part of the
control now takes values in an unbounded set of measurable maps, as opposed to a
compact subset of R?. The local relaxation of the associated HIB operator intro-
duced in [Bouchard 09] will not be sufficient to ensure the semicontinuity needed,
and we shall have to introduce a new (non-trivial) relaxation of the non-local part
of the associated operator. Furthermore, this non-local operator complicates signif-
icantly the discussion of the boundary conditions at p = m and p = M when the
map ¥ takes values in [m, M].

Compared to [Bouchard 09], where they discuss general problem of the form
(2.1.1), but state their results for the problem (2.1.2), we aim to state our results
for the the problem (2.1.1). In particular, we shall see that the convex face-lifting
phenomenon in the p-variable observed in [Bouchard 09] for (2.1.2) extends to a
much more general context.

This chapter is organized as follows. In Section 2.2, we present the general for-
mulation of stochastic target problem with unbounded measurable map controls, in
mixed diffusion case. It contains the statement of the corresponding dynamic pro-
gramming equation. In Section 2.3, we give the arguments allowing us to translate
the problem of expected controlled loss into the case of singular stochastic target
problem of the previous section. The boundary conditions for the stochastic target
problem with controlled expected loss.

In all this paper, elements of R", n > 1, are identified to column vectors, the
superscript © stands for transposition, - denotes the scalar product on R™, |- | the
Fuclidean norm, and M" denotes the set of n-dimensional square matrices. We
denote by S™ the subset of elements of M which are symmetric. For a subset O
of R, n > 1, we denote by O its closure, by Int(O) its interior and by dist(x, Q)
the Euclidean distance from z to O with the convention dist(z,)) = oco. Finally, we
denote by B,.(z) the open ball of radius r > 0 centered at x € R™. Given a locally
bounded map v on a subset B of R", we define the lower and upper semicontinuous
envelopes

vi(b) := lim inf v (1) v*(b) := limsupv(b'),b € B.
B3b b B3 —b

The convex hull of a function f will be denoted ©(f), and we recall that it is the
greatest convex function lower or equal to f. We will use the same notation for the
convex hull of a subset, i.e. ©(A) is the convex hull of the subset A, and we recall
that it is the smallest convex subset containing A, in the sense of inclusion.

In this paper, inequalities between random variable have to be understood in the
a.s. sense.
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2.2 Singular stochastic target problems

2.2.1 Problem formulation

Let T > 0 be a fixed time, E a borel subset of R, equipped with its Borel o-field &,
J(de,dt) = Z?Zl Ji(de, dt) be a E-marked right-continuous point process defined on
a complete probability space (2, F,P). Let W be a R?-Brownian motion defined on
(Q, F,P), such that W and J are independent. We denote by G := {G;,0 <t < T}
the P-completed filtration generated by (W., J(de,-)). We assume that Gy is trivial.
The random measure J(de,dt) is assumed to have a predictable (P, G)—intensity
kernel A(de)dt such that A\(E) < oo, and we denote by J(de,dt) := J(de,dt) —
A(de)dt the associated compensated random measure. By H?\, we denote the set of
maps x : 2 x [0,7] x E — R which are P & € measurable ! and such that

g = (B[ [ [ e dedtD5<oo.

We can always assume that P[J (E \ supp(}),[0,7]) > 0] = 0, and therefore that
E = supp(\). Let Uy = Z/I& X Z/l02 be the collection of predictable processes v =
(v',v?) with vt € L* ([0, T]) and v* € H} P-a.s., and with values in a given closed
subset U = U! x IL& of R? x IL?\. Here IL& denotes the set of measurable functions
7w : E — R such that ||7r||?\ < 00, with

]2 = /E Im(e)[2 A(de).

For t € [0,T], z = (z,y) € R xR and v := (1/1,1/2) € Up, we define Z}, =
(X b Y ) as the R? x R-valued solution of the stochastic differential equation

X(s) =px (X(s),vs)ds + ox (X (s),vs) dWs
/Bx ). vk v2(e) ) J(de, ds)
(2.2.1)
dY (s) = $),vs)ds + oy (Z(s),vs) dWy
/BY a s? 52( ),6) ‘](devds)

satisfying the initial condition Z(t) = (z,y). Here,

(nx,0x) : REx U — RT x M4
(uy,oy) :REx Rx U — R x R?

are locally Lipschitz, and are assumed to satisfy, for u := (u',u?) € U,

|y (2, y,u)| + |px (2, )| + oy (2,5, u)| + |ox (z,u)] < K(z,y) (1+ [u'] +||u?[],)

1P denotes the o-algebra of F-predictable subsets of Q x [0, T.
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where K is a locally bounded map. Moreover

Bx :RIx U x E — R?
By RIExRxUxE—R

are continuous and are assumed to satisfy, for some M > 0,
[ (18x(@.ute). )+ 18y (2 u(e), ) Mde) < M (14 2+ fuf)
E
/ Bx (2, u(e), ) — Bx (', ule),e)|* A(de) < M |z — a:'}z (2.2.2)
E
[ 18v(zute)e) = by (2, u(e), o) Mde) < 2| = 2T
E
where we have used the notation u(e) = (u',u?(e)) and |u|? := |u'|? + HuQHi We
denote by U = U xU? a subset of elements of Uy for which (2.2.1) admits an unique
strong solution for all given initial data. We assume furthermore that any constant
controls with values in U belongs to Y. We also allow for state constraints and we
denote by X the interior of the support of the controlled process X.
Let V be a measurable map from R4 to R such that, for every fixed x, the

function
y — V(x,y) is non-decreasing and right continuous.

We then define the stochastic target problem as follows
o(t,z) == inf {y > —k: V (X}, (T),Y,,(T)) >0 for some v € U}, (2.2.3)

with k € Ry U {+00}. At this point, the set U may not be bounded, and we will
see later that dealing with unbounded controls will be required in the analysis of
Section 2.3.

In order to be consistent and avoid the process Y to cross the level —&, we shall
assume all over this paper that

MY(xv —k, u) Z 07 O'Y(l’, —H,U) =0 and /BY(wayvua 6) Z _(y+ ’k':) ( )
2.2.4
for all (z,y,u,e) € X xR x U x E.

As usual in this kind of problem, our analysis requires that
Y >yandyeT(t,z) =9y €T(t,z) forall (t,z,y,9)€[0,T] xRxR xR
where

L(t,x):={y>—r: V(X (T),Y

t,x,y(T)) > 0 for some v € U} .

This allows to characterize the closure of I'(¢,x) as [v(t,z),+00), which will be
of important use in the following. Indeed, let us assume that the infimum in the
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definition of v is attained, and let y = v(¢,z). Then we can find some v € U such
that V (X;:w(T),E/t7z7y) > 0. Hence, if we start with v’ > y, we should be able to

find some v/ € U such that V (XE;(T), Yt”;y,> > 0. If this property does not hold
(which can be the case in a jump diffusion model), it is not possible to characterize
the set I'(¢,z) by its lower bound v(¢, x).

Remark 2.2.1. Let us observe that this problem can be formulated equivalently as
o(t,z) :=inf {y > —k: VY, (T) > g (X{,(T)) for some v €U},
where g is the generalized inverse of V at 0:
g(x) :=inf{y > —k: V(z,y) >0}, (2.2.5)
recall (2.2.4).
Example 2.2.1. Consider the case where X = (0,00)¢ and X is defined by the
stochastic differential equation
0,00 = 1 (X1, (9) ds + 7 (X (5)) AW+ [ B (Xs0(5-).0) J(de. )
Xia(t) =z € (0,00),

with Y}, given by

YI/

t7x7y(s):y+/ vp - dXyp(r), for s>t and v=(v',v%) €elU.
t

This corresponds to the situation where the process X is not affected by the control:

px(@,u) = wx), ox(z,u)=o(z)
and  fBx(z,u(e),e) = [(x,e)

are independent of u

and

! T(x)u17 5Y(x7y7u(e)7e) = ul '6(1.76)'
In financial mathematics, the process X should be interpreted as the price of
d risky securities. Because of the jump diffusions, we are in an incomplete
market, so that the uniqueness of a P-equivalent martingale measure is not
satisfied. The process Y represents the wealth process induced by the trading strat-
egy v, where v! indicates the number of units of the assets in the portfolio at time s.

MY($ay;U) =u ,U,(Z‘), UY(%yau) =0

Finally, for some Lipschitz continuous function ¢ : R — R and

V(z,y) =y —g(z),

v(t,z) coincides with the usual superhedging price of the contingent claim
Q(Xt,x(T))'
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2.2.2 Main results

The main result of this section is the derivation of the dynamic programming equa-
tion corresponding to the stochastic target problem (2.2.3), in the present context
of possibly unbounded controls and jumps.

Before stating our main results, we need to introduce additional notations. Given
a smooth function ¢, u € U and e € E, we now define the operators

LY (t,x) := Op(t,z) + px(x,u) - Do(t,z) + 1Trace (oxok(z,u)D*p(t, )
G%%(t,x) := Py (z,(t, x),ule),e) — o (¢, w*-ﬁx(i u(e), e)) + (i, z),

where ;¢ stands for the partial derivative with respect to t, Dy and D?¢ denote
the gradient vector and the Hessian matrix with respect to the x variable. We then
define the following relaxed semi-limits

H*(©,¢) := limsup H., (@/,¢)
e\0,0'—0
=04

H, @, = li f H I7
(©,9) = liminf He, (©.v),
n—=04—rp

(2.2.6)

where, for © = (t,z,y,k,q,¢,A) € Ry x R¥ x R x R x R x R? x §% ¢ ¢
Ch2([0,T) x RY), e > 0 and n € [-1,1],

Hep (©:0) = suwp  AY(6),
ue./\/'a,n(tl‘,yH'W)

with

1
AY(O) = py(x,y,u) — k — px(z,u) - q— iTrace [oxok(z,u)A],
ueUst. [IN“(z,y,q¢')] <eand }

New(t,z,y,4' ) =
Atz y, 4, ) {Au7e(t7$,y,¢) >n for \-ae. e€F

N*(z,y,q) == oy (z,y,u) — ox(x, u)Tq/,
Ame(h 957%1?) = ﬁY(x7y7u(e)7 6) - 1/1 (tv x + 5X(x7u(e)7 6)) + )

and the convergence ¥ e in (2.2.6) has to be understood in the sense that

converges uniformly towards ®.

Also notice that, given n € [—1,1], (N:;) >, is non-decreasing in ¢ so that

H,(0,¢):= liminf Ho, (0,
(©,¢) n;ggn 0 (0, 9).
w—)so

For ease of notations, we shall often simply write Hu(t, z) in place of H(t, z, v(t, x),
ow(t,z), Dv(t,z), Dv(t,z), D*v(t,z), v). We shall similarly use the notations H*v
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and H,v.

In order to handle the possible unboundedness of the jumps in Section 2.2.3.1,
we shall need the following definition of viscosity super solution.

Definition 2.2.2. We say that a l.s.c. (resp. u.s.c.) function U (resp. V) is a
viscosity supersolution of H*U > 0 (resp. subsolution of H,V < 0) on [0,T) x R?
if for every smooth function ¢ € C12([0,T] x R%, R) of linear growth and (t,,x,) €
[0, T) xR? such that ming ) xra (U—9) = (U—=¢)(to, To) = 0 (resp. max|g 7y pa(V —
v) = (V —¢)(to, xo) = 0), we have

H*o(ty,x,) >0 (resp. Hyop(to, ) <0).

We will need for the proof of the supersolution property on [0,7T] x R (see
Sections 2.2.3.1 and 2.2.3.2) the following technical Assumption. Define for sake of
clarity, for any ¢ € C%2([0,T] x R4 R), u € U and (t,z, 21, 22) € [0,T] x R24+1

ﬁg(,Z@(t? Z, Z) = Eu@(@ .T) - NX(ﬁ, U) I :U’Y(x7 Y, u)227 (227)
where z =: (21,22) € R? x R and ¢(t, 2, 2) := ¢(t,z) — |2|2.
Assumption 2.2.3. Foralle > 0,1 € [—1,1], (t,, z,) € [0, T]xR%, ¢ € C12([0, T] x
RY) and finite Cy satisfying

sup {py (2, y,u) — LY (t,x)} < 2C4
ue/\/s,n(t,Ly,D%O#P)

for all (t,x) € Be(to, o) and y € R s.t. |y — ¢(t,x)| <e,
there exists € > 0,1 € [—1,1] and a finite Coy such that

sup {v(2,y,u) — L z0(t,2,2)} <201 +|C1]
UGNE/’W’ (tzxavaSD)SD)
(t,x,2) € Be(to, xo,0) (2.2.8)
Jor all (t,z,y,z) € [0,T] x R¥+2 ., e
yeR st |y—pt,z)] <€,

and

d
L+ oy (z,y,u)[ + Y
i=1
(ty $7Z17Z2) € le(to’flfo, O) (229)

+
My(x,%u)—ﬁl)‘(’Z(ﬁ(t,x,z)} < ( z( )‘
< Oy ox(x,u

1+ [N¥(z,y, Dy)|

or all (t,z,y,2) € [0,T] x R¥*2 g ¢.
f ) 7y’ )
yeR st |y—o(t,x) <€,

and u € U such that A" (t,x,y,¢) >n A-a.e.

As in |Bouchard 09, Soner 02a, Soner 02c|, the proof of the subsolution property
requires an additional regularity assumption on the set valued map No (-, f).

y pas
introduit
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Assumption 2.2.4. (Continuity of No,(t,z,y,q, ) For f € C°([0,T] x RY), n >
0, let B be a subset of [0,T) x X x R x R? such that No 2, (-, f) # 0 on B. Then, for
every € > 0, (to, 0, Yo, q0) € Int(B), and uy € No 2y (to, To, Yo, qo, f), there exists an
open neighborhood B' of (to, o, Yo, q0) and a locally Lipschitz map U defined on B’
such that v (to, xo, Yo, q0) — wo| < € and v (t,z,y,q) € Noy (t,2,y,q, f) on B'.

We also assume that v is locally bounded, so that v, and v* are finite. Our
first result characterizes v as a discontinuous viscosity solution of the variational
inequation (2.2.17) in the following sense.

Theorem 2.2.5. Under Assumption 2.2.3, the function v, is a viscosity supersolu-
tion on [0,T) x X of
H*v, > 0. (2.2.10)

If in addition Assumption 2.2.4 holds, then the function v* is a viscosity subsolution
on [0,T) x X of
min {H,v*,v* + k} <0 (2.2.11)

The proof of this result is reported in Section 2.2.3.

Remark 2.2.6. 1. Note that the operator H* would not be upper-
semicontinuous in ¢, for the uniform convergence, without the relaxation in
the test function on the non-local part. This is the counterpart of the local
relaxation introduced in [Bouchard 09] on the derivatives of the test function.

2. Assumption 2.2.4 is the counterpart of [Bouchard 09, Assumption 2.1] in the
case of mixed diffusion. It can also be related to the definition of Np;, and
K, in Chapter 4. The main idea is the existence of an e-optimal Lipschitz-
continuous selector for the set-valued map N, see Chapter 5.

3. Notice that we impose the Definition 2.2.2 of viscosity solution for integrability
issue. This heavily relies on the relaxation of the operator in its test function
parameter, in terms of uniform convergence. Indeed, consider the case where
the relaxation is stated in terms of uniform convergence on compact sets. Then
for every (to,7,) € [0, 7] x R? and test function ¢, the family of auxiliary test
functions (¢,), defined for each ¢« > 0 as ¢,(t,x) := o(t,x) + 1|z — x,|", for
some n > 0. This family converges uniformly on compact subsets towards ¢
as ¢ — 0. However, the presence of the jumps may imply that ¢,(-, X) may
fail to be integrable for n large enough.

4. Assumption 2.2.3 is of technical nature, and is needed in the proof of (2.2.10)
for integrability issues. It was missing in [Bouchard 09, Theorems 2.1 and 2.2,
Corollaries 3.1 and 3.2|, although it is satisfied in their Section 4. This condi-
tion enable us to control the drift uy — L% in terms of BMO martingales, and
thus to define a change of measure with uniformly integrable martingale, see
Section 2.2.3.1. Equation (2.2.8) essentially stands in an additional relaxation
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of the operator. The relaxation in terms of z1 in (2.2.8) is obvious by definition
of H*, whereas the relaxation in z9 is new. Equation (2.2.9) is also new, and
consists essentially in constraints on the partial derivatives of the test func-
tion, see the proof of Corollary 3.2.1 in the particular case of stochastic target
under controlled loss.

5. In the context of [Bouchard 09, Section 4], where the process X is not influ-
enced by the control, Equation (2.2.9) is too strong. Indeed, one would have

assertion. Pas compris in that case a control in terms of ox. This remark would also hold whenever

pourquoi too strong

the jumps are locally bounded, as in [Bouchard 02].

Example 2.2.2. In the context of Example 2.2.1, first notice that the process

X is not influenced by the control v. Hence, Assumption 2.2.3 reduces in this

context in a control of ‘IZ igzg ‘| It is thus trivially satisfied since these coefficients are

linear in u. Then, direct computations show that v, is a viscosity supersolution on
[0,T) x (0,00)% of
1
0 < mm{—atgo - §U2D2S07D()0 ' ﬁ('?e) - 90( +/8<7e)) + 30} 3
for d-ae. e € E

and that v* is a viscosity subsolution of

1
02 min { ~01p — 50 D0, Dip- ) = p - B.6)) + |
fore € E' € £ s.t. AM(E') > 0.

We next discuss the terminal conditions on {T'} x X. By the definition of the
stochastic target problem, we have

o(T, z) = g(x) for every x € RY,

where g is defined in (2.2.5). However, the possible discontinuities of v might imply
that the limits v, (T, -) and v*(T,-) do not agree with this boundary condition. We
then need to introduce, as in [Bouchard 09], the set-valued map

(r,s) ERIxR:3uecUst. r=N%z,vy,q)
N(t, z,y,q,9) =
and s < A"°(t,z,y,v) for \-ae. e€c E

together with the signed distance function from its complement IN€ to the origin:
§ := dist (0, N¢) — dist(0,IN),
where we recall that dist stands for the (unsigned) Euclidean distance. Then,
0 € int (N(¢,x,y,q,¢)) iff 6(t,z,y,q,¢) > 0. (2.2.12)

The upper and lower-semicontinuous envelopes of § are respectively denoted by §*
and 0, and we will abuse notation by writing d.v(t, z) = d. (¢, z,v(t, x), Dv(t,x),v)
and 0*v(t,z) = 6" (t,z,v(t,x), Dv(t,z),v). For ¢ € C*(R?), we similarly define
dup(x) = 04 (T, 2, 0(), Dp(x), p) and the same definition holds for 6*¢(x).
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Remark 2.2.7. From the convention sup() = —co and the supersolution property
(2.2.10) in Theorem 2.2.5, it follows that

8" v, > 0on [0,T) x R

in the viscosity sense. Then, if N¢ # (), this means that v is subject to a gradient
constraint.

Remark 2.2.8. 1. Assume that for every (z,y,q) and r € R?, there is an unique
solution u(x,y,q,r) to the equation N*(z,y,q) =r, i.e.

N%z,y,q)=r it w=u(x,y,q,r).

Assume further that u is locally Lipschitz continuous, so that Assumption 2.2.4
trivially holds. For ease of notations, we set ug(z,y, ¢) := a(z,y, q,0). For a bounded
set of controls U, it follows that, for any smooth function ¢, H*p(t, ) > 0 implies
that

U (ZE,QD(t,l‘),DQO(t,ZL‘)) evl, Aﬁo('a@aaﬁoaDS@» DQQD)(t,:L‘) >0
and A"C(t, z, p(t,x),p) >0 for M\-ae. e € E.

Similarly, H.p(t,x) < 0 implies that

either ug (z, ¢(t,x), Dp(t,z)) ¢ intU,
or  A™(,¢,dp, Do, D*p)(t, ) <0
or At x 0t x),p) <0 for ecE €& st. AE)>0.

The following result states that the constraint discussed in Remark 2.2.7 propa-
gates up to the boundary. Here, the main difficulty is due to the unboundedness of
the set U and the presence of jumps in the diffusions. As discussed in Section 2.3.4
(see Corollary 2.3.17), the unboundedness of the controls may imply that the con-
dition {H*v.(T,-) < oo} is not satisfied. Notice that in the framework of Chapter
4, The same kind of condition would ne needed for the terminal condition on the
subsolution property if the adverse control were possibly unbounded.

Theorem 2.2.9. Under Assumption 2.2.3, the function v — v, (T, x) is a viscosity
supersolution of

min { (v4(T, ) = g) Ligrev, (1,) <00} 0 v(T, )} >0 on X, (2.2.13)
and, under Assumption (2.2.4), v € X — v*(T,x) is a viscosity subsolution of
min {v*(T,-) — g%, 6,v*(T,-)} <0 on X. (2.2.14)

We conclude this section by some remarks. Remark 2.2.11 establishes the link
between this work and those of [Soner 02¢|, [Bouchard 02| and [Bouchard 09]. Re-
mark 2.2.12 was already in [Bouchard 09], and Remark 2.2.10 will be of important
use in the proofs of Section 2.3.5 below.
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Remark 2.2.10. Assume that

esssup {|Sx (-,u(e),e)| + |By (-, u(e),e)|} is locally bounded,
wEN ec B (2.2.15)
and F is compact.

Then, the operator H is continuous for the uniform convergence in its ¢ € C!?
parameter. In this case, the test function 1 appearing in the form (t,z +
Bx (z,u(e),e)) in the definition of H* can be replaced by v, itself. To see this, note
that for any € > 0, (to, 7o) and ¢ € CH? such that (v. — ) achieves a strict mini-
mum at (¢g, o), one can find a sequence of smooth function 5, such that ¢5 = ¢ on
Bc(to, o), ¢, < vy, and ¢f 1T v, uniformly on compact sets of (Bae(to,zo))". This
allows to replace the original test function ¢ by v. on (Bac(to, 20))¢. It then suffices
to send ¢ — 0 and use the continuity induced by (2.2.15).
The same remark holds for the subsolution property.

Remark 2.2.11. Note that 6(x,y,q) < 0 whenever int(N(z,y,q)) # 0, so that the
subsolution property does not carry any information. This would be the case when
the control set U has empty interior.

Remark 2.2.12. When the set U is bounded, and Sx = By = 0, i.e. there is no
jumps, it was proved in Soner and Touzi [Soner 02¢| that the value function v is a
discontinuous viscosity solution of

sup {py (z,v(t,z),u) — L(t,x)} =0, (2.2.16)
ueNp (-,v,Dv)(t,z)

where
Mo (z,9,q) :={u e U: N*(z,y,q) =0}
and Nu(xv Y, q) = UY(.’E, Y, u) - O'X(.'L', u)TQ7
with the standard convention supf) = —oo. In the case of a convex compact set U,

with jumps and R%valued controls, i.e. 4? = {0}, Bouchard [Bouchard 02] showed
that v is a viscosity solution of an equation of the form

sup {min {E“ap(t, x), inf g“’ego(t,x)}} =0. (2.2.17)
u€No(+,v,Dv)(t,z) eck
Finally the case of unbounded set U with no jumps was considered by Bouchard,
Elie and Touzi [Bouchard 09]. In this paper, the authors introduced a relaxation
on the operator (2.2.16), in order to deal with this unboundedness. This relaxation
applies to the space variable x, the function ¢, its gradient and its Hessian matrix,
at the local point (¢, x). Such a relaxation is required in order to ensure that the sub-
solution (resp. super-solution) property is stated in terms of a lower semi-continuous
(resp. upper semi-continuous) operator. In our jump-diffusion framework, a similar
relaxation is required, but it should involve the additional non-local term G%€ in
(2.2.17). One shall note that this relaxation is introduced in the Kernel N. with
e > 0, so that our PDEs do not take the form of (2.2.17). This is however a pure
technical consideration, since we recover the same inequalities when considering
particular frameworks, see e.g. Example 2.2.2.
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2.2.3 Derivation of the PDE for singular stochastic target prob-
lems

This section is dedicated to the proof of Theorems 2.2.5 and 2.2.9. We first recall the
geometric dynamic programming principle of Soner and Touzi [Soner 02a], see also
Bouchard and Vu [Bouchard 10c]. We next report the proof of the supersolution
properties in Sections 2.2.3.1 and 2.2.3.2, and the proof of the subsolution properties
in Sections 2.2.3.3 and 2.2.3.4.

Theorem 2.2.13. (Geometric Dynamic Programming Principle) Fiz (t,z) €
[0,T) x X and let {6",v € U} be a family of [t, T]—valued stopping times. Then,

(GDPj1) Ify > v(t,x), then there exists v € U

Yy (07) = 0 (0¥, X7, (07)) .-

(GDPj2) For every —x <y <wv(t,z),v €U,

P [1@3,7@/ 0") >wv (HV,X;jx (0"))] < 1.

2.2.3.1 The supersolution property on [0,7) x X

We follow the arguments of [Bouchard 09] up to non trivial modifications due to
the presence of the jumps, and the consideration of Assumption 2.2.3.

Step 1: Let (to,z9) € [0,T) x X and ¢ be a smooth function of linear growth such
that
i trict — = — t =0.
[Ogl)lgx(s rict) (vs — @) = (v« — @) (to, Z0)

Assume that H*¢(tg, zo) =: —4n < 0 for some n > 0, and let us work towards a
contradiction. We define the family {f,,. > 0} of real valued functions defined on
R? for all ¢ > 0 by

2 |z—2x0|

fiix€ R — ; ; sin? udu]l{‘x_xogl} + L]l{\x—xobl}' (2218)

Observe that for each ¢ > 0,
f, € C*(R%R) is of linear growth,
0 = f,(xz9) = min f,(x), (2.2.19)
z€R4

(f.).>0 converges uniformly towards 0 as ¢ — 0.

We also notice for later use that for all + > 0, we have

sin(2me)
fil@) Zven =1 ((5 - 27T> 1{jz—aol<1} + 1{|x—xo>1}) >0 (2.2.20)
for all € > 0 and = € R? such that |z — zq| > «.
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Set ¢, (t,x) = p(t,z) — f,(z) for ¢ > 0. By definition of H* and the fact that
p, — @ as ¢+ — 0, we may find £,¢ > 0 small enough, such that, after possibly
u

changing n>0
/,LY(I', Y, u) - Eu@b(t l’) < _277
(t, l’) S Bg(to, 370)

where we recall that Bc(t,,2,) denotes the ball of center (t¢,,z,) and radius e.
Define now for all z := (z1,22) € X x R and (¢,z2) € [0,7] x X the function
@,(t,z,2) == p,(t,r) — |2|?, and observe that, since the partial derivatives in (¢, )
of ¢, and ¢, coincide, we have for every u € U, (t,z,y,2) € [0,T] x X x R x X x R:

LY@ty x,2) = LY (t, ).
We recall from (2.3.7), for every u € U, (t,2,2) € [0,T] x X2 x R and y € R the
definition of the operator
L% 7.t x,2) = LY, (t, ) — px (T, u) - 21 — py (2, Y, u)22.
By Assumption 2.2.3, there exists then a finite constant C' > 0 such that, after
possibly changing € and n > 0, we have
:U’Y(x7 Y, 'LL) - £1)L(,Z@L(t7 z, Z) <N

(t7$vz) € Ba(thvTOaO)
for all (t,z,z,y) € [0,T) x X% x R? s.t. 0 (2.2.21)
|y - @L(ta z, Z)’ é

Za
for all u € Nz _y, (t,z,y, Do (t, ), p.)
and
(e.y.0) — L% (0 2.2)] d
Uy (T, Y, U) — Lx 7% >xazi| ;
: <C|1+|oy(z,y,u)| + oy :):,u‘
1+ |[Nu(z,y, Dyp,| ( o (@3, w) ; X )>

for all (¢,z,2) € Be(to,%0,0) and y € R s.t. |y — @, (¢, z,2)| < Z
and for all uw € U s.t. A" (t,z,y,¢,) > —n A-a.e.,

(2.2.22)

Notice that we still have
0 = vi(to, x0) — @.(to, £0,0) =  min  (strict) (vs — @,) .
[0,T)xX2xR

Let 0,B:(to,z0,0) := {to + &} x Be(to,z0,0) U [to,to + €) x dB:(x0,0) denote the
parabolic boundary of B (tg,xg,0). Set

= min Vg —
C apBg(to,zo,O) ( * SOL) ’
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and observe that ¢ > 0 since the above minimum is strict. We now define
Ve (to, 20, 0) := 0,B:(to, z0,0) U [to, to + ) x BE(xp) x B:(0), and with ., defined
as in (2.2.20), we observe that

(ve — @) (t,z,2) > C A ey, =: & > 0 for (t,z,2) € Ve(to, 0, 0)
since (o, zo,0) is a strict minimizer, and |z — xg| > € on B(zg), recall (2.2.20).
step 2: Let (tn,Tn,2n)n>1 be a sequence in [0,7) X X2 x R which converges to

(to, 0,0) and such that v(t,,z,) — vi«(to,70). Set yn := v(tn,zn) + n~! and
observe that

Y (2.2.23)

For each n > 1, we have y, > v(t,, ). Thus, it follows from (GDPj1) that there
exists some v™ € U such that

Yn — @L(tnaxn’ Zn) — 0.

Y'"tANO,) >v(tAO, X" (tNO)), t>ty, (2.2.24)
where
Op = {s>tn: (s, X"(s), 2" (s)) & B:(to,v0,0)}
n (2.2.25)
O = {52 10 1 V() = 0 (5, X" (5), 27())| = T } A 03,
and . . .
(Xn’ Yn’ Zn) = (Xtyn7$n’ t’:nznayn7 tynyxnyzn) ?

o 1 sy (X (u), Y™ (u), vy)
Ztnaxnvzn (s) "= %n + 2/ n n du
tn px (X" (u),vy)
By the inequalities v > v, > ¢, > @,, this implies that

Y™ (A On) — @0 (8 A O, X(EAO), Z(E A 0,))
> Lyng,y V(A On) = @, (EA Oy X™(EA ), Z7(E A 6,))]
> Lo,y [(Y(EAO0) = @ (EA O, X7(E A 02), Z7(8 A 62)) Lo, <00
4 (0 (EA By X (EAB)) — @, (EA Oy XP(EAO,), Z7(E A 6n))) 145, —g03 ]

n
> [Zl{endg} +&140,=05} | Lie>0,)
and therefore

Y™t AOn) — By (E A O, X (EAOn), Z(E A B)) > (Z A 5) 1is0,3 > 0. (2.2.26)

step 3: Since @, is smooth, recall (2.2.19), it follows from Itd’s lemma, (2.2.23), the
definition of Y™ and (2.2.26), that

tAOp tAOy, NS
an + / (b7 +d7) ds + / YrdW, + /
tn tn tn

_ (7

A /“\
) T

/ ¢ J(de, ds)

(2.2.27)
>
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where we recall that J is the compensated jump measure and
an == ($A€) +7n, b=y (X7 (), Y7(5), ) — L% ,@u(s, X2, Z7(s))
=05, X7 ) — o (8, X1+ Bx (XD, v (e),e))
+BY (Xg—a Y:sn—a l/g<6)7 6)

by = N""(Z), Deu(s, XT)) dg = / e M(de).
E
(2.2.28)
In view of (2.2.23), we have
ap, — — (Z /\{) < 0 for n — oc. (2.2.29)

Observe now that, for every n > 1, the definition of 6,, implies that for all s € [t,, 6,,),
we have
[¥Y7() = @0 (5, X3, 2°())| < 7.

Hence, we have
¢ >—n for Maeeé€ FE and s € [t,,0,], (2.2.30)

since otherwise we would have

Y7 (00) = . (0 X" (00), 27 (00)) <

which is in contradiction with (2.2.24). Hence, by (2.2.21) and the definition of the
Kernel N _,, for all n> 1, s € [ty, 0], we have

gl <e = by< - (2.2.31)
step 4: We now introduce, for each n > 1, the set

Ap = {s € [tn,0,] : b7 > —n}.
Observe that, for all n > 1, (2.2.31) implies that the process 1™ satisfies

Yy > e for all s € Ap, (2.2.32)

so that we can define the process a™ as

no._ _b?
N Ak
By definition of 6,, (2.2.32), (2.2.22), (2.2.30), we have,

Ysla,(s).

(67

oKX (5),v7)

)

d
gl < C (1 + oy (X" (), Y (s), ) + )
=1
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for all s € [tn,0,). We now claim that processes fti”A' ox(X"(s),v!)dW, and
fti"/\' oy (X™(s),Y"(s),v?)dWs are BMO-martingales, so that fti”/\' adWy is it-
self a BMO-martingale. By |Kazamaki 94, Theorem 2.3|, we may thus define the

uniformly integrable exponential martingale

T=£& </ a?dWs)
tn A0

where £ denotes the Doleans-Dade exponential. Hence, by Girsanov’s Theorem,

n

X AOn
W .=Ww. — agds

in

is a Q"-Brownian motion, with Q" the equivalent probability defined by its density
d9%1 .= L™ Recalling (2.2.27), we have

dP | g,
tAOn tAOn R A0
a +/ b"]lAcds—i—/ ”dW”+/ /c”’EJ(de,ds)
o oo e (2.2.33)

> - (Z A 5) Lo,y

Define now for each n > 1 the process

n::g</t7;/E<W )j(de ds))wn,
/t/E(nT(]dln—{—l)_1> J(de,ds) > —

M™ is a non-negative local-martingale (see e.g. [Brémaud 81, Theorem T10]), and
from the fact that

Since

1 1
I G
nT (|d2] +1) = nl”

together with [, A(de) < 400, we deduce from [Brémaud 81, Theorems T10 and

T11] that M™ is un1fo1mly integrable. We may hence define the equivalent martin-
dQn
dQn g

AL/Ejn(de’dS) = AL/EJ(deadS)—AL/EWA(de)ds

is a Q"-martingale. Notice that W™ is a Q"-Brownian motion. Hence, (2.2.33) leads
to

tAOn 1 dn tAOn NS
an+/ byl ac —|— 7Sd +/ "dW” / / "eJ" de, ds)
tn T (|dg| +1) ¢ tn

> - (* A §>n1{t<9 )

(2.2.34)

gale measure

:= M", and by Girsanov’s Theorem again, we have
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Recall from the definition of 6,, that 6, < T, which combined with (2.2.34) gives

tAOr

tAOn, A Ay, 3
Sy i=an + — +/ bglae +/ Yo dWS —i—/ / ey J"(de, ds)
n t tn tn E

n

NS 1 dm tAO, R NS 5
ot [ b e [ vy [ [ e
. tu tn tn E

nT (|dg| +1)
n
arentheses >Sn>—<—/\)1 ,
parentheses Z 0 = 4 § {t<6n}
\irer le and from definition of A, (2.2.2) and the fact that @, is a linear growth in its z vari-
zeme

able, S™ is local supermartingale, bounded by below, and hence a supermartingale.
It follows then that

]. n on n TI Qn
an+— =80 2B [53.17,] = - (27 €) BV [155,4,3] =0

which contradicts (2.2.29) for n large enough.

step 5: In order to conclude , it remains to prove that ftn ox(X"™(s),v?)dWs
and [, oy (X"(s),Y"(s),vy)dWs are BMO-martingales. =~ We shall focus on
Ji ox(X"(s),v)dWs, the result for [, oy (X"(s), Y™(s),v)dW; following the ex-
act same argument.

Denote for all n > 1 and s € [t,, 6,]

AX"(s) = X"(s) = X"(s—),

with X™(-—) being the left limit of X™(-). By smoothness of ¢, together with the
definition (2.2.25) of 6,,, definition of Z", (2.2.22) and (2.2.2), for each n > 1, there
exists a constant K, such that for all s < 6,

o (O] [ @ ) .

pas besoin © -

des \infty \ ‘AXn(S)‘oo

Being interested in the process fti"A' ox(X"(s),v™(s))dWs, we may restrict our-
selves to stopping times 7, taking their values P-a.s. in [t,,0,]. By continuity of
the path: r € [ty,0,] — ft: ox(X"™(s),v™(s))dWs, we have, for every 7, € [tn,0)

N . pas de i
/ ox (X"(s),v"(s)) AW ZX"(9n—)—X"(Tn)—/ px (X"(s), " (s)) ds

- Z AX"(s)
5<6n

\tau_n<s
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By (2.2.35) together with Jensen’s inequality, we thus have

5{ /9 ox (X7 (s),"(5)) dWW,

Tn

ox (X7(s),07(5)) dws> \fm]

tn

oo

_|g </:) ox (X”(s),u”(s))dWs> yfm}

o0

o, 2
=|E / ox (X"(s),v"(s)) AW |an]

n

2

2
3 axn(s)| |17,

S<6n

\ s>\tau_n

oo/

n
<4|E IX"(9n—)|2+!X”(Tn)|2+/ px (X"(s), 1) ds

<C, | 1+ |E | J(E, [Tn,Hn))Z]AX"(S)F]}"T”-‘
]

S<9n

<Co (14 |E [J(B, [r, 00)) K71 Fr,] | ) < 00,

since A\(E) < oo, and so follows the result.
0

Remark 2.2.14. Note that, in the above proof, the relaxation of the non-local part
of the operator in term of uniform convergence is required in order to pass from the
initial test function ¢ to the penalized one ¢,. It allows to obtain the inequality
ve > p, + & outside of the ball B.(zg), which is crucial in our proof. This is not
required in [Bouchard 09] where processes are continuous. It is neither required in
[Bouchard 02], where the non-local operator is already continuous and the size of
the jump is locally bounded.

2.2.3.2 The supersolution property on {7} x X
We split the proof in different lemmas.
Lemma 2.2.1. Let 79 € X and ¢ € C*(X) be such that

0= (vu(T,) = ¢) (z0) = min(strict) (v (T’ ) — )

then
0 p(xg) > 0.

The proof relies on the upper semi-continuity of §*, and follows the exact same
idea as in [Soner 02c, Lemma 5.2]. We may however give the main steps of this
proof for sake of completeness. As in [Soner 02c|, the key idea is to consider an
auxiliary test function ¢, penalized in both space and time, and to consider local
minimizers (tn,zn) of (vi — ¢n). After having proved that (t,,z,) — (T,x¢), we
prove that 71113;0 Vi(tn, n) = v«(T, x0), and then conclude that the viscosity property
of v, holds in (t,,x,). We conclude by using the upper semi-continuity of §* and
the supersolution property of Theorem (2.2.5) and (2.2.12) on [0,7) x X.
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Lemma 2.2.2. v, is a viscosity supersolution of
(’U*(T, ) - g*) 1{H*'U*(T,-)<oo} >0 on X. (2236)
Proof. Let z, € X and ¢ be a smooth function of linear growth such that

rr%én(strict) (VT ) — ) = (V(T, ) — ) (o).

step 1: Assume that H*v. (T, z,) < 00, p(2s) = v«(T, 7o) < g«(x,), and let us work

towards a contradiction. Since v(T,-) = g by the definition of the problem and
g > gx, there is a constant n > 0 such that ¢ —v(T, ) < ¢ — g« < —n on B.(z,) for
some € > 0. Since x, is a strict minimizer, we have

2 = 1 * T’ - > 0,
¢ xe%f(lxo)v( r) — o(z)

and it follows from the lower semi-continuity of v, that there exists r > 0 such that

o(t, 2) — (@) 2 vu(t, 2) — p() 2 (>0
for all (t,z) € [T —r,T] x 0B:(z,),

and hence

v(t,x) —p(x) >CAn>0
for (t,z) € ([T —r,T) x 0Bc(20)) U ({T} X Be(xo)) =: Ver (T, o).

Define ¢,(z) := ¢(x) — f.(z), for « > 0 and f, as in (2.2.18). With similar arguments
as those of Section 2.2.3.1 and by (2.2.20), we have

v(t,z) — () = CANAYe, =146 >0
for (t,z) € ([T —r,T) x BE(z,)) U({T} x Be(x,)) -

We now use the fact that H*¢(x,) =: % < 00. Set

Pult,x) = () + (C+2n)(t = T) < @(x).

Then, by (2.2.19), for r,. > 0 sufficiently small and after possibly changing ¢, > 0,
we have

v(t,z) — @,(t, ) > 26 > 0 for (t,x) € Ve, (T, o) U[T — 7, T] x BE(x,),
py (z,y,u) — L@, (t,x) < —2n for all u e Nz _,(t,z,y, D@, (L, z),.)
and (t,z,y) € [T —r,T] x X xR s.t. x € Be(x,) and |y — ¢, (¢, z)| < g

Indeed, py(z,y,u) — LU@,(t,z) = py(2,y,u) — LY, (z) — C = 2n < =27 as
soon as py(x,y,u) — L%, () < C, and we have N;_,(t,z,y,Dp,(t,z),p,) C
N&‘,—n(tvxayaD@L(tax%@L)'

We now define for every (t,z,z) € [0,T] x R x R%! and + > 0 the function
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@.(t,z,2) == §,(t,x) — |2|>. By Assumption 2.2.3, and after possibly changing

g,n > 0, there is C' > 0 such that
v(t,x) — @ (t,x,2) > >0
for (t,x,2) € Ve, (T, 0,0) U [T — 1, T] x BE(x,) x Be(0),
py (z,y,u) — L% 7p.(t, , 2) < —n for all u € Nz, (t,z,y, D@, (t, ), p,)

(z,2) € Be(20,0)
and (t,z,y,2) € [T —r,T] x R?*2 x R s.t. B n
y-plto) <

and

+
[NY(ZE,Z/,U) _ﬁuX’Z{pL(t,I', Z)] d ‘
< i
INu(z,y, Dg,| —@1+mm%w+;aﬂmw

for all (¢t,z,2) € Be(to,%0,0) and yeRst. |[y—@(t,x)] <

and for all u € U s.t. Ay.(t,2,y,9,) > —n A-a.e.,

where V. (T, x,,0) is constructed around (T, z,,0) as V. (T, z,).

step 2: Let (¢, Tn, 2n)n>1 be a sequence in [T'—r,T] x X x X x R which converges
to (T, 2,,0) and such that v(t,,z,) — v.(T,z,). Set yp = v(tn, ) +n~ L, and
observe that

Yn = Yn — @(tn, T, 2n) — 0.
For each n > 1, we have y,, > v(tn,x,). Then, by (GDPjl), there exists some
v™ € U such that
Y"tANO,) >v(tAO, XM (tAO,)), t>ty,
where
0y :={s>t,:(s,X"(s),2"(s)) ¢ Ver(T,,0)}
0, == {s >ty |[Y(s) — @, (s, X"(s), Z7(s))| > Z} AB2,

and

(Xn7yn’Zn) = (XV" v v

n
tn,Xn? ~ tn,Tn,Yn’ tn7x7L7Z’rL) ’

. 1 [ n n n
DY
o 2 tn 125¢ (X (u)’yu)

Using the inequalities v > v, > ¢, > ¢,, this implies that

z_n=0

Yt NOp) — @, (EAOp, X" (tNOL), Z"(t N Oy))
> [Y"(ENOn) — P (A O, XM (EAOR), Z"(t A\ On))] 110,y
> 10,1 (Y (EAO0) = @0 (EAOn, X" (E A 0,), Z"(t A 02))) (g, <02)
+ WEN O, X" (EA ) — @ (EA O, X (EAOR), Z™(E A On))) Lig,—go1)
> [e1q0, <05} + €140, -02)] Lie20,)


bruno bouchard
z_n=0


48 Chapter 2. Controlled Loss with Jump Diffusions

and therefore
Y™t N On) = @ (A Ony X" (EAOR), Z"(E A On)) > (e ANE) Li>g,y > 0.

By repeating the arguments of steps 3 and 4 of Section 2.2.3.1, we end up to a
contradiction.

O
2.2.3.3 The subsolution property on [0,7) x X
The proof of the subsolution property is a straightforward combination of the

arguments of [Bouchard 02| and [Bouchard 09]. We provide it for completeness.

step 1: Let (tg,z0) € [0,7) x X and ¢ be a smooth function of linear growth such
that

0= (v* =) (to,x0) > (v* — @) (t,z) for (to,z0) # (t,x) € [0,T) x X.
We assume that v*(to, zo) > —k and we show that

H,o(to,z9) <0

Assume to the contrary that
4n = H*gp(to, .7}0) > 0.

By (2.2.6), and after possibly changing n > 0, we may find ¢ > 0 and ¢ > 0
sufficiently small such that

py (z,y,u) — LY, (t, ) > 21

for some u € Ny, (t,z,y, Do, (t,z),¢,), for all (t,z,y) € [0,7) x X x R such that
(t,xz) € Be(to,x0) and |y — ¢, (t,z)| < g, where ¢, (t,x) := @(t,z) + f,(z), recall
(2.2.18) and (2.2.19). Observe that we still have

0= (v*"—¢,) (to,z0) = [O%?fx(strict) (v —,). (2.2.37)

For € sufficiently small, and after possibly changing n > 0, Assumption 2.2.4 then
implies that

py (@,,0 (8, 2,y, Do, (t, x))) — L7E=9P2ED) g (¢ ),
min R >
grtayDeba))e, (¢ z)
for A-a.e. e € E and for all (¢,z,y) € [0,T)

X
s.t. (t,z) € B:(to, o) and |y — p,(t, )| <
where 7 is a locally Lipschitz map satisfying

v(t,z,y,Dp,(t,x)) € Noy (t,z,y, Do, (t, ), 0.) on Be(to, zo). (2.2.39)
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Observe that, since (to, o) is a strict maximizer in (2.2.37), we have

—(:= max (v"'—¢,)<0
¢ 8pBE(wO)( @)

where 0,B:(to, o) denotes the parabolic boundary of B.(tg, o). As in the previous
sections, by (2.2.20), we have for all (¢,x) € [0,T) x BE(xo)

(U* - (PL) (tv .%') S —Ye,-
Thus, for all (t, x) S ([to,to + 6) X Bg(m‘o)) U ({t() + 6} X EE(.%‘())),
(0" — 9) (1) < — (10, A Q) =5 —€ < 0. (22.40)

step 2: We now show that (2.2.38), (2.2.39) and (2.2.40) lead to a contradiction of
(GDPj2).

Let (tn, xn)n>1 be a sequence in [0,7") x X which converges to (to, xo) and such that
V(tn, Tn) — v*(to,20). Set yn := v(tn,rn) —n~!, and observe that

Y = Yn — Pu(tn, Tn) — 0. (2.2.41)

Also notice that y,, > —« for n large enough.

Let Z™ := (X™,Y™) denote the solution of (2.2.1) associated to the Markovian
control 0" := 0 (-, X", Y™, Dp,(-, X™)) and the initial condition Z"(t,) = (Tn, Yn)-
Since ¥ is locally Lipschitz, this solution is well defined up to the stopping time

0, = int {5 >ty [Y7(s) — @ (s, X7(s))| = Z} 3 (2.2.42)
with
00 :=inf {s > t, : (s, X"(s)) ¢ Be(to,x0)} - (2.2.43)

Note that (2.2.38), (2.2.41), and a standard comparison theorem implies that
Y™ (02) = 00 (0n, X" (02)) 2 7 on {[Y" (6) = 20 (0, X" (6))] = 7 |

>
for n large enough. Indeed, Y™ (0,,) — ¢, (6n, X™ (0,)) > ~yn > —e for n large enough.
Since —v > —v* > —¢p,, we then deduce from (2.2.40), (2.2.42) and (2.2.43) that

Y™ (0n) — v (0n, X" (0n))
>1(9,<o5) (V" (0n) = 01 (B, X" (62)))
+ L, —ag) (Y"(67) — " (67, X7 (67)))
> Lo, <o)+ Lo, =opy (V"(67) =" (67, X"(67))) (2.2.44)
> Li0,<o) + Lo.—ogy (V" (05) + € = (6. X7(67)))

> A&+ 15,0y (Y7(67) — 00 (6, X7 (62))).
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We may continue by using 1t6’s formula:

On,
VM (00) = 0O X"0) 2 A+ Loy (0 [l X b
t

On
+ [ [ sexrvre J(de,ds>>
tn E

where

t7x7y7DSOL(t7I))(pL (t7 a:-)

Oé(t,l‘,y) = Ny <$7y7 v (ta z,Y, D@L(tv Q?))) - Eﬁ(
5(15,.%,21./, 6) ::53/ ('rvya v (ta z,Yy, DSOL(tv .%')) (6)7 6)

— ¥ (ta T+ /BX ('T’ v (t,x,y, D‘PL(t’x)) (6)’ 6)) + QOL(t,SC)

and the diffusion coefficient vanishes by (2.2.39). Recalling (2.2.38), the fact that
Yo — 0, and that n,& > 0, this implies that

Y™ (60,) > v (0,, X" (0,)) for sufficiently large n.

Since the initial position of the process Y™ is y, = v (tp, Tn) —n "' < v (tn, zy,), this
is clearly in contradiction with (GDPj2).
O]

2.2.3.4 The subsolution property on {7} x X

The proof combines arguments used in the two previous sections (2.2.3.2) and
(2.2.3.3). The only difference between this proof and the one in [Bouchard 09] relies
on the presence of the jumps. However, it can be handled by following [Bouchard 02].
We then only explain the main steps. Let zg € X and ¢ be a smooth function of
linear growth such that

max (strict) (v*(T'-) — ¢) = (v*(T,+) = ) (20) = 0.
Assume that, for some n > 0,

0 < dup(z0)
0 < 4n < ¢(z0) — g (x0) = v (T, z0) — g*(20)

Set @, (t,z) = o(x)+ f.(x)+ev/T —t, recall (2.2.18). Since the partial derivatives in
x of ¢ and ¢, are the same for z = ¢, by (2.2.12) and Assumption 2.2.4, together
with (2.2.19), using the fact that ¢, > ¢, for ¢ > 0 small enough, after possibly
changing n > 0, we can find r,¢ > 0 and a locally Lipschitz map © satisfying,

v(t,z,y, Dp,(t,x)) € Noy (t,z,y, Do (), ¢,) . (2.2.45)

such that
0 < dup,(t, )
(2.2.46)
0<4n < o, (T,z9) — g*(xo) = v*(T, z9) — g*(x0)
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for all (t,z,y) € [T —r,T) x X x Rs.t. € By(xo) and |y — ¢,(¢,x)| < e. Since
Orp, — —oo as t — T, we deduce that, for » > 0 small enough,

ny (@,9,9 (2, D, (t,0))) — LXE=V DA o (1 2) > (2.2.47)

for all (t,z,y) € [T —7,T) x X x Rs.t. x € By(20) and |y — o (t,z)] < 7. Also

observe that, since v* — ¢, is upper-semicontinuous and (v* — ¢,) (T, x¢) = 0, we
can choose r > 0 such that
o(t,z) < ou(t,z) + g for all (t,2) € [T —rT) x By(xo). (2.2.48)

Moreover, combining the identity v(T,zo) = g¢(zo), (2.2.20), (2.2.46), (2.2.47),
(2.2.48), the fact that zy achieves a strict maximum, and using similar arguments
as those of Section 2.2.3.2 above, recall 2.2.20, we see that

U(tvx) -, < — (C A 'Ya,L) = _f (2.2.49)

for all (t,z) € ([T —r,T] x B&(20)) U ({T'} x By(x0)) and for some r,& > 0 small
enough, but so that the above inequalities still hold. By following the arguments in
step 2 of Section 2.2.3.3, we see that (2.2.46), (2.2.45), (2.2.48) and (2.2.49) lead to
a contradiction of (GDPj2).

O

2.3 Target reachability with controlled expected loss

2.3.1 Problem reduction

We now turn to the main motivation for the above analysis: the stochastic target
problem with controlled expected loss. Let ¥ be a measurable map from R4 to R
such that, for every fixed x, the function

y — U(x,y) is non-decreasing and right continuous.
We define L as the closed convex hull of the image of ¥
L:=® (¥ (X x [=k,00))) = [m, M],

with m < M, m,M € [—oo0,+o0]. For p € L, we define the stochastic target
problem with controlled expected loss as follows:

o(t,x,p) :=inf {y > —k : E [V (X{,(T), Yt”xy(T))] > p for some v €U}, (2.3.1)

with k € Ry U {+0o0}.

The aim of this section is to convert the problem (2.3.1) into the class of
standard stochastic target problems as defined in Section 2.2. The dynamic
programming equation for the target reachability with controlled expected loss will
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then be deduced directly from Theorem 2.2.5 above.

Following |Bouchard 09|, we introduce an additional controlled state variable

Pt?(]’JX(S) ::p+/t ar‘dWr+/t /Exs,ej(de,ds), s € [t, T,

where the additional controls «, x are F-predictable measurable processes, with x €
H3 and « is R%valued and such that E [fOT |045\2d5} < 00. We denote by A the

collection of such processes (a, x). For ¥ := (v, @, x), we then set X7 := (X¥, P*X),
We also define X := X x L, U := U x R? x L3, and denote by U =1Ux A the
corresponding set of admissible controls. Abusing notations, we also set Y” = Y.
Finally, we introduce the function

~ [ —

V(z,y) :=¥(x,y) —p, for y>—-k and &= (x,p)e (X x1L).

We make the following assumption, which allows us to use the stochastic integral
representation theorem.

Assumption 2.3.1. ¥ (X7 (T), Ythy(T)) is square integrable for all initial condi-
tions (t,x,y) € [0,T] x X X [—K,+00) and controls v € U.

Following the arguments of [Bouchard 09|, we can now relate ¢ to a stochastic
target problem with unbounded controls, and controls taking the form of measurable
functions on E.

Proposition 2.3.2. For all (t,&) := (t,z,p) € [0,T] x X, we have
0(t,z) =u(t,z) =w(tz),
where

u(t,z,p) := inf {y > K 174 (sz(T)va,/x,y

(T)) >0 for some U € L?}(2.3.2)

> —k: V (XP(T), Y7, (T)) >0
w(t, z,p) := inf v ( 02 (1), Yiizy )) (2.3.3)

and P{}X € L for some i € u

Proof. step 1: We first show that © > u. For y > 0(t, z, p), we may find v € U such

that po := E [V (X{,(T), Y,

theorem, recall Assumption (2.3.1), there exists («, x) € A such that

(T))] > p. By the stochastic integral representation

T T
W (XV,(T), Y7 (T)) = po + / - dW, + / / Xoed (de, ds) = PEX(T).
t t E

Since pg > p, it follows that ¥ (X{,(T),Y, ,(T)) > PZX(T), and therefore
y > u(t,z,p) from the definition of the problem w.
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step 2: We next show that u > 0. For vy > wu(t,x,p), we have
(T)) > 0 for some ¥ = (v, a0, x) € U. Tt follows that

~

v (Xgi(T), Yy

t,x,y
E [V (X7:(1),Y,,(D)] = E[¥ (X7,(7).Y,,,(T)) = PGND)] = 0,
and since P;;* is a martingale
E[¥ (Xio(T), Yy (1))] = p=E[PNT)],

so that y > 0(t, z, p) by the definition of v.
step 3: The inequality u < w is obvious. To see that the converse inequality holds,

consider some y > u(t,z,p). Then there exists some v = (v, a, x) € U such that
v (Xty,x(T)a Y:‘,I,jx,y(T)) Z Pto,é;;X(T) (234)
Define
T:=T Ninf {5 > t: P{;¥(s) <m} and
6(3 = asl{ng}»

>~<s,e = {_ (Xs,e \ (m - Pt(?;x(s_)))i + (Xs,e)—q 1{s§‘r} for s € [taT] .

Clearly, P,;X(T) = Ptoj‘];>~< (T) on the event {T = T'}. Since Pto?f(T) = m on the event

{r < T}, it follows from (2.3.4) that

v (XKI(T),Y”

t,x,y(T)) Z Pt?g;X(T)'

We finally observe that Pf‘f (T') > m by the definition of & and X, and that the last
inequality implies that P7;X(T) < M. By the martingale property of the process

Pf‘f, we conclude that it is valued in the interval [m, M] = L. Hence, y > w(t, z,p).
]

Let us observe that the problem (2.3.2) can be alternatively formulated as
0(t,x,p) = inf {y > —K: Y}"xy(T) >4 (Xt”x(T)> for some v = (v,, x) € Z;I}
where § is the generalized inverse of V at 0
g(z) = inf{y LV (#,y) > 0}.

Remark 2.3.3. 1. In the case where the infimum in the definition of 0(t, x, p)
is achieved and there exists a control v € U satisfying

E [ (X7,(T), Y, ,(T))] =p

with y = (¢, x, p), the above argument shows that the corresponding process
P¢oX coincides with the conditional expectation of ¥ (X{,(T), Y, ,(T)), i.e.

PX(s) =E [0 (X[,(T), Y, (T))|Gs]  forselt,T].
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2. Equation (2.3.3) shows that one can restrict to controls o and x such that
P/;X takes values in L. This is rather natural since the latter should be
interpreted as a conditional expectation of ¥, which convex hull is L, and this
corresponds to the natural domain [m, M| of the variable p. Notice also that
the value function 0(-,p) is constant for p < m, and equal oo for p > M. In
both cases, the natural domain of 9 is therefore [0, T] x X x [m, M].

3. Moreover, in the special case where m and/or M are finite, the fact that P&;X
takes values in L allows us to consider that the jump coefficient x is bounded.
This will be useful in the proofs of Section 2.3.5. Indeed we may write in that
particular case

m— PAX(s—) < xs < M — PEX(s—),

with P,%(s—) € [m, M].

Example 2.3.1. Given a non-negative function h, let us consider the case where

U(z,y) = % A1, with the convention § = +o0 for y € Ry. For k = 0, we then
obtain

O(t,z,p) =infy e Ry : E Yiay(T) A1| > pfor some v e U
y Ly - + RGN = )
g (Xt,x(T))

which is the problem of the expected success ratio studied in [Féllmer 99]. Using
(2.3.2), we see that the above problem reduces to

o(t, x,p) :imf{yeR+ . V(Xu

£op(T), Y0y (T)) > 0 for some # = (v,0,x) €U},

where V(l‘,p, y) - f[l(xvy) - P
Example 2.3.2. One can similarly recover the problem of stochastic target under
controlled probability of success studied in [Bouchard 09] and [F6llmer 99]:

o(t, z,p) = inf {y ER, :P [\IJ (X2 (T), Y,

) 20] prorsomeueu},

for some measurable map ¥ from R%! into R such that, for every fixed z € R%, the
function y — W(x,y) is non-decreasing and right-continuous. The reduction of the
problem (2.3.2) leads to

i(t, x,p) := inf {y ER,:V (Xf/ .77,

tap ) > 0 for some v € Z)} ,

where V(,,9) = 114,50} — P

2.3.2 PDE characterization in the domain

In view of Proposition 2.3.2, the PDE characterization of Theorem 2.2.5 can be
extended to the problem (2.3.1). Let us first introduce notations associated to the
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augmented system. For @ = (u,a,7) € U and & = (z,p) € X, set

(e 0) = _//:;((Z’)Z)(de) o) = (XYY,

B@,a(e), e) = <5X($7;é()€),e)) |

We also introduce the following operators

| —

Tr [667 (&,4) D*p (t,1)]

B (3, a(e), e)) Yot ).

L% (t,&) = Oyp (t, &) + fu (&, ) - Dep (t,7) +

gAﬂ’e(p (t, .ﬁ) = 5Y(x7 ¥ (tv 'i') 7“(6)’ 6) — ¥ (t’ z

4+ ©

Recalling point 3 of Remark 2.3.3, we also introduce, for (x,k,q,A) € R x R x
R x S 4 = (u,,7) €U, e >0 and n € [1,1],

Nﬁ(iaya q) = UY(%%“) - &(jj’ﬁ/)Tq = Nu($7y7Q$) - qpav for q= (q1‘7qp) € Rd X R7
A% (1,3,y,0) = By (@, y,u¢) = (L3 + B (@, 7(e),0)) +y

R aecU st.

Na(i",y,q)) <e, p+mn(e)e€[m,M]

Ns,n(ta:%vy,qadj) = o~ (235)
and A"“°(t,x,y,¢) >n for \-ae. e€ E
H.,(0,¢p) = ~ sup A"(©) (2.3.6)
ﬁENa,n(tvj’yv‘Z:‘P)
where
0 = (t,2,y,k q, A)
NN 1
A (@) = —k 4 iy (2, y,u) — i (@,0) - q = 5 Tr [567 (&,3) A]
and

. (r,s)eRdezﬂﬂEﬁs.t.r:Z\Afa(ic\,y,q)
N(t,z,y,q,%) = o )
and s < A“*(t,z,y,¢) for \-ae. e€ E
§ = dist (0, N) _ dist (o, N) .
The operators fI*, ﬁ*g* and g* are constructed from lﬁlgﬂ7 and gexactly as H*, H,,o*
and 0, are defined from H,, and ¢. Finally, we define the function

Q(i)::inf{yz—ﬂ:V(i,y)ZO}, z = (z,p) € X x [m, M].

As an almost direct consequence of Theorems 2.2.5 and 2.3.2, we obtain the viscosity
property of ¥ under the following assumptions, which are the analogs of Assumptions
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2.2.3 and 2.2.4 for the augmented control system X. Define then as previously for
any ¢ € C122([0,T] x R x R;R), @ € U and (¢, %, 21, 22) € [0,T] x R2d+3

ﬁaj(,z(/_)(t? jjv Z) = 5”90(757 i) - /1(':%7 u) TR MY(£'7 Y, u)227 (237)
where z =: (21, 20) € R x R and @(t, 2, 2) := ¢(t, &) — |2|2.
Assumption 2.3.4. For alle > 0,1 € [—1,1], (to, Zo, Do) € [0, T] xR x [m, M], ¢ €

C12([0,T] x RY) and finite Cy satisfying

sup {My($,y,U) - ﬁﬁgp(ni’)} < 201
WENe 5 (t,2,y,Dp,0)

for all (t,z) € Be(to,@0) and y € R s.t. |y — p(t,2)| < e,

there exists € > 0,1 € [—1,1] and a finite Cy such that

sup {/LY(JZ,y,U) - [’SLE' Z@(ta i‘a Z)} < 2C'l + |Cl|
'lALENs/Y,,]/ (t@;ny@#P) ’

(t,#,2) € Bu(to, do,0) (2.3.8)
for all (t,2,y,2) € [0,T] x R4+ ¢ ¢, :
yeR st |y—pt,z)] <€,

and

N +
,U,y(.f,y,U) - E%yz@(tvmv Z):|
1+ [N*(z,y, Do)

d
< (2 (1 + oy (@ yu)| + D ‘6i"(£,u)‘>
=1
(t, %, 21, 22) € Bor(to,20,0)  (2.3.9)
for all (t,2,y,2) € [0,T] x R2d+4 g ¢, ehrorTe
yeR st |y—@(t,z,2) <é,

and u € U such that A" (t,%,y,¢) >n A-a.e.

Assumption 2.3.5. (Continuity of J\Afom(t,x,p, y,q,f)) Let B be a subset of
[0,T] x X x [m, M] x Rx R*L f e C0([0,T] x X x [m, M]) and n > 0 such that
./\Af(),gn(',f) # 0 on B. Then, for every ¢ > 0, (to,Zo,Po,Yo,q0) €It(B) and Gy €
./\A/'()Q?7 (to, o, Po, Yo, qo, f), there exists an open neighborhood B’ of (to,x0, po, Yo, o)
and a locally Lipschitz map U defined on B’ such that |U (to, o, Po, Yo, qo) — to| < €,
and v(t,x,p,y,q) € /\Afom(t,:p,y,p, q,f) on B'.

As in Section 2.2.2, we shall need to define the definition of viscosity solution we
shall use in this framework.

Definition 2.3.6. We say that a l.s.c. (resp. wu.s.c.) function U (resp. V) is a
viscosity supersolution of H*U > 0 (resp. subsolution of H,V < 0) on [0, T) xR xR
if for every smooth function ¢ € CV2([0,T] x R? x R,R) of linear growth and
(to, Zoy Po) € [0, T) x R x R such that ming 7xrixr(U—9) = (U—9¢)(to, To, po) =0
(resp. max(g r1xraxr(V — @) = (V — ¢)(to, To, po) = 0), we have

H*So(tmmmpo) >0 (7’68}7- H*(P(tmxo,po) < 0)
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Corollary 2.3.7. Under Assumption 2.3.4, the function U, is a viscosity superso-
lution of
H*v, > on [0,T) x X. (2.3.10)

Under the additional 2.3.5, 0* is a viscosity subsolution of
min {ﬁ* + g, HU} <0 on[0,7) x X. (2.3.11)

The supersolution property is a direct consequence of Theorem 2.2.5, the repre-
sentation (2.3.2) and point 3 of Remark 2.3.3. The subsolution property is obtained
similarly.

Example 2.3.3. In the context of both Examples 2.3.1 and 2.3.2, with the dy-
namics of Example 2.2.1, if the conditions of Corollary 2.3.7 are satisfied. By

direct computations, we then have that both 9, and v, are viscosity supersolution
on [0,T) x X of

1
0 S *3%0 - io'sz:cSO

1
— inf {2 a? Dy + Tr [oaDapp] — o (Dpp)' 07t — Dy ﬂ(e)/\(de)} ,
E

mell(p)
acR?
(2.3.12)
whenever D,,p > 0, and with
7w €3 s.t., for d-ae e€ E, p+7€[0,1]
II(p) := . .
and (D;ng +o DPQPCV) 5('76) - 90('1 iy 5('76)7 iy 71‘(6)) + >0

Notice in this particular context that the process X is not influenced by the con-
trol v. Hence, as in Example 2.2.2, the integrability issues due to the possible
unboundedness of v are handled by controlling £ ;EZ; We refer to Section 2.2.3.1
and Chapters 3 and 4 for the arguments used for the controls x and a.

Remark 2.3.8. Let us comment in this remark on the crucial role played by As-
sumption 2.3.4. Recalling the arguments of step 4 in Section 2.2.3.1, one need
the counterpart in the present context of the process L™ to be an uniformly inte-
grable martingale. By [Kazamaki 94, Theorem 2.3|, a sufficient condition is that
the process [ a2dWy is a BMO-martingale. However, without Assumption 2.3.4,
the process & may fail to have enough integrability for the stochastic integral to
exist.

In order to fix the ideas, consider the case where d = 1, the more general case
being handled with some linear algebra. For a given control (v,a,x) € U, we are
then interested in the integrability of

1 1 +
(W — ot — px Pz + @p /E Xs (e)A(de) — axa" gy — 50%%2 - 2(@?)%2)

|UY_0'XSDI_C“?90P’ ’

s pass


bruno bouchard


bruno bouchard


bruno bouchard
s pas s

bruno bouchard



58 Chapter 2. Controlled Loss with Jump Diffusions

where ¢y, 4, @p denotes the partial derivatives of ¢ in its ¢,z and p variables, and
g2, Pzp and @2 the second derivatives with respect to 22, x and p and p?. We
also omitted the parameters in the diffusion coefficients for sake of clarity, but have
to keep in mind that py,oy,ux and ox are controlled by »" which is possibly
unbounded.

Roughly speaking, in order to deal with the possible unboundedness of v and
a, one would expect for (2.3.9) to hold to have "some compensation" between puy
(resp. 0%,a?) and oy (resp. ox ¢z, app).

Consider the case where X is not influenced by the control v, and that uy and
oy are linear in v. The compensation between py and oy is then obvious, and it
remains only to deal with the unboundedness of x™ and «". Equation (2.3.8) will
then play an important role, since it will imply that ¢p, > 0 on some neighborhood
of (to, %o, Do), which will give us some coercivity and continuity, and will allow us
to control by |oy| and |ox| with ftn wy and ‘ft.n iy bounded, which is of important
use in step 5 of Section 2.2.3.1.

2.3.3 Boundary conditions and state constraint

In our general context, the natural domain of P is [m, M]. In the case where m or
M are finite, we need to specify the boundary conditions at the end points m and
M. By definition of the stochastic target problem with controlled expected loss, we
have

(-, M) =v and 0(-,m) = —k, (2.3.13)

where

o(t,z) == inf {y > —k: @ (X}, (T), Y,

t,x7y(T)) > 0 for some v € L{} ,

with
O(x,y) :=VY(z,y) — M. (2.3.14)

Also, since ¥ is non-decreasing in y, we know that ¢ is non-decreasing in p. Hence,

—k < 0u(-,m) <0%(-,p) <O*(, M) <v* for p e [m,M],
(2.3.15)

A~k A~k

0*(,p)=—k for p<m and 0*(,p)=o00 for p> M,

and one can naturally expect that 0.(-,m) = —k and 0*(-, M) = v*. However,

the function ¢ may have discontinuities at p = m or p = M and, in general, the
boundary conditions have to be stated in a weak form, see (2.3.20) and (2.3.54)
below. This corresponds to the classical state-space constraint problems, see
[Barles 94, Fleming 06, Soner 86a, Soner 86b| and the references therein.

To obtain a characterization of © on these boundaries, we shall appeal to the
following additional assumptions. Assumptions 2.3.11 and 2.3.12 already appeared
in [Bouchard 09]. Assumptions 2.3.9, 2.3.10 and 2.3.13 will be used to handled the
non-local operator. Also notice that Assumption 2.3.12 linked with Assumption
2.3.4.
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Assumption 2.3.9. The following hold.
(H1) For some integer v > 1,0*(-,m)" satisfies the growth condition

t
sup M < 0. (2.3.16)
0,7 xR 1+ [2]

(H2) There is a function A on R? satisfying
(H2-i) For all x € X and y > A(z), there exists u € U such thal
By (z,y,u(e),e) — A(z+ Bx (x,u(e),e)) + A(x) >0 for A-a.e. e € E.
(H2-ii) A(x)/|z]” — 400 as x| = 0.
(H2-iii) A < —k on X.
Assumption 2.3.10. The set E is finite and A(e) > 0 for all e € E.

Assumption 2.3.11. For all (z,y,q) € X x (—k,00) x R%, we have
{ueU:N"x,y,q) =0} & U.

We need for the next assumption to introduce the following set, for (z,y,q) €
R x R x R%:

Ne(w,y,q) :=={u €U : [N*(z,y,q)| <e}. (2.3.17)

Assumption 2.3.12. For all compact subset D of R4 x R x R x R? x S¢, there
exists C' > 0 such that

1
Sup {,U'Y(xa y7u) —k— MX(:E’ u) g §T7n [UXJ;((x?u)A] } <C (1 + 52)
ueN:(z,y,q)

foralle >0 and (z,y,k,q,A) € D.

Assumption 2.3.13. The maps Bx, By are continuous on X X E and X xR x E
uniformly in uw € U. Moreover, Bx, By and ox satisfy the following condition

esssup {|Bx (-, u(e),e)| + |By (-, ule), e)| + |lox (-, u)|} is locally bounded
uelU,ecE
Since the main concern of this paper is the analysis of the stochastic target
problem under controlled loss with jumps, we do not establish a comparison result
of viscosity supersolutions of (2.2.10)-(2.2.13) and subsolutions of (2.2.11)-(2.2.14).
Nonetheless, as in [Bouchard 09], we need such a comparison result in order to
establish the boundary conditions of this section.

Assumption 2.3.14. There is a class of functions C containing all [—k, +00) valued
functions dominated by v* such that, for every
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e v € C, lower semi-continuous viscosity supersolution of (2.2.10)-(2.2.13) on

[0, 7] x X

e vy € C, upper semi-continuous viscosity subsolution of (2.2.11)-(2.2.14) on

[0,7] x X
we have v1 > vy.

The main results of this section shows that the natural boundary conditions
(2.3.13) indeed holds true, whenever the comparison principle of Assumption 2.3.14
holds and under the above additional conditions.

Theorem 2.3.15. Assume that Assumptions 2.3.5, 2.8.10 and 2.3.13 hold true.

(i) Assume that m > —oo. Under Assumptions 2.3.9, and 2.8.11, we have
0*(-,m) = —k on [0,T) X X and 0,(-,m) = —k on [0,T] x X.

(ii) Assume that M < oo. Under Assumptions 2.3.12 and 2.3.4, v*(-, M) is a
viscosity supersolution of (2.2.10)-(2.2.13) on [0,T] x X. In particular, if

in addition the comparison principle of Assumption 2.8.14 is satisfied, then
0 (-, M) = 04(-, M) = v, =0v* on [0,T] x X.

The proof is reported in Section 2.3.5.

Remark 2.3.16. 1. This subsection is similar to the one in [Bouchard 09], where
the authors studied the boundary conditions at p = 0 and p = 1 in the
case of target reachability under controlled probability, i.e. ¥ is of the form
U (2,y) = l{y>4(x)}- In this paper, the natural domain of P is [0,1], and the
authors studied the behavior of the value function v when p — 0 and p — 1.

2. Observe that under Assumption 2.3.12, one might omit Assumption 2.3.4 and
follow the same reasoning as in Chapters 3 or 4. We however report the proof
that Assumption 2.3.4 holds on this particular context in the quoted Chapters.

2.3.4 On the Terminal Condition

The boundary condition at T for 0, and ©* can be easily derived from the charac-
terization of Theorem 2.2.9.

Corollary 2.3.17. Under Assumption 2.3.4, the function & € X — 0:(T, %) is a
viscosity supersolution of

min {(@*(T, )= 3) L jreg (1)< O 0 (T .)} >0 on X.

If in addition, Assumption 2.8.5 holds, then & € X 0*(T, &) is a viscosity subso-
lution of
min {@*(T, ) — &, 6,05 (T, -)} <0 on X.
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The condition H*0,(T,-) < oo may not be satisfied because the control (a,)
appearing in the definition of H may not be bounded. It follows that the above
boundary condition may be useless in most examples.

The rest of this section is devoted to the discussion of conditions under which a
precise boundary condition can be specified.

Proposition 2.3.18. (i) Assume that for all sequence (tn,Tn,Yn,PnsVn),>1 Of
[0,7) x X x Ry x [m, M] xU such that (tn, Tn,Yn,pn) — (T, z,y,p) € {T} X
X xRy x [m, M|, there exists a sequence of P-absolutely continuous probability

measure (Q"),~,, defined by d%: =: H" for some sequence of non-negative

random variable (H"), -, such that

lim sup EQ" [K&annyn] <vy,

)

n—o0
lim sup & [|H"D} @ g (X;",, (T),pn) — Dif @ §(xn,pn)|] =0 (2.3.18)
n—oo
and liminfE[H"© g (X", (T),pn)] = ©4(2,p),

where D; stands for the right derivative in p. Then, 0.(T,x,p) > @¢(x,p)
for all (x,p) € X x [0,1].

(ii) Let the conditions (ii) of Theorem 2.3.15 hold true and assume that 0* is
convez in its p-variable and that v*(T,x) < g(x). Then v*(T,z,p) < ®@¢(x,p)
for all (x,p) € X x [m, M].

Proof. (i) Given a sequence (tn,Tn,pn),>; in [0,7) x X x (m, M) such that
(tns Tnypn) — (T,x,p) and 0 (tn, Tn,pn) — 0«(T,z,p) as n — oo, we can find
Up = (Un, 0, Xn) € U such that

V(X0 (D) Y00, (1)) 2 0,

where y,, 1= 9(tn, Tn,pn) + 11 = 0.(T, z,p), recall (2.3.2). This implies that
Vi (1) 2 3 (X0, ,,(T)).

and, by the definition of the convex hull of g,

HYS (1) 2 B 0§ (X7, (T))

tn,Tn,Yn tn,Tn,Pn
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Using the convexity of ©®g then leads to

avyp, (1)
> H"® §(X{", (T),pn) + H'Dy @ g (X", (T),pn) (PEX"(T) — pp)

= H" @ (X}, (T),pn) + Dy © § (w0, p) Pyl (T)
+ P (T) [H" Dy © g (X124, (T),pn) = D © § (2, p)]

tn sPn tn7xn
> H"® § (X1, (T),pn) + Dy © § (20, pn) PLrp" (T)
— H"p, D © 4 (X;7,, (T),pn)

tn,Tn

M HDF © 3 (X, (T). ) = Dy © 3 e, )]

where the last inequality follows from the fact that we can always assume that
PmXt takes values in [m, M], see (2.3.3). Taking the expectation under P and
using the fact that Pti*’”};f" is a P-martingale, we obtain

EQ" [Yﬁn (T)}

tn,Tn,Yn
>E [Hn ©g (X,;/:Jn (T)apn) + Dn (D;_ ©g (xmpn) - HnD;_ ©g (X;an (T)’p”))
~M|H"D} ©§ (X", (T),pn) — Df ® §(zn,pn)]] -

Passing to the limit, and using (2.3.18) leads to 0.(T, z,p) > @¢g(x,p).

(ii) Using (2.3.15) and the convexity of 0* together with the definition of the convex
hull of a function lead to the required result. O

Example 2.3.4. In the context of Example 2.3.1, we may easily notice that the
generalized inverse of V at 0,

gla,p) = inf{y > =~ : V(z,p,y) > 0},

satisfies
9(z,p) = pg(x)
and is convex in p. Moreover, for the dynamics of Example 2.2.1, the convexity of

(T) = uYy, (T) for any pu € [0,1],

¥ in its p-variable is quite obvious, since Y}, ey
M

t,x,py
and the expectation operator is linear.
We have already shown in Section 2.3.2 that v, is a supersolution of (2.3.12). If
the condition of Corollary 2.3.7 ((see Chapter 3),) and (i) of Proposition 2.3.18 are
satisfied we deduce that v, satisfies the boundary conditions
0x(+,1) = v and 0,(-,0) =0 on [0,7) x X
(2.3.19)
and 0, (T, z,p) > pg(z) on X x [0, 1].

Example 2.3.5. In the context of Example 2.3.2, we define the function

glw,p) i=inf {y > —k: V(z,p,y) > 0}
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and let @Z be the generalized inverse of T at 0, i.e.

Y(x) = inf {y > —k: U(z,y) > 0} )

Then, g(z,p) = ¥(x)1fys0) for z € X and p € [0,1]. The convexity of ¥ is far
from being obvious. However, one may notice that the convex hull of g in p is
© (§) (x,p) = pg(x), with g = ¢!, and that the condition of Corollary 2.3.7 and (i)
of Proposition 2.3.18 are satisfied. It follows that, as for the expected success ratio
problem of Example 2.3.4 above, 0, is a viscosity supersolution on [0, 7] x X x [0, 1]
of (2.3.12) - (2.3.19).

Remark 2.3.19. In [Bouchard 09], the authors considered the case §(x,p) =
9(x)1psoy, so that @g(x,p) = pg(x), and therefore D} ® §(x,p) = g(x). Then,
Assumption 2.3.18, in the case of [Bouchard 09|, should take the form:

tn,Tn

hylzrfong [|H"g (X{", (T)) —g(z)|] = 0.

The Assumption 2.3.18 is then almost the counterpart of the one made in their
proposition 3.2. The difference comes from a slight error in their proof ? where they
use the fact that PS")X" is a Q-martingale while it is only a P-martingale, a priori.

2.3.5 Derivation of the boundary conditions for the stochastic tar-
get with controlled expected loss

We now prove Theorem 2.3.15. These boundary conditions need only to be specified

in the case where m and/or M are finite.

2.3.5.1 The endpoint p = M, finite

In order to show that 0.(-, M) is a viscosity supersolution of (2.2.10)-(2.2.13), it
suffices to show that 0,(-, M) is a viscosity supersolution on [0,7) x X of

max {0x (-, M) — ve, H 0 (-, M)} > 0, (2.3.20)
and that 0,(T, -, M) is a viscosity supersolution on X of
0u(Ty -y M) — vy,
max{ R . X
min {(U*(T, ‘ M) — J*) l{H*ﬁ*(T,~,M)<oo}a 5*U*(T’ . M)}

where j is the generalized inverse of ® at 0:

>0

— )

(2.3.21)

j(x) :==inf{y > —k : &(x,y) > 0},

recall (2.3.14).
To convince ourself, let us show for instance that (2.3.20) implies (2.2.10). Let
(to,xo) be a local minimizer of 0,(-, M) — ¢ for some smooth function ¢ of linear
growth. Then

2The author would like to thank Bruno Bouchard, Romuald Elie and Nizar Touzi for pointing
out this issue and for their explanations on how to fix it in their particular context.
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o either 0,(to, xo, M) < v« (to, zo) and then (2.2.10) holds for ¢ at (¢o, zo)

o or . (tg, zo, M) = v.(to, o) so that (tg,zo) is a local minimizer of v, — ¢, and
(2.2.10) holds for ¢ at (tg,zp) by the viscosity property of v, see Theorem
2.2.5.

step 1: We first show that for any smooth function ¢ of linear growth on [0,7] x
X x [m, M] and (to,zo) € [0,T) x X such that

(strict) o) xrgf[m,M} (0x — @) = (Vs — ) (to, 20, M) =0, (2.3.22)

we have
max {g@(to,xo,M) — v*(to,xo),H*@(to,xo,M)} > 0.

If not, we can find n,e,¢ > 0 such that

maX{@L - U*(ta x)uMY(x7y7u) - ljﬁQOL(t,%P), } S _27]
for all @ := (U,Oz,ﬂ') € N,—n (tvxayaD(PL(tymvp)y@L)

(2.3.23)
and  (t,2,p,9) € [0,7) x X x (m, M] x R

st. (t,2,p) € Belto,x0) x [M =2, M] and |y —@,(t,2,p)| < .

with ¢, (t,z,p) := p(t,x,p) — f.(x) — g.(p), f, defined as in (2.2.18), and

2[/ W‘p—M| . 9

g, :p € [m, M]— — sin® udul g,_arj<1y + tLp—nr>13
0

recall (2.2.19), and observe that the same results hold for g,. We now define as
previously for all z € X x [m, M] x R

@.(t, 2, 2) == p,(t, &) — |2]°.
By Assumption 2.3.4, there exists a finite constant C' > 0 such that, after possibly
changing €, > 0, we have

MY(Iv Y, U) - Eafgz@b(tv :ilv Z) < -1

(t,:%,z) € Bs(to,i‘o,O)
for all (t,2,z,y) € [0,T) x (X x [m, M])* x R? s.t. A 7
ly — @L(t,x,z)] < 1

for all uw € Nz, (t,2,y, Do (t, ), 0,)

and

~ +
oy (w,y,u) = L3 0t 2,2)| .
: <C|1+4|oy(z,y,u)|+ oY (Z,u
TF Ve, . D v (e )] + 160 (@)

for all (¢,2,2) € B:(to,20,0) and y € Rs.t. |y — ¢, (8,2, 2)| <

>3

and for all uw € U s.t. A" (t,z,y,¢,) > —n A-a.e.
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Let (tn, Tn,Pn, 2n)n be a sequence in [0,T) x (X x (m, M))? which converges to
(to, xo, M,0) and such that 0(ty,, zn, pn) — 0«(to, xo, M). Set yn := 0(tn, Tn,pn) +
n~! and observe that
Tn = Yn — @L(tnvxnypn> — 0.
For each n > 1, we have y,, > 0(t,, T, pn). Then, by (GDPj1), there exists some
o= (v, o, x™) € U such that
Y2(80) 2 60 (s X" (80), P"(00)) = 3, (6, X" (60), P (62), Z"(61))
where
00 :={s >t,:(s,X"(s),P"(s),Z"(s)) € D}

O = {52t 1 [Y() = (5, X"(5), P(s))| = ] } A 03

together with

n

Vn
Tn,Yn? “tn,Zn,zn |0

(X" P Y 20 = (X0, P Y
A i (%), 77)
Vn

P = 20t /t" Hy (X"(U),Y"(U), u”(U)) "

and

Vg(t(),xg,(]) = ({to + E} X Bg<$0,0)) U ([t(),t() + 6) X 8B€(x0,0))
D := (V(to, z0,0) x [M — e, M]) U (Bc(to, o) X [M — &, M])¢ x B(0).

It follows from (2.3.23) and (2.3.22), recall (2.2.20), that
=inf (0 —¢ .
C=inf (0~ 7) >0
Using the definition of 6,, and ¢ > 0, this implies that

Y™(0n) = 0 (On, X" (0n), P"(0n), Z"(0n)) = ¢ A

~3

By arguing as in Section 2.2.3.1, this leads to a contradiction.

step 2: We now show (2.3.20), i.e. for any smooth function ¢ on [0,7] x X and
(to, o) € [0,T) x X such that

(strict) i (0 (-, M) = ) = (0s(-, M) = ) (to, z0) = 0,

we have
max {p(to, zo) — v« (to, o), H ¢(to, xo)} > 0. (2.3.24)

a. The first step is similar as in |[Bouchard 09|, up to modifications due the need
for linear growth test function in x. For every k, we introduce the smooth function

erlt2,p) = o(t,x) — (f(@) + (t —t0)” +vx(p))
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z_n ...
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where f is defined as in (2.2.18) with = 1, and for some p > 0,

M
pk/p T e2kM+1d k> 0. (2.3.25)

Observe that

Yr(p) >0 forall k>0, pe[m, M|,
€2kM pk‘

— < ! =pk < =
20k < Yi(p) =p ek(p+M) _ g2kM+1 — 2(e — 1) (2.3.26)
for k large enough,
, ck(p+3M)
= 0 forall k>0 2.3.27
Ukp) = —ph* (ek+2) _ e2k141)2 <9 forals>%, ( )
2
lim (Wk(p))” =p if (px), is a sequence in [m, M]
koo |92 (pr)| (2.3.28)
s.t.  lim k(M —pg) =0.
k—o0

Let (tg, 2k, pr) be a minimizer of 9. — ¢ on [0,7] x BE(z¢) x [m, M], where
BX(x0) := Bi(zo) N X and Bj(xo) is the open unit ball centered at zo. Observe
that, by definition of (tx, zk, px) and (tg, xo),
(0«(+, M) = ) (to, x0)

(0 — 1) (to, w0, M)
> (s — ¢k) (tks Tk, Pk)

(04 (-, 08) — @) (i k) + (f (2r) + (1 — t0)* + Pr(pr))

. k

(0uamn) = ) (o) + (S + (0= 10 4 5 50 =),
where the last inequality follows from (2.3.26), for k large enough, and the fact that
Yr(M) = 0. Since 0, > —k by construction and ¢ is bounded, this implies that the
sequence (ty, Tk, pr)r>1 is bounded, and therefore converges to some (., x4, p«) up

to a subsequence. Clearly, p. = M, since otherwise we would have k(M — py) — co.
By definition of (tg, xg), this implies that

(04 (-, M) — ) (to, z0)
k—oo

> (04(, M) — @) (ts, x4) + <f(x*) + (te — tp)? +h;££f2(efl)(M —pk))

z@wﬂw—wﬂmwm+(ﬂmruu—m>+%Eg2(k)

This shows that, after possibly passing to a subsequence,

(tk7$k7pk) — (tO,JIO,M), k(M _pk) — 07

o -m)).

(2.3.29)
and 0, (tg, Tk, pr) — s (to, zo, M).
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b. We now go on with the arguments of [Bouchard 09], up to a non trivial
adaptation required by the non-local parts of the operator. In order to prove (2.3.20),
we assume

Uy (to,l‘o,M) — Ux (to,&?o) <0 (2.3.30)

and we intend to prove that
H*(p(to,.%o) > 0. (2.3.31)

By (2.3.29) and the lower semicontinuity of oy, it follows from (2.3.30) that the se-
quence (ty, Tk, Pi)s~>, of minimizers of the difference 0, — ¢y, satisfies ¢y, (tr, Tk, i) —
Vg (tg, k) <0, after possibly passing to a subsequence. By Corollary 2.3.7 together
with the result of step 1, Remark 2.2.10, Assumptions 2.3.13 and 2.3.4, and the fact
g is of linear growth in = and p, we deduce that

H* (g, x5, pr,s Pk Oriprs Dipr, D2ppe, 04) > 0 for every k> 1.
Now observe that, by (2.3.29), and the definition of ¢y:

(0upk, Dapre, D2, 0k) (thy s bk) — (010, Do, D2,9) (to, z0)
k=00 (2.3.32)

(Do, D2yor: Doypre) (b wres o) = (=% (k) 0, =¥ (pi)) ¥V k> 1.
By definition of H*, we can find sequences (Ek)r>1 (‘%2)101’ Yk k>1r (@)r>1s
(AR)p>1 such that e, > 0,2] = (29, p)) € X x [m,M],yr > =k, qx = (¢}, qp) €
R? x R, Ay, is a symmetric matrix of S¥!, with rows (A%x,Aip) € S x R? and
T d
(47", 4) e RY xR,

er — 0, 2V — (20, M)

_ 2.3.33
and |(yk, @, Ak) — (0, Dot D*0r) (ti, e, pi)| < k71 ( )

where (tk, ig) belongs to a compact neighborhood of (g, zo, M), and
ﬁsk,fk_l (tk‘,i.gayka atso(tO,xO)a gk, Ak‘a@*) > _k_l' (2334)

By the definition of lff%_kq, we may find a sequence

(ug, o, k) € -/\A/’skﬁZk—l (tk,fﬁ% Yks Qkﬁ*)

such that
1
—0p (to, o) + py (T yrs ur) — pux (2, un) - qf — §T1" [oxok (23, ug) AF"]

1 1 e
> -2k + B |ak|2Aip + ok (wg,uk) AP oy — /Eﬂk(e))\(de)q‘z

(2.3.35)
and

By (2, vk, ur(e),€) — 0 (ti, 2} + Bx (27, ui(e), e) ,pp + mrle)) +yp > —2k~"

for A-a.e. e € E.
(2.3.36)
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Recalling (2.3.17), we observe that (ug, o, 7)) € ./\A[E]w_zk—l (tk, Tk, Yy G, Us ) implies
that u; € Neﬁ\qi'ak] (29, yk,qF). We deduce then from Assumption 2.3.12 and
(2.3.35) that, for some constant C' > 0, (which may change from line to line but
does not depend on k or p),

v

1 T
C <1 + \qgak\z) 3 [ AR + ok (2, ur) AR - cu, —/ mie(e)A(de)q;,

) E (2.3.37)
3 loul A = C A7 low| = [ mle)\de)a]

v

where we have used the condition that sup,c;; |ox (-, u)| is locally bounded. From
(2.3.26), (2.3.27), (2.3.28), (2.3.29), (2.3.32) and (2.3.33), it follows that

2
AP — 400, AP =0, ¢f = +oco and ‘(Z]%Z,‘ — pas k — oo. (2.3.38)
Recall from (2.3.5) that
e <M —pr Mae., (2.3.39)

where py € [m, M]. We may hence consider that (7).~ is bounded from above, so
that, by (2.3.37) and the fact that ¢}, A7 >0

2 xp|2
1 gl 2 Lo A %,

Hence, (2.3.38) leads to
1 }Amp‘z
0 > limsup <—Cp> akz—C’ k ol |-

Taking p small enough implies that

| = 0. (2.3.40)

Moreover, since k(M —py) — 0, see (2.3.29), there exists €, | 0 such that k(M —py) <
€. Recalling (2.3.39), this implies that 7, < %, so that, by (2.3.26),

g (me(e))T =0 as k—oo forallec E. (2.3.41)

Recalling the fact that A(F) < oo and that qﬁ > 0, the above inequalities lead to

( /E ﬂk(e)/\(de)q£>+ 0. (2.3.42)

p|2
Also recall that Jai]” — p, see (2.3.38), which combined with (2.3.37), (2.3.38),

PP
Ak

(2.3.40) and (2.3.42), implies that

1 _
C (1 + pAYP ’0414]2> > 3 g | AP </ ﬂk(e))\(de)qz>
E
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or equivalently

O (14| o) = J Ja ‘q’“‘ (/E”k@“d@’qi)_

for some p > 0. Taking p small enough leads to
2
AP || * < C, |2 Jew]? < Cp
— (2.3.43)
and C+Cp> (/ Wk(e))\(de)qZ>
E
We then deduce from the right hand side bound of (2.3.26) and (2.3.33) that
0 > limsup </ 7Tk(€)>\(d€)> .
k—4-o00 E
Combined with (2.3.41), this shows that
/ mi(e)A(de) - 0 and mi(e) - 0 for A-ae. e€ E. (2.3.44)
E
c. We now return to (2.3.35) and the middle inequality in (2.3.43) to deduce that

1
— e (to, o) + py (20, Y un) — pox (2 uk) - qf — §Tr loxok (xf, ur) Ap"]

+
> <2kt ok (o) A7 o= ([ (el
E

(2.3.45)
and
ug € Nﬁr (xk,yk,qk) (2.3.46)
since A,i’p > 0.
Consider now (2.3.36), i.e
By (5, Y uk(e), €) — ts (t, o) + Bx (2, ur(e),e) . ph + mle)) + yx 2347

> —2k~' for M\ae. e€ E,

Using the upper semi-continuity of —v,, the fact that Sy is continuous, (2.3.44),
together with pg — M as k — oo, we obtain

ﬁY (3727 Yk uk(e)a 6) — Vs (tka 372 + BX (5327 Uk(e), 6) 7M) + Yk > _Qk_l - 792
for k large enough and for A\-a.e. e € E,

with 9% > 0 such that 95 — 0 as k — oo for all e € E. We now use Assumption
2.3.10 to deduce that there exists ¥ > 0 with ¥ — 0 as & — oo such that, for all
e € IV and k large enough,

By (22, Yk, ur(e), ) —s (tr, f + Bx (27, unle),e) , M) +yy > —2k1 =0 (2.3.48)
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By combining (2.3.45) (2.3.46) and (2.3.48), we finally obtain
H,_, .\ oo —on-1—9, (te: 0 vk, Orp(to, 20), gk, AR, (-, M)
+
> 2kt ok (ahow) 47 00) ([ sl )
E

and we deduce the required result (2.3.31) by sending & — oo and then p — 0,
and recalling that (\ozk\ AL ([ Wk(e)A(de)qZ)Jr) — 0, that oy is locally bounded
uniformly in the control u, and that 0, > ¢.

step 3: It remains to prove (2.3.21). The fact that 0, (7, -, M) is a viscosity super-
solution

max {0, (T, -, M) — v, (T,-),0%0. (T,-, M)} > 0

is deduced from (2.3.24) of the previous step by using the same arguments as in the
proof of (2.2.1) in Section 2.2.3.2. It remains to show that v, (7, -, M) is a viscosity
supersolution of

max {0, (T, -, M) — vy (T,-), (0x (T, -, M) — js) 1{H*ﬁ*(T,-,M)<oo}} > 0.

By combining the arguments of step 1 with those of Section 2.2.3.2, we first show
that for any smooth function ¢ on X x [m, M] and z¢ € X such that

we have
max {@(azo, M) — v (T, z0), (¢(z0, M) — §s(0)) 1{m¢<xo,M><oo}} > 0. (2.3.49)
We then consider a smooth function ¢ on X and zg € X such that
(strict) H%én (0 (T, -, M) — ) = (04(T, -, M) — ) (x9) =0 (2.3.50)

and
(10($0) < @(T¢ :UO)a (2351)

and we assume that
H*p(T, zp) < 0.

We next follow the construction of step 2 of the modified test functions

or = p(r) — (f(x) + ¥r(p)), (2.3.52)

where v, is defined in (2.3.25). As in the above step 2, one can prove that the
difference 0, (T, ) — o has a local minimizer Zj = (x, pr) satisfying all estimates
derived in the above step 2 (forgetting about the ¢ variable). In particular, since
H*pp(z1) < C for some constant C' > 0 independent of &, recall (2.3.51), we deduce
from the same estimates than in step 2 that H*gy (2,) < 2C for all large k. It
then follows from Corollary 2.3.17, (2.3.49) and (2.3.51) that 0, (T, Zx) > g« (Tk).
Sending k — 00, this provides v, (T, xo, M) > g«(xo, M), and the proof is completed
by observing that §.(zo, M) = j«(x0), by definition of j. O
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2.3.5.2 The endpoint p = m, finite

We organize the proof in four steps. As in the previous section, steps 1, 2 and 3
focus on t < T while step 4 concentrates on t = T'. Steps 1 and 4 are similar to
arguments used in [Bouchard 09]. The main difference comes from steps 2 and 3.

step 1: We first show that for any smooth function ¢ on [0,7) x X x [m, M] and
(t1,z1) € [0,T) x X such that

(strict) o) Xn)a(axx[mm (0" =) = (0" — @) (t1,21,m) =0, (2.3.53)

we have
min {f)* + K, I:I*gb} (t1,21,m) <O0. (2.3.54)

The proof is very similar to that of Sections (2.2.3.3) up to the modification explained
in the proof of Corollary 2.3.17, and the fact that we have to handle the state
constraint p = m. For completeness, we report here the entire argument. Assume
to the contrary that

47 := min {@* + K, ﬁ*@} (t1,z1,m) >0
i.e., for some € > 0, and after possibly changing n > 0,

win {3, (t,2) + 5, oy (2, 9,8) — £79, (£,5)} > 2

~

for some 4 = (u,a,7) € J\Afo,n (t,z,y, Do, (t,%),p,) (2.3.55)
for all (t,2,y) €[0,T) x X x R
st (68) € B (tr,a1) x [mym 4l ly — &, ()| < e,

where ¢, (t,2) := ¢ (t,2) + f.(x) + ¢.(p) with ¢ small enough, for f, and g, defined
as in (2.2.18) with x1 and m respectively in place of z,. Then, Assumptions 2.3.5
and 2.3.10 imply that

&, (8, ) + K,

min ¢ 4Y (fL‘, Y, v (t, i%7 Y, D@L (tv j:))) - ﬁﬁ(t’ﬁy’D@L(t’j))@L (t’ j“) ) > n

m% Gray Dot e s (¢ 7) (2.3.56)
ec
for (t,%,y) € [0,7] x X x R s.t.

(t, &) € B (tr,21) X [m,m +¢] and |y — @, (8, 2)| <

>3

where © is a locally Lipschitz map satisfying

ﬁ (tv:%ay7 D@L (t,.@)) € NO,’U (t7 i?y7 ngt (t7‘%) 7§5L)
(2.3.57)
on B:(t1,z1) X [m,m + €.
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Observe that, since (¢1,z1,m) is a strict maximizer in (2.3.53) and by (2.2.20), we
have
—&=—((Ney) = max (0 — @) <0, (2.3.58)

where
D := ({t1 + €} x Be(z1) x [m,m+¢€]) U ([t1,t1 +€) X (Be(z1) X [m,m +¢))°).
Also, we deduce from (2.3.55) and the fact that o (-,m) = —k by definition, that

0>-n> max (0—¢)(,m). (2.3.59)
Be(t1,21)

By following the arguments in step 2 of Section 2.2.3.3, we see that (2.3.56),
(2.3.57), (2.3.58) and (2.3.59) lead to a contradiction of (GDPj2).

step 2: Let ¢ be a smooth function on [0,7] x X and (¢g, zo) € [0,7") x X such that

(strict) AKX (5% (-,m) — @) = (0* (-,m) — @) (to, z0) = 0.

By definition, we have 0*(tg, zo, m) > —k. Let us assume that
0* (to, xo,m) + Kk =: 4n > 0, (2.3.60)

and work towards a contradiction. Define the function ¢y as in (2.3.25) with m in
place M:

62km

P
Vi(p) = pk/m ok(rtm) _ 62km+1dr’ k>0,

and for f defined as in (2.2.18) for ¢ =1,

on(ts,p) i= p(t,@) + (F(@) + (= t0)* + r(p)) -

Arguing as in step 2 of the preceding section, we see that the difference 0* — ¢ has

a local maximizer (tx, zk, pr) on ([0,7] x X x [m, M]) satisfying
(tk, 2k, k) = (to, zo,m),  k(pr —m) — 0 and 0" (tx, zk, pr) = 0" (to, w0, m),
so that

(0vok, Daors D24k) (ts 2k, i) — (O, Datp, D2op) (to, o)  as  k — oo
(ngoka Dipsokv Dgp@k) (tka xlﬂpk)) = (1/12 (pk‘) 707 ,l/};c/ (pk)) .

Since 0*(tg, zg, m) > —k, we have 0*(tx, xx, px) > —k for all k, after possibly passing
to a subsequence. Then, it follows from Corollary 2.3.7, step 1 and the arguments
of Remark 2.2.10 under Assumption 2.3.13, that

H. (-, 0k, Ok, Dipre, D> i, 0*) (e, g, pi) < 0 for k> 1.
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By the definition of H,, we deduce that there exist sequences (er)i>1r (T)p>1s
(yk)kzp (%)1@1 and (Ak)k21 such that e > 0, fﬁg = (662,292) € X x [m, M],yx, >
—k,qx = (qf.q}) € R? x R, and Ay € S™! with rows (47", A77) € S* x R? and

(AﬁpT, A,’Zp> € R? x R satisfying
er = 0, 29— (z0,m),
) 1 (2.3.61)
and | (Yk, @k> Ak) — (x> Dor, D> k) (ti, xi, pi)| < k™

for which
Hak,k*1 (tk7£kuyk78t@(t07x0)aquAk76*> S k_l- (2362)
Fix u € U, 7 = 0 and set a;, := N“(azg,yk,q,f)/qz. Since m = 0, it follows from

(2.3.62) together with (2.3.5), (2.3.6) and Assumption 2.3.10 that either (u, a, ) €

N5k7k71 (t7 i‘\ku Yk, QIW@\*) and then

py (29, Yk, w) — Opp(to, xo) — px (27, w) - f

1 (2.3.63)
= (Tr [ox 0% (2, w) AZ*] + |af® AP + 20% (29, u) ATP - a) < k!

or

By (22, Yk, uler), ex) — 0 (t, 2 + Bx (2, uler),ex) . pp) +yr < k7', (2.3.64)

for some sequence (ex)r>1 C E. Using the same kind of arguments as in step 2 of
the previous section leads to

2
. x . (qk)
AP <0, ¢ <O for large k, kli)ngo AP =0 and klggo A7 =p. (2.3.65)

Consider first the case where (2.3.63) holds along a subsequence. Using (2.3.63) and
(2.3.65), we then deduce that
Arl N
AP o ? = ‘(q:)l N (o o) < €,
k

for some C' > 0 independent of k and p. Sending k — oo in the above inequality,
we then deduce from (2.3.61) and (2.3.65) that

p~ V[N (w0, ¢(to, o), De(to, x0))|* < C.

Since p > 0 can be chosen arbitrarily close to 0, this shows that
N (o, ¢(to, z0), Dp(to, o)) = 0, and the arbitrariness of u € U is in contradiction
with Assumption 2.3.11. This contradicts (2.3.60). Hence, if (2.3.60) holds, then
(2.3.64) holds along a subsequence, i.e.

By (2, Y, uler), ex) — 0* (g, 2 + Bx (2, ulex), ex) ,pp) + yp < k™'
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Sending k — oo, using the arbitrariness of u € U and Assumption 2.3.10 then leads
to
é@*(to, o, m) < 0,

where
G = sup min {By (-, u(e), ¢) — (- + Bx (-, u(e), €)) + ¢} -
wel eEF
Hence
min {0* + &, G0*} (to, 20, m) < 0 (2.3.66)
on [0,7T) x X.

step 3: Now observe that, by standard arguments, for every (¢,x) € [0,T) x X, we
may find a sequence of smooth functions (¢™),>1 such that ™ | 0%, (tn, Zn, Pn)n>1
converging towards (¢,z,m) and such that (¢" — 0*) achieves a maximum at

(tn, Tn, pn). We refer to [Bouchard 02, Lemma 6.1] for the approximation argument
by continuous functions. The extension to an approximation by smooth functions
is straightforward.

It thus follows from step 2, that 0*(-,m) is a classical subsolution of (2.3.66) on
[0,7) x X. In order to conclude the proof, we now appeal to the following easy
lemma.

Lemma 2.3.1. Assume that H2 holds. Let w be a upper semi-continuous subsolu-
tion of
min {w + k,Gw} <0 on X (2.3.67)

such that w satisfies the growth condition (2.3.16). Then, w < —k on X.

Applying Lemma 2.3.1 to 0*(¢g, -, m) for an arbitrary ¢y € [0,7) then leads to
0*(-,m) = —k, since ©*(-,m) > —k and 0*~ satisfies (2.3.16) by assumption.
step 4: We finally show that 0.(7,-,m) = —k on X. Since 0*(t,x,m) = —& for
t < T and z € X, we can find a sequence (¢, Tn, Pn)n>1 in [0,T) x X x (m, M) such
that (¢, 2y, pn) = (T, 2, m) and —k < 9(ty, T, pn) < —K+ £ for all n > 0. Passing
to the limit leads to the required result.

O

Proof of Lemma 2.3.1.

We assume that supx (w + k) > 0 and work towards a contradiction. It follows
from the growth condition (2.3.16) on w, (H2-ii) and (H2-iii) that there is some
zo € X such that

m}gx(w —A)=(w—A)(z9) =: £ >0. (2.3.68)

By (H2-i), Assumption 2.3.10 and (2.3.68), there exists some 4 € U such that

Ieréijrgl By (zo,w(xo), ule),e) — A (xzo + Bx (zo,u(e),e)) + A(zg) > 0. (2.3.69)

Since w is a subsolution on X of (2.3.67), we have Gw(z¢) < 0. Recalling Assump-
tion 2.3.10, we may then find é € F such that

By (o, w(xo),u(é), é) —w (xo + Bx (xo,u(é),€)) + w(xg) < 0.
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Combining the last inequality with (2.3.69) leads to

w(zo) — Awo) < w (w0 + Bx (z0,u(€),€)) — A(wo + Bx (z0,u(€))),

which contradicts the definition of z( in (2.3.68).
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In this chapter, we specialized the discussion of the controlled expected loss
(utility) introduced in Section 1.1.3. We will consider here the settings of Chapter
2, in a particular case.

3.1 Introduction

3.1.1 Market Model

For sake of simplicity, we shall assume that the state space of the process X is
X := (0,00). The case of X = (0,00)? can be easily obtained from this example
with some linear algebra. We assume moreover that the marked point process J is a
Poisson measure of constant intensity A x dt, such that E' = {e} and then §(-,e) =
does not depend on e € E. Let I" be a set of controls such that

T
E {/ \fys|2ds] < 0.
0
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Given v € U, the dynamics of (X,Y") are given by

quiestU ?

Xio(s) =a+ /tS p (X z(r))dr+ /ts o (X z(r))dW, + /tS B (Xt.2(r)) N(dr)

Yizy(s) =y+ /ts Vppo (X (1)) dr + /ts vpo (Xia(r)) dW, + /t v (X z(r)) N(dr),

where p,0 and 8 are Lipschitz-continuous functions The process X models the
evolution of a risky asset subject to jumps, and Y stands for the wealth process
associated to an investment policy v. Notice that in this chapter, the size of the
jump is uniquely determined by the position of X in the state space. The risk free
interest is set to 0 for sake of simplicity.

3.1.2 Risk Averse Agent

We consider that the preference of the Agent is characterized with a function p : R —
R, which is assumed to be strictly increasing, concave, continuously differentiable,
of linear growth and such that p(R) = R. We assume furthermore that p~! is
continuous with linear growth on R. We also introduce a continuous function g of
linear growth. The function p may represent in this context the utility function of
the Agent (or, up to thesigd, its loss function), while g(X; »(7") denotes the random
payoff of a European option written on the risky asset sold by the agent. The aim

of the agent is to find the minimal amount of money w(t,x,p) (above —x) he has

his

to invest in a dynamic strategy v in order to reach its target in expectation above
its given threshold p, where he has to deliver the payoff g(X; (7)) at terminal time
T. Set

V(z,y) = ply — g(x)),

ajouter

contrainte Y\ge - 5o that
\kappa et dire

qu'est ok aussi
T i . v
par rapport au w(t,x,p) := inf {y >—k:dveldst. E [p (Yt,%y(T) —g (Xt,z(T)))] > p} .
cadre general
In the remainder of this chapter, we intend to give an explicit characterization of
the value function—w-in-terms of g defined as
je taideja ditqu'ily a un

g : (.iU,p) S (O, OO) X R — inf {y € R s.t. \IJ(JJ, y) > p} V (—/{). pb avec le GDP'si tu fais

Observe that
gz, p) = (9(x) +p~' () V (=) (3.1.1)

Remark 3.1.1. Under minor modifications of the calculations of this chapter, we
could also build the function ¢ in order to represent the success ratio of [F6llmer 99].
We however don’t provide a characterization of the quantile hegding price of the
claim g(X¢,(T') since, as it has already been discussed in the Example ( 2.3.5) of
Chapter 2, we failed in establishing the convexity of the value function.
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3.2 Explicit Resolution in the case of Poisson Process

In the present context, we may state the following corollary. We introduce in this
sense, for any smooth function ¢ defined on [0, T] x (0, 00) x R and every (o, 7) € R?,
the operators

am __ Op 1 ,0% Oy 109 o 1 ,0%
HI " o= 5 3° 8x2+8p7r/\t+a/w ap aaaxp 50 a2
T 8(10 —18%0 _
Hy " = <8$+a apa)ﬁ() (- +BC)+7)+ e

Corollary 3.2.1. The function w is a viscosity super solution of

sup min{H]"p, Hy"p} >0 on [0,T) x (0,00) x R
(am)€R? (3.2.1)
w(T,) > g on (0,00) X R.

The function w is a viscosity subsolution of

sup min{H7"p, Hy"p} <0 on [0,T) x (0,00) x R
(a;m)€R? (3.2.2)
w*(T,) <g on (0,00)xR.

Pour la sous solution, je devrais étre en mesure d’écrire une edp plus sympa, &
voir selon ce que jarrive & avoir sur le probléme dual...
Proof. A sufficient condition for the results to hold is that conditions of Corollary
2.3.7 and Proposition 2.3.18 hold. We divide the proof into several steps.

First recall from Section 2.3.2 the definition of the Kernel and of the HJB oper-
ator in this context. For every e > 0,1 € [—1,1], ¢ € C°([0,T] x (0,00)?) and

CRE (twfapuyaQt’q:I:7Qp7sz)QJ:p7Qpp790) S [O,T] X (0,00) % RS

(u,a,7) €R3 s.t. |uo(z) —agy — qzo(x)| < ¢ }

Ng’n(t,l‘,p,y, Qz,Qp,SD) = {
and uf(z) — o(t,x + B(z),p + ) + (t, x,p) 21

and

Hs,n(@7 90) = Sup {M(x)(u - Q:v) —qt+ /\WQp — 0Qqgp — %U(x>ZQ:L’x - ;(JppCLQ} )
WENE 7(O)
where @ denotes (u,a, 7).
Step 1: Assumption 2.8.5 holds.
Let B C [0,T] x (0,00) x R®, n > 0 and ¢ € C°([0,T] x (0,00)?) such that
./\/-07277(',90) # () on B. Fix ©° € B with

0% := (% 2°,0°, Y%, 4/, 4z Op» Gows Qops Dpp)»
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and (uo, ao, mo) € No2n(0°, ). We denote without the superscript any © € [0,77] x
(0,00) x R® and define the map

(ti,a,7) : © € [0,T] x (0,00) x R® — (qx—l—ao(é};) , Qo 71'0),
o

which is trivially Lipschitz-continuous since ¢ > 0 and satisfies
(’&‘a d? 7})(@0) = (um Qo, 7r0)7

recall that (4o, @, To) € Np 2, (0, ¢) implies in particular that
%

o(z°)’

Moreover, for every © € [0,T] x (0,00) x R® we have

o
uo:qx+ao

[t (2) — agp — 0(2)¢a| = 0.
By continuity of ¢ and 3, there is a neighborhood Be of (u,, @y, 7o) such that
W(©)B(z) — p(t,x + B(z),p + 7(0)) + ¢(t,2,p) > n,

and so follows the result.
Step 2: Assumption 2.3.4 holds.



indexation
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et qui ne sert
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. (uaW)ERQX}LQst luo(z) — qzo(x) — qpal < e
N’En._{ up(z) — p(t, = + beta(x ),p+7r)+go(t,x)pz77 }

Let (to, o, Do) and ¢ such that

H*(p(tm xoypo) < 0.

By definition of H*, there is € > 0 and a finite C' > 0 such that

up(x) — 0 — @ep(x) + ©p fE JA(de) — 29%:50(33)2 - %SDPPG:%,u —o(z)azuppe < C
Gtapo(z)| <€
for all (t,z,p) € B(to, %o, D0)s Ctapsdp € Rs.t. < qp € Be(pp(to, To,Do))
|gp| = €/2
and (u,m) € R x L3 s.t. uB(z) — o(t,x + B(x),p+ m) + p(t,z) >,

where @
o(x
am’u = (u B (‘0$ - Ctvxvp) *
dp
Hence we have
¥p fE JA(de) + Agzp + Biapu — QLpPPGSZ) uw? < C

Capo(@)] <€
for all (t,2,p) € B:(to; To,P0)s Ctap dp € R st S gy € Be(p(to, o, Po))
gp| > /2
and (u, ) € RXLQSt uB(z) —o(t,x + B(z),p+7) + (t, ) > n,

where

x ol\r 2
( ) Opa (P + Ctozp) — (q ) pp(Pa + Ctap)

Ppz + Ppp (q 2 \@x + G x,p)

At,:c,p =Y — QOCCN( ) 290$960(
Bigp = p(z) —

)

Recalling that o > 0, there is finite C’ > 0 such that

+
<g0p/;77'(6))\(d€)> < C/ (1 ) for all u \pi such that

jaiessaye de lire la
suite... impossible...
essaie de lecrire
plus proprement...
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deja fait

Fix now (to, Zo, Po) € [0,T) x (0,00)? and ¢ € C122([0,7T] x (0,00)?) such that

H*(p(tm -Tovpo) < 0. (323)
a. Assume first that
%(t Zo,Po) =0 (3.2.4)
8]) 0> O7p0 - . M
Using the definition of N" and H*, there is € > 0 and n € [—1, 1] such that

Oy Oy 1 282 8 o 1 ,(0? cp
T b - r_ b AP i A <

for all (a,7) € R x Ay(a;to, o, po), With
Oy agﬁ()
(8:6() + o () > B(x) (t,z,p) >1n
- (tv$ + B(x)ap + 71') + QD()

Recall from (3.2.4) that A,(a;t,, o, po) does not depend on a € R so that, for
T € Ay(a;to, To,po) fixed, we have for all a € R

dy op 1 282@
_79 - 79 “ T - 79 I 79 - oy Loy Po <2 5
{ " () - 20(:):) 3 o(x)a - 2a 5 — € (to, oy Do) Cy

and there is then a finite positive constant C' such that

1, (9%
< .
—5a (8}) 5) < C(1+|al)

Taking a large enough gives then gQ—f > ¢, and hence, by smoothness of ¢, we have

Ay(ast,z,p) =< m™eRs.t.

8 ‘0 > 0 on some neighborhood B of (t,, x,, Do)
We now intend to characterize the set of controls (u,a, ) such that

ub(z) — ¢(t,x + B(x),p+ ) + ¢(t, 2,p) = 1. (3.2.5)

Recall from the definition of A and (3.2.3) again that, we may find a neighborhood
B’ of (to, o, po) such that B’ C B, for ¢, small enough, (; such that |o(z)(;| < ¢
and all (u,7) € R satisfying (3.2.5) on B’, we have

Oy
ot

Oy dy / 10%p , 0% 10%p
or (tv l’,p)+ 8p (t7 xap) 5 W(e))\(de) 9 axg (tv ZE,p)U(ZE) 83?]9 (t’ *T?p)o-(m)aLU 9 6])2

for some finite C > 0 where

Az = @ (u - gi(t#ﬂ,lﬂ - Cac) .

dp

o up(x)——-(t, z,p)

Recalling the particular form of A" and H* in that case allows then to reduce to
the case where a takes values in a compact set of R. We than have

def qgpart ? [uu(x) = [a.T (t T p)]-i-

uo(x) — o(x) a‘; aap (t,z,p)

< % [up(e) — LYo (t, 2, p)] "
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for all (u,a, ) € R such that

and by smoothness of ¢, i, o, there exists thus a finite constant C' > 0 such that

[up(x) — LY o(t, z,p)]"

o)) o))

< C(1+|nl),
‘ua(m) —o(@)gt —agy| (t,2,p)

and so hold (77).

Consider now the case where %;(to,%,po) # 0. Then there is a neighborhood

B of (to, %0, po) such that g—g # 0 on B. Hence, by a continuity argument, there is
a finite constant C' > 0 such that

[U/L(CE) — Eaﬂrso(tv L, p)]Jr

o] o]
uo(e) — o(x) 9 — a2 | (t,2,p)

< O+ [ +|a),

so that (?7?) stands.

Equation (??) trivially stands by definition of H*.

Depending on the case, combining the above results gives that Assumption 2.3.4
holds.

Step 3: We have w*(T,-) < g on (0,00) x R..

Fix (z,p) € (0,00) x R, and et y > g(z,y), so that U (z,y) > p, recall that ¥ is
strictly increasing. Let (¢, n,pn) — (T, z,p) as n — oo such that

w<tn7 xn,pn) njo ’LU*(T, x7p)

We claim that
E [\Il (th,mn (T)v n?uarmy(T))] — \I/('xay)

n—oo

Recalling that y > W(z,y) > p implies that E[¥(Xy, o, (T),Y? .. ,(T))] > p for n
large enough, and so y > w(ty, zn, pn) for n large enough, and thus y > w*(T, z, p).
We conclude by arbitrariness of y > g(z,p).

We finally prove the claim. Classical estimates give
b
E [| (Xonn (1), Y2 4, (1) = (@,9)[[] S C (IT = tal® +|wn —al’)  (326)

for all p > 1 and some finite constant C' which does not depend on n. Recall now
from assumption on p and g that ¥ is continuous and of linear growth, and therefore
uniformly continuous on compact sets. Hence, for every € > 0 and k > 1, there is
N > 0 such that

sup  |U(x,y) — ¥(z',y)| <e,
(z,y,z’y')ers
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where

(@, )|V (', y)] < k:}

5 / ! 2 2
=1 (x,2',y,y") € (0,00)° x R* s.t. {
{ (2, y) — (2", )] < nf

is compact. Note that standard estimates imply that

)

= Q

P [[ (Xt 00 (T), Yy 0, (D)) | > k] < ZE [[( X0 (1), Ye) 4, (1)) ]] <

=

Tn,Y

for some finite constant C. Moreover, it follows from (3.2.6) that

P (| (Xt (1), Y (7)) = ()| > ] <73
where 5% — 0 as n — oo for all fixed e, k. Recalling that VU is of linear growth, we
have for all k& > |(z,y)]

C
B9 (X (T)’Ytguxmy(T)) —VU(z,y)|] <e+ z T rek.

We conclude by sending n — oo, and then k — oo and € — 0.

Step 4: Condition (i) of Proposition 2.3.18 holds.

Classical estimates and the same reasoning as in the previous step leads the
result, recall that p € C'(R).

Od
We also define, for every (t,z,q) € [0,7] x (0,00) x (0,00), the process
(@7 44> Xt.2) by the dynamic
d zxq N N )
gg’ ~(s) = <58 (Xea(s)) +vsf8 (Xt,x(s))) AW (s) + 7sA\J (ds),
¥y dXt’x(S) =0 (Xm(s)) dW(S) + B (Xt,x(s)) j(ds), (327)

(Xte(t), Q7 4(1) = (z,9) € (0,00)°.

We finally define the function y : (¢,z,p) € [0,T] x (0,00) X R+ y(t,x,p) as:

y(t,z,p) = E [g (X (T))] + :E?E {p_l (I ( Zx@v(m,p)(T)))} '

3.2.1 Characterization of a lower bound

We define now, as in [Bouchard 09] the Fenchel-Legendre dual with respect to the
p-variable of the lower semi-continuous envelop w, of w:

W (t,x,q) €[0,T] x (0,00)2 sgg {pq — wy(t,z,p)}. (3.2.8)

We shall need for the characterization of a lower bound for w to define the function

w: (t,.%',Q) = }/Ielij [ Zx,q(T)[( Zx,q(T)) - pil (I( zz,q(T))) -9 (Xt,w(T>)} )


bruno bouchard


bruno bouchard



3.2. Explicit Resolution in the case of Poisson Process 85

-1
where [ := ((,o_l)’) . We define the following operator, for every smooth function
Y € CH22([0,T] x R x R, R):

1
U + VB + (gA — 7q) g — 502%
2

1
Fip:= sup < —(qu+v4B) Vgz — 3 (q“ + 'yq’8> Vqq
~v€(0,00) g g

o (trss (Jor-a)) o] |

We introduce now the PDE system for the dual problem:

{ Fy(t,z,q) >0 on [0,7) x (0,00) x (0,00) (3.2.9)

(T, 2,9) > ql(q) — p~ ' (I(q) — g(=) on (0,00) x (0,00); o

{ Fy(t,z,q) <0 on [0,T) x (0,00) x 0,00)(3210)
(T, x,q) < al(q) — p~ ' (I(q)) — 9(x) on (0,00) x (0,00);

Assumption 3.2.2. There is a class of functions C containing all [—k,+00) valued
functions dominated by w such that, for every

e v; € C, lower semi-continuous viscosily supersolution of (3.2.9) on [0,T] x X;
e vy € C, upper semi-continuous viscosity subsolution of (3.2.10) on [0,T] x X;
we have v1 > vs.

Lemma 3.2.1. The function W s an upper semi-continuous viscosity subsolution
on [0,T] x (0,00) x (0,00) of (3.2.10).

We refer the proof to the end of this section.

Proposition 3.2.3. Under Assumption 3.2.2, we have
w>y.

Proof.

By Lemma 3.2.1 and (Bonne réf), under Assumption 3.2.2, and since w is a
viscosity supersolution of (3.2.9) (vérifier la semicontinuity de w?), we have w < w.
We can now provide a lower bound to the primal function w by using (3.2.8). Define
for every v € I the function @, : (t,z,q) € [0,T] x (0,00) x (0,00) — R by

Wy (t, 2, q) =B [Q, (T (Q7,(T)) — p~' (1 (Q1,4(1))) — 9 (Xe(T))] -

Clearly the function w, is convex in g, so that there is an unique solution g, (t, z,p)
to the equation Vérifier la convexité et les calculs, mais tout doit étre ok...

0w .
e (07:0) =B [QLa (D (@1 4,00 T))] = (3:2.11)
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Hence, we have

w(t,x,p) Z w*(t,x,p) Z sup (pq - @(75793761))
q>0

> sup (pg — w(t,z,q))
q>0

> sup {sup (pq — w,(t, x, q))}
vel' Lg>0

2 SUP {p(j’y(tvxap) - UNJ“/ (tvxvq:y(taxvp))}
ver (3.2.12)

> sup {q}(t,:v,p) [p E [ ta 1(T)I( Zz,éw(m,p)(ﬂ)H

~yer
HE [ (1(@ 4 0ap@) ) +9 (XeaD)]

>E g (X:2(T))] +supE [/’71 (I ( L b ))}

vel’
=y(t, z,p),

where the last inequality follows from (3.2.11).

We conclude this section by the proof of Lemma 3.2.1.
Proof of Lemma 3.2.1.

The function u is clearly upper semi-continuous on [0,7] x (0,00) x (0,00) re-
calling that v, is lower semi-continuous and (??). The boundary condition (??) is
an immediate consequence of the right-hand side in (2.3.19) and (?7).

Now let ¢ be a smooth function with bounded derivatives and (g, zo,q0) €
[0,T)%(0,00) % (0, 00) be alocal maximizer of (u—¢) such that (u—¢)(to, zo, g0) = 0.

a. As in [Bouchard 09], we first show that one can reduce to the case where
the test function ¢ is strictly convex. Indeed, since w is convex and (%o, o, qo)
is a local maximizer of (u — ¢), we have Dyqp(to,z0,q0) > 0. Define ¢., by
Pen(t,z,q) = @(t,2,q) +€|q— qo|” + enlq — qol* (lg — q0f” + |t — tol* + & — 2o*)
for some €, > 0. Then (to,0,qo) is still a local minimizer of (u — ¢.,), and,
since Dgyqp(to, 0,q0) > 0 and ¢ has bounded derivatives, we have Dgup., >
Dygp + 2ne <\t —to)* + |z — x()]?). We may thus choose n large enough so that
Dgqpen > 0 on a neighborhood of (to, zo,qo). Next we observe that, if ¢, , satisfies
the first line in (3.2.10) at (¢o, zo, qo) for all £ > 0, then (3.2.10) holds for ¢ at this
point too. Indeed, the derivatives up to order 2 of ¢, , at (t, o, qo) converge to the
corresponding derivatives of ¢ as € — 0, and we have
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1
- <<ps,n <to,xo + 8,90 + <7qu\ - qo)) — we,n(to,xo,%)>
B 1 712 012 (1-q12 2
=—v|¢|to,z0o+ 8,9 + 5(10)\—610 — ¢(to, o, q0) + & |m" +en || ( |79]" + |B]
_ 1 q(2 q|2 q|2 2
=—y(¢|to,z0+ B,q + ;QO)\_QO —¢(to, xo,q0) | — e |7 —yen |7 (74" +[8]7) ,

with 79 := %qg)\ — qo- Recalling (?7), we know that we can restrict the choice of
the control a, x to the controls leading to P*“X € [0, 1], implying that 7¢ is bounded.
Hence,

1
-7 (%,n (to, xo + B,q0 + (QO)\ — %)) — e n(to, To, CIO)>
o
1
converges toward — vy (so <to, xo + B,q0 + (qu - qo>> — o(to, o, qO)> as e — 0.
o

b. We may now assume that ¢ is strictly convex in its g-variable. Let ¢ be the
Fenchel transform of ¢ with respect to the ¢ variable

6(@ l‘,p) ‘= Sup {pq - gO(t, -T,Q)} .
pER

since ¢ is strictly convex in ¢ and smooth on its domain, @ is strictly convex in
p and smooth on its domain, see [Rockafellar 97]. Moreover, we have

Sp(t z, Q) = Sup {pq - G(tv :Eap)}
peR

— p*(t,2,0)0 — B (2, p*(6,2,)) on (0,T) x (0,0) X (0,00) C it (dom())
(3.2.13)
where p*(t,z,q) = J(t,x,q) and g — J(-, q) denotes the inverse of p — Do (-, p).
From the fact that gy > 0 and by (??), there exists py € [0, 1] such that u(tg, zo, o) =
Poqo — Vs (to, o, po), which, using (3.2.8) and the definition of (to, zo, po, go) leads to

u(to, 0, q0) = Pogo — Vx(to, Zo, Po)

©(to, 0, q0) = Su}g {pao — ¢(to, 0, )} > pogo — @(to, zo,Po)
pE

0 = u(to, 0, q0) — ¢(to, 0, q0) >u(t,z,q) — o(t,z, q).

Then we have

P0qo — Vx(to, 0, po) — Pogo + @(to, 0, po) = 0 > u(t, x,q) — p(t,x,q),

which leads to
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i)\*(to, -’EO,pO) - &(t07$0>p0) < @*(t,l‘,p*) - (Z(t’xvp*)a
by using (3.2.13) and the definition of u. We finally have

(to, xo,po) is a local minimizer of v, — @ such that (v, — @) (to, o, po) < 0.
(3.2.14)
We conclude the proof by discussing three alternative cases depending on the
value of pyg.
1. If po € (0,1), then (3.2.14) implies that ¢ satisfies (?7) at (to, zo, po), i-e.

0 < sup {min {Hf(a,w),Hf(am)}}

WEL%
a€R
= sup { inf {E’Hf(a,w) +(1- E)Hg(a,ﬂ)}}
reL2 L=€0.1] (3.2.15)
a€R

= inf < sup {57—[%(@, )+ (1 — g)Hg(a,W)} ,

e€(0,1] rel2

acR
where the last inequality is obtained by the minimax theorem. Indeed, denoting
(e (a,m) €[0,1] x (R xL2) = eHf (a, 7) + (1 — e)H3 (a, ) € R, we have that
f% is convex and lower semi-continuous in €, and, using the convexity in p and the
smoothness of @, that f? is concave and upper semi-continuous in (cv, m). Moreover,
using the concavity and the coercivity of f?, we may find a compact subset K of

R x L%\ such that

sup fsz(e,a,w): max f“z(s,a,w).
(a,m)ERXL2 (a,m)el

Now observe that the supremum in « is obtained in o* satisfying
« € (%% - U@cp) + (1 — 5)%ﬁ

oF = 2 , (3.2.16)
€Ppp

recall that @ is strictly convex. Using the fact that az? + b2 = —a2? where 7 is
such that T := argmax {az? + bz + ¢}, (3.2.15) becomes

- - - 1 5
0< inf ¢ sup {egpdr — (1 —e)p(-+B,p+m)}—¢ (cpt + 02<pm>
€€[0,1] nel? 2 (3.2.17)

+(1 —¢) (P8 + @) + 5@2”"04*2} :

We consider now the supremum in 7 € IL&
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sup {egpMm— (1 —¢)o(- + B,p+m)}
7r€]L2

A
=(1—¢) sup S”f”(
ﬂe]Li 1-

:(1_5)¢<t,x+6,q+<€fﬁt_q>>' (3.2.18)

In view of (3.2.16), (3.2.18) and the usual link between the derivatives of a
smooth function and its Fenchel transform, namely

p+m)— ('+ﬁ,p+7r)} — EQpAP

O = 4
Pr = —Pg
(ﬁzz = —Pzx — Squq;
5p =q"
1 (3.2.19)
Ppop = —
pp Paq
Drp =
* prq
Qe = ——
’ Pqq

(3.2.17) can be written, for v := 1=

7

0<§2§{7<w<-+6,-+q©—1>> @) + (va — a)) ¢q

1
+ept + iozwm — YB¢s + (q +vq= > Paq + (qp + vqﬂ)soqx} :

(3.2.20)
which is (?7).

2. If pog = 1, then the first boundary condition in (2.3.19) and (3.2.14) imply
that (to,xo) is a local minimizer of (v, — @) (-,1) = (v —©(+,1)) such that (v —
&(+, 1)) (to, xo) < 0. This implies that ¢(-, 1) satisfies (??) at (¢g,x0), and therefore
that ¢ satisfies (??7) for « = 0 and 7 = 0 at (to,zo,1). We then conclude as in 1.
above.

3. If po = 0, then the second boundary condition in (2.3.19) and (3.2.14)
imply that (¢o, o) is a local minimizer of (v,(-,0) — ¢(-,0)) = 0 — (-, 0) such that
(0 — p(to, 20,0)) < 0. In particular, (tg,zo) is a local maximum point for ¢ (-, 0) so
that we have 0;@(to, z0) < 0, Dy@(to, x0) = 0 and D, @(t, 09,0) < 0. This implies
that ¢(-,0) satisfies (?7), and thus (??) at (¢o,z0,0) for « =0 and 7 = 0. We then
argue as in 1..

O



90 Chapter 3. Expected Loss in Jump Diffusion Models

3.2.2 Characterization of an upper bound



Chapter 4

Stochastic Target Games






Chapter 5

Lipschitz selection






Chapter 6

Utility






Part 11

Example






Chapter 7

4 author papers






Chapter 8

Application in the hybrid case






Bibliography

[Ansel 92|

[Barles 93|

[Barles 94|

[Barron 84|

[Becherer 03]

[Bertsekas 78|

[Biswas 10]

[Black 73]

[Bouchard 00]

J. Ansel & C. Stricker. Follmer-Schweizer decomposition and
mean-variance hedging for general claims. Ann. Institut Henri
Poincaré, vol. 28(3), pages 375-392, 1992. (Cited on pages 1
and 17.)

G. Barles, H.M. Soner & P.E. Souganidis. Front Propagation
and Phase Field Theory. STAM, Journal on Control and Opti-
mization, vol. issue dedicated to W.H. Fleming, pages 439-469,
1993. (Cited on page 6.)

G. Barles. Solutions de viscosité des équations de hamilton-
jacobi. Springer-Verlag Paris, 1994. (Cited on page 58.)

EN Barron, LC Evans & R. Jensen. Viscosity solutions of
Isaacs’ equations and differential games with Lipschitz controls.
Journal of differential equations, vol. 53, no. 2, pages 213-233,
1984. (Cited on page 10.)

D. Becherer. Rational hedging and valuation of integrated risks
under constant absolute risk aversion. Insurance: Mathematics
and economics, vol. 33, no. 1, pages 1-28, 2003. (Cited on
page 22.)

D.P. Bertsekas & S.E. Shreve. Stochastic optimal control: The
discrete time case, volume 139. Academic Pr, 1978. (Cited on
pages 6 and 7.)

LLH. Biswas. On zero-sum Stochastic Differential Games with
Jump-Diffusion driven state: A wiscosity solution framework.
Arxiv preprint arXiv:1009.4949, 2010. (Cited on page 11.)

F. Black & M. Scholes. The pricing of options and corporate
liabilities. The journal of political economy, pages 637654,
1973. (Cited on page 1.)

B. Bouchard & N. Touzi. Ezplicit solution to the multivariate
super-replication problem under transaction costs. Annals of

Applied Probability, pages 685-708, 2000. (Cited on page 3.)



104

Bibliography

|Bouchard 02]

[Bouchard 09]

[Bouchard 10a]

|Bouchard 10b|

[Bouchard 10c|

[Bouchard 11a)

[Bouchard 11b]

[Bouchard 11¢]

[Bouchard 12a]

|Bouchard 12b|

|[Bouchard 12¢]

B. Bouchard. Stochastic targets with mized diffusion processes
and viscosity solutions. Stochastic processes and their applica-
tions, vol. 101, no. 2, pages 273-302, 2002. (Cited on pages 3,
29, 36, 37, 38, 45, 48, 50 and 74.)

B. Bouchard, N. Touzi, R. Elieet al. Stochastic target problems
with controlled loss. SIAM Journal on Control and Optimiza-
tion, vol. 48, no. 5, pages 3123-3150, 2009. (Cited on pages 3,
4,5,7,8,9, 13, 28, 29, 34, 35, 36, 37, 38, 39, 45, 48, 50, 52, b4,
58, 59, 60, 63, 65, 67, 71, 84 and 86.)

B. Bouchard & N.M. Dang. Generalized stochastic target prob-
lems for pricing and partial hedging under loss constraints-
Application in optimal book liquidation. 2010. (Cited on page 3.)

B. Bouchard, R. Elie & C. Imbert. Optimal control under
stochastic target constraints. SIAM Journal on Control and
Optimization, vol. 48, page 5, 2010. (Cited on page 4.)

B. Bouchard & T.N. Vu. The obstacle version of the geometric
dynamic programming principle: Application to the pricing of
american options under constraints. Applied Mathematics &
Optimization, vol. 61, no. 2, pages 235-265, 2010. (Cited on
pages 3, 6 and 39.)

B. Bouchard & M. Nutz. Weak Dynamic Programming for Gen-
eralized State Constraints. Preprint, 2011. (Cited on pages 4,
11 and 12.)

B. Bouchard & N. Touzi. Weak dynamic programming principle
for viscosity solutions. STAM Journal on Control and Optimiza-
tion, vol. 49, no. 3, pages 948-962, 2011. (Cited on pages 4, 11
and 12.)

B. Bouchard & T. Vu. A stochastic target approach for P&L
matching problems. To appear in Finance & Stochastics, 2011.
(Cited on page 3.)

B. Bouchard & N.M. Dang. Optimal control versus stochas-
tic target problems: An equivalence result. Systems & Control
Letters, vol. 61, no. 2, pages 343-346, 2012. (Cited on page 2.)

B. Bouchard, R. Elie & A. Reveillac. BSDEs with weak terminal
condition. preprint, 2012. (Cited on page 4.)

B. Bouchard, L. Moreau & M. nutz. Stochastic Target Games
with Controlled Loss. Preprint, 2012. (Cited on page 4.)



Bibliography

105

|[Bouleau 89|

[Bowers 86|

[Boyle 03]

[Brémaud 81]

[Brennan 79al

[Brennan 79b|

[Broadie 98]

[Buckdahn 05]

[Buckdahn 08]

[Buckdahn 10]

[Buckdahn 11|

N. Bouleau & D. Lamberton. Residual risks and hedging strate-
gies in Markovian markets. Stochastic Processes and their Ap-
plications, vol. 33, no. 1, pages 131-150, 1989. (Cited on page 1.)

N.L. Bowers & Society of Actuaries. Actuarial mathematics,
volume 2. Society of Actuaries Chicago, 1986. (Cited on
page 16.)

P. Boyle & M. Hardy. Guaranteed annuity options. Astin Bul-
letin, vol. 33, no. 2, pages 125-152, 2003. (Cited on page 18.)

P. Brémaud. Point processes and queues, martingale dynamics.
Springer, 1981. (Cited on page 43.)

M.J. Brennan & E.S. Schwartz. Alternative investment strate-
gies for the issuers of equity linked life insurance policies with an
asset value guarantee. Journal of Business, pages 63-93, 1979.
(Cited on page 18.)

M.J. Brennan & E.S. Schwartz. Pricing and investment strate-
gies for guaranteed equity-linked life insurance. SS Huebner
Foundation for Insurance Education, Wharton School, Univer-
sity of Pennsylvania, 1979. (Cited on page 18.)

M. Broadie, J. Cvitanic & H.M. Soner. Optimal replication of
contingent claims under portfolio constraints. Review of Finan-
cial Studies, vol. 11, no. 1, pages 59-79, 1998. (Cited on pages 1
and 2.)

R. Buckdahn, P. Cardaliaguet & C. Rainer. Nash equilibrium
payoffs for nonzero-sum stochastic differential games. SIAM
journal on control and optimization, vol. 43, no. 2, pages 624—
642, 2005. (Cited on page 11.)

R. Buckdahn & J. Li. Stochastic differential games and viscosity
solutions of Hamilton-Jacobi-Bellman-Isaacs equations. STAM
J. Control Optim., vol. 47, pages 444-475, 2008. (Cited on
pages 14 and 15.)

R. Buckdahn, Y. Hu & J. Li. Integral-Partial Differential Equa-
tions of Isaacs’ Type Related to Stochastic Differential Games
with Jumps. Arxiv preprint arxiv:1004.2752, 2010. (Cited on
page 15.)

R. Buckdahn, P. Cardaliaguet & M. Quincampoix. Some recent
aspects of differential game theory. Dynamic Games and Appli-
cations, vol. 1, no. 1, pages 74-114, 2011. (Cited on page 11.)



106

Bibliography

[Buhlmann 70|

|Cardaliaguet 09]

|Chen 91|

[Cheridito 05]

[Crandall 83]

[Crandall 92|

[Cvitani¢ 93]

[Cvitani¢ 96|

|Cvitani¢ 99|

[Cvitani¢ 00]

[Davis 97]

|Delbaen 94|

H. Buhlmann. Risk Theory. Springer, Berlin, 1970. (Cited on
page 16.)

P. Cardaliaguet & C. Rainer. Stochastic differential games with
asymmetric information. Applied Mathematics & Optimiza-
tion, vol. 59, no. 1, pages 1-36, 2009. (Cited on page 11.)

Y.G. Chen, Y. Giga & S. Goto. Uniqueness and ezistence of
viscosity solutions of generalized mean curvature flow equations.
J. Differential Geom, vol. 33, no. 3, pages 749-786, 1991. (Cited
on page 6.)

P. Cheridito, H.M. Soner & N. Touzi. The multi-dimensional
super-replication problem under gamma constraints. In An-
nales de I'Institut Henri Poincare (C) Non Linear Analysis, vol-
ume 22, pages 633-666. Elsevier, 2005. (Cited on page 3.)

M.G. Crandall & P.L. Lions. Viscosity solutions of Hamilton-
Jacobi equations. Trans. Amer. Math. Soc., vol. 277, pages 1-42,
1983. (Cited on page 10.)

M.G. Crandall, H. Ishii, P.L.. Lions & American Mathemati-
cal Society. User’s guide to viscosity solutions of second order
partial differential equations. 1992. (Cited on page 10.)

J. Cvitani¢ & 1. Karatzas. Hedging contingent claims with con-
strained portfolios. The Annals of Applied Probability, pages
652-681, 1993. (Cited on pages 1, 2 and 3.)

J. Cvitani¢ & J. Ma. Hedging options for a large investor and
forward-backward SDE’s. The annals of applied probability,
vol. 6, no. 2, pages 370-398, 1996. (Cited on pages 1 and 2.)

J. Cvitani¢, H. Pham & N. Touzi. A closed-form solution to the
problem of super-replication under transaction costs. Finance
and Stochastics, vol. 3, no. 1, pages 35-54, 1999. (Cited on
pages 1 and 2.)

J. Cvitani¢. Minimizing expected loss of hedging in incomplete
and constrained markets. SIAM Journal on Control and Opti-
mization, vol. 38, page 1050, 2000. (Cited on page 1.)

M. Davis. Option Pricing in Incomplete Markets. Mathematics
of Derivatives and Securities, pages 216-226, 1997. (Cited on

page 1.)

F. Delbaen & W. Schachermayer. A general version of the fun-
damental theorem of asset pricing. Mathematische annalen,



Bibliography

107

[Duffie 91|

|E] Karoui 95|

[Elliott 72a]

[Elliott 72b]

|Elliott 74al

[Elliott 74b]

|[Embrechts 00]

|Evans 84|

[Evans 91|

|[Fleming 61]

[Fleming 64|

vol. 300, no. 1, pages 463-520, 1994. (Cited on pages 1, 17
and 20.)

D. Duffie & H.R. Richardson. Mean-variance hedging in con-
tinuous time. The Annals of Applied Probability, pages 1-15,
1991. (Cited on page 1.)

N. El Karoui & M.C. Quenez. Dynamic programming and pric-
ing of contingent claims in an incomplete market. SIAM journal
on Control and Optimization, vol. 33, page 29, 1995. (Cited on
pages 1, 2 and 3.)

R.J. Elliott & N.J. Kalton. The existence of value in differential
games. Numeéro 126-127. Amer Mathematical Society, 1972.
(Cited on page 10.)

R.J. Elliott & N.J. Kalton. The existence of value in differential
games of pursuit and evasion. Journal of Differential Equations,
vol. 12, no. 3, pages 504-523, 1972. (Cited on page 10.)

R.J. Elliott & N.J. Kalton. Boundary value problems for non-
linear partial differential operators. Journal of Mathematical
Analysis and Applications, vol. 46, no. 1, pages 228-241, 1974.
(Cited on page 10.)

R.J. Elliott & N.J. Kalton. Cauchy problems for certain lsaacs-
Bellman equations and games of survival. Trans. Amer. Math.

Soc, 1974. (Cited on page 10.)

P. Embrechts & W.F.1. Center. Actuarial versus financial pric-
ing of insurance. The Journal of Risk Finance, vol. 1, no. 4,
pages 17-26, 2000. (Cited on page 16.)

L.C. Evans & P.E. Souganidis. Differential games and repre-
sentation formulas for solutions of Hamilton-Jacobi Equations.
Indiana, vol. 282, pages 487-502, 1984. (Cited on page 10.)

L.C. Evans & J. Spruck. Motion of level sets by mean curvature
I J. Diff. Geom, vol. 33, no. 3, pages 635681, 1991. (Cited on

page 6.)
W_.H. Fleming. The convergence problem for differential games.

J. Math. Anal. Appl, vol. 3, pages 102-116, 1961. (Cited on
page 10.)

W.H. Fleming. The convergence problem for differential games
II. Advances in Game Theory, pages 195-210, 1964. (Cited on
page 10.)



108

Bibliography

|Fleming 89|

[Fleming 06|

[Follmer 97

[Follmer 99

|[F6llmer 00]

[Friedman 71|

|Gerber 79|

[Harrison 81|

[Isaacs 65]

[Ishii 89]

[Ishii 96]

[Jouini 95]

W.H. Fleming & P.E. Souganidis. On the ezistence of value
functions of two-player, zero-sum stochastic differential games.
Indiana Univ. Math. J, vol. 38, no. 2, pages 293-314, 1989.
(Cited on page 13.)

W.H. Fleming & H.M. Soner. Controlled markov processes and
viscosity solutions, volume 25. Springer Verlag, 2006. (Cited
on pages 11 and 58.)

H. Follmer & D. Kramkov. Optional decompositions under con-
straints. Probability Theory and Related Fields, vol. 109, no. 1,
pages 1-25, 1997. (Cited on page 3.)

H. Follmer & P. Leukert. Quantile hedging. Finance and
Stochastics, vol. 3, no. 3, pages 251-273, 1999. (Cited on
pages 1, 4, 5, 28, 54 and 78.)

H. Féllmer & P. Leukert. Efficient hedging: cost versus shortfall
risk. Finance and Stochastics, vol. 4, no. 2, pages 117-146, 2000.
(Cited on page 1.)

A. Friedman & Conference Board of the Mathematical Sci-
ences. Differential games, volume 19711. Wiley-Interscience,
1971. (Cited on page 10.)

H.U. Gerber & S. S Huebner Foundation for Insurance Educa-
tion. An introduction to mathematical risk theory. 1979. (Cited
on page 16.)

J.M. Harrison & S.R. Pliska. Martingales and stochastic inte-
grals in the theory of continuous trading. Stochastic processes
and their applications, vol. 11, no. 3, pages 215-260, 1981.
(Cited on pages 1 and 17.)

R. Isaacs. Differential games. New York: Wiley, 1965. (Cited
on page 10.)

H. Ishii. On unigqueness and existence of viscosity solutions of
fully nonlinear second-order elliptic PDE’s. Communications
on pure and applied mathematics, vol. 42, no. 1, pages 1545,
1989. (Cited on page 11.)

H. Ishii & S. Koike. A new formulation of state constraint prob-
lems for first-order PDEs. SIAM journal on control and opti-
mization, vol. 34, page 554, 1996. (Cited on page 12.)

E. Jouini & H. Kallal. ARBITRAGE IN SECURITIES MAR-
KETS WITH SHORT-SALES CONSTRAINTS. Mathematical
Finance, vol. 5, no. 3, pages 197-232, 1995. (Cited on page 3.)



Bibliography

109

|Karatzas 98|

|[Katsoulakis 94|

[Kazamaki 94]

|[Kramkov 99|

[Lasry 89]

[Li 09]

[Lions 82]

[Lions 83|

[Mataramvura 08|

[Milevsky 00]

[Milevsky 06]

I. Karatzas & S.E. Shreve. Methods of mathematical finance,
volume 39. Springer Verlag, 1998. (Cited on pages 1 and 2.)

M.A. Katsoulakis. Viscosity solutions of second order fully non-
linear elliptic equations with state constraints. Indiana Univer-
sity Mathematics Journal, vol. 43, no. 2, pages 493—-520, 1994.
(Cited on page 12.)

N. Kazamaki & SpringerLink (Service en ligne). Continuous
exponential martingales and bmo. Springer-Verlag Berlin, 1994.
(Cited on pages 43 and 57.)

D. Kramkov & W. Schachermayer. The asymptotic elasticity of
utility functions and optimal investment in incomplete markets.
Annals of Applied Probability, pages 904-950, 1999. (Cited on
pages 20 and 21.)

J.M. Lasry & P.L. Lions. Nonlinear elliptic equations with sin-
gular boundary conditions and stochastic control with state con-
straints. Mathematische Annalen, vol. 283, no. 4, pages 583—
630, 1989. (Cited on page 12.)

J. Li & S. Peng. Stochastic optimization theory of backward
stochastic differential equations with jumps and viscosity solu-
tions of Hamilton-Jacobi-Bellman equations. Nonlinear Anal-
ysis: Theory, Methods & Applications, vol. 70, no. 4, pages
1776-1796, 2009. (Cited on page 15.)

P.L. Lions. Generalized solutions of Hamilton-Jacobi equations.
1982. (Cited on page 2.)

P.L. Lions. Optimal control of diffusion processes and
Hamilton—-Jacobi-Bellman equations part 2: viscosity solutions
and uniqueness. Communications in partial differential equa-
tions, vol. 8, no. 11, pages 1229-1276, 1983. (Cited on page 2.)

S. Mataramvura & B. QOksendal. Risk minimizing portfolios and
HJBI equations for stochastic differential games. Stochastics An
International Journal of Probability and Stochastic Processes,
vol. 80, no. 4, pages 317-337, 2008. (Cited on page 11.)

M.A. Milevsky & S.D. Promislow. Mortality Derivatives and
the Option to Annuitize. Insurance: Mathematics & Economics,
vol. 29(3), pages 299-318, 2000. (Cited on page 18.)

M.A. Milevsky, S.D. Promislow & V.R. Young. Killing the law
of large numbers: mortality risk premiums and the Sharpe ratio.



110

Bibliography

[Moreau 11]

[N.N. 85]

[Owen 02]

[Peng 97|

[Rainer 07|

[Rockafellar 97]

[Roxin 69]

|Schachermayer 01]

[Schweizer 88|

[Schweizer 91|

[Schweizer 99|

Journal of Risk and Insurance, vol. 73, no. 4, pages 673-686,
2006. (Cited on page 18.)

L. Moreau. Stochastic target problems with controlled expected
loss in jump diffusion models. STAM Journal on Control and
Optimization, vol. 49, pages 2577-2607, 2011. (Cited on pages 3
and 27.)

Subbotina N.N., Subbotin A.I. & Tret’Jakov V.E. stochastic
and deterministic control; differential inequalities. Problems
Control Inform. Theory, vol. 14, pages 405-419, 1985. (Cited
on page 10.)

M.P. Owen. Utility based optimal hedging in incomplete mar-
kets. The Annals of Applied Probability, vol. 12, no. 2, pages
691-709, 2002. (Cited on page 21.)

S. Peng. BSDE and stochastic optimizations; Topics in
stochastic analysis. Science Press. Beijing (in chinese), 1997.
(Cited on page 15.)

C. Rainer. on two different approach to nonzero sum stochastic
differential games. Appl. Math. Optim., vol. 56, pages 131-144,
2007. (Cited on page 11.)

R.T. Rockafellar. Convex analysis, volume 28. Princeton Univ
Pr, 1997. (Cited on page 87.)

E. Roxin. Aziomatic approach in differential games. Journal
of Optimization Theory and Applications, vol. 3, no. 3, pages
153-163, 1969. (Cited on page 10.)

W. Schachermayer. Optimal investment in incomplete markets
when wealth may become negative. The Annals of Applied Prob-
ability, vol. 11, no. 3, pages 694-734, 2001. (Cited on pages 20,
21 and 22.)

M. Schweizer. Hedging of options in a general semimartingale
model. Diss. ETHZ, no. 8615, 1988. (Cited on page 1.)

M. Schweizer. Option hedging for semimartingales. Stochastic
processes and their Applications, vol. 37, no. 2, pages 339-363,
1991. (Cited on page 1.)

M. Schweizeret al. A guided tour through quadratic hedging ap-
proaches. Sonderforschungsbereich 373, 1999. (Cited on page 1.)



Bibliography 111

[Sondermann 85| D. Sondermann, H. Follmeret al. Hedging of non-redundant
contingent claims. Discussion Paper Serie B, 1985. (Cited on

page 1.)

[Soner 86a] H.M. Soner. Optimal control with state-space constraint 1.
SIAM Journal on Control and Optimization, vol. 24, page 552,
1986. (Cited on pages 12 and 58.)

[Soner 86b] H.M. Soner. Oplimal control with state-space constraint. 11.
SIAM journal on control and optimization, vol. 24, page 1110,
1986. (Cited on pages 12 and 58.)

[Soner 93] H.M. Soner. Motion of a set by the curvature of its boundary.
Journal of Differential Equations, vol. 101, pages 313-372, 1993.
(Cited on page 6.)

[Soner 00] H.M. Soner, N. Touzi & Université de Paris I: Panthéon-
Sorbonne. Maison des sciences économiques. Superreplication
under gamma constraints. STAM Journal on Control and Opti-
mization, vol. 39, no. 1, pages 73-96, 2000. (Cited on pages 2
and 3.)

[Soner 02a H.M. Soner & N. Touzi. Dynamic programming for stochastic
target problems and geometric flows. Journal of the European
Mathematical Society, vol. 4, no. 3, pages 201-236, 2002. (Cited
on pages 2, 3, 5, 6, 7, 8, 15, 28, 34 and 39.)

[Soner 02b] H.M. Soner & N. Touzi. A stochastic representation for the level
set equations. 2002. (Cited on page 3.)

[Soner 02c] H.M. Soner, N. Touzi & Université de Paris I: Panthéon-
Sorbonne. Maison des sciences économiques. Stochastic target
problems, dynamic programmaing, and viscosity solutions. STAM

Journal on Control and Optimization, vol. 41, no. 2, pages 404—
424, 2002. (Cited on pages 2, 3, 15, 28, 34, 37, 38 and 45.)

[Soner 03a] H.M. Soner & N. Touzi. The problem of super-replication under
constraints. Paris-Princeton Lectures on Mathematical Finance
2002, pages 133-172, 2003. (Cited on page 2.)

[Soner 03b] H.M. Soner & N. Touzi. A stochastic representation for mean
curvature type geometric flows. 'The Annals of probability,
vol. 31, no. 3, pages 1145-1165, 2003. (Cited on page 3.)

[Souganidis 85a] P.E. Souganidis. Approzimation schemes for viscosity solutions
of Hamilton-Jacobi equations. Journal of differential equations,
vol. 59, no. 1, pages 1-43, 1985. (Cited on page 10.)



112

Bibliography

[Souganidis 85b]

[Tang 07|

[Touzi 00]

[Varaiya 67|

P.E. Souganidis. Approzimation schemes for viscosity solutions
of Hamilton-Jacobi equations with applications to differential
games. J. Nonlinear Anal., vol. 9, no. 1, pages 217-257, 1985.
(Cited on page 10.)

S. Tang & S. Hou. Switching games of stochastic differential
systems. STAM Journal on Control and Optimization, vol. 46,
page 900, 2007. (Cited on page 11.)

N. Touzi. Direct characterization of the wvalue of super-
replication under stochastic volatility and portfolio constraints.
Stochastic Processes and their Applications, vol. 88, no. 2, pages
305-328, 2000. (Cited on page 3.)

P. Varaiya. The existence of solution to a differential game.
SIAM J. Control Optim., vol. 5, pages 153-162, 1967. (Cited
on page 10.)



	Introduction
	The stochastic Target in Finance and Insurance
	The ¶-almost sure criterion
	The moment constraint
	Application of the moment criterion in Finance and Insurance

	The Geometric Dynamic Programming Principle
	The GDP in ¶-a.s. criterion
	The GDP in moment criterion
	The mixed diffusion case

	The Differential Games
	The deterministic case and non-anticipative strategies
	The stochastic case

	Weak formulations of dynamic programming principles
	Weak formulations of DPP
	The game version of GDP
	Derivation of the Hamilton-Jacobi-Bellman-Isaacs' equation

	Hybrid claims : Between Finance and Insurance
	Utility indifference Pricing
	Introduction
	Maximizing utility of terminal wealth
	Duality in incomplete market models
	Utility Asymptotics - Pricing of hybrid claims

	Organization of this manuscript

	I Stochastic target in finance and insurance
	Controlled Loss with Jump Diffusions
	Introduction
	Singular stochastic target problems
	Problem formulation
	Main results
	Derivation of the PDE for singular stochastic target problems

	Target reachability with controlled expected loss
	Problem reduction
	PDE characterization in the domain
	Boundary conditions and state constraint
	On the Terminal Condition
	Derivation of the boundary conditions for the stochastic target with controlled expected loss


	Expected Loss in Jump Diffusion Models
	Introduction
	Market Model
	Risk Averse Agent

	Explicit Resolution in the case of Poisson Process
	Characterization of a lower bound
	Characterization of an upper bound


	Stochastic Target Games
	Lipschitz selection
	Utility

	II Example
	4 author papers
	Application in the hybrid case
	Bibliography


