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Abstract

In this paper we use the theory of viscosity solutions for Hamilton-Jacobi equations to study
propagation phenomena in kinetic equations. We perform the hydrodynamic limit of some
kinetic models thanks to an adapted WKB ansatz. Our models describe particles moving ac-
cording to a velocity-jump process, and proliferating thanks to a reaction term of monostable
type. The scattering operator is supposed to satisfy a maximum principle. When the velocity
space is bounded, we show, under suitable hypotheses, that the phase converges towards the
viscosity solution of some constrained Hamilton-Jacobi equation which effective Hamiltonian is
obtained solving a suitable eigenvalue problem in the velocity space. In the case of unbounded
velocities, the non-solvability of the spectral problem can lead to different behavior. In particu-
lar, a front acceleration phenomena can occur. Nevertheless, we expect that when the spectral
problem is solvable one can extend the convergence result.

Key-Words: Kinetic equations, Front propagation, Hyperbolic limit, Hopf-Cole transformation,
Spectral problem, Geometric optics approximation.
AMS Class. No: 35Q92, 45K05, 35C07

1 Introduction

In this paper, we aim to study propagation phenomena in some kinetic models. The main motivation
for this work comes from the study of pulse waves in bacterial colonies of Escherichia coli. Kinetic
models have been proposed to describe the run-and-tumble motion of individual bacteria at the
mesoscopic scale. It has been shown recently that these kinetic models are much more accurate
than their diffusion approximations, see [33] and the references therein for details. In this work,
and contrary to works on chemotaxis models, we focus on propagation driven by growth effects (à
la Fisher-KPP). This is one major difference between the initial motivation and this paper.

We consider a population of cells which is described by a probability density f on R+×Rn×V ,
where V denotes the velocity space, which is a symmetric subset of Rn. We assume that the
velocity of cells changes randomly following a velocity-jump process given by some linear operator
L analogous to the scattering operator in radiative transfer theory. We model the cell division with
a kinetic nonlinearity of monostable type. Our kinetic model reads

∀(t, x, v) ∈ R+ × Rn × V, ∂tf + v · ∇xf = L(f) + rρ (M(v)− f) , (1.1) KinEq
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where r ≥ 0 stands for a growth parameter and

∀(t, x) ∈ R+ × Rn, ρ(t, x) :=

∫
V
f(t, x, v)dv,

is the macroscopic density in position x at time t. The linear operator L : L1(V ) 7→ L1(V ) acting
only on the velocity variable describes the tumbling in the velocity space and is mass preserving,
that is

∀ϕ ∈ L1
+ (V ) ,

∫
V
L(ϕ)(v)dv = 0.

We assume that Ker(L) = Span(M), where the distribution M ∈ Ker(L) is assumed to be nonneg-
ative and satisfies∫

V
M(v)dv = 1,

∫
V
vM(v)dv = 0,

∫
V
v2M(v)dv < +∞.

We note that 0 and M are thus stationary solutions of (1.1).
A first attempt to understand the long time behavior of kinetic equations such as (1.1) is to

perform scaling limits. Due to the unbiased velocity jump process contained in our model, the
diffusive limit seems particularly relevant at first glance. This issue has been particularly studied in
the particular case of a BGK equation without any growth term (see [2] and the references therein).
As a corollary, the Fisher-KPP equation can be obtained as a parabolic limit of (1.1) when r > 0.
The long time behavior of this latter parabolic equation is now well understood since the pioneering
works of Kolmogorov-Petrovskii-Piskunov [28] and Aronson-Weinberger [1]. For nonincreasing inital
data with sufficiently fast decay at infinity, the solution behaves asymptotically as a travelling front.
It is thus natural to study propagation phenomena for kinetic equations such as (1.1).

Let us emphasize that travelling wave solutions for kinetic equations raised a lot of interest
recently. Caflisch and Nicolaenko construct weak shock profiles solutions of the Boltzmann equation
using a micro-macro decomposition [12]. Liu and Yu’s main result in [30] is the establishment of the
positivity of shock profiles for the Boltzmann equation. In [16], a compactness argument as in [25]
also proves existence and positivity of big waves for a nonlinear BGK equation. The Caflisch and
Nicolaenko micro-macro decomposition has been used to construct waves in a parabolic regime for
a particular version of (1.1) for the Fisher-KPP equation [15]. In [10], travelling waves have been
constructed in the full kinetic regime. Golse [25] uses compactness properties to prove existence of
big waves for the kinetic Perthame-Tadmor model.

An important technique to derive the propagating behavior in reaction-diffusion equations is to
revisit the Schrödinger WKB expansion to study hyperbolic limits [24, 20]. Let us quickly present
this approach on the standard Fisher-KPP equation, as it contains all the heuristic ideas needed to
understand the present work. This equation reads

∀(t, x) ∈ R+ × Rn, ∂tρ−D∆xxρ = rρ(1− ρ), (1.2) KPP

where here x is the space variable, and r,D are positive parameters. In the hyperbolic limit (t, x)→(
t
ε ,

x
ε

)
, we make the so-called WKB ansatz :

∀(t, x) ∈ R+ × Rn, ρε(t, x) = e−
ϕε(t,x)

ε , (1.3) WKBKPP

so that the phase ϕε is nonnegative and satisfies the following viscous Hamilton-Jacobi equation

∀(t, x) ∈ R+ × Rn, ∂tϕ
ε +D|∇xϕε|2 + r = εD∆xϕ

ε + rρε (1.4) VHJ
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The theory of viscosity solutions concerns the locally uniform convergence of ϕε towards ϕ0, the
viscosity solution of the following so-called variational Hamilton-Jacobi equation

∀(t, x) ∈ R+ × Rn, min
{
∂tϕ

0 +D|∇xϕ0|2 + r, ϕ0
}

= 0. (1.5) VHJ2

One can find rigorous justifications in [20] and complements in [3, 4, 34, 13]. This limit phase
contains all the information we need to understand the propagating behavior. More precisely, it is
possible to prove [19, 6, 23] that in the hyperbolic limit ε → 0, the population is contained in the
nullset of the phase ϕ0. The main interests of this technique is that ϕε can be expected to be more
uniformly regular than ρε, and that the full theory of Hamilton-Jacobi equations and Lagrangian
dynamics can be used to understand the limit equation (1.5). As an example, studying the nullset
of ϕ0, we recover the propagation at the minimal speed c∗ = 2

√
rD for the previous Fisher-KPP

equation. This fruitful WKB technique has also much been used to describe the evolution of
dominant phenotypical traits in a given population (see [31, 11] and the references therein) and also
to describe propagation in reaction-diffusion models of kinetic types [9].

In [7], the authors have proposed a preliminary work on a BGK equation which combines
Hamilton-Jacobi equations and kinetic equations to perform the WKB approach. This latter work
shows that it is necessary to stay at the kinetic level to understand the large deviation regime; One
misses something while performing the WKB approach on a macroscopic approximation of the BGK
equation.

In this work, we develop the results announced in [7] for a wider class of linear kinetic equa-
tions. We derive rigorously the hydrodynamic limit of (1.1) in some special situations given by the
hypothesis below. Unless otherwise stated in the sequel, we suppose that L takes the form:

∀v ∈ V, L(f)(v) = P (f)(v)− Σ(v)f(v),

where Σ ∈ W 1,∞(V ) and P is a linear operator that satisfies some structural assumptions that we
specify below. The examples of such operators to keep in mind are the following

Example 1. Our analysis is able to cover local and non-local situations:

1. Elliptic operators with Neumann boundary conditions on ∂V , e.g. the Laplacian: L(f) =
P (f) = ∆f , Σ ≡ 0.

2. Kernel operators: P (f) =
∫
V K(v, v′)f(v′)dv′ and Σ(v) =

∫
V K(v′, v)dv′, where K is a non-

negative kernel
(
K ∈ L∞+ (V × V )

)
.

As for the Fisher-KPP equation (1.2), we perform the hyperbolic scaling (t, x, v)→
(
t
ε ,

x
ε , v
)
in

(1.1). Note that at this moment we do not rescale the velocity variable. By analogy with (1.3), our
kinetic WKB ansatz writes

∀(t, x, v) ∈ R+ × Rn × V, fε(t, x, v) = M(v)e−
ϕε(t,x,v)

ε . (1.6) WKBansatz

We assume that initially

∀(x, v) ∈ R× V, 0 ≤ f ε(0, x, v) ≤M(v).

As a consequence, thanks to the maximum principle of Hypothesis (H1) below, the phase ϕε is well
defined and remains nonnegative for all times. Plugging (1.6) in (1.1), one obtains the following
equation for ϕε:

∀(t, x, v) ∈ R+ × Rn × V, ∂tϕ
ε + v · ∇xϕε = −

L
(
M(v)e−

ϕε

ε

)
M(v)e−

ϕε

ε

− rρε
(
e
ϕε

ε − 1
)
. (1.7) KinEqPhi1
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To perform the limiting equation, we would rather define the operator

L(f) = L(f) + r (M(v)ρ− f) , ρ =

∫
V
f(v)dv,

and the associated decomposition

P(f) := P (f) + rM(v)ρ, Σ := Σ + r, ρ =

∫
V
f(v)dv.

We can now transform (1.7) on the following form

∀(t, x, v) ∈ R+ × Rn × V, ∂tϕ
ε + v · ∇xϕε + r = −

L
(
M(v)e−

ϕε

ε

)
M(v)e−

ϕε

ε

+ rρε. (1.8) KinEqPhi

This formulation is the kinetic equivalent of what was (1.4) for the Fisher-KPP case. We shall
assume that for all ε > 0, there exists a unique solution ϕε ∈ C1

b (R+ × Rn × V ) of the Cauchy
problem associated to (1.8) given some initial condition ϕε(0, x, v) = ϕ0(x) ∈ C1

b (Rn). We stress
out that if boundary conditions are needed in the velocity variable, they are implicitly contained in
the definition of the operator L.

We now formulate our convergence results. For this purpose, let us specify the assumptions on
the different operators involved and on the velocity set V .

H0 (H0) The velocity set V ⊂ Rn is bounded .

This hypothesis is very helpful to prove Theorem 4 and will be discussed and extended in
Section 6.

H1 (H1) The operator P satisfies a maximum principle, which will be used in the following way in
the sequel:

Suppose that Q : V 7→ R is nonnegative and that u : V 7→ R attains a maximum in v0 ∈ V .
Then

P (Qu) (v0) ≤ P (Q)(v0)u(v0).

This first hypothesis is rather standard and strong but nevertheless crucial in viscosity solution
procedures. It is structural and not technical. It is also helpful for space and time Lipschitz
estimates, see Section 2. To facilitate Lipschitz estimates in velocity, we will assume a maximum
principle for the differentiated operator in velocity. Indeed, in light of the WKB ansatz (1.6), let us
assume the following

(H2) There exists an operator Uε, acting only on the velocity variable, satisfying (H1) with Uε (1) ≤
0 and Bε a bounded (uniformly in ε) function such that,

∇v

P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

 = Bε − Uε (∇vϕε) ,
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Example 2. Let us specify Hypothesis (H2) on our typical examples. For a kernel operator of the
form

∀v ∈ V, L(f)(v) =

∫
V
K(v, v′)f(v′)dv′ −

(∫
V
K(v, v′)dv′

)
f(v),

the operator P is defined by

∀v ∈ V, P(f)(v) =

∫
V

(
K(v, v′) + rM(v)

)
f(v′)dv′.

Consequently,

P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

=

∫
V
ψ(·, v′)

[
e
ϕε(·)−ϕε(v′)

ε

]
dv′, with ψ(v, v′) =

(
K(v, v′)

M(v)
+ r

)
M(v′).

As a consequence, we have

Bε(v) =

∫
V
∇vψ(v, v′)

[
e
ϕε(v)−ϕε(v′)

ε

]
dv′, Uε (∇vϕε) = −1

ε

(∫
V
ψ(v, v′)e

ϕε(v)−ϕε(v′)
ε dv′

)
∇vϕε.

Hypothesis (H2) will be satisfied after Proposition 5 (i), (ii), (iii) and suitable regularity on ψ that
we shall assume. As an example of an elliptic operator, let us consider

L(f) = P (f) = ∆f,

with Neumann boundary conditions on ∂V . The stationary density M satisfies ∇vM = 0 on V . We
thus have

P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

= −1

ε
∆ϕε +

1

ε2
|∇vϕε|2 + r

∫
V
M(v′)e

ϕε(·)−ϕε(v′)
ε dv′,

so that

∇v

P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

 = −1

ε
∆ (∇vϕε) +

2

ε2
∇vϕε · ∇v (∇vϕε) +

r

ε

(∫
V
M(v′)e

ϕε(v)−ϕε(v′)
ε dv′

)
∇vϕε.

Thus Hypothesis (H2) is well satisfied, with Bε = 0 and

Uε (∇vϕε) =
1

ε
∆v (∇vϕε)−

2

ε2
∇vϕε · ∇v (∇vϕε)−

r

ε

(∫
V
M(v′)e

ϕε(v)−ϕε(v′)
ε dv′

)
∇vϕε.

We finally need to state a structural hypothesis on P in order to characterize the behavior with
respect to v in the limit. Roughly speaking, we need coercivity.

(H3) There exists a linear operator U which satisfies the maximum principle of Hypothesis (H1), a
continuous and nonnegative Hamiltonian N : R× R 7→ R+ such that every viscosity solution
of N (u,∇vu) = 0 is constant, and α, β > 0, such that the following inequality holds true

∀v ∈ V, N (ϕε,∇vϕε)− εαU (ϕε) ≤ εβ
∣∣∣∣∣∣
P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

∣∣∣∣∣∣ .
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Example 3. For a kernel operator, one has

N(u,∇vu) =

∫
V
ψ(v, v′)

∣∣u(v)− u(v′)
∣∣
+
dv′, U ≡ 0.

For the Laplacian equation, one has N(u,∇vu) = |∇vu|2 and U ≡ ∆.

Let us now state our kinetic convergence result in the Theorem 4 below. The main difficulty in
the kinetic framework is to understand what to do with the velocity variable in the limit ε → 0.
Roughly speaking, we will show that up to extraction, ϕε converges towards a viscosity solution
of an Hamilton-Jacobi equation, whose effective Hamiltonian is obtained through an eigenvalue
problem in the velocity variable that we write in (H4) below. In fact, the limiting phase ϕ0 will
be independent from the velocity variable, but the kinetic nature of the ε-problem is contained in
this following spectral problem. We notice finally that, the roles of the velocity variable v and the
spectral problem in (H4) below are respectively similar to the ones of the fast variable and the cell
problem in homogenization theory.

(H4) Spectral problem. For all p ∈ Rn, there exists a unique H(p) such that there exists a positiveEVpb
normalized eigenvector Qp ∈ L1(V ) such that

∀v ∈ V, L(Qp)(v) + (v · p)Qp(v) = H(p)Qp(v). (1.9) eigenpb

Moreover, H and Qp are smooth functions of p.

Section 4 is devoted to giving relevant conditions on the operator L which ensure that (1.9) has
a solution. We also provide there some classical examples. We are now ready to state the main
result:

Theorem 4. Hamilton-Jacobi limit.HJlimit
Let V be a symmetric subset of Rn satisfying (H0), M ∈ L1(V ) be nonnegative and symmetric

and r ≥ 0. Suppose that the initial data is well-prepared,

∀(x, v) ∈ Rn × V, ϕε(0, x, v) = ϕ0(x),

and that the Hypotheses (H1), (H2), (H3) and (H4) are satisfied. Then, (ϕε)ε converges locally
uniformly towards ϕ0, where ϕ0 does not depend on v. Moreover ϕ0 is the unique viscosity solution
of one of the following Hamilton-Jacobi equations:

(i) If r = 0, then ϕ0 solves the standard Hamilton-Jacobi problem∂tϕ
0 +H

(
∇xϕ0

)
= 0, ∀(t, x) ∈ R∗+ × Rn,

ϕ0(0, x) = ϕ0(x), x ∈ Rn.
(1.10) standHJ

(ii) If r > 0, then the limiting equation is the following constrained Hamilton-Jacobi equationmin
{
∂tϕ

0 +H
(
∇xϕ0

)
+ r, ϕ0

}
= 0, ∀(t, x) ∈ R∗+ × Rn,

ϕ0(0, x) = ϕ0(x), x ∈ Rn.
(1.11) varHJ
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where in both cases H(p) is an Hamiltonian given by (H4).

We point out that the assumption concerning the non-dependency on v of the initial data
ϕε(t = 0, ·) in Theorem 4 is to avoid a boundary layer in t = 0 when ε → 0. The result can
be easily extended to the case of an initial condition with small velocity perturbations, that is
limε→0 ϕ

ε(0, x, v) = ϕ0(x) uniformly in (x, v) ∈ R× V .
Our paper is organized as follows. The following Section 2 proves W 1,∞ type estimates on ϕε

after assuming Hypothesis (H1) and (H2). In Section 3, we provide the proof of Theorem 4. We
dedicate Section 4 to solving the eigenvalue problem of Hypothesis (H4) which gives the Hamiltonian
H in some particular situations. We conclude this first part of results with a Section 5, giving refined
asymptotics on ϕε, and recalling some elements to study the speed of propagation of the fronts when
the constrained Hamilton-Jacobi equation (1.11) is derived, following [20, 24, 21]. The last Section
6 is devoted to discussing the results when the velocity set is unbounded. We put forward the fact
that when the spectral problem of Hypothesis (H4) is not solvable, a front acceleration can occur.
Finally, we show two cases for which Hypothesis (H4) holds and where we expect the convergence
result to be also true in the whole space despite additional difficulties.

2 The phase ϕε is uniformly Lipschitz.
Estimates

In this Section, we derive some a priori estimates on ϕε mainly thanks to the maximum principle
contained in Hypothesis (H1) and (H2).

estimate Proposition 5. Let r ≥ 0 and ϕε ∈ C1
b (R+ × R× V ) a solution of equation (1.8). Suppose that

(H0) and the structural assumptions on L, (H1) and (H2), hold. Then the phase ϕε is uniformly
locally Lipschitz. Precisely the following a priori bounds hold:
∃C > 0, ∀t ∈ R+,

(i) 0 ≤ ϕε(t, ·) ≤ ‖ϕ0‖∞, (ii) ‖∇xϕε(t, ·)‖∞ ≤ ‖∇xϕ0‖∞,

(iii) ‖∂tϕε(t, ·)‖∞ ≤ Vmax‖∇xϕ0‖∞, (iv) ‖∇vϕε(t, ·)‖∞ ≤ Ct.

Proof of Proposition 5. Let us first prove (i). We define ψεδ(t, x, v) = ϕε(t, x, v)− δt− δ4|x|2. As
V is bounded and ψεδ is coercive in the space-time variable, for any δ > 0, ψεδ attains a maximum
at point (tδ, xδ, vδ). Suppose that tδ > 0. Then, we have

∂tϕ
ε(tδ, xδ, vδ) ≥ δ, ∇xϕε(tδ, xδ, vδ) = 2δ4xδ.

Moreover, thanks to the maximum principle of hypothesis (H1) for the operator P , we get:

P

(
Me−

ϕε(tδ,xδ,·)
ε

)
(vδ) ≥ P (M)(vδ)e

−ϕ
ε(tδ,xδ,vδ)

ε .

We also have
M(vδ)

∫
V
M(v′)e−

ϕε(tδ,xδ,v
′)

ε dv′ ≥M(vδ)e
−ϕ

ε(tδ,xδ,vδ)

ε .

As a consequence we deduce after summing the two previous inequalities

P
(
Me−

ϕε(tδ,xδ,·)
ε

)
(vδ) ≥ P(M)(vδ)e

−ϕ
ε(tδ,xδ,vδ)

ε .
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Recalling the fact that L (M) = 0, it yields

L
(
Me−

ϕε(tδ,xδ,·)
ε

)
(vδ) = P

(
Me−

ϕε(tδ,xδ,·)
ε

)
(vδ)− Σ(vδ)M(vδ)e

−ϕ
ε(tδ,xδ,vδ)

ε ,

≥
[
P(M)(vδ)− Σ(vδ)M(vδ)

]
e−

ϕε(tδ,xδ,vδ)

ε ,

≥ L (M) (vδ)e
−ϕ

ε(tδ,xδ,vδ)

ε ,
= 0.

As a consequence, we have at the maximum point (tδ, xδ, vδ):

0 ≥ −
L
(
Me−

ϕε(tδ,xδ,·)
ε

)
(vδ)

M(vδ)e
−ϕε

ε

+ r (ρε − 1) ≥ δ + 2δ4vδ · xδ ≥ δ − 2δ4Vmax|xδ|. (2.12) ppmax

From what we deduce
|xδ| ≥

1

2δ3Vmax
. (2.13) cont2

Moreover, the maximal property of (tδ, xδ, vδ) also implies

‖ϕε‖∞ − δ4|xδ|2 ≥ ϕε(tδ, xδ, vδ)− δtδ − δ4|xδ|2 ≥ ϕε(0, 0, 0) ≥ 0 ,

and this gives

|xδ| ≤
‖ϕε‖

1
2∞

δ2
. (2.14) cont1

Gathering (2.14) and (2.13), we obtain a contradiction since both cannot hold for sufficiently small
δ > 0. As a consequence tδ = 0, and we have,

∀(t, x, v) ∈ [0, T ]× Rn × V, ϕε(t, x, v) ≤ ϕ0(xδ, vδ) + δt+ δ4|x|2 ≤ ‖ϕ0‖∞ + δt+ δ4|x|2.

Passing to the limit δ → 0, we obtain the claim (i).
We now come to the proof of (ii). We also use maximum principle arguments, which are possible

without any supplementary hypothesis on the structure of the operator L since this latter operator
just acts on the velocity variable. Differentiating equation (1.8) with respect to the space variable,
we obtain

(∂t + v · ∇x) (∇xϕε) =
1

ε

L
(
Me−

ϕε

ε ∇xϕε
)
− L

(
Me−

ϕε

ε

)
∇xϕε

Me−
ϕε

ε

+ r∇xρε. (2.15) estGx1

Let us expand the contributions of the r.h.s. :

∇xρε = −1

ε

∫
V
M(v′)e−

ϕε(v′)
ε ∇xϕε(v′)dv′

= −1

ε

∫
V
M(v′)e−

ϕε(v′)
ε
(
∇xϕε(v′)−∇xϕε(v)

)
dv′ − ρε

ε
∇xϕε,

and

L
(
Me−

ϕε

ε ∇xϕε
)
− L

(
Me−

ϕε

ε

)
∇xϕε =

L
(
Me−

ϕε

ε ∇xϕε
)
− L

(
Me−

ϕε

ε

)
∇xϕε

+ rM(v)

(∫
V
Me−

ϕε

ε
(
∇xϕε(v′)−∇xϕε(v)

)
dv′
)
.
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We can rewrite (2.15) as follows

(∂t + v · ∇x) (∇xϕε) =
1

ε

L
(
Me−

ϕε

ε ∇xϕε
)
− L

(
Me−

ϕε

ε

)
∇xϕε

Me−
ϕε

ε


+
r

ε

(
e
ϕε

ε − 1
)(∫

V
M(v′)e−

ϕε(v′)
ε
(
∇xϕε(v′)−∇xϕε(v)

)
dv′
)
− rρε

ε
∇xϕε. (2.16) estGx3

We now test (2.16) on sgn (∂xiϕ
ε) ei :

(∂t + v · ∇x) (|∂xiϕε|) +
r

ε
ρε|∂xiϕε| ≤

1

ε

L
(
Me−

ϕε

ε ∂xiϕ
ε
)
sgn (∂xiϕ

ε)− L
(
Me−

ϕε

ε

)
|∂xiϕε|

Me−
ϕε

ε


− r

ε

(
e
ϕε

ε − 1
)∫

V
M(v′)e−

ϕε(v′)
ε
(
|∂xiϕε(v)| − sgn (∂xiϕ

ε(v)) ∂xiϕ
ε(v′)

)
dv′, (2.17) estGx2

As for the uniform bound on ϕε, we conclude by performing a δ−correction argument. Define, for
a positive δ, the auxiliary function ψεδ,i = |∂xiϕε|−δt−δ4|x|2. It attains a maximum in (t, x, v)δ. Let
us now consider the two r.h.s of (2.17) separately. Thanks to the maximum principle of hypothesis
(H1) and the fact that L only operates on the v−variable, one has, in (t, x, v)δ,

L
(
Me−

ϕε

ε ∂xiϕ
ε
)
sgn (∂xiϕ

ε)− L
(
Me−

ϕε

ε

)
|∂xiϕε| ≤ 0.

To prove that the second part of the r.h.s on (2.17) is nonpositive, we write

∀v′ ∈ V, sgn (∂xiϕ
ε(vδ)) ∂xiϕ

ε(v′)− δtδ − δ4|xδ|2

≤ |∂xiϕε(v′)| − δtδ − δ4|xδ|2 ≤ |∂xiϕε(vδ)| − δtδ − δ4|xδ|2,

which gives the property

∀v′ ∈ V, |∂xiϕε(vδ)| − sgn (∂xiϕ
ε(vδ)) ∂xiϕ

ε(v′) ≥ 0.

Combining these two inequalities give, at the point of maximum:

δ + 2δ4vδ · xδ +
rρε

ε
|∂xiϕε| ≤ 0.

The conclusion is similar to the uniform bound of ϕε: The maximum cannot be attained elsewhere
than in tδ = 0, and the estimate (ii) is proved.

With exactly the same method, we get that necessarily ‖∂tϕε‖∞ ≤ |∂tϕε(0)|. But, passing to
the limit t → 0 in (1.7), and since ϕ0 does not depend on v, one gets |∂tϕε(0)| ≤ Vmax‖∇xϕ0‖∞.
This gives (iii).

We finally come to the proof of the bound on the velocity gradient. This proof clearly requires
a supplementary assumption on the operator L to be able to write an useful equation on |∇vϕε|.
We have made the choice of a maximum principle for the derivative operator. Again, differentiating
(1.8) with respect to v and using Hypothesis (H2) yield

(∂t + v · ∇x) (∇vϕε) +∇xϕε = −∇v

P(Me−
ϕε

ε

)
Me−

ϕε
ε

+∇vΣ

= ∇vΣ−Bε + Uε (∇vϕε)

9



We now test against ∇vϕ
ε

|∇vϕε| and recall (ii):

(∂t + v · ∇x) (|∇vϕε|) ≤ ‖∇xϕ0‖∞ + ‖∇vΣ‖∞ + ‖Bε‖∞ + Uε (∇vϕε) ·
∇vϕε

|∇vϕε|
.

Let us define C a constant such that ‖∇xϕ0‖∞ + ‖∇vΣ‖∞ + ‖Bε‖∞ ≤ C, which is possible after
(H2). Thanks to the maximum principle (H1) satisfied by Uε, we deduce that at a maximum point
in velocity of |∇vϕε|:

Uε (∇vϕε) ·
∇vϕε

|∇vϕε|
≤ Uε (1) |∇vϕε| ≤ 0.

by (H2). As a consequence,

‖∇vϕε(t, ·)‖∞ ≤ ‖∇vϕε(t = 0, ·)‖∞ + Ct = Ct,

as we supposed that the initial data does not depend on v, and this proves (iv).

3 Hamilton - Jacobi dynamics - Proof of Theorem 4.
HJProof

In this Section, we present the proof of our main result, Theorem 4. We divide the proof into two
parts. We first show that the structural assumptions on the operator L make ϕε converge locally
uniformly up to a subsequence towards a function independent of the velocity variable, which is the
first point of Theorem 4. Then, we perform our kinetic Hamilton-Jacobi procedure to identify the
limit as a solution of one of the Hamilton-Jacobi equations (1.10) or (1.11).

3.1 Convergence of ϕε.

For the convenience of the reader, we enlighten the convergence property in the following

conv Proposition 6. Suppose that (H0), (H1), (H2) and (H3) hold. Then, up to a subsequence, the
phase ϕε converges locally uniformly in R+ × Rn × V towards ϕ0, which does not depend on v.

Proof of Proposition 6. Given the assumptions (H0), (H1) and (H2), we deduce from Proposition
5, Ascoli’s theorem that in all compact subsets of R+×Rn×V , we can extract from ϕε a converging
subsequence. The limit ϕ0 is uniquely defined on the whole space after increasing extraction on
compacts.

The uniform bounds of Proposition 5 and (1.8) also give that

∣∣∣∣∣∣
L
(
M(v)e−

ϕε

ε

)
M(v)e−

ϕε
ε

∣∣∣∣∣∣ is uniformly

bounded. Since Σ is also bounded by assumption,
P
(
M(v)e−

ϕε

ε

)
M(v)e−

ϕε
ε

is also uniformly bounded by

a constant C. We thus deduce from (H3) that for all (t, x) ∈ R+ × Rn,

∀v ∈ V, N (ϕε,∇vϕε) ≤ εαU (ϕε) + εβC.

Hence, since U satisfies the maximum principle (H1), one obtains when ε → 0 that u := ϕ0(t, x, ·)
is a viscosity sub-solution of

N (u,∇vu) = 0.

Since N is positive, u is also a super-solution, and is thus constant thanks to Hypothesis (H3).

10



3.2 Identification of the limit.

In this Subsection, we present the viscosity procedure which identifies the viscosity limit of ϕε. We
will follow the same steps as in the seminal paper of Evans and Souganidis [20]. In addition with a
relevant use of corrected tests functions, see [19]. Indeed, the resolution of the spectral problem of
Hypothesis (H4) is of main importance to define a corrector in the viscosity procedure, see (3.19)
and (3.20).

Since we already know that ϕε ≥ 0, the remaining properties to be proven to get the result of
Theorem 4 are gathered in the two following steps:

# Step 1: Viscosity supersolution.

The statement of the supersolution property does not depend explicitely on the growth part.

super Lemma 7. Assume r ≥ 0. Then ϕ0 satisfies

∀(t, x) ∈ R+∗ × Rn, ∂tϕ
0 +H

(
∇xϕ0

)
+ r ≥ 0. (3.18) HJeq

in the viscosity sense.

Proof of Lemma 7. Let ψ0 ∈ C2 (R+ × Rn) be a test function such that ϕ0−ψ0 has a strict local
minimum a (t0, x0) with t0 > 0. We want to show that

∂tψ
0(t0, x0) +H

(
∇xψ0(t0, x0)

)
+ r ≥ 0.

We define the corrected test functions [19, 14] by

∀(t, x, v) ∈ R+∗ × Rn × V, ψε(t, x, v) := ψ0(t, x) + εη(t, x, v), (3.19) correction1

with a correcting term η that comes after Hypothesis (H4). Indeed, we set:

∀(t, x, v) ∈ R+ × Rn × V, η(t, x, v) = − ln

(
Q[∇xψ0(t,x)](v)

M(v)

)
. (3.20) eqeta

The definition of the correcting function gives that ϕε−ψε converges locally uniformly towards
ϕ0−ψ0. As a consequence, there exists a sequence (tε, xε) ∈ R+∗×Rn of strict local minima in (t, x)
which converges towards (t0, x0) and a sequence vε ∈ V such that (tε, xε, vε) minimizes ϕε−ψε. At
the point (tε, xε, vε), using the spectral problem of (H4) with pε = ∇xψε(tε, xε, vε), one obtains:

∂tψ
ε +H (pε) + r = ∂tψ

ε + vε · pε +
L (Qpε)

Qpε
+ r.

We notice that at the point (tε, xε, vε), the following holds

∂tϕ
ε = ∂tψ

ε, ∇xϕε = ∇xψε = pε.

Thus,

∂tψ
ε +H (pε) + r = ∂tϕ

ε + vε · ∇xϕε + r +
L (Qpε)

Qpε
,

=
L (Qpε)

Qpε
−
L
(
Me−

ϕε

ε

)
Me−

ϕε

ε

+ rρε,

11



recalling (1.8). Recall that potential boundary conditions are included in the formulation of the
operators. Simplifying the latter and using ρε ≥ 0, we obtain at the point (tε, xε, vε):

∂tψ
ε +H (∇xψε) + r ≥ P (Qpε)

Qpε
−
P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

.

But, from the minimal character of (tε, xε, vε) and the maximum principle satisfied by P we
deduce that the following holds at the point (tε, xε, vε):

−
P
(
Me−

ϕε

ε

)
Me−

ϕε

ε

= −
P
(
Me−

ϕε−ψε
ε

(tε,xε,·)e−
ψ0(tε,xε)

ε e−η(tε,xε,·)
)

Me−
ϕε−ψε

ε e−
ψ0(tε,xε)

ε e−η
,

= −
P
(
Me−η(tε,xε,·)e−

ϕε−ψε
ε

(tε,xε,·)
)

Me−ηe−
ϕε−ψε

ε

,

= −
e−

ϕε−ψε
ε P

(
Me−η(tε,xε,·))

Me−ηe−
ϕε−ψε

ε

,

≥ −
P
(
Me−η(tε,xε,·))
Me−η

.

One deduces, at the point (tε, xε, vε):

∂tψ
ε +H (∇xψε) + r ≥ P (Qpε)

Qpε
− P (Me−η)

Me−η

Here comes the specification of the corrector η. We obtain, at the point (tε, xε, vε):

∂tψ
ε +H (∇xψε) + r ≥ P (Qpε)

Qpε
−
P
(
Q∇xψ0(tε,xε)

)
Q[∇xψ0(tε,xε)]

.

The last r.h.s. can be written has

P (Qpε)

Qpε
−
P
(
Q∇xψ0(tε,xε)

)
Q[∇xψ0(tε,xε)]

= H (pε)−H
(
∇xψ0(tε, xε)

)
− vε ·

(
pε −∇xψ0(tε, xε)

)
.

As the sequence vε is bounded by (H0), passing to the limit ε → 0 thanks to the local uniform
convergence yields

∂tψ
0(t0, x0) +H

(
∇xψ0(t0, x0)

)
+ r ≥ 0.

# Step 2: Viscosity Subsolution.

Here comes a slight distinction between the cases r > 0 and r = 0. Indeed, one gets less
information (but enough) when the nonlinearity is present since the limit equation is an obstacle
problem (1.11), similarly to [20].
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sub Lemma 8. Suppose that r > 0. On
{
ϕ0 > 0

}
∩ (R+∗ × Rn), the function ϕ0 solves the following

equation in the viscosity sense :

∀(t, x) ∈
{
ϕ0 > 0

}
∩
(
R+∗ × Rn

)
, ∂tϕ

0 +H
(
∇xϕ0

)
+ r ≤ 0.

In the case r = 0, this same subsolution property holds in the full space R+∗ × Rn.

Proof of Lemma 8. Let ψ0 ∈ C2 (R+∗ × Rn) be a test function such that ϕ0 − ψ0 has a local
maximum a (t0, x0). We want to show that

∂tψ
0(t0, x0) +H

(
∇xψ0(t0, x0)

)
+ r ≤ 0.

Following the same steps as for Lemma 7, there exists (tε, xε, vε) ∈ R+∗ × Rn × V with (tε, xε) →
(t0, x0) and a bounded sequence vε such that at the point (tε, xε, vε):

∂tψ
ε +H (∇xψε) + r ≤

P
(
Q[∇xψε(tε,xε,vε)]

)
(vε)

Q[∇xψε(tε,xε,vε)](v
ε)

−
P
(
Q∇xψ0(tε,xε)

)
(vε)

Q[∇xψ0(tε,xε)](v
ε)

+ rρε(tε, xε) (3.21) subfinal

If r = 0, one obtains directly with the uniform convergences that ϕ0 is a subsolution of ∂tu +
H (∇xu) = 0 in (t0, x0), as for Lemma 7.

We now come to the case r > 0. Suppose now that ϕ0(t0, x0) > 0, we have by the uniform
convergence of ϕε (up to extraction) that for sufficiently small ε, ∀v ∈ V, ϕε(tε, xε, v) > 0. The
Lebesgue dominated convergence theorem gives

lim
ε→0

ρε(tε, xε) = lim
ε→0

∫
V
M(v)e−

ϕε(tε,xε,v)
ε dv = 0.

As a consequence, passing to the limit ε→ 0 in (3.21) yields

∂tψ
0(t0, x0) +H

(
∇xψ0(t0, x0)

)
+ r ≤ 0,

and the Lemma 8 is proved.

3.3 Uniqueness of the viscosity solution.

Before referring to an uniqueness property for (1.10) and (1.11), we have to check the initial condi-
tions in the viscosity sense. We perform the proof in the variational case (r > 0), the other one is
similar. One has to check, in the viscosity sense

min
(
min

{
∂tϕ

0 +H
(
∇xϕ0

)
+ r, ϕ0

}
, ϕ0 − ϕ0

)
≤ 0, in {t = 0} × Rn, (3.22) inicond1

and
max

(
min

{
∂tϕ

0 +H
(
∇xϕ0

)
+ r, ϕ0

}
, ϕ0 − ϕ0

)
≥ 0, in {t = 0} × Rn. (3.23) inicond2

Since (3.23) can be derived on the same model, we compute (3.22) only. Let ψ0 ∈ C2 (R+ × R) be a
test function such that ϕ0−ψ0 has a strict local maximum in (0, x0). We have to prove that either

ϕ0(0, x0)− ϕ0(x0) ≤ 0,

or if ϕ0(0, x0) > 0, then
∂tψ

0(0, x0) +H
(
∇xψ0(0, x0)

)
+ r ≤ 0.

13



Suppose then that
ϕ0(0, x0) > max (ϕ0(x0), 0) . (3.24) hyp

Using the same arguments as in # Step 2 above, we have a sequence (tε, xε) which tends to (0, x0)
as ε→ 0 and a converging sequence vε such that (tε, xε, vε) maximizes ϕε−ψε. The key point to be
noticed is that there exists a sequence εn → 0 and a subsequence (tεn , xεn , vεn) of (tε, xε, vε) such
that tεn > 0.

Indeed, suppose tε = 0 when ε is sufficiently small. Then for all (t, x, v) in some neighborhood
of (0, xε, vε), one has

ϕε (0, xε, vε)− ψε (0, xε, vε) ≥ ϕε (t, x, v)− ψε (t, x, v) .

Passing to the limit ε → 0 thanks to the local uniform convergence and setting (t, x) = (0, x0), we
get

ϕ0(x0)− ψ0 (0, x0) ≥ ϕ0(0, x0)− ψ0(0, x0),

and this contradicts (3.24). The conclusion is then similar as in # Step 2 above since along
(tεn , xεn , vεn), Equation (3.21) holds.

From Section 4, the Hamiltonian H is a Lipschitz function of p. As a consequence, we know
from [18, 20] that there exists a unique viscosity solution of (1.10) and (1.11). It yields that all the
sequence ϕε converges locally uniformly to ϕ0.

4 The eigenvalue problem (H4).
EvPb

In this Section, we discuss the spectral problem of Hypothesis (H4). Existence basically relies on
compactness, positivity, and the Krein-Rutman theory. As a complement, we also provide some
qualitative properties of the resulting Hamiltonian. In the next Proposition, we treat the case when
P is compact and strongly positive. This is natural for kernel operators.

Pcompact Proposition 9. Let V be a bounded velocity domain. Suppose that P : C0(V ) 7→ C0(V ) is a linear,
compact, and strongly positive operator. Moreover, if r = 0 we require that there exists a constant c
such that P (f) ≥ cM(v)

∫
V fdv. Then the spectral problem of Hypothesis (H4) has a solution.

Proof of Proposition 9. Let us first recall and define

P(f) = P (f) + rM(v)

∫
V
f(v)dv, Σ = Σ + r.

Note that since V is bounded, P is also a compact operator. For all p ∈ Rn, we are seeking H(p)
such that there exists a positive function Q ∈ C0(V ) such that:

∀v ∈ V, P(Q)(v) =
(
Σ̄(v) +H(p)− v · p

)
Q(v). (4.25) rel1

As in similar problems [32, 26], we will use the Krein-Rutman Theorem [29]. To make it appear,
we denote Aλ(v) := Σ̄(v) + λ− v · p. Note that since V is bounded, one can guaranty the positivity
of Aλ for all λ > λ∗ := supv∈V (v · p− Σ(v)). We now consider the following operator T :

∀Φ ∈ C0(V ), ∀v ∈ V, T (Φ)(v) =
P (Φ) (v)

Aλ(v)
.
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Then, the relation (4.25) writes :

∀v ∈ V, T (Φ)(v) = Φ(v). (4.26) eq:T

To solve this eigenvalue problem, we are now ready to apply the Krein-Rutman Theorem [29].
Indeed, T is also a strongly positive compact operator. We work on the total cone of positive
continuous functions K = C0

+ (V ) to find Φλ ∈ K which solves:

∀v ∈ V, T (Φλ)(v) = µλΦλ(v),

where µλ is thus the principal eigenvalue of the operator T . We assume w.l.o.g. that
∫
V Φλ(v′)dv′ =

1.
We can do the same for the adjoint operator of T , which is given by

∀Ψ ∈ C0(V ), T ∗(Ψ) = P∗
(

Ψ

Aλ

)
.

From the same reasons as before for the direct problem, we can solve this latter eigenvalue problem
to have both

T (Φλ) = µλΦλ, T ∗(Ψλ) = µλΨλ,

and the normalization 〈Ψλ|Φλ〉 =
∫
V Ψλ(v)Φλ(v) dv = 1.

We will now prove that for all p ∈ Rn, there exists only one λ := H(p) such that µλ = 1. For
this purpose, we study the function µ : λ 7→ µλ on the set ]λ∗,+∞[.

First, let us prove that µ is decreasing. To prove this point, we use the adjoint eigenvalue
problem, see [32, Chapter 4] for another example of utilization in the study of size-structured
models via the relative entropy method. Differentiating the first one with respect to λ, and taking
the duality product with Ψλ on the left, we obtain〈

Ψλ

∣∣∣dT
dλ

(Φλ)

〉
+

〈
Ψλ

∣∣∣T (dΦλ

dλ

)〉
=
dµλ
dλ

〈
Ψλ

∣∣∣Φλ

〉
+ µλ

〈
Ψλ

∣∣∣dΦλ

dλ

〉
,

from what we deduce, using
〈

Ψλ

∣∣∣T (dΦλ
dλ

)〉
=
〈
T ∗ (Ψλ)

∣∣∣dΦλ
dλ

〉
= µλ

〈
Ψλ

∣∣∣dΦλ
dλ

〉
and recalling the

normalization of Ψλ,
dµλ
dλ

=

〈
Ψλ

∣∣∣dT
dλ

(Φλ)

〉
.

As a consequence, as

∀Φ ∈ C0(V ),
dT

dλ
(Φ) = −P

(
Φ

(Aλ)2

)
is a negative operator, we deduce that µ is decreasing.

We now focus on the limits of µ towards the boundary of ]λ∗,+∞[. From equation (4.26), we
deduce ∫

V

P(Φλ)(v′)

Aλ(v′)
dv′ = µλ.

We have
∥∥∥(A(v))−1

∥∥∥
∞
−→
λ→∞

0, so that necessarily limλ→+∞ µλ = 0.
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Using Fatou’s lemma, we get, with ω = r if r > 0, ω = c else:

+∞ =

∫
V
lim infλ→λ∗

(
ωM(v′)

Aλ(v′)

)
dv′ ≤

∫
V
lim infλ→λ∗

(
P (Φλ) (v′)

Aλ(v′)

)
dv′

≤ lim infλ→λ∗
(∫

V

P(Φλ)(v′)

Aλ(v′)
dv′
)

= lim infλ→λ∗µλ.

Finally, we obtain the existence and uniqueness of H(p) for all p ∈ Rn. One associated eigenvector
is given by Qp = ΦH(p).

Remark 10. With a supplementary regularization argument, the proof can be adapted replacing
C0(V ) by L1(V ). The assumption concerning the existence of a coercivity constant c when r = 0
may be relaxed in some particular cases. These technical points are not our purpose here, so we do
not address these issues further.

ex:spec Example 11. Proposition 9 (and its extension to L1(V )) solves the case of kernel integral operators
if one assume some supplementary hypothesis on the positive kernel K which ensures the compactness
of the operator P. As an example assuming∫

V
sup
v′∈V

(
K(v, v′)

)
dv < +∞,

we ensure the compactness of P, see [17].
In the particular case where L is a BGK operator given by L(f) := M(v)

(∫
V f(v′)dv′

)
− f ,

the kernel of L is K(v, v′) := (1 + r)M(v). The compactness holds. Using the scaling property
of Proposition 14 below with V = [−1; 1] and n = 1, and the Hamiltonian derived in the one-
dimensional case [7], one could find

∀p ∈ Rn, H(p) =
p

tanh
(

p
1+r

) − (1 + r),

We can also notice that in this case, the eigenfunctions are explicit up to the knowledge of the
eigenvalue. We have µλ =

∫
V

(1+r)M(v)
1+λ−v·p dv, so that µλ = 1 gives the dispersion relation found in [7]:∫

V

(1 + r)M(v)

1 + r +H(p)− v · p
dv = 1.

The associated eigenvectors are:

Qp(v) =
(1 + r)M(v)

1 + r +H(p)− v · p
, Wp(v) =

1 + r

1 + r +H(p)− v · p
·
(∫

V

(1 + r)2M(v)

(1 + r +H(p)− v · p)2
dv
)−1

where the latter solves the adjoint problem.

We now prove a similar result in the case of an elliptic operator in a bounded domain.

PMcompact Proposition 12. Let V be a bounded smooth domain and D(v) is a uniformly positive definite
diffusivity matrix. Suppose P (f) := ∇v (D(v)∇vf), with Neumann boundary conditions on ∂V .
Then the eigenvalue problem (1.9) has a solution.
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Proof of Proposition 12. The eigenvalue problem to be solved can be written

−∇v · (D(v)∇vQ)− r
(
M(v)

∫
V
Q(v′)dv′ −Q

)
+ (H(p)− v · p)Q = 0.

Suppose first that r = 0. In this case, the Krein-Rutman theorem [29] on the cone K = C0
+ (V )

gives the result. Indeed, take a sufficiently large H(p) such that the operator has an inverse. By the
strong maximum principle and Neumann boundary conditions the resolvant is then compact and
positive.
Suppose now that r > 0. One can assume that

∫
V Q(v′)dv′ = 1. One then has to solve the following

nonhomogeneous problem

−∇v · (D(v)∇vQ) + (r +H(p)− v · p)Q = rM(v). (4.27)

But, by the strong maximum principle and the Neumann boundary conditions, and since M is
nonnegative, we deduce that for sufficiently large H(p), there exists a unique positive solution Qp to
the latter equation. We now have to solve, as for Proposition 9, the dispersion relation

∫
V Q(v)dv = 1

to prove that there is only one H(p) such that the relation holds. For this purpose, similarly to the
proof of Proposition 9, we define Qλ solving

−∇v · (D(v)∇vQλ) + (r + λ− v · p)Qλ = rM(v). (4.28) eq:eigenlapl

for some parameter λ sufficiently large. Differentiating (4.28) with respect to λ, one finds

−∇v ·
(
D(v)∇v

dQλ
dλ

)
+ (r + λ− v · p) dQλ

dλ
= −Qλ. (4.29)

As a consequence, dQλdλ < 0, and thus the application λ 7→
∫
V Qλdv is decreasing. Now integrating

(4.28) with respect to v, we deduce that∫
V
Qλ(v)dv ≤ r

λ+ r − Vmax|p|
−→ 0, (4.30)

as λ goes to +∞. Dividing (4.28) by r + λ− v · p, and integrating over V , we find∫
V
Qλ(v)dv =

∫
V

rM(v)

r + λ− v · p
dv +

∫
V

[
p · ∇D

(r + λ− v · p)2 +
2|p|2D(v)

(r + λ− v · p)3

]
Qλdv, (4.31)

so that as λ tends to Vmax|p| − r by larger values,
∫
V Qλ(v)dv tends to +∞ (since the last integral

of the r.h.s is positive for sufficiently small values of λ). By a monotonicity argument, we are able
to conclude that for all p ∈ Rn, the dispersion relation

∫
V Qλ(v)dv = 1 has only one solution, that

is called H(p).

Example 13. In the simple case given by P (f) = α∆f , the solution of the eigenvalue problem (1.9)
can be written down with Airy functions. It appears in some reaction-diffusion-mutation models
without maximum principle.

We finish this section investigating some relevant properties of the Hamiltonian H.
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propertiesH Proposition 14. Assume that (H4) holds. Then the Hamiltonian H is a Lipschitz continuous. It
satisfies H(0) = 0 and ∇pH(0) = 0. Finally, it also satisfies the scaling property

∀µ ∈ R∗, HµL = µHL
(
·
µ

)
,

where we denote by HµL the Hamiltonian associated to some operator L.

Proof of Proposition 14. We get that H(0) = 0 as a byproduct of the integration of (1.9) over
V :

∀p ∈ Rn, |H(p)| =
∣∣∣∣(∫

V
vQp(v)dv

)
· p
∣∣∣∣ ≤ Vmax|p|.

This latter inequality prove the sublinear behavior of the Hamiltonian. To prove the Lipschitz
character of the Hamiltonian, we again use the adjoint formulation of (1.9). Indeed, we can solve it
as for the direct problem, so that there exists Wp such that

P (Qp) (v) = (Σ(v) +H(p)− v · p)Qp(v), P∗(Wp)(v) = (Σ(v) +H(p)− v · p)Wp(v).

Differentiating these two equalities with respect to p, we get

(Σ(v) +H(p)− v · p) dQp
dp

+Qp (∇pH− v) = P
(
dQp
dp

)
,

As previously performed, we integrate against Wp,〈
(Σ(v) +H(p)− v · p)Wp

∣∣∣dQp
dp

〉
+ 〈Wp|Qp (∇pH− v)〉 =

〈
Wp

∣∣∣P (dQp
dp

)〉
so that

〈Wp|Qp (∇pH− v)〉 = 0⇐⇒ ∇pH =
〈Wp|vQp〉
〈Wp|Qp〉

⇐⇒ |∇pH| ≤ Vmax, (4.32) ordre1

and this gives that H is Lipschitz. Moreover, we always have Q0(v) = M(v) and W0 = 1, the last
one coming from the conservation property. Thus,

∇pH(0) = 〈W0|vQ0〉 =

∫
V
vM(v)dv = 0.

The last point follows from the uniqueness of the solution H of the eigenvalue problem (1.9).
Indeed, we have for all µ ∈ R∗,

∀v ∈ V, µH
(
p

µ

)
= v · p+

µL(Q̂p)

Q̂p
(v),

with Q̂p = Qµp, where Qp is an eigenvector for H(p).

Remark 15. 1. Here appears one of the most striking conclusion of our study. The Hamiltonian
of the limiting equation in the large deviation regime is Lipschitz continuous. It differs strongly
from the case of the Fisher-KPP equation which is obtained as the dryft-diffusion limit of (1.1).
This means that the diffusion limit is not compatible with large deviations and thus propagation
of fronts.
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2. A classical attempt in the Hamilton-Jacobi theory is the convexity of the Hamiltonian. In [7],
the authors manage to prove that for the simplest BGK case, it is indeed convex. However, it
seems not to be an easy issue in general. We were not able to conclude if the Hamiltonian is
convex or not.

3. Thanks to the Proposition 14, we can replace L by a more "barycentric" one Lr:

Lr(f) =
L(f) + r (M(v)ρ− f)

1 + r
, (4.33) barop

solve the underlying eigenvalue problem (1.9) to get an Hamiltonian HLr and deduce the fol-
lowing relation

∀p ∈ Rn, H(p) = (1 + r)HLr
(

p

1 + r

)
.

The latter identity can be useful for example when L is also a BGK operator, as in [7].

4. One could want to derive a expression of the total Hamiltonian which only depends on the
Hamiltonian associated to L. However, even though the BGK operator and L commute, we
cannot generally derive an expression for the Hamiltonian of their sum. Indeed, the construc-
tion of solutions of the spectral problem shows that the Hamiltonians appear as spectral radius
of operator. Basically, it is not possible to obtain a exact general formula for the spectral
radius of the sum of two operators.

5 Asymptotics, numerics and comments.
Asymptotics

5.1 Further asymptotics.

This subsection aims at proving some convergence results for the total density ρε in both regions
{ϕ0 = 0} and {ϕ0 > 0}.

zones1 Proposition 16. Let ϕε be the solution of (1.8). Theorem 4 says that it converges locally uniformly
towards a nonpositive ϕ0, the unique viscosity solution of (1.11). Uniformly on compact subsets of
Int
{
ϕ0 > 0

}
, the convergence limε→0 f

ε = 0 holds, and is exponentially fast.

Proof of Proposition 16. Let K be a compact subset of Int
{
ϕ0 > 0

}
. The local uniform conver-

gence of ϕε towards ϕ0 ensures that there exists δ > 0 such that for sufficiently small ε > 0, ϕε ≥ δ
on K. As a consequence,

∀(t, x, v) ∈ K × V, f ε(t, x, v) = M(v) exp

(
−ϕ

ε(t, x, v)

ε

)
< M(v) exp

(
−δ
ε

)
−→
ε→0

0.

To prove the convergence result for f ε in the zone {ϕ0 = 0} we shall assume some regularity for
the solutions of the spectral problem (H4). We state this as an hypothesis since it has to be checked
on the spectral problem case by case.

(H4’) The solution of (H4) satisfies

lim
p→0

Qp
M

= 1 , uniformly in V .
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This is however a reasonable hypothesis which will be satisfied by our typical examples. Basically,
an elliptic operator provides sufficient smoothness for (p, v) 7→ Qp(v). As an example of a kernel
operator, let us use the simplest BGK operator, namely L(f)(·) = M(·)

∫
V f(v)dv− f(·). We know

from [7] and Example 11 that

Qp
M

(v) =
1 + r

1 + r −H(p)− v · p
→ 1,

uniformly in v when p→ 0, independently of the value of M .

zones2 Proposition 17. Let ϕε be the solution of (1.8). Assume that r > 0 and (H4’) above holds. Then,
uniformly on compact subsets of Int

{
ϕ0 = 0

}
,

lim
ε→0

ρε = 1, lim
ε→0

f ε (·, v) = M(v).

Proof of Proposition 17. We develop similar arguments as in [20]. Note that it suffices to prove
the result when K is a cylinder. Let (t0, x0) ∈ Int (K) and the test function

∀(t, x) ∈ K, ψ0(t, x) = |x− x0|2 + (t− t0)2 .

We can define the same corrected test function ψε as in the viscosity procedure of Section 3. We

recall that it needs a corrector, given by η := − ln

(
Q∇xψ0(t,x)(v)

M(v)

)
.

Since ϕ0 = 0 onK, the function ϕ0−ψ0 admits a strict maximum in (t0, x0). The locally uniform
convergence of ϕε − ψε gives a sequence (tε, xε, vε) of maximum points with (tε, xε)→ (t0, x0) and
a bounded sequence vε such that at the point (tε, xε, vε) one has (see (3.21)):

∂tψ
ε +H (∇xψε) + r ≤

P
(
Q[∇xψε(tε,xε,vε)]

)
Q[∇xψε(tε,xε,vε)]

(vε)−
P
(
Q∇xψ0(tε,xε)

)
Q[∇xψ0(tε,xε)]

(vε) + rρε(tε, xε).

Moreover, we can compute the values of the derivatives of ϕε and ψε at the point (tε, xε, vε) and
see that they vanish when ε→ 0:

∂tϕ
ε = ∂tψ

ε = ∂tψ
0 and ∇xϕε = ∇xψε = ∇xψ0 + ε∇xη.

As a consequence, one has, since r > 0,

ρε(tε, xε) ≥ 1 + o(1), as ε→ 0, (5.34) convepsrho

and then limε→0 ρ
ε(tε, xε) = 1 if one recalls ρε ≤ 1 (which, again, is a consequence of the maximum

principle).
However, we need an extra argument to get limε→0 ρ

ε(t0, x0) = 1. Since (tε, xε, vε) maximizes
ϕε − ψε, we deduce that for all v ∈ V , we have

ϕε (tε, xε, vε)− ψ0(tε, xε)− εη (tε, xε, vε) ≥ ϕε (t0, x0, v)− ψ0(t0, x0)− εη (t0, x0, v) .

Since ψ0(tε, xε) ≥ 0, ψ0(t0, x0) = 0, η (t0, x0, v) = 0, we find

f ε(t0, x0, v) = M(v)e−
ϕε(t0,x0,v)

ε ≥M(v)

(
M(vε)

Q∇xψ0(tε,xε)(v
ε)

)
e−

ϕε(tε,xε,vε)
ε . (5.35) eq:subf

20



We shall now prove that limε→0 ε
−1ϕε(tε, xε, vε) = 0. Note that it is not a direct consequence of

limε→0 ρ
ε(tε, xε) = 1 since this gives only an a.e. convergence of ε−1ϕε(tε, xε, ·) which might not be

pointwise at first glance. In this step we will use (H4’) for the first time. We set sε = ∇xψ0(tε, xε)
for legibility. Let us rewrite (1.7) at the point (tε, xε, vε) on the form

rρε(tε, xε)
(
e
ϕε(tε,xε,vε)

ε − 1
)

= −
L
(
Me−

ϕε(tε,xε,·)
ε

)
(vε)

M(vε)e−
ϕε(tε,xε,vε)

ε

− (∂tϕ
ε + v · ∇xϕε) (tε, xε, vε)

From the maximum principle satisfied by P , we get

−
L
(
Me−

ϕε(tε,xε,·)
ε

)
(vε)

M(vε)e−
ϕε(tε,xε,vε)

ε

≤ −
L
(
Me−η(tε,xε,·)) (vε)

M(vε)e−η(tε,xε,vε)
= −L (Qsε)

Qsε
(vε).

Recalling the spectral problem (H4), and using (H4’), we find

L (Qsε)

Qsε
(vε) =

L (Qsε)

Qsε
(vε)− r

(
M(vε)

Qsε(vε)
− 1

)
= H(sε)− v · sε − r

(
M(vε)

Qsε(vε)
− 1

)
= oε→0(1),

We finally deduce
0 ≤ rρε(tε, xε)

(
e
ϕε(tε,xε,vε)

ε − 1
)
≤ oε→0(1)

and thus limε→0 ε
−1ϕε(tε, xε, vε) = 0. We take again advantage of (H4’) in (5.35) to obtain

limε→0 f
ε(t0, x0, v) ≥M(v), and this implies limε→0 f

ε(t, x, v) = M(v) locally uniformly on K ×V .

Remark 18. Assume that r = 0 and H is convex. Then the mass stays at its initial position:

{(t, x) ∈ R+ × Rn |ϕ0(t, x) = 0} = R+ × {x ∈ Rn |ϕ0(x) = 0}.

Indeed, one can write the solution of the standard Hamilton-Jacobi equation (1.10) with the Hopf-Lax
formula:

ϕ0(t, x) = inf
γ∈X

{
ϕ0 (γ(0)) +

∫ t

0
M (γ̇(t)) dt

∣∣∣ γ(t) = x

}
,

where M is the Lagrangian associated to H. Since ∇pH(0) = 0 and H is strictly convex, so does
M, and as a consequenceM is positive away from 0. We deduce that

ϕ0(t, x) = 0 ⇐⇒ t ∈ R+ and ϕ0(x) = 0.

5.2 Study of the viscosity solution and of the speed of propagation.

To be self-contained, we recall here how to study the propagation of the front after deriving the limit
variational equation, in the case r > 0. From Evans and Souganidis [20], we are able to identify the
solution of the variational Hamilton-Jacobi equation (1.11) using the Lagrangian duality. We recall
the equation: min

{
∂tϕ

0 +H
(
∇xϕ0

)
+ r, ϕ0

}
= 0, ∀(t, x) ∈ R∗+ × Rn,

ϕ0(0, x) = ϕ0(x).

We will suppose in this Subsection that the hamiltonian H is convex and is a function of |p|. The
relevant result in the present context is the following
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nullset Proposition 19 (Speed of propagation). Assume that

ϕ0(x) :=

{
0 x = 0
+∞ else ,

and define c∗ = infp>0

(
H(p)+r

p

)
, see [21, 22]. Then the nullset of ϕ propagates at speed c∗ :

∀t ≥ 0, {ϕ(t, ·) = 0} = B(0, c∗t).

Proof of Proposition 19. The Lagrangian associated to H+ r is by definition

L(p) := sup
q∈Rn

(p · q −H(q)− r) ,

and one has, since H(q) = H (|q|):

L(p) = sup
q∈Rn

(
|p||q|

(
p

|p|
· q
|q|

)
−H(|q|)− r

)
= sup

q∈Rn
(|p||q| − H(|q|)− r) .

L(p) = 0 ⇐⇒ |p| = inf
u>0

(
H(u) + r

u

)
= c∗.

To solve the variational Hamilton-Jacobi equation, let us define

J(x, t) = inf
x∈X

{∫ t

0
[L(ẋ)] ds

∣∣x(0) = x, x(t) = 0

}
the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin condition,
see [20, 24] we deduce that the solution of (1.11) is

ϕ(x, t) = max (J(x, t), 0) .

The Lax formula gives

J(x, t) = min
y∈R

{
tL
(
x− y
t

)
+ ϕ0(y)

}
= tL

(x
t

)
thanks to the assumption on the initial condition. Finally, as L is increasing with |p|, the nullset of
ϕ is exactly B(0, c∗t).

5.3 Numerical simulations

We show in Figure 5.3 some numerical simulations of the evolution of the nullset of the solution of
the variational Hamilton-Jacobi equation to illustrate our study. The speed of the front is easily
numerically computable with this approach. When the Hamiltonian is not known explicitly, which
is the most frequent case, it is still possible to solve numerically the spectral problem (H4) to obtain
a numerical Hamiltonian, which can afterwards be used to compute the whole numerical solution.
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Figure 1: Numerical simulations of the variational Hamilton-Jacobi equation with r = 1, in the
BGK case H(p) ≡ p−tanh(p)

tanh(p) (on the left) and in the "KPP case" H(p) = |p|2 (on the right). On
both figures the linear propagation is noticed. In the "quadratic case" (KPP) the speed is larger
than in the "at most linear" case.

6 Remarks and perspectives in an unbounded velocity domain (e.g.
V = Rn).

Extensions
In the previous Sections, the boundedness of the velocity space V ( Hypothesis (H0) ) was a central
hypothesis. Indeed, it gives immediately the compactness of operators to solve the spectral problem
(H4), and facilitates the derivation of the uniform estimates of ϕε. Moreover, it automatically
bounds the sequence vε in the viscosity procedure of Lemmas 7 and 8. This last property appears
not to be true in general, see below.

In this last Section, we would like to comment on the case when V is not bounded, and more
precisely the case of the full space V = Rn. We expect that, given that (H4) holds (which basically
requires stronger assumptions on the operator L in the full space) the convergence result is still
valid despite technicalities due to the unboundedness of the space.

We first discuss the case of the transport-diffusion equation to illustrate the crucial character
of (H4): The spectral problem (H4) does not have any non trivial solution in that case, and we
show that the scaling (t, x, v)→

(
t
ε ,

x
ε , v
)
is not relevant. We then provide an example - the Vlasov

equation - where the problem is compact in the velocity space. However, extending the convergence
results in that case will need extra work and this issue will be discussed in a forthcoming work.
Since we believe that this paper should be understood through examples, we end this Section with
formal computations on a non-local convolution model.

6.1 The Laplacian equation in an unbounded velocity domain.

In this Subsection, we want to investigate the asymptotic properties of solutions of the following
kinetic-diffusion equation

∀(t, x, v) ∈ R+ × Rn × Rn, ∂tf + v · ∇xf = σ∆vf. (6.36) kindiff
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First of all, one can notice that the associated spectral problem of Hypothesis (H4), which writes

∀v ∈ Rn, σ∆vQ+ (v · p) Q = H(p)Q

does not admit any nontrivial positive solutions. It relies on the lack of compactness of the Laplace
operator on an unbounded domain. As a consequence, the method we have used before to average
the velocity variable in the bounded velocity domain case cannot be applied here. We will now show
that the scaling (t, x, v)→

(
t
ε ,

x
ε , v
)
is not well adapted and propose a more relevant scaling. In this

case, as for the heat equation for example, one can guess this scaling by computing the fundamental
solution of the kinetic diffusion operator. We recall this computation for the sake of completeness
[27].

propfond Proposition 20. Let f(t, x, v) be the solution of (6.36) on R+ ×Rn ×Rn, associated to the initial
data δxδv−w. Then

∀(t, x, v) ∈ R+∗ × Rn × Rn, fw(t, x, v) =

√
3

2πσt2
exp

(
−|v − w|

2 t2 + 3|2x− (v + w)t|2

4σt3

)
.

Proof of Proposition 20. This computation can be done using the Fourier transform F in space
and velocity, since the operator is linear. One obtains

∀(t, k, p) ∈ R+×Rn×Rn, F(f)(t, k, p) = exp (−i(p+ kt)w) exp

(
−σt

(∣∣∣∣p+
kt

2

∣∣∣∣2 + |k|2 t
2

12

))
,

and the inverse Fourier transform can be easily computed using the invariances of Gaussians with
respect to the Fourier transformations.

We now perform an alternative scaling on this equation, namely (t, x, v)→
(
t
ε ,

x
ε2
, vε
)
. Then the

fundamental solution f0 becomes

∀(t, x, v) ∈ R+∗ × Rn × Rn, f ε0 (t, x, v) =

√
3ε2

2πσt2
exp

(
−1

ε

|v|2 t2 + 3|2x− vt|2

4σt3

)
.

In this framework, and only with this scaling, we recover the sharp front ansatz that we studied
in the previous part of the article with a bounded domain, and the associated phase (which now
depends on v) ϕ0(t, x, v) = |v|2t2+3|2x−vt|2

4σt3
. It is also possible to obtain this result by performing the

Hopf-Cole transformation in (6.36) and then solving the limiting Hamilton-Jacobi equation on the
phase ϕ0 which reads:

∀(t, x, v) ∈ R+ × Rn × Rn, ∂tϕ
0 + v · ∇xϕ0 + σ|∇vϕ0|2 = 0.

We obtained an example where the spectral problem has no solution (see also [7] for another funda-
mental example), and this makes the information propagate as x ∼ t2: There is a front acceleration,
as noticed for others models, see [9, 10, 8].
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6.2 The Vlasov-Fokker-Planck equation

We would like now to comment on the Vlasov-Fokker-Planck equation, where the velocity operator
provides enough compactness to solve the spectral problem (H4). Our equation reads

∀(t, x, v) ∈ R+ × Rn × Rn, ∂tf + v · ∇xf = ∇v ·
(
σ2∇vf + vf

)
. (6.37) Vlasov

The normalized stationary density is given by the Gaussian equilibrium M(v) = 1
σ
√

2π
exp

(
− v2

2σ2

)
.

After performing the hyperbolic scaling and the kinetic WKB ansatz (1.6), it yields

∀(t, x, v) ∈ R+ × Rn × Rn, ∂tϕ
ε + v · ∇xϕε = σ2

(
1

ε
∆ϕε − 1

ε2
|∇vϕε|2

)
− v

ε
· ∇vϕε,

By parabolic regularity, one obtains, given an initial condition ϕ0(x, v) ∈ C2
b (Rn × Rn), one unique

bounded solution ϕε in C2,α (R+ × Rn × Rn) for all ε > 0. The spectral problem associated to (6.37)
is :

∇v ·
(
σ2∇vQp + vQp

)
+ (v · p)Qp = H(p)Qp, (6.38) SpecPb

As a particular feature a the Gaussian case, one can solve (6.38) explicitely using the Fourier
transformation. It yields the following eigenelements

H(p) = σ2|p|2, Qp(v) =
1

σ
√

2π
exp

(
−(v − σ2p)2

2σ2

)
.

Hence, our hypothesis (H4) is fulfilled.
We shall comment here on the complications due to the unboundedness of the space. We cannot

perform the same proof as for the proof of Theorem 4. Indeed, the sequence of approximated
extremas in velocity, namely vε defined after (3.20), may not exist in general in a unbounded
velocities setting. In particular, in this case, the correction η is given by

η(t, x, v) = − ln

(
Q[∇xψ0(t,x)](v)

M(v)

)
= v · ∇xψ0(t, x)− σ2

2
|∇xψ0(t, x)|2, (6.39)

which is linear in v, so that the function ϕε − εη has no possible extrema in the velocity variable.
This indicates that the correction term of order ε converges locally uniformly but not globally
towards the corrector η. We postpone the analysis of this case to a forthcoming work.

6.3 Formal computations on a confined non-local equation.

We finish this paper with formal computations on a case where the diffusive part of the operator
is replaced by a nonlocal convolution operator. This is motivated by biological problems where
mutations can have large range. We keep the drift part to ensure compactness. We are given a
probability kernel K on R, and we set

L(f) := (K ? f − f) +∇ · (vf) .

Solving the eigenvalue problem using the Fourier transform in the full space, we obtain that neces-
sarily

H(p) = K̂(ip)− 1, F (Qp)(ξ) = exp

(∫ ξ

0

K̂(ξ′)− K̂(ip)

ξ′ − ip
dξ′

)
.
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As K̂(ip) =
∫
V K(x)epxdx, we observe that this would define an Hamiltonian on the zone where K

admits exponential moments. We have

Qp(v) =

∫
V

exp

(∫ ξ

0

K̂(ξ′)− K̂(ip)

ξ′ − ip
dξ′

)
exp (ivξ) dξ,

where the last integral over the velocities has to be understood in the Fourier-Plancherel L2 sense.
One can easily prove that such a Qp is well normalized and real. The point which makes this
Subsection be only formal is that we were not able to prove that such a Qp is indeed a positive
eigenvector. Let us provide a few examples that strengthen this conjecture.

Example 21. We now specify some convolution kernels.

1. K(x) = 1√
2π
e−

x2

2 . Then H is well-defined on R and H(p) = e
p2

2 − 1.

2. K(x) = 1
2e
−|x|. Then H is well-defined on ] − 1, 1[ and H(p) = p2

1−p2 . In this case, we can
compute a bit further F (Qp) :

F (Qp)(ξ) =
1

(1 + |ξ|2)
1

2(1−p2)
· exp

(
i

p

p2 − 1
arctan(ξ)

)
.

In particular, when p = 0, one has

F (Qp)(ξ) =
1

(1 + |ξ|2)
1
2

,

which inverse Fourier transform can be computed with Airy functions and is positive. A
numerical plot confirms formally the positivity of Qp (result not shown).
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