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Abstract. We study a non-local parabolic Lotka-Volterra type equation describing a population
structured by a space variable x∈Rd and a phenotypical trait θ∈Θ. Considering diffusion, mutations
and space-local competition between the individuals, we analyze the asymptotic (long–time/long–
range in the x variable) exponential behavior of the solutions. Using some kind of real phase WKB
ansatz, we prove that the propagation of the population in space can be described by a Hamilton-
Jacobi equation with obstacle which is independent of θ. The effective Hamiltonian is derived from
an eigenvalue problem.
The main difficulties are the lack of regularity estimates in the space variable, and the lack of
comparison principle due to the non-local term.

Key words. Structured populations, Asymptotic analysis, Hamilton-Jacobi equation, Spectral
problem, Front propagation.

AMS subject classifications. 45K05, 35B25, 49L25, 92D15, 35F21

1. Introduction
It is known that the asymptotic (long-time/long-range) behavior of the solutions

of some reaction-diffusion equations, as KPP type equations, can be described by level
sets of solutions of some relevant Hamilton-Jacobi equations (see [25, 23, 4, 8, 9, 33]).
These equations, which admit traveling fronts as solutions, can be used as models in
ecology to describe dynamics of a population structured by a space variable.
A related, but different, method using Hamilton-Jacobi equations with constraint
has been developed recently to study populations structured by a phenotypical trait
(see [20, 7, 31, 5, 28]). This approach provides an asymptotic study of the solutions
in the limit of small mutations and in long time, and shows that the asymptotic
solutions concentrate on one or several Dirac masses which evolve in time.
Is it possible to combine these two approaches to study populations structured at the
same time by a phenotypical trait and a space variable?

A challenge in evolutionary ecology is to provide and to analyze models that
take into account jointly the evolution and the spatial structure of a population.
Most of the existing models either concentrate on the evolution and neglect or
simplify significantly the spatial structure, or deal only with the spatial dynamics
of a population neglecting the impact of evolution on the dynamics. However, to
describe many phenomena in ecology as the local adaptation of species in spatially
heterogeneous environments [22], to understand the effect of environmental changes
on a population [21] or to estimate the propagation speed of an invasive species
[32, 14], it is crucial to consider the interactions between ecology and evolution. We
refer also to [27] and the reference therein for general literature on the subject.

In this paper, we study a population that is structured by a continuous phenotyp-
ical trait θ∈Θ, where Θ is a smooth and convex bounded subset of Rn, and a space
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variable x∈Rd. The individuals having a trait θ at time t and position x are denoted
by n(t,x,θ). We assume that the population moves (in space) with a diffusion process
of diffusivity D>0, and that they are subject to mutations, which are also described
by a diffusion term with diffusivity α>0. We assume that the individuals in the same
position are in competition with all other individuals, independently of their trait,
and with a constant competition rate r. Let us notice that the non-locality in the
model comes from here. We denote by ra(x,θ)∈C2

(
Rd×Θ

)
, the growth rate of trait

θ at position x, allowing, in this way, heterogeneity in space. The model reads


∂tn=D∆xn+α∆θn+rn(a(x,θ)−ρ), (t,x,θ)∈ (0,∞)×Rd×Θ,

∂n

∂n
= 0 on (0,∞)×Rd×∂Θ,

n(0,x,θ) =n0(x,θ), (x,θ)∈Rd×Θ.

(1.1)

We assume Neumann boundary conditions in the trait variable, meaning that the
available traits are given by the set Θ. Moreover, the initial condition n0 is given and
nonnegative. The variable ρ stands for the total density:

∀(t,x)∈R+×Rd, ρ(t,x) =

∫
Θ

n(t,x,θ)dθ.

Note that such equations can be derived from stochastic individual based models
(see [17]). However, this is not the only way to couple the spatial and trait structures.
One could also consider a dependence in θ or x in the spatial diffusivity coefficient,
the mutation rate or the competition rate. See for instance [14] for a formal study
of a model where the spatial diffusivity rate depends on the trait but the growth
rate is homogeneous in space. Although, there have been some attempts to study
models structured by trait and space (see for instance [17, 2, 10, 14, 11]), not many
rigorous studies seem to have analyzed the dynamics of a population continuously
structured by trait and by space, with non-local interactions. However a related
model, but for sexual populations and for a particular growth rate a(x,θ), is studied
in [30]. In this case, to avoid the complexity due to the sexual reproduction the
authors derive formally an equation on the mean value of the phenotypical trait and
prove rigorously existence of traveling wave solutions for this simplified equation.
Moreover, a very recent article [1], also studies a model close to (1.1), again with
some particular growth rate a(x,θ), and proves existence of traveling wave solutions.
Here, we consider a different approach where we perform an asymptotic analysis. Our
objective is to generalize the methods developed recently on models structured only
by a phenotypical trait [31, 5, 28] to spatial models, to be able to use the previous
results in more general frameworks. Moreover, this approach allows us to study
models with general growth rates a, where the speed of propagation is not necessarily
constant. See also [29] for another work in this direction, where the Hamilton-Jacobi
approach is used to study a population model with a discrete spatial structure.

We expect that the population described by (1.1) propagates in the x-direction
and that it attains a certain distribution in θ in the invaded parts. We seek for such
behavior by performing an asymptotic analysis of the following rescaled model which
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corresponds to considering small diffusion in space and long time:
ε∂tnε=ε2D∆xnε+α∆θnε+rnε(a(x,θ)−ρε), (t,x,θ)∈ (0,∞)×Rd×Θ,

∂nε
∂n

= 0 on (0,∞)×Rd×∂Θ,

nε(0,x,θ) =n0
ε(x,θ), (x,θ)∈Rd×Θ.

(1.2)
We expect that, for ε small, nε can be approximated by

nε≈e
u(t,x)
ε Q(x,θ), with u(t,x)≤0,

such that nε−−⇀
ε→0

n, with

suppn⊂{(t,x)|u(t,x) = 0}×Θ.

In this way, the propagation of the population would be described by the zero level
sets of u. Moreover, the phenotypical distribution of the population at position
x would be given by Q(x,·). We will show below that such approximation is
possible with Q given by an eigenvalue problem and u the unique solution to a
Hamilton-Jacobi equation. These results allow us to describe the propagation and the
phenotypical distribution of the population, in terms of the diffusion and mutation
rates (D and α) and the fitness a(x,θ). Note that an important contribution in
these computations is the fact that both evolution processes and the movement of
the individuals are considered in the model. This is crucial to be able to understand
several biological phenomena, as the spatial structure of Drosophila Subobscura,
whose wing length increases clinally with latitude [26] or the increasing speed of
invasion of cane toads [32]. However, to be able to study quantitatively the invasion
of cane toads, one should also introduce a dependence in θ in the spatial diffusion
rate. This adds some technical difficulties that we leave for future work.

The purpose of this work is to derive rigorously the limit ε→0 in (1.2). Our
study is based on the usual Hopf-Cole transformation which is used in several works
on reaction-diffusion equations (as for front propagation in [25, 23, 4]), in the study
of parabolic integro-differential equations modeling populations structured by a phe-
notypical trait (see e.g. [20, 31]) and also recently in the study of the hyperbolic limit
of some kinetic equations [13]:

uε :=ε lnnε, or equivalently, nε= exp
(uε
ε

)
. (1.3)

Thanks to standard maximum principle arguments, nε is nonnegative. The quantity
uε is then well defined for all ε>0. By replacing (1.3) in (1.2) we obtain

∂tuε=εD∆xuε+ α
ε∆θuε+D|∇xuε|2 + α

ε2 |∇θuε|
2 +r(a(x,θ)−ρε),

(t,x,θ)∈ (0,∞)×Rd×Θ,

∂uε
∂n

= 0 on (0,∞)×Rd×∂Θ,

uε(0,x,θ) =u0
ε(x,θ) (x,θ)∈Rd×Θ.

(1.4)
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Throughout the paper, we will use the following assumptions:

∀ε>0, ∀x∈Rd, −C1(x)≤u0
ε≤C. (1.5)

lim
ε→0

u0
ε(x,θ) =u0(x), uniformly in θ∈Θ. (1.6)

∀(x,θ)∈Rd×Θ, ψ(x) =−M |x|2 +B≤a(x,θ)−a∞<0, (1.7)

for some a∞∈R. We also suppose the two following bounds:

‖∇θa(·, ·)‖∞= b∞. (1.8)

∀x∈Rd, ρ0
ε(x)≤a∞. (1.9)

To state our results we first need the following lemma:

Lemma 1.1. (Eigenvalue problem).
For all x∈Rd, there exists a unique eigenvalue H(x) corresponding to a strictly

positive eigenfunction Q(x,·)∈C0(Θ) which satisfies
α∆θQ+ra(x,·)Q=H(x)Q, in Θ,

∂Q(x, ·)
∂n

= 0 on ∂Θ.
(1.10)

The eigenfunction is unique under the additional normalization assumption

∀x∈Rd,
∫

Θ

Q(x,θ)dθ= 1. (1.11)

Moreover, H and Q are smooth functions.
We note that in this article, we suppose that Θ is bounded to avoid technical

difficulties. However, we expect that the results would remain true for unbounded
domains Θ under suitable coercivity conditions on −a such that the spectral problem
(1.10) has a unique solution.

We can now state our main result:

Theorem 1.2. (Asymptotic behavior).
Assume (1.5)–(1.9). Then
(i) The family (uε)ε converges locally uniformly to u : [0,∞)×Rd→R the unique

viscosity solution ofmax(∂tu−D|∇xu|2−H,u) = 0, in (0,∞)×Rd,

u(0,·) =u0(·) in Rd.
(1.12)

(ii) Uniformly on compact subsets of Int{u<0}×Θ, limε→0n
ε= 0,

(iii) For every compact subset K of Int({u(t,x) = 0}∩{H(x)>0}), there exists
C>1 such that,

liminf
ε→0

ρε(t,x)≥ H(x)

rC
, uniformly in K. (1.13)
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We notice that u does not depend on θ and therefore, we do not have any
supplementary constraint in (1.12) due to the boundary. The variational equality
(1.12) gives indeed the effective propagation behavior of the population; the zero
level-sets of u indicate where the population density is asymptotically positive (see
also Lemma 4.1). We recall that the effective Hamiltonian H in (1.12) is defined by
the spectral problem (1.10) which hides the information on the trait variability.

To understand Theorem 1.2, it is illuminating to provide the following heuristic
argument. We write a formal expansion of uε:

uε(t,x,θ) =u0(t,x,θ)+εu1(t,x,θ)+O(ε2).

Replacing this in (1.4) and keeping the terms of order ε−2 we obtain, for all (t,x,θ),

|∇θu0(t,x,θ)|2 = 0.

This suggests that u0 should be independent of θ: u0(t,x,θ) =u0(t,x). Next, keeping
the zero order terms (terms with coefficient ε0), yields:

−α
(
∆θu1 + |∇θu1|2

)
−ra(x,θ) =

[
−∂tu0 +D|∇xu0|2−rρ0

]
(t,x). (1.14)

Here, ρ0 denotes the formal limit of ρε when ε→0. Moreover, u1 satisfies Neumann
boundary conditions. Since the r.h.s. of (1.14) is independent of θ, Lemma 1.1 implies[

∂tu0−|∇xu0|2 +rρ0

]
(t,x) =H(x) and u1(t,x,θ) = lnQ(x,θ)+µ(t,x).

We can now write

nε(t,x,θ)≈e
u0(t,x)

ε +u1(t,x,θ), ρε(t,x)≈eµ(t,x)+
u0(t,x)

ε .

As a consequence, ρε uniformly bounded implies that u0 is nonpositive. Furthermore

ρε>0 =⇒ u0 = 0.

We deduce thatρ0(t,x) = 0 =⇒ ∂tu0(t,x)−D|∇xu0|2(t,x)−H(x) = 0,

ρ0(t,x)>0 =⇒ u0(t,x) = 0 and rexp(µ(t,x)) = rρ0(t,x) =H(x),

and thus

max
(
∂tu0−D|∇xu0|2−H(x), u0

)
= 0.

Moreover the above arguments suggest that

nε(t,x,θ)−→
ε→0


H(x)
r Q(x,θ) if u0(t,x) = 0,

0 if u0(t,x)<0,

with Q and H given by Lemma 1.1. We notice finally that, the roles of the trait
variable θ and the spectral problem (1.10) are respectively similar to those of the fast
variable and the cell problem in homogenization theory.



6 A Hamilton-Jacobi approach for a model of population structured by space and trait

Theorem 1.2 does not provide the limits of ρε and nε in
Int({u(t,x) = 0}∩{H(x)>0}). The determination of such limits in the general
case, as was obtained for instance in [23], is beyond the scope of the present paper.
The difficulty here is the lack of regularity estimates in the x-direction and the lack
of comparison principle for the non-local equation (1.2). This difficulty also appears
in the study of propagating wave solutions of (1.1) (see [1]), where it is not clear
whether the propagating front is monotone and the density and the distribution
of the population at the back of the front is unknown. However, in Section 4 (see
Proposition 4.5), we prove the convergence of nε and ρε in a particular case. The
numerical results in Section 6.2 suggest that such limits might hold in general.

We emphasize that (1.2) does not admit a comparison principle which leads to
technical difficulties. This is not only due to the presence of a non-local term but also
due to the structure of the reaction term. We refer to [19, 15] for models admitting
comparison principle although the reaction terms contain non-localities.

To prove the convergence of (uε)ε in Theorem 1.2, we use some regularity
estimates that we state below.

Theorem 1.3. (Regularity results for uε).
Assume (1.5), (1.7), (1.8), (1.9). Then the family (uε)ε>0 is uniformly locally

bounded in R+×R×Θ. More precisely, the following inequalities hold:

∀(t,x,θ)∈R+×Rd×Θ, rψ(x)t−C1(x)−rεDMt2≤uε(t,x,θ)≤C+ra∞t,
(1.15)

where ψ(x) :=−Mx2 +B (see 1.7). Next, let γ>0 and for all ε>0, vε :=√
C+ra∞t+γ2−uε. Then, for all ε>0, the following bound holds:

∀(t,x,θ)∈R+×Rd×Θ, |∇θvε|≤
ε

2
√
αt

+

(
rb∞ε

2

αγ

) 1
3

(1.16)

In particular, this gives a regularizing effect in trait for all t>0, and the fact that
∇θvε converges locally uniformly to 0 when ε goes to 0.

We notice from (1.16) that, the limit of (vε)ε (and consequently the limit
of (uε)ε) as ε→0, is independent of θ for all t>0, while we do not make any
regularity assumption on the initial data. To obtain the regularizing effect in θ, we
provide a Lipschitz estimate on a well-chosen auxiliary function vε instead of uε,
using the Bernstein method [18]. Note that, we do not have any estimate on the
derivative of uε with respect to x due to the dependence of ρε on x. Therefore, we
cannot prove the convergence of the uε’s as stated in Theorem 1.2 directly from the
regularity estimates above. For this purpose, we use the so called half-relaxed limits
method for viscosity solutions, see [6]. Moreover, to prove the convergence to the
Hamilton-Jacobi equation (1.12) we are inspired from the method of perturbed test
functions in homogenization [24].

Finally, the family (uε)ε being locally uniformly bounded from Theorem 1.3, we
can introduce its upper and lower semi-continuous envelopes that we will use through
the article:

u(t,x,θ) := liminf
ε→0

(s,y,θ′)→(t,x,θ)

uε(s,y,θ
′),
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u(t,x,θ) := limsup
ε→0

(s,y,θ′)→(t,x,θ)

uε(s,y,θ
′).

Thanks to Theorem 1.3, we know that |∇θuε|→0 as ε→0, for all t>0. As a
conclusion, the previous limits do not depend on the variable θ. We have, for all
θ∈Θ, x∈Rd and t>0,

u(t,x,θ) =u(t,x) = liminf
ε→0

(s,y)→(t,x)

uε(s,y,θ), (1.17)

u(t,x,θ) =u(t,x) = limsup
ε→0

(s,y)→(t,x)

uε(s,y,θ), (1.18)

The remaining part of the article is organized as follows. Section 2 is devoted to
the proof of Lemma 1.1 and Theorem 1.3. The convergence to the Hamilton-Jacobi
equation (the first part of Theorem 1.2) is proved in Section 3. In Section 4, using
the Hamilton-Jacobi description, we study the limits of nε and ρε and in particular
complete the proof of Theorem 1.2. We also provide some qualitative properties on the
effective Hamiltonian H and the corresponding eigenfunction Q in Section 5. Finally,
in Section 6 we give some examples and comments on the spectral problem, and some
numerical illustrations for the time-dependent problem.

2. Regularity results (The proof of Theorem 1.3)
In this section we prove Theorem 1.3. To this end, we first provide a uniform

upper bound on ρε (see Lemma 2.1). Next, using this estimate we give uniform upper
and lower bounds on uε. Finally we prove a Lipschitz estimate with respect to θ on uε.

Lemma 2.1. (Bound on ρε).
Assume (1.7) and (1.9). Then, for all ε>0, the following a priori bound holds :

∀(t,x)∈R+×Rd, 0≤ρε(t,x)≤a∞. (2.1)

Proof 2.1. (Proof of Lemma 2.1). The nonnegativity follows directly from the
nonnegativity of nε. The upper bound can be derived using the maximum principle.
We show indeed that ρε is a subsolution of a suitable Fisher-KPP equation. We
integrate (1.2) in θ to obtain

ε∂tρε=ε2D∆xρε+r

(∫
Θ

nε(t,x,θ)a(x,θ)dθ−ρ2
ε

)
.

Using (1.7) and the non negativity of nε, we deduce

ε∂tρε≤ε2D∆2
xρε+rρε (a∞−ρε),

so that the maximum principle and (1.9) ensure

∀(t,x)∈R+×Rd, ρε(t,x)≤a∞.

We can now proceed with the proof of Theorem 1.3. For legibility, we divide the
proof into several steps as follows.
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# Step 1. Upper bound on uε. Define ũε :=uε−ra∞t. Using (1.4), we find

∂tũε=εD∆xũε+
α

ε
∆θũε+D|∇xũε|2 +

α

ε2
|∇θũε|2 +r(a(x,θ)−a∞)−rρε.

Then, we conclude from (1.7), (1.5) and the maximum principle that

∀(t,x,θ)∈R+×Rd×Θ, uε(t,x,θ)≤u0
ε(x,θ)+ra∞t≤C+ra∞t.

# Step 2. Lower bound on uε. From (1.4), (1.7) and Lemma 2.1 we can write

∂tuε≥εD∆xuε+
α

ε
∆θuε+r(a(x,θ)−a∞)≥εD∆xuε+

α

ε
∆θuε+rψ(x),

with ψ(x) =−M |x|2 +B (see 1.7). Next we rewrite the above inequality, in terms of
qε :=uε−rψ(x)t+εrMDt2:

∂tqε≥εD∆xqε+
α

ε
∆θqε+rεψ′′(x)Dt+2rεMDt≥εD∆xqε+

α

ε
∆θqε

Finally the maximum principle combined with Neumann boundary conditions and
(1.5) imply that

uε≥u0
ε+rψ(x)t−rεDMt2≥−C1(x)+rψ(x)t−rεDMt2.

# Step 3. Lipschitz bound. We conclude the proof of Theorem 1.3 by using
the Bernstein method [18] to obtain a regularizing effect with respect to the variable
θ. The upper bound (1.15) proved above ensures that the function vε is well-defined.
We then rewrite (1.4) in terms of vε:

∂tvε=εD∆xvε+
α

ε
∆θvε+D

(
ε

vε
−2vε

)
|∇xvε|2+(

α

εvε
− 2αvε

ε2

)
|∇θvε|2−

1

2vε
r(a(x,θ)−a∞−ρε). (2.2)

We differentiate the above equation with respect to θ and multiply it by ∇θvε
|∇θvε| to

obtain

∂t|∇θvε|≤εD∆x|∇θvε|+
α

ε
∆θ|∇θvε|+2D

(
ε

vε
−2vε

)
∇xvε ·∇x|∇θvε|

+2

(
α

εvε
− 2αvε

ε2

)
∇θvε ·∇θ|∇θvε|+D

(
− ε

v2
ε

−2

)
|∇xvε|2|∇θvε|

+

(
− α

εv2
ε

− 2α

ε2

)
|∇θvε|3 +

r|∇θa(x,θ)|
2vε

, (2.3)

since the last contribution of the r.h.s of (2.2) becomes nonpositive. From (1.8) and
(1.15), it follows that wε := |∇θvε| is a subsolution of the following equation

∂twε≤εD∆xw+
α

ε
∆θwε+2D

(
ε

vε
−2vε

)
∇xvε ·∇xwε

+2

(
α

εvε
− 2αvε

ε2

)
∇θvε ·∇θwε−

2α

ε2
|wε|3 +

rb∞
2γ

. (2.4)
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The last step is now to prove that z(t) := ε
2
√
αt

+
(
rb∞ε

2

αγ

) 1
3

is a supersolution of (2.4).

We compute

z′(t)+
2α

ε2
(z(t))3 =

2α

ε2

z(t)3−

(
z(t)−

(
rb∞ε

2

αγ

) 1
3

)3
≥ rb∞

2γ
.

The Neumann boundary condition for uε implies a Dirichlet boundary condition for
wε. Thus, (1.16) follows from the comparison principle.

3. Convergence to the Hamilton-Jacobi equation (The proof of Theo-
rem 1.2–(i))

In this section, we first prove Lemma 1.1. Next, using the regularity estimates
obtained above we prove the convergence of (uε)ε to the solution of (1.12) (Theorem
1.2 (i)). This will be derived from the following proposition which also provides a
partial result, once we relax assumption (1.6):

Proposition 3.1. (Convergence to the Hamilton-Jacobi equation).

(i) Assume (1.5), (1.7), (1.8), (1.9) such that Theorem 1.3 holds. Let H be
the eigenvalue defined in Lemma 1.1. Then, u (respectively u) is a viscosity
subsolution (respectively supersolution) of

max(∂tu−D|∇xu|2−H,u) = 0, in (0,∞)×Rd. (3.1)

(ii) If we assume additionally (1.6), then u=u and, as ε vanishes, (uε)ε converges
locally uniformly to u=u=u the unique viscosity solution ofmax(∂tu−D|∇xu|2−H,u) = 0, in (0,∞)×Rd,

u(0,x) =u0(x).

Before proving Proposition 3.1, we first give a short proof for Lemma 1.1.

Proof 3.2. (Proof of Lemma 1.1).
Let X=C1,µ (Θ) and K be the positive cone of nonnegative functions in X. We

define L :X→X as below

L(u) =−α∆θu−r(a(x,θ)−a∞)u.

The resolvent of L together with the Neumann boundary condition is compact from
the regularizing effect of the Laplace term. Moreover, the strong maximum principle
gives that it is also strongly positive. Using the Krein-Rutman theorem we obtain that
there exists a nonnegative eigenvalue corresponding to a positive eigenfunction. This
eigenvalue is simple and none of the other eigenvalues correspond to a positive eigen-
function. This defines H(x) and Q(x,θ) in (1.10) in a unique way. The smoothness
of H and Q derives from the smoothness of a(x,θ) and the fact that they are principal
eigenelements.

Proof 3.3. (Proof of Proposition 3.1). We prove the result in two steps.
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a. Semi-relaxed limits (proof of Proposition 3.1 (i)).

To prove the result we need to show that u and u are respectively sub and
supersolutions of (3.1).

a.1. We prove that u≤0.

Suppose that there exists a point (t,x) such that u(t,x)>0. From (1.18) and
(1.16), there exists a sequence εn→0 and a sequence of points (tn,xn) →

n→∞
(t,x) such

that,

uεn(tn,xn,θ) →
n→∞

u(t,x), uniformly in θ.

As a consequence, there exists δ>0 such that for n sufficiently large, uεn(tn,xn,θ)>δ,
for all θ∈Θ. This implies

ρεn(tn,xn) =

∫
Θ

exp

(
uεn(tn,xn,θ)

εn

)
dθ≥|Θ|exp

(
δ

εn

)
>a∞,

for sufficiently large n, which is in contradiction with Lemma 2.1.

a.2. We prove that ∂tu−D|∇xu|2−H≤0.

Now, assume that ϕ∈C2 (R+×R) is a test function such that u(t,x)−ϕ(t,x) has
a strict local maximum at (t0,x0).

Using the eigenfunction Q introduced in Lemma 1.1, we can define a corrected
test function [24] by χε(t,x,θ) =ϕ(t,x)+εη(x,θ), with η(x,θ) = ln(Q(x,θ)). Using
standard arguments in the theory of viscosity solutions (see [3]), there exists a se-
quence (tε,xε,θε) such that the function uε(t,x,θ)−χε(t,x,θ) takes a local maximum
in (tε,xε,θε), which is strict in the (t,x) variables, and such that (tε,xε)→ (t0,x0)
as ε→0. Moreover, as θε lies in the compact set Θ, one can extract a converging
subsequence. For legibility, we omit the extraction in the sequel.

Let us verify the viscosity subsolution criterion. At the point (tε,xε,θε), we have:

∂tχε−D|∇xχε|2−H(xε) = ∂tuε−D|∇xuε|2−H(xε),

= εD∆xuε+ α
ε∆θuε+ α

ε2 |∇θuε|
2 +r(a(xε,θ)−ρε)−H(xε),

≤ εD∆xχε+ α
ε∆θχε+ α

ε2 |∇θχε|
2 +ra(xε,θ)−H(xε).

We must emphasize that the Neumann boundary conditions are implicitly used
here in case when θε is on the boundary of Θ. Indeed, this ensures that we
have ∇θχε(tε,xε,θε) = 0 in this latter case. As a consequence, we still have
∇θuε(tε,xε,θε) =∇θχε(tε,xε,θε) so that the first order derivative in the trait variable
does not add any supplementary difficulty in the r.h.s.. Moreover the second order
terms still have the right sign, since again ∆xuε≤∆xχε is enforced by the Neumann
boundary condition.

We replace the test function by its definition to obtain

∂tϕ−D|∇x (ϕ+εη) |2−H(xε)

≤εD(∆xϕ+ε∆xη)+α
(
∆θη+ |∇θη|2

)
+ra(xε,θ)−H(xε).
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Here appears the crucial importance of choosing η= lnQ with Q the solution of
the spectral problem (1.10). Coupling the above equation with the spectral problem
(1.10), written in terms of η, we deduce that

∂tϕ−D|∇xϕ+εη|2−H(xε) ≤ εD(∆xϕ+ε∆xη) .

We conclude, by letting ε go to 0, that at point (t0,x0):

∂tϕ−D|∇xϕ|2−H≤0.

a.3. We prove that max
(
∂tu−D|∇xu|2−H,u

)
≥0.

We first notice that u(t,x)≤u(t,x)≤0. Let u(t,x)<0. Then there exists some
δ>0 such that along a subsequence (εn,tn,xn), uεn(tn,xn,θ)<−δ for all θ∈Θ and
for n≥N with N sufficiently large. It follows that ρεn(tn,xn)→0, as n→∞. With
the same notations as in the previous point replacing maximum by minimum, we get

∂tϕ−D|∇xϕ+εη|2−H(xε) ≥ εD(∆xϕ+ε∆xη)−rρε,

so that taking the limit ε→0 along the subsequence (tεn ,xεn), we obtain that

∂tϕ−D|∇xϕ|2−H ≥ 0.

holds at point (t0,x0).

b. Strong uniqueness (proof of Proposition 3.1 (ii)).

Obviously, one cannot get any uniqueness result for the Hamilton-Jacobi equation
(3.1) without imposing any initial condition. Adding (1.6), we now check the initial
condition of (1.12) in the viscosity sense.

One has to prove the following

min
(
max

(
∂tu−D|∇xu|2−H,u

)
,u−u0

)
≤0, in {t= 0}×Rd, (3.2)

and

max
(
max

(
∂tu−D|∇xu|2−H,u

)
,u−u0

)
≥0, in {t= 0}×Rd, (3.3)

in the viscosity sense.
Here we give only the proof of (3.2), since (3.3) can be derived following similar

arguments. Let ϕ∈C2 (R+×R) be a test function such that u(t,x)−ϕ(t,x) has a strict
local maximum at (t0 = 0,x0). We now prove that either

u(0,x0)≤u0(x0),

or 
∂tϕ(0,x0)−D|∇xϕ(0,x0)|2−H(x0)≤0,

and

u(0,x0)≤0.

Suppose then that

u(0,x0)>u0(x0). (3.4)
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Following the arguments above in a.1. but taking t= 0 and using (1.6) we obtain

u(0,x0)≤0.

We next prove that

∂tϕ(0,x0)−D|∇xϕ(0,x0)|2−H(x0)≤0. (3.5)

There exists a sequence (tε,xε,θε)ε such that (tε,xε) tends to (0,x0) as ε→0 and
that uε−χε=uε−ϕ−εη takes a local maximum at (tε,xε,θε). Here η still denotes
the correction lnQ with Q the eigenfunction introduced in Lemma 1.1 (see a.1.). We
first claim that there exists a subsequence (tn,xn,θn)n of the above sequence and a
subsequence (εn)n, with εn→0 as n→∞, such that tn>0, for all n.

Suppose that this is not true. Then, there exists a sequence (εn′ ,xn′ ,θn′)n′ such
that (εn′ ,xn′)→ (0,x0) and that uεn′ −ϕ−εn′η has a local maximum at (0,xn′ ,θn′).
It follows that, for all (t,x,θ) in some neighborhood of (0,xn′ ,θn′), we have

uεn′ (0,xn′ ,θn′)−χεn′ (0,xn′ ,θn′)≥uεn′ (t,x,θ)−χεn′ (t,x,θ) .

Computing limsup
n′→∞

(t,x)→(t0,x0)

at the both sides of the inequality, and using (1.6) one obtains

u0 (x0)−ϕ(0,x0)≥u(0,x0)−ϕ(0,x0) .

However, this is in contradiction with (3.4). We thus proved the existence of
subsequences (tn,xn,θn)n and (εn)n described above with tn>0, for all n.

Now having in hand that tn>0, from (1.4) and the fact that uεn−ϕ−εnη takes
a local maximum at (tn,xn,θn), we deduce that

∂tϕ−D|∇xϕ+εnη|2−H(xεn) ≤ εnD(∆xϕ+εn∆xη)

holds in (tn,xn,θn). Finally, letting n→+∞, we find (3.5).

We refer to [3, Section 4.4.5] and [23, Theorem B.1] for arguments giving strong
uniqueness (i.e. a comparison principle for semi-continuous sub and supersolutions)
for (1.12). As u and u are respectively sub and supersolutions of (1.12), we then
know that u≤u. From their early definition, we also have u≥u. Gathering these
inequalities, we finally obtain u=u=u and that (uε)ε converges locally uniformly, as
ε→0, towards u, the unique viscosity solution of (1.12) in R+×Rd×Θ.

4. Refined asymptotics (The proof of Theorem 1.2–(ii) and (iii))
In this section, we provide some information on the asymptotic population

density. Firstly, we prove parts (ii) and (iii) of Theorem 1.2 which state that
the zero sets of u correspond to the zones where the population is positive. Sec-
ondly, we provide the limit of (nε)ε, as ε→0, in a particular case (see Proposition 4.5).

We first prove the following lemma:

Lemma 4.1. Let u be the unique viscosity solution of (1.12) and H(x) the eigenvalue
given by Lemma 1.1. Then

(t,x)∈ Int{u(t,x) = 0} =⇒ H(x)≥0.
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Proof 4.2. (Proof of Lemma 4.1). Thanks to (1.12),

∂tu−D|∇xu|2≤H(x),

in the viscosity sense. In the zone Int{u(t,x) = 0}, one has

∂tu−D|∇xu|2 = 0,

in the strong sense. The proof of the lemma follows.
We are now able to characterize the different zones of the front and complete the

proof of Theorem 1.2:

Proof 4.3. Proof of Theorem 1.2, (ii)).
Let K be a compact subset of Int{u<0}. The local uniform convergence of

uε towards u ensures that there exists a constant δ>0 such that for sufficiently
small ε>0 and for all (t,x)∈K and θ∈Θ, uε(t,x,θ)<−δ. As a consequence,
nε= exp

(
uε
ε

)
< exp

(
− δε
)
→0, uniformly as ε→0 in K×Θ.

Proof 4.4. (Proof of Theorem 1.2, (iii)).
Take (t0,x0)∈K⊂⊂ Int({u= 0}∩{H(x)>0}), and let Q be the normalized eigen-

vector given by Lemma 1.1. We denote Cm=Cm(x0) = minΘQ(x0,θ) and CM =
CM (x0) = maxΘQ(x0,θ). We also define

Fε(t,x) :=

∫
Θ

nε(t,x,θ)Q(x0,θ)dθ, Iε :=ε lnFε.

From the early definition of uε, and the positivity of Q(x0,θ), one has

e
minΘuε(t,x,·)

ε

∫
Θ

Q(x0,θ)dθ≤Fε(t,x)≤e
maxΘuε(t,x,·)

ε

∫
Θ

Q(x0,θ)dθ.

Since Q(x0,θ) is normalized, we deduce

∀(t,x)∈ [0,∞)×Rd, min
Θ
uε(t,x, ·)≤ Iε(t,x)≤max

Θ
uε(t,x, ·).

Thus I := limε→0 Iε is well-defined and nonpositive. We also point out that the lat-
ter inequalities imply {u= 0}={I= 0}. Multiplying equation (1.2) by Q(x0,θ) and
integrating in θ yields

ε∂tFε−ε2D∆xFε−α
∫

Θ

nε∆θQ(x0,θ) = r

∫
Θ

a(x,θ)Q(x0,θ)nε(t,x,θ)dθ−rρεFε.

Combining the above equation by (1.10) we deduce that

ε∂tFε−ε2D∆xFε= (H(x0)−rρε)Fε+r

∫
Θ

Q(x0,θ)nε(t,x,θ)[a(x,θ)−a(x0,θ)]dθ.

Since H(x0)>0 and a is continuous, for all δ>0, one can choose a constant r>0
such that

∀x∈Br(x0), |a(x,θ)−a(x0,θ)|<δH(x0) with Br(x0)⊂K.
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We finally deduce that for all x∈Br(x0),

ε∂tFε−ε2D∆xFε≥ ((1−δ)H(x0)−rρε)Fε.

Since Fε≥Cmρε, it follows that for all x∈Br(x0),

ε∂tFε−ε2D∆xFε≥
(

(1−δ)H(x0)− rFε
Cm

)
Fε. (4.1)

Moreover, since (t0,x0)⊂ Int{u(t,x) = 0}= Int{I(t,x) = 0}, we have I(t,x) = 0 in a
neighborhood of (t0,x0).

We then apply an argument similar to the one used in [23] to prove an analogous
statement for the Fisher-KPP equation. To this end, we introduce the following test
function

ϕ(t,x) =−|x−x0|2−(t− t0)2.

As I−ϕ attains a strict minimum in (t0,x0), there exists a sequence (tε,xε) of points
such that and Iε−ϕ attains a minimum in (tε,xε), with (tε,xε)→ (t0,x0). It follows
from (4.1) that

∂tϕ−εD∆xϕ−D|∇xϕ|2≥∂tIε−εD∆xIε−D|∇xIε|2≥ (1−δ)H(x0)− rFε
Cm

.

As a consequence,

liminf
ε→0

Fε(t0,x0)≥ Cm
r

(1−δ)H(x0),

uniformly with respect to points (t0,x0)∈K and this gives

liminf
ε→0

ρε(t0,x0)≥ (1−δ)H(x0)
Cm
rCM

.

We then let δ→0 and obtain

liminf
ε→0

ρε(t0,x0)≥H(x0)
Cm(x0)

rCM (x0)
,

uniformly with respect to points (t0,x0)∈K.

Let

K̃={x | ∃t≥0, such that (t,x)∈K}.

To conclude the proof, it is enough to prove that there exists a constant C=
C(α,r,a|K̃×Θ)≥1, such that

CM (x)

Cm(x)
≤C, for all x∈ K̃.

This is indeed a consequence of the Harnack inequality [16] for the solutions of (1.10)

in Θ for all x∈ K̃. We point out that here we can use the Harnack inequality on the
whole domain Θ thanks to the Neumann boundary condition.
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The above result is not enough to identify the limit of (nε)ε as ε→0, as was
obtained for example for Fisher-KPP type models in [23]. The main difficulties to
obtain such limits are the facts that we do not have any regularity estimate in the x
direction on nε and that there is no comparison principle for this model due to the
non-local term. However, we were able to identify the limit of (nε)ε in a particular
case:

Proposition 4.5. Suppose that Q, the eigenvector given by (1.10), does not depend
on x, i.e. Q(x,θ) =Q(θ). Let the initial data be of the following form

nε(t= 0,x,θ) =mε(x)Q(θ), mε(x)≥0. (4.2)

Then:

(i) There exists a function mε :R+×Rd→R such that for all t>0 and (x,θ)∈
Rd×Θ, nε(t,x,θ) =mε(t,x)Q(θ).

(ii) For all (t,x,θ)∈{u(t,x) = 0}×Θ, limε→0nε(t,x,θ) = H(x)
r Q(θ).

Remark 4.6. We note that the assumption on Q in Proposition 4.5, is satisfied for
a(x,θ) =a(θ)+b(x).

Proof 4.7. (Proof of Proposition 4.5).

Let mε be the unique solution of the following equation{
ε∂tmε−ε2D∆xmε= rmε (H(x)−mε),

mε(0,x) =mε(x).

Define

ñε(t,x,θ) :=mε(t,x)Q(θ).

We notice from (1.11) that ∫
ñε(t,x,θ)dθ=mε(t,x).

Consequently, from (4.2), (1.10), and the definition of mε one can easily verify that
ñε is a solution of (1.2), and since (1.2) has a unique solution we conclude that

nε(t,x,θ) =mε(t,x)Q(θ),

and

ρε(t,x) =mε(t,x).

As a consequence ρε satisfies the following Fisher-KPP equation

ε∂tρε−ε2D∆xρε= rρε (H(x)−ρε) .

Let (t,x)∈{u= 0}. Then from Lemma 4.1, we obtain H(x)≥0. Hence, from the above
equation and (1.13), following similar arguments as in [23] (page 157) we obtain that
ρε(t,x)→H(x) as ε→0, and (ii) follows.
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5. Qualitative properties
In this section, we provide some estimates on the effective Hamiltonian H

and the eigenfunction Q. We note that the spatial propagation of the population
can be described using H through (1.12). In particular, if H(x) =H is constant
and if initially the population is restricted to a compact set in space, then the
population propagates in space with the constant speed c= 2

√
H. Furthermore,

the eigenfunction Q is expected to represent the phenotypical distribution of the
population (see Proposition 4.5).

We begin by presenting some qualitative estimates on the effective Hamiltonian
H.
Lemma 5.1. The eigenvalue and normalized eigenfunction introduced in Lemma 1.1
satisfy the following estimates:

∀x∈R, H(x) = r

∫
Θ

a(x,θ)Q(x,θ)dθ, (5.1)

∀x∈R, r

Θ

∫
Θ

a(x,θ)dθ≤H(x)≤ ra(x,θ̄(x)) (5.2)

where θ̄ is a trait which maximizes Q(x, ·): Q(x,θ̄(x)) = maxΘQ(x,θ).
In particular, the eigenvalue H(x), which more or less represents the speed of the

front, is not necessarily given by the most privileged individuals, that is those having
the largest fitness a. See Example 6.4 for a case where the inequality is strict. This
property confirms that the front may slow down due to very unfavorable traits.
Proof 5.2. (Proof of Lemma 5.1).

By integrating (1.10) with respect to θ and using the Neumann boundary condition
and (1.11), we find (5.1).

To prove (5.2) we rewrite (1.10) in terms of η= lnQ:

∀(x,θ)∈R×Θ, H(x) =α
(
∆θη+ |∇θη|2

)
+ra(x,θ) (5.3)

Then, integrating and using the Neumann boundary conditions in the variable θ for
η, one obtains

H(x)≥ r

|Θ|

∫
Θ

a(x,θ)dθ.

Let Q(x,θ̄(x)) = maxΘQ(x,θ). Then ∇θη(x,θ̄(x)) = 0 and ∆θη(x,θ̄(x))≤0. Evaluat-
ing (5.3) in θ̄(x), we get

H(x)≤ ra(x,θ̄(x)).

Lemma 5.3. Let a(x,·) be a strictly concave function on Θ := [θm,θM ] for all x∈R.
Then for all x∈R, the maximum of Q(x,·) is attained in only one point θ̄(x).
Proof 5.4. (Proof of Lemma 5.3). The concavity hypothesis implies that for all
x∈R, the function H(x)−ra(x, ·) is strictly convex. Thus, on the interval [θm,θM ],
it has at most two zeros. The case of no zeros is excluded from (5.2). Let’s study the
two remaining cases.
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Suppose it has only one zero at θ̂ (see Example 6.1), say it is positive on
[
θm, θ̂

[
and nonpositive on

[
θ̂,θM

[
. Then from the early definition of the spectral problem,

Q(x, ·) is convex on
[
θm, θ̂

[
and concave on

[
θ̂,θM

[
. The Neumann boundary condi-

tions enforce that Q(x,·) is increasing on Θ, and attains its maximum at θ̄=θM .

Suppose it has two zeroes, at θ̂1 and θ̂2. Then H(x)−ra(x, ·) is nonnegative

on
[
θm, θ̂1

[
and

[
θ̂2,θM

[
, and negative on

[
θ̂1, θ̂2

[
. As a consequence, by the same

convexity analysis as in the previous case, Q(x, ·) attains its maximum on
[
θ̂1, θ̂2

[
,

where it is strictly concave, which justifies the existence and uniqueness of θ̄.
Remark 5.5. (Limit as α→0).

As the mutation rate α goes to 0, we expect that the eigenfunction Qα converges
towards a sum of Dirac masses. To justify this, we use again a WKB ansatz, setting
ϕα=

√
α ln(Qα). Rewriting (1.10) in terms of ϕα we obtain

√
α∆θϕα+ |∇θϕα|2 +ra(x,θ)−Hα(x) = 0.

It is classical that the family ϕα is equi-Lipschitz and we can extract a subsequence
that converges uniformly. We have indeed that as α→0, (ϕα,Hα) converges to (ϕ,H),
with ϕ a viscosity solution of the following equation|∇θϕ|

2 +ra(x,θ)−H(x) = 0,

H(x) = maxθ∈Θra(x,θ).

Moreover from (1.11) we obtain that

max
θ∈Θ

ϕ(x,θ) = 0.

Finally, we conclude from the above equations that as α→0, Qα−−⇀Q with Q a
measure satisfying

suppQ(x, ·)⊂{θ∈Θ|ϕ(x,θ) = 0}⊂{θ∈Θ|H(x) = ra(x,θ) = rmax
θ∈Θ

a(x,θ)}.

In other terms, in the limit of rare mutations, the population concentrates on the
maximum points of the fitness a(x,θ).

6. Examples and numerics

6.1. Examples of spectral problems
In this section, we present various spectral problems to discuss the properties of

the principal eigenfunction Q depending on the form of the fitness a. The princi-
pal eigenfunction Q is expected, at least in some cases, to represent the asymptotic
phenotypic distribution of the population (see Proposition 4.5). The examples are
illustrated in Tables 1 and 2.
Example 6.1. (A fitness with linear dependence on θ).

This example is taken from [14]. For θ∈ [θm,θM ] and b :R→Θ a smooth function,
let a(x,θ) =µθ−b(x). The spectral problem writes, for all x∈R:α∂θθQ+rθQ= (H(x)+rb(x))Q,

∂θQ(x,θm) =∂θQ(x,θM ) = 0.
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Example 6.1 Example 6.2 (θm= 0.5) Example 6.2 (θm= 0.75)

(1)

(2)

Table 6.1. (1): Fitness a (in blue) and principal eigenvalue H (in red); (2): Renormalized
principal eigenfunction Q.

The solution of this problem is unique up to a multiplicative constant and can
be expressed implicitly with special Airy functions. In Table 1, for α= 1, r= 2 and
Θ = [0,1], we plot the fitness a(θ) = θ

2 + 1
4 and the associated eigenvector Q. Beware

that this example will be used again in Section 6.2.

Example 6.2. (The maxima of a and Q are not always at the same points).

For Example 6.2, we consider a(x,θ) := 1−|θ−θm|, for different values of θm∈
Θ := [0,1]. The parameters for the simulations are α= 1,r= 1. We observe that al-
though the fitness a attains its maximum at θ=θm, it is not given that the maximum
of the eigenfunction Q is attained at θ=θm. In other words, the trait with the opti-
mal fitness value does not necessarily correspond to the most represented one. Indeed,
when θm= 1

2 , the eigenfunction Q is necessarily symmetric with respect to θm= 1
2 , and

hence attains a maximum at this point. By contrast, for θm= 3
4 , the most represented

trait is not the most favorable one (see Table 1): The diffusion through the Neumann
boundary condition plays a strong role in this case. We observe indeed with this ex-
ample that, while the fitness a has a non-symmetric profile, the maximum points of
Q can be far from the ones of a, due to the diffusion term. However, while α (which
equals 1 in this example) takes values close to 0, the maximum points of Q approach
the ones of a.

Example 6.3. (An example of a and Q with two maximum points).

For this example, we consider a(x,θ) :=ϕi(θ), for i= 1,2, and ϕi a quartic func-
tion such that two different traits are equivalently favorable in the population. Nev-
ertheless, Q can still take a single maximum on a different point. First, we consider
the following symmetric fitness function:

ϕ1(θ) := 200

(
θ− 1

5

)(
θ− 2

5

)(
θ− 3

5

)(
θ− 4

5

)
,

which has two maxima but all traits between the two maxima are also likely to survive.
It turns out that the mutation plays a strong role and creates a single peak in Q, which
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is necessarily 1
2 by symmetry. In the second case, we consider the fitness function

ϕ2(θ) := 100

(
θ− 1

9

)(
θ− 1

3

)(
θ− 2

3

)(
θ− 8

9

)
,

which is still symmetric with respect to the center of Θ. However, since there is a gap
between the two traits with the most optimal fitness value, the eigenfunction Q has
also two peaks but at different points. See Table 2 for the different plots (α= 1,r= 1).

Example 6.3 (ϕ1) Example 6.3 (ϕ2)

(1)

(2)

Table 6.2. Fitness a (in blue) and principal eigenvalue H (in red); (2): Renormalized principal
eigenfunction Q.

Example 6.4 (An example with Θ unbounded).
Although not within the framework of this article, we expect that under coercivity

conditions on −a, Theorem 3.1 would be still true with an unbounded domain Θ, and
in particular for Θ =Rd. Here, we give an example with Θ =R for which it is easy
to compute the eigenelements Q and H. We consider a(x,θ) :=a∞− b∞

2 (θ−b(x))
2

where b :R→R is a smooth function. We can then compute:

Q(x,θ) = exp

(
−1

2

√
rb∞
2α

(θ−b(x))
2

)
, H(x) =H= ra∞−

√
rαb∞

2
.

This suggests that, the most represented trait at position x is given by θ= b(x), and
the speed of the propagation of the population is 2

√
H.

These solutions are not valid in a bounded domain since they do not satisfy the
Neumann boundary conditions.

We note that, with these parameters, the left inequality in (5.2) is strict, i.e.
H(x)<ra(x,θ̄(x)) = ra∞, but as b∞→0, which corresponds to the limit case where
all the traits are equally favorable, we have H(x)→ ra∞. Finally, it is interesting to
notice here that to ensure front expansion, i.e. H(x)≥0, the fitness must satisfy the

following additional condition
2a2
∞

b∞
≥ α

r .
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6.2. Numerical illustrations of the dynamics of the front
In this section, we resolve numerically the evolution problem (1.2) for three dif-

ferent values of a. For all the examples, we choose the following initial data{
nε(0,x,θ) = max

(
1,2−8

(
θ− 1

2

)2)
if x∈ [0,0.5],θ∈Θ := [0,1],

nε(0,x,θ) = 0 otherwise.
(6.1)

and use the following parameters

α= 1, r= 2, D= 1, ε= 0.1. (6.2)

The numerical simulations have been performed in Matlab. We gather our results in
Figures 1 - 2 - 3. For the three different fitness functions, we plot, from left to right:

(+) The density nε(t,x,θ) for a given final time t=T ,
(+) The value of ρε(x) at this same final time (blue line), that we compare to the

value of max
(
H(x)
r ,0

)
(red line),

(+) The renormalized trait distributions at the edge of the front (red square-
shaped line) and at the back (blue star-shaped line) that we compare to the
expected renormalized eigenfunctions Q at the same space positions (pink
circle-shaped lines).

The fitness functions used in the three figures, are respectively

a1(θ) =
1

4
+
θ

2
,

a2(x,θ) =a1(θ)+

(
sin(x)− 1

2

)
,

and

a3(x,θ) =a1(θ)

(
1+

1

1+0.05x2

)
.

For the three examples, we observe propagation in the x–direction as expected
according to Theorem 1.2. We also notice that, in the zones where the front has
arrived, i.e. in the set Int{u= 0}, ρε converges to max(Hr ,0). Moreover, for ε small,

the renormalized trait distribution of the population at position x, i.e. nε(t,x,·)∫
nε(t,x,θ′dθ′)

,

is close to Q(x,·). These properties have been proved theoretically for a particular
case in Proposition 4.5. We also notice that the convergence of the averaged density
ρε seems to be faster than the convergence of the density nε.

In Figure 2, we illustrate an example where H is periodic in x and it can take
negative values. This corresponds to a case where the population faces some obsta-
cles, i.e. zones where the conditions are not favorable for the population to persist.
However, according to the numerical illustrations, the population manages to pass
through the obstacles and reach the favorable zones where it can grow up again. In-
deed, even if asymptotically as ε→0 the density nε goes to 0 in these harsh zones,
in the ε–level, nε is positive but exponentially small. This small density can reach
the better zones and grow up. Note that in this case, since we consider a periodic
growth rate, the solution behaves as a pulsating wave in the x–direction. We refer
the interested reader for instance to [12] for a study of pulsating waves. See Figures
1, 2 and 3 for detailed comments.
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Fig. 6.1. We present numerical resolution of (1.2) with the fitness a1(θ) = 1
4

+ θ
2

and using the

initial data and the parameters given by (6.1) and (6.2). In this case, as expected, ρε converges to H
r

in the zone where the front has arrived: in the set {u= 0}. We also observe that the renormalized
trait distribution at the edge (red square-shaped line) and the back of the front (blue star-shaped
line), are close to the principal eigenfunction Q (pink circle-shaped line), noting that Q here does
not depend on x. These results are in accordance with Proposition 4.5.
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Fig. 6.2. This pulsating wave is obtained from the numerical resolution of (1.2) with the fitness
a2(x,θ) =a1(θ)+

(
sin(x)− 1

2

)
and using the initial data and the parameters given by (6.1) and (6.2).

The same conclusions as for the fitness a1 hold. Noticing that H can take negative values in some
zones which are unfavorable for the population, we observe that the population can pass through the
obstacles and grow up in the favorable zones.
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computations on this problem.
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