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Abstract

We perform the analysis of a hyperbolic model which is the analog of the Fisher-KPP
equation. This model accounts for particles that move at maximal speed ε−1 (ε > 0), and
proliferate according to a reaction term of monostable type. We study the existence and
stability of traveling fronts. We exhibit a transition depending on the parameter ε: for small
ε the behaviour is essentially the same as for the diffusive Fisher-KPP equation. However,
for large ε the traveling front with minimal speed is discontinuous and travels at the maximal
speed ε−1. The traveling fronts with minimal speed are linearly stable in weighted L2 spaces.
We also prove local nonlinear stability of the traveling front with minimal speed when ε is
smaller than the transition parameter.
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1 Introduction

We consider the problem of traveling fronts driven by growth (e.g. cell division) together with cell
dispersal, where the motion process is given by a hyperbolic equation. This is motivated by the
occurence of traveling pulses in populations of bacteria swimming inside a narrow channel [1, 44].
It has been demonstrated that kinetic models are well adapted to this problem [45]. We will focus
on the following model introduced by Dunbar and Othmer [13], Hadeler [27], Holmes [29], Méndez
and co-authors [33, 34, 22, 39], and Fedotov [16, 17, 18] (see also the recent book [35]),

ε2∂ttρε(t, x) +
(
1− ε2F ′(ρε(t, x))

)
∂tρε(t, x)− ∂xxρε(t, x) = F (ρε(t, x)) , t > 0 , x ∈ R . (1.1)

The cell density is denoted by ρε(t, x). The parameter ε > 0 is a scaling factor. It accounts for the
ratio between the mean free path of cells and the space scale. The growth function F is subject
to the following assumptions (the so-called monostable nonlinearity){

F ∈ C3([0, 1]) , F is uniformly strictly concave : inf [0,1](−F ′′) =: α > 0 ,

F (0) = F (1) = 0 , F (ρ) > 0 if ρ ∈ (0, 1) .
(1.2)

For the sake of clarity we will sometimes take as an example the logistic growth function F (ρ) =
ρ(1− ρ).

Equation (1.1) is equivalent to the hyperbolic system{
∂tρε + ε−1∂x (jε) = F (ρε)
ε∂tjε + ∂xρε = −ε−1jε .

(1.3)
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The expression of jε can be computed explicitly in terms of ρε as follows,

jε(t, x) = −1

ε

∫ t

0

∂xρε(s, x) exp

(
s− t
ε2

)
ds+ jε(0, x) , (1.4)

but this expression will not be directly used afterwards. We will successively use the formulation
(1.1) or the equivalent formulation (1.3).

Since the pioneering work by Fisher [21] and Kolmogorov-Petrovskii-Piskunov [31], dispersion
of biological species has been usually modelled by mean of reaction-diffusion equations. The
main drawback of these models is that they allow infinite speed of propagation. This is clearly
irrelevant for biological species. Several modifications have been proposed to circumvent this issue.
It has been proposed to replace the linear diffusion by a nonlinear diffusion of porous-medium type
[46, 36, 41]. This is known to yield propagation of the support at finite speed [37, 38]. The density-
dependent diffusion coefficient stems for a pressure effect among individuals which influences the
speed of diffusion. Pressure is very low when the population is sparse, whereas it has a strong
effect when the population is highly densified. Recently, this approach has been developped for
the invasion of glioma cells in the brain [7]. Alternatively, some authors have proposed to impose
a limiting flux for which the nonlinearity involves the gradient of the concentration [3, 8, 4].

The diffusion approximation is generally acceptable in ecological problems where space and
time scales are large enough. However, kinetic equations have emerged recently to model self-
organization in bacterial population at smaller scales [2, 40, 14, 32, 42, 44, 45]. These models are
based on velocity-jump processes. It is now standard to perform a drift-diffusion limit to recover
classical reaction-diffusion equations [28, 10, 14, 30]. However it is claimed in [45] that the diffusion
approximation is not suitable, and the full kinetic equation has to be handled with. Equation (1.1)
can be reformulated as a kinetic equation with two velocities only v = ±ε−1 (see (2.1) below).
This provides a clear biological interpretation of equation (1.1) as a simple model for bacteria
colonies where bacteria reproduce themselves, and move following a run-and-tumble process. We
also emphasize that model (1.1) arises in the biological issue of species range expansion [29, 39],
and in particular the human Neolithic Transition [22].

Hyperbolic models coupled with growth have already been studied in [13, 27, 24, 11]. In [27] it
is required that the nonlinear function in front of the time first derivative ∂tρε is positive (namely
here, 1− ε2F ′(ρ) > 0). Indeed, this enables to perform a suitable change of variables in order to
reduce to the classical Fisher-KPP problem. In our context this is equivalent to ε2F ′(0) < 1 since
F is concave. In [24] this nonlinear contribution is replaced by 1: the authors study the following
equation (damped hyperbolic Fisher-KPP equation),

ε2∂ttρε(t, x) + ∂tρε(t, x)− ∂xxρε(t, x) = F (ρε(t, x)) .

We also refer to [11] where the authors analyse a kinetic model more general than (1.1). They
develop a perturbative approach, close to the diffusive regime ε� 1.

It is worth recalling some basic results related to reaction-diffusion equations. First, as ε→ 0
the density ρε solution to (1.1) formally converges to a solution of the Fisher-KPP equation [11]:

∂tρ0(t, x)− ∂xxρ0(t, x) = F (ρ0(t, x)) .

The long time behaviour of such equation is well understood since the pioneering works by
Kolmogorov-Petrovsky-Piskunov [31] and Aronson-Weinberger [5]. For nonincreasing initial data
with sufficient decay at infinity the solution behaves asymptotically as a traveling front moving
at the speed s = 2

√
F ′(0). Moreover the traveling front solution with minimal speed is stable in

some L2 weighted space [23].
In this work we prove that analogous results hold true in the parabolic regime ε2F ′(0) < 1.

Namely there exists a continuum of speeds [s∗(ε), ε−1) for which (1.1) admits smooth traveling
fronts. The minimal speed is given by [16]

s∗(ε) =
2
√
F ′(0)

1 + ε2F ′(0)
, if ε2F ′(0) < 1 . (1.5)
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Obviously we have s∗(ε) ≤ min(2
√
F ′(0), ε−1). There also exists supersonic traveling fronts, with

speed s > ε−1. This appears surprising at first glance since the speed of propagation for the
hyperbolic equation (1.1) is ε−1 (see formulation (1.3) and Section 2). These fronts are essentially
driven by growth, since they travel faster than the maximum speed of propagation. The results
are summarized in the following Theorem.

Theorem 1 (Parabolic regime). Assume that ε2F ′(0) < 1. The following alternatives hold:

(a) There exists no smooth or weak traveling front of speed s ∈ [0, s∗(ε)).

(b) For all s ∈ [s∗(ε), ε−1), there exists a smooth traveling front solution of (1.1) with speed s.

(c) For s = ε−1 there exists a weak traveling front.

(d) For all s ∈ (ε−1,∞) there also exists a smooth traveling front of speed s.

We also obtain that the minimal speed traveling front is nonlinearly locally stable in the
parabolic regime ε2F ′(0) < 1 (see Section 5, Theorem 15).

There is a transition occuring when ε2F ′(0) = 1. In the hyperbolic regime ε2F ′(0) ≥ 1 the
minimal speed speed becomes:

s∗(ε) = ε−1 , if ε2F ′(0) ≥ 1 . (1.6)

On the other hand, the front traveling with minimal speed s∗(ε) is discontinuous as soon as
ε2F ′(0) > 1. In the critical case ε2F ′(0) = 1 there exists a continuous but not smooth traveling
front with minimal speed s∗ =

√
F ′(0).

Theorem 2 (Hyperbolic regime). Assume that ε2F ′(0) ≥ 1. The following alternatives hold:

(a) There exists no smooth or weak traveling front of speed s ∈ [0, s∗(ε)).

(b) There exists a weak traveling front solution of (1.1) with speed s∗(ε) = ε−1. The wave is
discontinuous if ε2F ′(0) > 1.

(c) For all s ∈ (ε−1,∞) there exists a smooth traveling front of speed s.

We conclude this introduction by giving the precise definition of traveling fronts (smooth and
weak) that will be used throughout the paper.

Definition 3. We say that a function ρ(t, x) is a smooth traveling front solution with speed s
of equation (1.1) if it can be written ρ(t, x) = ν(x − st), where ν ∈ C2(R), ν ≥ 0, ν(−∞) = 1,
ν(+∞) = 0 and ν satisfies

(ε2s2 − 1)ν′′(z)−
(
1− ε2F ′(ν(z))

)
sν′(z) = F (ν(z)) , z ∈ R . (1.7)

We say that ρ is a weak traveling front with speed s if it can be written ρ(t, x) = ν(x− st), where
ν ∈ L∞(R), ν ≥ 0, ν(−∞) = 1, ν(+∞) = 0 and ν satisfies (1.7) in the sense of distributions:

∀ϕ ∈ D(R) ,

∫
R

(
(ε2s2 − 1)νϕ′′ +

(
ν − ε2F (ν)

)
sϕ′ − F (ν)ϕ

)
dx = 0 .

In the following Section 2 we show some numerical simulations in order to illustrate our results.
Section 3 is devoted to the proof of existence of the traveling fronts in the various regimes (resp.
parabolic, hyperbolic, and supersonic). Finally, in Section 4 and Section 5 we prove the stability
of the traveling fronts having minimal speed s∗(ε). We begin with linear stability (Section 4) since
it is technically better tractable, and it let us discuss the case of the hyperbolic regime. We prove
the full nonlinear stability in the range ε ∈ (0, 1/

√
F ′(0)) (parabolic regime) in Section 5.
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2 Numerical simulations

In this Section we perform numerical simulations of (1.1). We choose a logistic reaction term:
F (ρ) = ρ(1 − ρ). We first symmetrize the hyperbolic system (1.3) by introducing f+ = 1

2 (ρ + j)
and f− = 1

2 (ρ− j). This results in the following system:
∂tf

+(t, x) + ε−1∂xf
+(t, x) =

ε−2

2
(f−(t, x)− f+(t, x)) +

1

2
F (ρ(t, x))

∂tf
−(t, x)− ε−1∂xf−(t, x) =

ε−2

2
(f+(t, x)− f−(t, x)) +

1

2
F (ρ(t, x)) .

(2.1)

In other words, the population is split into two subpopulations: ρ = f+ + f−, where the density
f+ denotes particles moving to the right with velocity ε−1, whereas f− denotes particles moving
to the left with the opposite velocity.

We discretize the transport part using a finite volume scheme. Since we want to catch discon-
tinuous fronts in the hyperbolic regime ε2F ′(0) > 1, we aim to avoid numerical diffusion. Therefore
we use a nonlinear flux-limiter scheme [26, 12]. The reaction part is discretized following the Euler
explicit method.

f+n+1,i = f+n,i − ε
−1 ∆t

∆x

(
f+n,i + pi

∆x

2
− f+n,i−1 − pi−1

∆x

2

)
+ ε−2

∆t

2

(
f−n,i − f

+
n,i

)
+

∆t

2
F (ρn,i) .

The non-linear reconstruction of the slope is given by

pi = minmod

(
f+n,i − f

+
n,i−1

∆x
,
f+n,i+1 − f

+
n,i

∆x

)
, minmod (p, q) =

{
0 if sign (p) 6= sign (q)

min(|p|, |q|)sign (p) if sign (p) = sign (q)

We compute the solution on the interval (a, b) with the following boundary conditions: f+(a) = 1/2
and f−(b) = 0. The discretization of the second equation for f− (2.1) is similar. The CFL
condition reads ∆t < ε∆x. It degenerates when ε ↘ 0, but we are mainly interested in the
hyperbolic regime when ε is large enough. Other strategies should be used in the diffusive regime
ε� 1, e.g. asymptotic-preserving schemes (see [19, 9] and references therein).

Results of the numerical simulations in various regimes (parabolic and hyperbolic) are shown
in Figure 1.

3 Traveling wave solutions: Proof of Theorems 1 and 2

3.1 Characteristic equation

We begin with a careful study of the linearization of (1.7) around ν ≈ 0. We expect an exponential
decay e−λz as z → +∞. The characteristic equation reads as follows,

(ε2s2 − 1)λ2 + (1− ε2F ′(0))sλ− F ′(0) = 0 . (3.1)

The discriminant is ∆ =
(
ε2F ′(0) + 1

)2
s2 − 4F ′(0). Hence we expect an oscillatory behaviour in

the case ∆ < 0, i.e. s < s∗(ε). We assume henceforth s ≥ s∗(ε). In the case s < ε−1 (subsonic
fronts) we have to distinguish between the parabolic regime ε2F ′(0) < 1 and the hyperbolic regime
ε2F ′(0) > 1. In the former regime equation (3.1) possesses two positive roots, accounting for a
damped behaviour. In the latter regime equation (3.1) possesses two negative roots. In the case
s > ε−1 (supersonic fronts) we get two roots having opposite signs.

Next we investigate the linear behaviour close to ν ≈ 1. We expect an exponential relaxation
1− eλ′z as z → −∞. The characteristic equation reads as follows,

(ε2s2 − 1)λ′2 − (1− ε2F ′(1))sλ′ − F ′(1) = 0 . (3.2)
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Figure 1: Numerical simulations of the equation (1.1) for F (ρ) = ρ(1− ρ) and for different values
of ε = 0.5, 1, 2. Numerical method is described in Section 2. The initial data is the step function
f+(x < 0) = 1, f+(x > 0) = 0, and f− ≡ 0. For each value of ε we plot the density function
ρ = f+ +f− in the (x, t) space, and the density ρ(t0, ·) at some chosen time t0. We clearly observe
in every cases a front traveling asymptotically at speed s∗(ε) as expected. We also observe the
transition between a smooth front and a discontinuous one. The transition occurs at ε = 1. In the
case ε = 1 we have superposed the expected profile ν(z) =

(
1− ez/2

)
+

in black, continous line,
for the sake of comparison.
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s < ε−1 s > ε−1

parabolic

if s < s∗(ε), NO

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

if s ≥ s∗(ε), YES

−0.2 0 0.2 0.4 0.6 0.8 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

YES

−0.2 0 0.2 0.4 0.6 0.8 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

hyperbolic

NO

−0.2 0 0.2 0.4 0.6 0.8 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

YES

−0.2 0 0.2 0.4 0.6 0.8 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Table 1: Phase plane dynamics depending on the regime (parabolic vs. hyperbolic) and the value
of the speed with respect to s∗(ε) and ε−1. In every picture the red line represents the traveling
front trajectory, and the green lines are the axes {u = 0} and {v = 0}. We do not consider the
case s = ε−1 since the dynamics are singular in this case and should be considered separately (see
Section 3.5).

We have ∆′ = [ε2F ′(1) + 1]2s2 − 4F ′(1) > 0. In the case s < ε−1 equation (3.2) possesses two
roots having opposite signs. In the case s > ε−1 it has two positive roots.

We summarize our expectations about the possible existence of nonnegative traveling fronts in
Table 1.

3.2 Proof of Theorems 1.(a) and 2.(a): Obstruction for s < s∗(ε)

In this section we prove that no traveling front solution exists if the speed is below s∗(ε).

Proposition 4. There exists no traveling front with speed s for s < s∗(ε), where s∗(ε) is given
by (1.5)-(1.6).

Remark 5. Note that the proof below works in both cases ε2F ′(0) < 1 and ε2F ′(0) ≥ 1.

Proof. We argue by contradiction. The obstruction comes from the exponential decay at +∞.
Assume that there exists such a traveling front ν(z). As s < s∗(ε), one has s < ε−1 in the
parabolic as well as in the hyperbolic regime. Hence, as ν is bounded and satisfies the elliptic
equation (1.7) in the sense of distributions, classical regularity estimates show that ν is smooth.
It is necessarily decreasing as soon at it is below 1. Otherwise, it would reach a local minimum
at some point z0 ∈ R, for which ν(z0) < 1, ν′(z0) = 0 and ν′′(z0) ≥ 0. It would then follow from
(1.7) that F (ν(z0)) ≤ 0 and thus ν(z0) = 0. As F ∈ C1([0, 1]), the Cauchy-Lipschitz theorem
would imply ν ≡ 0, a contradiction.

Next, we define the exponential rate of decay at +∞:

λ := lim inf
z→+∞

−ν′(z)
ν(z)

≥ 0 .

Consider a sequence zn → +∞ such that −ν′(zn)/ν(zn)→ λ and define the renormalized shift:

νn(z) :=
ν(z + zn)

ν(zn)
.
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This function is locally bounded by classical Harnack estimates. It satisfies

(ε2s2 − 1)ν′′n(z) +
(
ε2F ′(ν(z + zn))− 1

)
sν′n(z) =

1

ν(zn)
F (ν(zn)νn(z)) , z ∈ R .

As F ∈ C1([0, 1]), F (0) = 0 and F is concave, the functions z 7→
(
ε2F ′(ν(z + zn))− 1

)
s and z 7→

1
ν(zn)

F (ν(zn)νn(z)) are uniformly bounded, uniformly in n. Hence, Schauder elliptic regularity

estimates yield that the sequence (νn)n is locally bounded in the Hölder space Cα(K) for any
compact subset K ⊂ R and any α ∈ (0, 1). The Ascoli theorem and a diagonal extraction process
give an extraction, that we still denote (νn)n, such that (νn)n converges to some function ν∞ in
Cα(K) for any compact subset K ⊂ R and any α ∈ (0, 1). The limiting function is a solution in
the sense of distributions of

(ε2s2 − 1)ν′′∞(z) +
(
ε2F ′(0)− 1

)
sν′∞(z) = F ′(0)ν∞(z) , z ∈ R . (3.3)

As this equation is linear, one has ν∞ ∈ C∞(R). If ν∞(z0) = 0, then as ν∞ is nonnegative, one
would get ν′∞(z0) = 0 and thus ν∞ ≡ 0 by uniqueness of the Cauchy problem, which would be a
contradiction since ν∞(0) = limn→+∞ νn(0) = 1. Thus ν∞ is positive.

Define V = ν′∞/ν∞. The definition of λ yields minR V = V (0) = −λ. Thus V ′(0) = 0. Hence
we deduce from (3.3) that ν∞(z) = ν∞(0)e−λz. Plugging this into (3.3), we obtain that λ satisfies
the following second order equation,

(ε2s2 − 1)λ2 − (ε2F ′(0)− 1)sλ− F ′(0) = 0 .

We know from Section 3.1 that, both in the parabolic and hyperbolic regimes, there is no real root
in the case s < s∗(ε).

3.3 Proof of Theorem 1.(b): Existence of smooth traveling fronts in the
parabolic regime s ∈ [s∗(ε), ε−1)

In [27] the author proves the existence of traveling front, by reducing the problem to the classical
Fisher-KPP problem. It is required that the nonlinear function 1−ε2F ′(ρ) remains positive, which
reads exactly ε2F ′(0) < 1 in our context. We present below a direct proof based on the method
of sub- and supersolutions, following the method developed by Berestycki and Hamel in [6].

3.3.1 The linearized problem

Proposition 6. Let λs be the smallest (positive) root of the characteristic polynomial (3.1). Then
ν(z) = min{1, e−λsz} is a supersolution of (1.7).

Proof. Let r(z) = e−λsz. Then as r is decreasing and F is concave, it is easy to see that r is a
supersolution of (1.7). On the other hand, the constant function 1 is clearly a solution of (1.7).
We conclude since the minimum of two supersolutions is a supersolution.

3.3.2 Resolution of the problem on a bounded interval

Proposition 7. For all a > 0 and τ ∈ R, there exists a solution νa,τ of
(ε2s2 − 1)ν′′a,τ + (ε2F ′(νa,τ )− 1)sν′a,τ = F (νa,τ ) in (−a, a),
νa,τ (−a) = ν(−a+ τ),
νa,τ (a) = ν(a+ τ).

(3.4)

Moreover, this function is nonincreasing over (−a, a) and it is unique in the class of nonincreasing
functions.

In order to prove this result, we consider the following sequence of problems:
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• ν0(z) = ν(z + τ)

• νn+1 is solution to
(ε2s2 − 1)ν′′n+1 + (ε2F ′(νn)− 1)sν′n+1 +Mνn+1 = F (νn) +Mνn in (−a, a),

νn+1(−a) = ν(−a+ τ),

νn+1(a) = ν(a+ τ),

(3.5)

where ν is defined in Proposition 6 and M > s2

2

(
ε2F ′(0) − 1

)
is large enough so that

s 7→ F (s) +Ms is increasing.

Lemma 8. The sequence (νn)n is well-defined. The functions z 7→ νn(z) are nonincreasing and
for all z ∈ (−a, a), the sequence (νn(z))n is nonincreasing.

Proof. We prove this Lemma by induction. Clearly, ν0 is nonincreasing. First, one can find a
unique weak solution ν1 ∈ C0([−a, a]) of

(ε2s2 − 1)ν′′1 + (ε2F ′(ν0)− 1)sν′1 +Mν1 = F (ν0) +Mν0 in (−a, a),

ν1(−a) = ν(−a+ τ),

ν1(a) = ν(a+ τ),

(3.6)

using the Lax-Milgram theorem and noticing that the underlying operator is coercive since M >
s2

2

(
ε2F ′(0)− 1

)
and s < ε−1.

Let w0 = ν1 − ν0. As ν0 is a supersolution of equation (1.7), one has{
(ε2s2 − 1)w′′0 + (ε2F ′(ν0)− 1)sw′0 +Mw0 ≤ 0 in (−a, a),
w0(−a) = w0(a) = 0.

As M > 0, the weak maximum principle gives w0 ≤ 0, that is, ν1 ≤ ν0.
Define the constant function ν = ν(a+ τ). It satisfies

(ε2s2 − 1)ν′′ + (ε2F ′(ν0)− 1)sν′ +Mν = Mν ≤ F (ν) +Mν ≤ F (ν0) +Mν0

in (−a, a) since s 7→ F (s) +Ms is increasing and ν0(z) = ν(z+ τ) ≥ ν(a+ τ) = ν by monotonicity
of ν. The same arguments as above lead to ν1 ≥ ν.

Assume that Lemma 8 is true up to rank n. The existence and the uniqueness of νn+1 follow
from the same arguments as that of ν1. Let wn = νn+1 − νn. As F is concave and νn−1 ≥ νn, we
know that F ′(νn−1) ≤ F ′(νn). As νn is nonincreasing, we thus get{

(ε2s2 − 1)w′′n + (ε2F ′(νn)− 1)sw′n +Mwn ≤ 0 in (−a, a),
wn(−a) = wn(a) = 0.

Hence, wn ≤ 0 and thus νn+1 ≤ νn. Similarly, one easily proves that νn+1 ≥ ν in (−a, a).
Differentiating (3.5) and denoting v = ν′n+1, one gets

(ε2s2 − 1)v′′ +
(
ε2F ′(ν0)− 1

)
sv′ +

(
M + ε2F ′′(ν0)ν′0

)
v =

(
F ′(ν0) +M

)
ν′0 ≤ 0 in (−a, a)

since s 7→ F (s)+Ms is increasing and ν0 is nonincreasing. As F is concave, the zeroth-order term
is positive and thus the elliptic maximum principle ensures that v reaches its maximum at z = −a
or at z = a. But as ν(a+ τ) ≤ νn+1(z) ≤ ν(z + τ) for all z ∈ (−a, a), one has

v(−a) ≤ lim sup
z→−a+

νn+1(z)− νn+1(−a)

z + a
≤ lim sup

z→−a+

ν(z + τ)− ν(−a+ τ)

z + a
≤ 0

and similarly v(a) ≤ 0. Thus v ≤ 0, meaning that νn+1 is nonincreasing.
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Proof of Proposition 7. As the sequence (νn)n is decreasing and bounded from below, it admits a
limit νa,τ as n → +∞. It easily follows from the classical regularity estimates that νa,τ satisfies
the properties of Proposition 7.

If ν1 and ν2 are two nondecreasing solutions of (3.4), then the same arguments as before give
that νµ1 < ν1 in Σµ for all µ ∈ (0, 2a). Hence, ν1 ≤ ν2 and a symmetry argument gives ν1 ≡ ν2.

Lemma 9. For all a > 0, there exists τa ∈ R such that νa,τa(0) = 1
2 .

Proof. Define I(τ) := νa,τ (0). It follows from the classical regularity estimates and from the
uniqueness of νa,τ that I is a continuous function. Moreover, as νa,τ is nonincreasing, one has

ν(a+ τ) ≤ I(τ) ≤ ν(−a+ τ),

where ν is defined in Proposition 6. As ν(· + τ) → 0 as τ → +∞ and ν(· + τ) → 1 as τ → −∞
locally uniformly on R, one has I(−∞) = 1 and I(+∞) = 0. The conclusion follows.

3.3.3 Existence of traveling fronts with speeds s ∈ [s∗(ε), ε−1)

We conclude by giving the proof of Theorem 1 as a combination of the above results.

Proof of Theorem 1. Consider a sequence (an)n such that limn→+∞ an = +∞ and define νn(z) :=
νan,τan

for all z ∈ [−an, an]. This function is decreasing and satisfies νn(0) = 1/2, 0 ≤ νn ≤ 1 and

(ε2s2 − 1)ν′′n + (ε2F ′(νn)− 1)sν′n = F (νn) in (−an, an).

As in the proof of Proposition 4, the uniform boundedness of (νn)n together with Lp elliptic
regularity estimates ensure that the sequence (νn)n is uniformly bounded in W 2,p(K) for all
compact set K ∈ R and p ∈ (1,∞). It follows from Sobolev injections and the Ascoli theorem
that the sequence (νn)n converges in C0loc(R) as n→ +∞ to a function ν, up to extraction. Then
ν satisfies

(ε2s2 − 1)ν′′ + (ε2F ′(ν)− 1)sν′ = F (ν) .

Moreover it is nonincreasing, 0 ≤ ν ≤ 1 and ν(0) = 1/2.
Define `± := limz→±∞ ν(z). Passing to the (weak) limit in the equation satisfied by ν, one

gets F (`±) = 0. As 0 ≤ `± ≤ 1, the hypotheses on F give `± ∈ {0, 1}. On the other hand, as ν is
nonincreasing, one has

`+ ≤ ν(0) = 1/2 ≤ `−.

We conclude that `− = ν(−∞) = 1 and `+ = ν(+∞) = 0.

The following classical inequality satisfied by the traveling profile will be required later.

Lemma 10. The traveling profile ν satisfies: ∀z ν′(z)+λν(z) ≥ 0, where λ is the smallest positive
root of (3.1).

Proof. We introduce ϕ(z) = −ν
′(z)
ν(z) . It is nonnegative, and it satisfies the following first-order

ODE with a source term(
ε2s2 − 1

) (
−ϕ′(z) + ϕ(z)2

)
+
(
1− ε2F ′(ν(z))

)
sϕ(z) =

F (ν(z))

ν(z)
.

Since F is concave, ϕ satisfies the differential inequality(
1− ε2s2

)
ϕ′(z) ≤

(
1− ε2s2

)
ϕ(z)2 −

(
1− ε2F ′(0)

)
sϕ(z) + F ′(0) .

The right-hand-side is the characteristic polynomial of the linearized equation (3.1). Moreover the
function ϕ verifies limz→−∞ ϕ(z) = 0. Hence a simple ODE argument shows that ∀z ϕ(z) ≤ λ.

9



3.4 Proof of Theorem 1.(c): Existence of weak traveling fronts of speed
s = ε−1 in the parabolic regime

The aim of this Section is to prove that in the parabolic regime ε2F ′(0) < 1, there still exists
traveling fronts in the limit case s = ε−1 but in the weak sense.

Proposition 11. Assume that ε2F ′(0) < 1. Then there exists a weak traveling front of speed
s = ε−1.

Proof. Let sn = ε−1 − 1/n for all n large enough so that sn ≥ s∗(ε). We know from the previous
Section that we can associate with the speed sn a smooth traveling front νn and that we can
assume, up to translation, that νn(0) = 1/2. Multiplying equation (1.7) by ν′n and integrating by
parts over R, one gets

sn
(
1− ε2F ′(0)

) ∫
R
ν′n(z)2dz ≤ sn

∫
R

(
1− ε2F ′

(
νn(z)

))
ν′n(z)2dz

= −
∫
R
F
(
νn(z)

)
ν′n(z)dz

= −
∫ 1

0

F (u)du.

Hence, as ε2F ′(0) < 1, the sequence (ν′n)n is bounded in L2(R) and one can assume, up to
extraction, that it admits a weak limit V∞ in L2(R). It follows that the sequence (νn)n converges
locally uniformly to ν∞(z) :=

∫ z
0
V∞(z′)dz′ + 1/2. Passing to the limit in (1.7), we get that this

function is a weak solution of

−
(
1− ε2F ′(ν∞(z))

)
sν′∞(z) = F (ν∞(z)) , z ∈ R ,

which ends the proof.

3.5 Proof of Theorem 2.(b): Existence of weak traveling fronts of speed
s = ε−1 in the hyperbolic regime

In this Section we investigate the existence of traveling fronts with critical speed s = ε−1 in the
hyperbolic regime ε2F ′(0) = 1.

Proof of Theorem 2. The function G(ρ) := ε2F (ρ) − ρ is concave, and vanishes when ρ = 0.
Furthermore, G(1) < 0 and G′(0) = ε2F ′(0) − 1 ≥ 0. We now distinguish between the two cases
ε2F ′(0) > 1 and ε2F ′(0) = 1.

1. First case: ε2F ′(0) > 1. As G′ is decreasing, there exists a unique θε ∈ (0, 1) such that G
vanishes.

2. Second case: ε2F ′(0) = 1. The only root of G is ρ = 0. In this case we set θε = 0.

For both cases, we have G′(ρ) < 0 for all ρ > θε since G is strictly concave and G(0) = G(θε) = 0.
Hence, ε2F ′(ρ) < 1 for all ρ > θε. Set ν the maximal solution of

ν′(z) =
εF (ν(z))

ε2F ′(ν(z))− 1
,

ν(0) =
1 + θε

2
> θε.

(3.7)

Let I be the (maximal) interval of definition of ν, with 0 ∈ I, and

z0 = sup{z ∈ I, ν(z) > θε}.
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1- Conclusion of the argument in the first case: ε2F ′(0) > 1.

Since θε > 0, we have necessarily z0 < +∞. From (3.7), ν is decreasing on (−∞, z0). Thus, we
have ν(z)→ θε as z → z−0 . Moreover, one easily gets ν(−∞) = 1.

We set ν(z0) = θε and we extend ν by 0 over (z0,∞). We observe that ν is a weak solution, in
the sense of distributions, of (

ε2F (ν)− ν
)′

= εF (ν) on R

since ε2F (0) = 0 and ε2F (θε) = θε.
Up to space shifting z − z0, we may assume that the discontinuity arises at z = 0.

Example: the case F (ρ) = ρ(1− ρ) and ε > 1. The traveling profile solves

ν′(z) =
εν(z)(1− ν(z))

ε2 − 1− 2ε2ν(z)
,

or equivalently

ν(z)ε
2−1 (1− ν(z))

ε2+1
= keεz .

The constant k is determined by the condition ν(0) = θε = 1 − ε−2. Finally the traveling profile
ν(z) satisfies the following implicit relation:

ν(z)ε
2−1 (1− ν(z))

1+ε2
=
(
1− ε−2

)ε2−1 (
ε−2
)ε2+1

eεz =
(
ε2 − 1

)ε2−1
eεz+2ε2 log ε2 . (3.8)

2- Conclusion of the argument in the second case: ε2F ′(0) = 1.

The difference here is that θε = 0. To conclude the proof as previously, we just need to check that
z0 is finite. We argue by contradiction. Assume z0 = +∞. Linearizing the r.h.s. of (3.7) near
ν = 0, we get

ν′(z) =
F ′(0)

εF ′′(0)
+ o(ν(z)) , as z → +∞ (3.9)

We get a contradiction because ε−1F ′(0)/F ′′(0) < 0.
Finally, we create a continuous front with the same extension idea as for the first case.

Example: the case F (ρ) = ρ(1− ρ) and ε = 1. The traveling profile reads (3.8):

ν(z) =
(

1− ez/2
)
+
.

3.6 Proof of Theorem 1.(d) and Theorem 2.(c): Existence of supersonic
traveling fronts s > ε−1

In this Section we investigate the existence of supersonic traveling fronts with speeds above the
maximal speed of propagation s > ε−1. These fronts are essentially driven by growth. The
existence of such ”unrealistic” fronts is motivated by the extreme case ε→ +∞ for which we have
formally ∂tρ = F (ρ) (1.3). There exist traveling fronts of arbitrary speed which are solutions to
−sν′ = F (ν).

Proposition 12. Given any speed s > ε−1 there exists a smooth traveling front ν(x − st) with
this speed.

11
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Figure 2: Supersonic traveling front in the phase plane (V, V ′) for the nonlinearity F (ρ) = ρ(1−ρ),
and parameters ε =

√
2, s = 1 > ε−1. Be aware of the time reversal ν(z) = V (−z), which is the

reason why V ′ ≥ 0. The red line represents the traveling profile, and the green line represents the
supersolution kF (v).

Proof. We sketch the proof. We give below the key arguments derived from phase plane analysis.
The same procedure as developped in Section 3.3 based on sub- and supersolutions could be
reproduced based on the following ingredients.

We learn from simple phase plane considerations associated to (1.7) that the situation is re-
versed in comparison to the classical Fisher-KPP case (or ε2F ′(0) < 1 and s ∈ [s∗(ε), ε−1)).
Namely the point (0, 0) is a saddle point (instead of a stable node) whereas (1, 0) is an unstable
node (instead of saddle point). This motivates ”time reversal”: V (z) = ν(−z). Equation (1.7)
becomes

(ε2s2 − 1)V ′′(z)−
(
ε2F ′ (V (z))− 1

)
sV ′(z) = F (V (z)) , z ∈ R .

We make the classical phase-plane transformation V ′ = P [31, 20]. We end up with the implicit
ODE with Dirichlet boundary conditions for P :

(ε2s2 − 1)P ′(v)−
(
ε2F ′ (v)− 1

)
s =

F (v)

P (v)
, P (0) = P (1) = 0 .

The unstable direction is given by P (v) = λv where λ is the positive root of

(ε2s2 − 1)λ−
(
ε2F ′ (0)− 1

)
s =

F ′(0)

λ
. (3.10)

Since F is concave we deduce that P (v) = λv is a supersolution as in Proposition 6. In fact,
denoting Q(v) = P (v)− λv we have

(ε2s2 − 1)Q′(v) = (ε2s2 − 1)(P ′(v)− λ) ≤ sε2 (F ′(v)− F ′(0)) +
F (v)

P (v)
− F ′(0)

λ
,

≤ F ′(0)v

(
1

P (v)
− 1

λv

)
≤ − F

′(0)

λP (v)
Q(v) .

Hence the trajectory leaving the saddle point (0, 0) in the phase plane (V, V ′) remains below the
line V ′ ≤ λV .
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On the other hand it is straightforward to check that kF (v) is a supersolution where k =
ε2s/(ε2s2 − 1). We denote R(v) = P (v)− kF (v). We have ks > 1 and

(ε2s2 − 1)R′(v) = (ε2s2 − 1)(P ′(v)− kF ′(v)) = ε2sF ′(v)− s+
F (v)

P (v)
− (ε2s2 − 1)kF ′(v)

= −s+
1

k
− R(v)

kP (v)
< − R(v)

kP (v)
.

We also show that initially (as v → 0) we have kF ′(0) > λ. This proves that R(v) ≤ 0 for all
v ∈ (0, 1). Indeed, we plug kF ′(0) in place of λ into (3.10) and we get

(ε2s2 − 1)kF ′(0)−
(
ε2F ′ (0)− 1

)
s = s >

1

k
=

F ′(0)

kF ′(0)
.

As a conclusion the trajectory leaving the saddle node at (0, 0) is trapped in the set {0 ≤
v ≤ 1 , 0 ≤ p ≤ kF (v)} (see Fig. 2). By the Poincaré-Bendixon Theorem it necessarily converges
to the stable node at (1, 0). This heteroclinic trajectory is the traveling front in the supersonic
case.

4 Linear stability of traveling front solutions

In this Section we investigate the linear stability of the traveling front having minimal speed
s = s∗(ε) in both the parabolic and the hyperbolic regime. We seek stability in some weighted
L2 space. The important matter here is to identify the weight eφ. The same weight shall be used
crucially for the nonlinear stability analysis (Section 5).

We recall that the minimal speed is given by

s∗(ε) =


2
√
F ′(0)

1 + ε2F ′(0)
if ε2F ′(0) < 1

ε−1 if ε2F ′(0) ≥ 1

The profile of the wave has the following properties in the case ε2F ′(0) < 1:

∀z ν(z) ≥ 0 , ∂zν(z) ≤ 0 , ∂zν(z) + λν(z) ≥ 0 ,

where the decay exponent λ is

λ =
s(1− ε2F ′(0))

2(1− ε2s2)
=

1 + ε2F ′(0)

1− ε2F ′(0)
.

We will use in this Section the formulation (1.3) of our system. The linearized system around
the stationary profile ν in the moving frame z = x− st reads (∂t − s∂z)u+ ∂z

(v
ε

)
= F ′(ν)u

ε(∂t − s∂z)v + ∂zu = −v
ε
.

(4.1)

Proposition 13. Let ε > 0. In the hyperbolic regime ε2F ′(0) ≥ 1 assume in addition that the
initial perturbation has the same support as the wave. There exists a function φε(z) such that the
minimal speed traveling front is linearly stable in the weighted L2(e2φε(z)dz) space. More precisely
the following Lyapunov identity holds true for solutions of the linear system (4.1),

d

dt

(
1

2

∫
R

(
|u|2 + |v|2

)
e2φε(z) dz

)
≤ 0 .
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Proof. We denote φ = φε for the sake of clarity. We multiply the first equation by ue2φ, and the
second equation by ve2φ, where φ is to be determined. We get

d

dt

(
1

2

∫
R
|u|2e2φ(z) dz

)
+
s

2

∫
R
|u|2∂ze2φ(z) dz +

∫
R
∂z

(v
ε

)
ue2φ(z) dz =

∫
R
F ′(ν)|u|2e2φ(z) dz ,

d

dt

(
1

2

∫
R
|v|2e2φ(z) dz

)
+
s

2

∫
R
|v|2∂ze2φ(z) dz +

∫
R
∂z

(u
ε

)
ve2φ(z) dz = − 1

ε2

∫
R
|v|2e2φ(z) dz .

Summing the two estimates we obtain

d

dt

(
1

2

∫
R

(
|u|2 + |v|2

)
e2φ(z) dz

)
+

∫
R

(s∂zφ(z)− F ′(ν)) |u|2e2φ(z) dz+
∫
R

(
s∂zφ(z) +

1

ε2

)
|v|2e2φ(z) dz−2

ε

∫
R

(∂zφ(z))uve2φ(z) dz = 0 .

We seek an energy dissipation estimate, see (4.3) below. Therefore we require that the last
quadratic form acting on (u, v) is nonnegative. This is guaranteed if ∂zφ ≥ 0 and the following
discriminant is nonpositive:

∆(z) =
4

ε2
(∂zφ(z))

2 − 4 (s∂zφ(z)− F ′(ν))

(
s∂zφ(z) +

1

ε2

)
=

4

ε2

((
1− ε2s2

)
(∂zφ(z))

2 − s
(
1− ε2F ′(ν)

)
∂zφ(z) + F ′(ν)

)
. (4.2)

The rest of the proof is devoted to finding such a weight φ(z) satisfying this sign condition. We
distinguish between the parabolic and the hyperbolic regime.

1- The parabolic regime.

In the case ε2F ′(0) < 1 we have ε2s2 < 1. Hence the optimal choice for ∂zφ is:

∂zφ(z) =
s
(
1− ε2F ′(ν)

)
2 (1− ε2s2)

= λ
1− ε2F ′(ν)

1− ε2F ′(0)
≥ 0 .

Notice that ∂zφ→ λ as z → +∞. We check that the discriminant is indeed nonpositive:

ε2∆(z) = −4
(
1− ε2s2

)
(∂zφ(z))

2
+ 4F ′(ν)

=
1

(1− ε2s2)

(
−s2

(
1 + ε2F ′(ν)

)2
+ 4F ′(ν)

)
=

1

(1− ε2F ′(0))
2

(
−4F ′(0)

(
1 + ε2F ′(ν)

)2
+ 4F ′(ν)

(
1 + ε2F ′(0)

)2)
=

−4

(1− ε2F ′(0))
2 (F ′(0)− F ′(ν))

(
1− ε4F ′(0)F ′(ν)

)
.

We have ∆(z) ≤ 0 since ∀z F ′(ν(z)) ≤ F ′(0) and ε2F ′(0) < 1. Since the quadratic form is
nonnegative, we may control it by a sum of squares. This is the purpose of the next computation.
We have∣∣∣∣2ε

∫
R

(∂zφ(z))uve2φ(z) dz

∣∣∣∣
≤
∫
R

(s∂zφ(z)− F ′(ν)−A(z)) |u|2e2φ(z) dz +

∫
R

(
s∂zφ(z) +

1

ε2
−A(z)

)
|v|2e2φ(z) dz ,

where A(z) is solution of

4 (s∂zφ(z)− F ′(ν)−A(z))

(
s∂zφ(z) +

1

ε2
−A(z)

)
=

4

ε2
(∂zφ(z))

2
.
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A straightforward computation gives

2A(z) =

(
2s∂zφ(z)− F ′(ν) +

1

ε2

)
−

((
F ′(ν) +

1

ε2

)2

+
4

ε2
(∂zφ(z))

2

)1/2

=
1− ε2F ′(ν)

ε2 (1− ε2s2)
− 1

ε2 (1− ε2s2)

((
1− ε2s2

)2 (
1 + ε2F ′(ν)

)2
+ ε2s2

(
1− ε2F ′(ν)

)2)1/2
=

1− ε2F ′(ν)

ε2 (1− ε2s2)

1−

((
1− ε2F ′(0)

1 + ε2F ′(0)

)4(
1 + ε2F ′(ν)

1− ε2F ′(ν)

)2

+
4ε2F ′(0)

(1 + ε2F ′(0))
2

)1/2


=
1− ε2F ′(ν)

ε2 (1− ε2s2)

1−

(
1 +

(
1− ε2F ′(0)

1 + ε2F ′(0)

)4(
1 + ε2F ′(ν)

1− ε2F ′(ν)

)2

−
(
1− ε2F ′(0)

)2
(1 + ε2F ′(0))

2

)1/2
 .

We clearly have A(z) ≥ 0 since

∀z 1 + ε2F ′(ν)

1− ε2F ′(ν)
≤ 1 + ε2F ′(0)

1− ε2F ′(0)
.

Finally we obtain in the case ε2F ′(0) < 1,

d

dt

(
1

2

∫
R

(
|u|2 + |v|2

)
e2φ(z) dz

)
+

∫
R
A(z)

(
|u|2 + |v|2

)
e2φ(z) dz ≤ 0 . (4.3)

2- The hyperbolic regime.

We assume for simplicity that the support of the traveling profile is Supp ν = (−∞, 0].
In the hyperbolic regime we have s = ε−1, so the discriminant equation (4.2) reduces to

∆(z) =
4

ε2
(
−s
(
1− ε2F ′(ν)

)
∂zφ(z) + F ′(ν)

)
.

We naturally choose

∂zφ(z) =
εF ′(ν)

1− ε2F ′(ν)
.

Within this choice for φ we get,

d

dt

(
1

2

∫
z≤0

(
|u|2 + |v|2

)
e2φ(z) dz

)
+

∫
z≤0

A(z)
(
ε2F ′(ν(z))u− v

)2
e2φ(z) dz = 0 ,

where the additional weight in the dissipation writes:

A(z) =
1

ε2 (1− ε2F ′(ν(z)))
.

In the case ε2F ′(0) > 1 we have 1 − ε2F ′(ν(z)) > 0 on Supp ν (see Section 3.5). Notice that
the monotonicity of φ may change on Supp ν since F ′(ν(z)) may change sign. We observe that
A(z) is uniformly bounded from below on Supp ν.

In the transition case ε2F ′(0) = 1, we have ∂zφ(z) → +∞ as z → 0−. We observe that
A(z)→ +∞ as z → 0− too.

Example: the case F (ρ) = ρ(1− ρ), and ε = 1. We can easily compute from Section 3.5

φ(z) = −z
2
− log

(
1− ez/2

)
.
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Remark 14 (Lack of coercivity). 1- The parabolic regime. We directly observe that A(z)→ 0
as z → +∞ in the Lyapunov identity (4.3). This corresponds to the lack of coercivity of the linear
operator. It has been clearly identified for the classical Fisher-KPP equation [23, 24]. This lack of
coercivity is a source of complication for the next question, i.e. nonlinear stability (see Section 5).
2- The hyperbolic regime. The situation is more degenerated here: the dissipation provides
information about the relaxation of v towards ε2F ′(ν)u only.

5 Nonlinear stability of traveling front solutions in the parabolic
regime ε2F ′(0) < 1

In this Section we investigate the stability of the traveling profile having minimal speed s = s∗(ε) in
the parabolic regime. We seek stability in the energy class. Energy methods have been successfully
applied to reaction-diffusion equations [23, 24, 43, 25]. We follow the strategy developped in [24]
for a simpler equation, namely the damped hyperbolic Fisher-KPP equation.

Before stating the theorem we give some useful notations. The perturbation is denoted by
u(t, z) = ρ(t, z)− ν(z) where z = x− st is the space variable in the moving frame. We also need
some weighted perturbation w = eφu, where φ is an explicit weight to be precised later (5.11).

Theorem 15. For all ε ∈
(

0, 1/
√
F ′(0)

)
there exists a constant c(ε) such that the following claim

holds true: let u0 be any compactly supported initial perturbation which satisfies

‖u0‖2H1(R) + ‖w0‖2H1(R) ≤ c(ε) ,

then there exists z0 ∈ R such that

sup
t>0

(
‖∂zu(t, ·)‖22 +

∫
z<z0

|u(t, z)|2 dz + ‖w(t, ·)‖2H1

)
≤ c(ε) ,

remains uniformly small for all time t > 0, and the perturbation is globally decaying in the following
sense: (

‖∂zu‖22 +

∫
z<z0

|u|2 dz + ‖∂zw‖22 +

∫
z>z0

e−φ(z)|w|2 dz
)
∈ L2(0,+∞) .

Remark 16. 1. The additional weight e−φ(z) in the last contribution (weighted L2 space) is
specific to the lack of coercivity in the energy estimates.

2. The constant c(ε) that we obtain degenerates as ε → 1/
√
F ′(0), due to the transition from

a parabolic to an hyperbolic regime.

3. We restrict ourselves to compactly supported initial perturbations u0 to justify all integration
by parts. Indeed the solution u(t, z) remains compactly supported for all t > 0 because of
the finite speed of propagation (see the kinetic formulation (2.1) and [15, Chapter 12]). The
result would be the same if we were assuming that u0 decays sufficiently fast at infinity.

Proof. We proceed in several steps.

1- Derivation of the energy estimates. The equation satisfied by the perturbation u writes

ε2
(
∂ttu− 2s∂tzu+ s2∂zzu

)
+
(
1− ε2F ′(ν + u)

)
(∂tu− s∂zu)− ∂zzu

+ ε2(F ′(ν + u)− F ′(ν))s∂zν = F (ν + u)− F (ν) . (5.1)

We write the nonlinearities as follows:

F ′(ν + u) = F ′(ν) +K1(z;u)u ,

F ′(ν + u)− F ′(ν) = F ′′(ν)u+K2(z;u)u2 ,

F (ν + u)− F (ν) = F ′(ν)u+K3(z;u)u2 .
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where the functions Ki are uniformly bounded in L∞(R). More precisely we have

K1(z;u) =

∫ 1

0

F ′′(ν+tu)dt , K2(z;u) =

∫ 1

0

(1−t)F ′′′(ν+tu)dt , K3(z;u) =

∫ 1

0

(1−t)F ′′(ν+tu)dt .

Thus we can decompose equation (5.1) into linear and nonlinear contributions:

ε2
(
∂ttu− 2s∂tzu+ s2∂zzu

)
+
(
1− ε2F ′(ν)

)
(∂tu− s∂zu)− ∂zzu+

(
sε2F ′′(ν)∂zν − F ′(ν)

)
u

= ε2K1(z;u)u (∂tu− s∂zu) +
(
K3(z;u)− sε2K2(z;u)∂zν

)
u2 . (5.2)

Testing equation (5.2) against ∂tu− s∂zu yields our first energy estimate (hyperbolic energy):

d

dt

{
ε2

2

∫
R
|∂tu− s∂zu|2 dz +

1

2

∫
R
|∂zu|2 dz +

1

2

∫
R

(
sε2F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz

}
+

∫
R

(
1− ε2F ′(ν)

)
|∂tu− s∂zu|2 +

s

2

∫
R
∂z
(
sε2F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz

= ε2
∫
R
K1(z;u)u |∂tu− s∂zu|2 dz +

∫
R

(
K3(z;u)− se2K2(z;u)∂zν

)
u2 (∂tu− s∂zu) dz . (5.3)

We are lacking coercivity with respect to H1 norm in the energy dissipation. Testing equation
(5.2) against u yields our second energy estimate (parabolic energy):

d

dt

{
ε2
∫
R
u (∂tu− s∂zu) dz +

1

2

∫
R

(
1− ε2F ′(ν)

)
|u|2 dz

}
− ε2

∫
R
|∂tu− s∂zu|2 dz +

∫
R
|∂zu|2 dz +

∫
R

(
sε2

2
F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz

= ε2
∫
R
K1(z;u)u2 (∂tu− s∂zu) dz +

∫
R

(
K3(z;u)− se2K2(z;u)∂zν

)
u3 dz . (5.4)

We introduce the following notations for the two energy contributions and the respective quadratic
dissipations (5.3),(5.4):

Eu1 (t) =
ε2

2

∫
R
|∂tu− s∂zu|2 dz +

1

2

∫
R
|∂zu|2 dz +

1

2

∫
R

(
sε2F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz ,

Eu2 (t) = ε2
∫
R
u (∂tu− s∂zu) dz +

1

2

∫
R

(
1− ε2F ′(ν)

)
|u|2 dz ,

Qu1 (t) =

∫
R

(
1− ε2F ′(ν)

)
|∂tu− s∂zu|2 +

s

2

∫
R
∂z
(
sε2F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz ,

Qu2 (t) = −ε2
∫
R
|∂tu− s∂z|2 dz +

∫
R
|∂zu|2 dz +

∫
R

(
sε2

2
F ′′(ν)∂zν − F ′(ν)

)
|u|2 dz .

The delicate issue is to control the zeroth-order terms. In particular we define the weights

A1(z) = sε2F ′′(ν)∂zν − F ′(ν) ,

A2(z) =
sε2

2
F ′′(ν)∂zν − F ′(ν) .

They change sign over R. More precisely we have

lim
z→−∞

A1(z) = lim
z→−∞

A2(z) = −F ′(1) > 0 ,

lim
z→+∞

A1(z) = lim
z→+∞

A2(z) = −F ′(0) < 0 .
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To circumvent this issue we introduce w(t, z) = eφ(z)u(t, z) as in [24] and the previous Section
4, where φ(z) is a weight to be determined later (5.10). The new function w(t, z) satisfies the
following equation:

ε2∂ttw − 2ε2s∂tzw +
(
2ε2s∂zφ+ 1− ε2F ′(ν)

)
∂tw +

(
−s
(
1− ε2F ′(ν)

)
− 2(ε2s2 − 1)∂zφ

)
∂zw

+ (ε2s2− 1)∂zzw+
(
s
(
1− ε2F ′(ν)

)
∂zφ+ (ε2s2 − 1)

(
−∂zzφ+ |∂zφ|2

)
+ ε2sF ′′(ν)∂zν − F ′(ν)

)
w

= ε2K1(z;u)u (∂tw − s∂zw) +
(
K3(z;u)− ε2sK2(z;u)∂zν + ε2sK1(z;u)∂zφ

)
uw . (5.5)

We denote the prefactors of ∂tw, ∂zw and w as A3, A4 and A5 respectively:

A3(z) = 2ε2s∂zφ+ 1− ε2F ′(ν) ,

A4(z) = −s
(
1− ε2F ′(ν)

)
− 2(ε2s2 − 1)∂zφ , (5.6)

A5(z) = s
(
1− ε2F ′(ν)

)
∂zφ+ (ε2s2 − 1)

(
−∂zzφ+ |∂zφ|2

)
+ ε2sF ′′(ν)∂zν − F ′(ν) .

Testing (5.5) against ∂tw, we obtain our third energy estimate:

d

dt

{
ε2

2

∫
R
|∂tw|2 dz +

1− ε2s2

2

∫
R
|∂zw|2 dz +

1

2

∫
R
A5(z)|w|2 dz

}
+

∫
R
A3(z)|∂tw|2 dz +

∫
R
A4(z)∂tw∂zw dz

= ε2
∫
R
K1(z;u)u

(
|∂tw|2 − s∂tw∂zw

)
dz+

∫
R

(
K3(z;u)− ε2sK2(z;u)∂zν + ε2sK1(z;u)∂zφ

)
uw∂tw dz ,

Testing (5.5) against w we obtain our last energy estimate:

d

dt

{
ε2
∫
R
w∂tw dz +

1

2

∫
R
A3(z)|w|2 dz

}
− ε2

∫
R
|∂tw|2 dz + (1− ε2s2)

∫
R
|∂zw|2 dz + 2sε2

∫
R
∂tw∂zw dz +

∫
R

(
A5(z)− ∂zA4(z)

2

)
|w|2 dz

=

∫
R

(
K3(z;u)− ε2sK2(z;u)∂zν + ε2sK1(z;u)∂zφ

)
uw2 dz+

∫
R
ε2K1(z;u)uw (∂tw − s∂zw) dz ,

We introduce again useful notations for the two energy contributions and the associated quadratic
dissipations:

Ew1 (t) =
ε2

2

∫
R
|∂tw|2 dz +

1− ε2s2

2

∫
R
|∂zw|2 dz +

1

2

∫
R
A5(z)|w|2 dz , (5.7)

Ew2 (t) = ε2
∫
R
w∂tw dz +

1

2

∫
R
A3(z)|w|2 dz , (5.8)

Qw1 (t) =

∫
R
A3(z)|∂tw|2 dz +

∫
R
A4(z)∂tw∂zw dz .

Qw2 (t) = −ε2
∫
R
|∂tw|2 dz + (1− ε2s2)

∫
R
|∂zw|2 dz + 2ε2s

∫
R
∂tw∂zw dz +

∫
R

(
A5(z)− ∂zA4(z)

2

)
|w|2 dz .

(5.9)

To determine φ(z) we examinate (5.7)–(5.8). We first require the natural condition ∂zφ(z) ≥ 0.
This clearly ensures A3(z) ≥ 1−ε2F ′(0). We examinate the condition A5(z)− 1

2∂zA4(z) ≥ 0 (5.9)
in order to fully determine the weight φ(z):

A5(z)− ∂zA4(z)

2
= s

(
1− ε2F ′(ν)

)
∂zφ+ (ε2s2 − 1)

(
−∂zzφ+ |∂zφ|2

)
+ ε2sF ′′(ν)∂zν − F ′(ν)

− 1

2
ε2sF ′′(ν)∂zν + (ε2s2 − 1)∂zzφ

= (ε2s2 − 1) |∂zφ|2 + s
(
1− ε2F ′(ν)

)
∂zφ+

1

2
ε2sF ′′(ν)∂zν − F ′(ν) .
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This is a second-order equation in the variable ∂zφ. Maximization of this quantity is achieved
when

∂zφ =
s
(
1− ε2F ′(ν)

)
2(1− ε2s2)

≥ 0 . (5.10)

We notice that this is equivalent to setting A4(z) = 0 (5.6). Then we obtain

A5(z) =
s2
(
1− ε2F ′(ν)

)2
4(1− ε2s2)

+
1

2
ε2sF ′′(ν)∂zν − F ′(ν)

=
1

4(1− ε2s2)

(
s2
(
1 + ε2F ′(ν)

)2 − 4F ′(ν)
)

+
1

2
ε2sF ′′(ν)∂zν

=
1

4 (1− ε2F ′(0))
2

(
4F ′(0)

(
1 + ε2F ′(ν)

)2 − 4F ′(ν)
(
1 + ε2F ′(0)

)2)
+

1

2
ε2sF ′′(ν)∂zν

=
1

(1− ε2F ′(0))
2 (F ′(0)− F ′(ν))

(
1− ε4F ′(0)F ′(ν)

)
+

1

2
ε2sF ′′(ν)∂zν .

We check that A5(z) ≥ 0 since ∀z F ′(ν(z)) ≤ F ′(0), ε2F ′(0) < 1, ∀z F ′′(ν(z)) ≤ 0 and
∀z ∂z ν(z) ≤ 0.

We recall that the exponential decay of ν at +∞ is given by the eigenvalue λ > 0, where

λ =
s(1− ε2F ′(0))

2(1− ε2s2)
.

Therefore we can rewrite

∂zφ = λ
1− ε2F ′(ν)

1− ε2F ′(0)
. (5.11)

Remark 17. As far as we are concerned with linear stability, the energies Ew1 and Ew2 contain
enough information. However proving nonlinear stability requires an additional control of u in L∞

which can be obtained using Eu1 and Eu2 [24].

2- Combination of the energy estimates. We first examinate the energies Eu1 and Eu2 . We
clearly have

Eu2 (t) ≥ − ε4

1− ε2F ′(0)
‖∂tu− s∂zu‖22 −

1− ε2F ′(0)

4
‖u‖22 +

1− ε2F ′(0)

2
‖u‖22

≥ − ε4

1− ε2F ′(0)
‖∂tu− s∂zu‖22 +

1− ε2F ′(0)

4
‖u‖22

We set

δ =
1− ε2F ′(0)

2ε2
.

We have on the one hand

Eu1 (t) + δEu2 (t) ≥ 1

2
‖∂zu‖22 dz +

∫
R
A6(z)|u|2 dz ,

where A6(z) is defined as

A6(z) =
1

2
A1(z) + δ

1− ε2F ′(0)

4
.

We have on the other hand,

Qu1 (t) + δQu2 (t) ≥ 1− ε2F ′(0)

2
‖∂tu− s∂zu‖22 + δ‖∂zu‖22 +

∫
R
A7(z)|u|2 dz ,
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where A7(z) is defined as

A7(z) =
s

2
∂z
(
sε2F ′′(ν)∂zν − F ′(ν)

)
+ δA2(z) .

We have both limz→−∞A6(z) > 0 and limz→−∞A7(z) > 0. Accordingly there exists α > 0
and z0 ∈ R such that

∀z < z0 min(A6(z), A7(z)) > α .

In order to control the zeroth-order terms over (z0,+∞) we shall use the last two energy
estimates. First we observe that ∀z > z0 |u(z)| = |e−φ(z)w(z)| ≤ e−φ(z0)|w(z)| since φ is increasing.
We set φ(z0) = 0 without loss of generality. This determines completely φ together with the
condition (5.10). We have

Eu1 (t) + δEu2 (t) ≥ 1

2
‖∂zu‖22 dz + α

∫
z<z0

|u|2 dz −
∥∥A6e

−2φ1z>z0
∥∥
∞

∫
z>z0

|w|2 dz ,

Qu1 (t) + δQu2 (t) ≥ 1− ε2F ′(0)

2
‖∂tu− s∂zu‖22 + δ‖∂zu‖22 + α

∫
z<z0

|u|2 dz −
∥∥∥∥A7e

−2φ

A5
1z>z0

∥∥∥∥
∞

∫
z>z0

A5(z)|w|2 dz .

Lemma 18. We have
A7e

−2φ

A5
∈ L∞(z0,+∞) and

e−φ

A5
∈ L∞(z0,+∞).

Proof. The first claim is clearly a consequence of the second claim since A7e
−φ ∈ L∞(z0,+∞).

First we have

F ′(0)− F ′(ν) ≥
(

inf
[0,1]

(−F ′′)
)
ν = αν ,

where α > 0 is the coercivity constant of −F (1.2). As a consequence, A5 ≥
(

(1+ε2F ′(0))α
1−ε2F ′(0)

)
ν.

Second we recall ∂zν + λν ≥ 0 (Lemma 10), so that ∀z > z0, ν(z) ≥ ν(z0)e−λ(z−z0). Finally we
have ∀z, ∂zφ ≥ λ (5.11), thus

∀z > z0, e−φ(z) ≤ e−φ(z0)e−λ(z−z0) ≤ e−φ(z0)

ν(z0)
ν(z) ≤ e−φ(z0)

ν(z0)

(
1− ε2F ′(0)

(1 + ε2F ′(0))α

)
A5(z) .

We now focus on the second series of energy estimates. We clearly have

Ew2 (t) ≥ − ε4

1− ε2F ′(0)
‖∂tw‖22 −

1− ε2F ′(0)

4
‖w‖22 +

1− ε2F ′(0)

2
‖w‖22

≥ − ε4

1− ε2F ′(0)
‖∂tw‖22 +

1− ε2F ′(0)

4
‖w‖22 ,

and

Qw2 (t) ≥ −ε2‖∂tw‖22 + (1− ε2s2)‖∂zw‖22 −
2ε4s2

1− ε2s2
‖∂tw‖22 −

1− ε2s2

2
‖∂zw‖22 +

∫
R
A5(z)|w|2 dz

≥ −ε2 1 + ε2s2

1− ε2s2
‖∂tw‖22 +

1− ε2s2

2
‖∂zw‖22 +

∥∥∥∥e−φA5
1z>z0

∥∥∥∥−1
∞

∫
z>z0

e−φ|w|2 dz .

We set

δ′ =
1− ε2F ′(0)

2ε2
· 1− ε2s2

1 + ε2s2
< δ .

We have on the one hand

Ew1 (t) + δ′Ew2 (t) ≥ 1− ε2s2

2
‖∂zw‖22 dz +

∫
R
A8(z)|w|2 dz ,
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where A8(z) is defined as

A8(z) =
1

2
A5(z) + δ′

1− ε2F ′(0)

4
≥ δ′ 1− ε

2F ′(0)

4
.

We have on the other hand,

Qw1 (t) + δ′Qw2 (t) ≥ 1− ε2F ′(0)

2
‖∂tw‖22 + δ′

1− ε2s2

2
‖∂zw‖22 + δ′

∥∥∥∥e−φA5
1z>z0

∥∥∥∥−1
∞

∫
z>z0

h|w|2 dz .

Combining all these estimates, we define E(t) = Ew1 (t) + δ′Ew2 (t) + δ′′ (Eu1 (t) + δEu2 (t)) and
Q(t) = Qw1 (t) + δ′Qw2 (t) + δ′′ (Qu1 (t) + δQu2 (t)), where δ′′ > 0 is defined such as the following
condition holds true

δ′′ < δ′min

(
1− ε2F ′(0)

4

∥∥A6e
−2φ1z>z0

∥∥−1
∞ ,

∥∥∥∥A7e
−2φ

A5
1z>z0

∥∥∥∥−1
∞

)
.

finally obtain our main estimate,

d

dt
E(t) +Q(t) ≤ O

(∫
R
|u||∂tu− s∂zu|2 dz +

∫
R
|u|3 dz

)
+O

(∫
R
e−φ|w||∂tw|2 dz +

∫
R
e−φ|w||∂zw|2 dz +

∫
R
e−φ|w|3 dz

)
, (5.12)

where

E(t) ≥ O
(
‖∂zu‖22 +

∫
z<z0

|u|2 dz + ‖∂zw‖22 + ‖w‖22
)
,

Q(t) ≥ O
(
‖∂t − s∂zu‖22 + ‖∂zu‖22 +

∫
z<z0

|u|2 dz + ‖∂tw‖22 + ‖∂zw‖22 +

∫
z>z0

e−φ|w|2 dz
)
.

3- Control of the nonlinear contributions. Our goal is to control the size of the perturbation
u in L∞. For this purpose we use the embeddings of H1(R) into L∞(R) and L4(R):

‖u‖∞ ≤ C‖u‖1/22 ‖∂zu‖
1/2
2 ,

‖u‖4 ≤ C‖u‖3/42 ‖∂zu‖
1/4
2 .

We examinate successively the nonlinear contributions. We recall u = e−φw. First we have∫
R
|u||∂tu− s∂zu|2 dz ≤ ‖u‖∞‖∂t − s∂zu‖22

≤ O
(
E(t)1/2Q(t)

)
,

and similar estimates can be derived for all the contributions in the r.h.s. of (5.12) except for the
last one. Second we have∫

R
e−φ|w|3 dz =

∫
z<z0

e−φ|w|3 dz +

∫
z>z0

e−φ|w|3 dz

≤ ‖u‖L∞(−∞,z0)‖w‖
2
L2(−∞,z0) + ‖e−φ/2w‖2L4(z0,+∞)‖w‖L2(z0,+∞)

≤ C‖u‖1/2L2(−∞,z0)‖∂zu‖
1/2
L2(−∞,z0)‖w‖

2
L2(−∞,z0)

+ C‖e−φ/2w‖3/2L2(z0,+∞)

∥∥∥∂z (e−φ/2w)∥∥∥1/2
L2(z0,+∞)

‖w‖L2(z0,+∞) .
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We have

‖w‖2L2(−∞,z0) ≤ ‖u‖
2
L2(−∞,z0) ,

‖e−φ/2w‖2L2(z0,+∞) =

∫
z>z0

e−φ|w|2 dz ,∥∥∥∂z (e−φ/2w)∥∥∥2
L2(z0,+∞)

≤ 2

∫
z>z0

(
e−φ|∂zw|2 +

1

4
|∂zφ|2e−φ|w|2

)
dz ≤ 2

∫
z>z0

|∂zw|2 dz + C

∫
z>z0

e−φ|w|2 dz .

Consequently we obtain ∫
R
e−φ|w|3 dz ≤ O

(
E(t)1/2Q(t)

)
.

Finally we get
d

dt
E(t) +Q(t) ≤ O

(
E(t)1/2Q(t)

)
.

This estimate ensures that the energy is nonincreasing provided that it is initially small enough.
Indeed there exists a constant C such that d

dtE(t) +Q(t) ≤ CE(t)1/2Q(t). We set c = C−2/2. If
initially E0 ≤ c then the previous differential inequality guarantees that E(t) is decaying and re-
mains below the level c. Therefore E(t) is positive decaying, and the dissipation Q(t) is integrable.
This concludes the proof of Theorem 15.
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