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What | like to (try to) do ...

— Study qualitatively and quantitatively models from physics and biology.

— Accent is put on nonlocal models, which have become more and more
important and remain very difficult to study.

— Try to design and/or expand flexible methods for this kind of problems.

Of course, this a very general (and too big of a) deal. In the past few years, | have
worked on ...

© Progagation phenomena in nonlocal models from ecology: Bramson
corrections, accelerations.

© Trend to equilibrium and scaling limits in kinetic theory.
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Propagation in nonlocal reaction-diffusion models

Propagation in nonlocal reaction-diffusion models
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Propagation in nonlocal reaction-diffusion models

Propagation in nonlocal reaction-diffusion models

1 - Bramson delay in the nonlocal Fisher-KPP equation
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The Bramson delay for KPP
The logarithmic delay for Fisher-KPP

The most historical reaction-diffusion equation for population dynamics is ...

U = U + u (1l —u),
U(O,X) = Up 02

o 15 20

: spage
... because it is known to exhibit front propagation since Fisher, KPP,
Aronson-Weinberger, Fife-McLeod...

e With probabilistic techniques, Bramson ('78, '83) showed that if ug is
compactly supported, the front of v is located at

3
X(t) =2t - 5|nt+so,
where sq is a shift depending only on wg.

@ See 2t as the position of a traveling wave, and 2 In t as the delay due to the

fact that the initial condition ug is compactly supported, so that the solution
lags behind the traveling wave.
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The Bramson delay for KPP
The Hamel Nolen Roquejoffre Ryzhik strategy

These proofs have been simplified in recent years by Roberts (probabilistic
approach) and Hamel-Nolen-Ryzhik-Roquejoffre (12, '13).

Main strategy : Linearised problem with a Dirichlet condition at well chosen
spots to create sub- and super- solutions.

1
1
1
1
1
1
1
|
®

2t—3In(1+1t) 2t—3In(1+t)+1 2t -2

Needs: comparison principles, precise quantitative estimates.
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The non-local Fisher-KPP equation

A model with nonlocal competition

Consider a situation for which the competition (e.g. for resources) is nonlocal,
with a kernel ®.

Uy = Uy + u(l— P xu),
u(0,x) = ug
where
/ d(x)dx =1, and D(x)=P(—x) for all x € R,
R
such that
A L+ [x]) 7" < @(x) < Ap(L+ Ix]) ",
for all x € R, with some positive constants r € (1,00) and Ay > 0.

Known: Propagation in a weak sense at speed 2 (Hamel-Ryzhik), uniform in
time L* bound, non easy behaviour at the back (wave trains ...), steady states
and travelling waves (sometimes!).

No comparison and maximum principles available.

References. Hamel-Ryzhik ('14), Berestycki-Nadin-Perthame-Ryzhik ('09).
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Logarithmic delay for the non-local Fisher-KPP equation

Question: Is the Bramson correction also true here and if yes, how to prove it?
Theorem (B., Henderson, Ryzhik ('17))
Take ug compactly supported and & =< | -|~".

© If r > 3, then the solution u propagates with the —% In(t) logarithmic delay.

® If r = 3, then the solution u propagates with a larger logarithmic delay
between —5S, In(t) and —sg In(t).

3—r 3—r

©® Ifr € (1,3), then the delay is algebraic between cgt T and Cyt 1.

Elements of proof:
@ A local-in-time Harnack inequality of the form

17% 1 at—&-M
u(T,x+y) < Cllulljwc(je, 7yxr (T, x)p e

to estimate

®xuSIn (M),

o Adapt the H-N-R-R strategy to the local equation with a Gompertz type
nonlinearity.
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The non-local Fisher-KPP equation

Heuristics for the exponent 1+r

12t — d(t)

bounded below

dxu(t,x) > (e(t) +d(t)=" for x € (2t — d(t),2t + e(t))

(e(t) +d()" = d'(t)  e(t)* > 4td(t)
d(t)

@ Since e(t) = o(t), we get lims_, 4 —) = 0. This gives, for t large,

d(t) Se(t) " <t Td(t)T =  d(t) < tiv.

~

@ We deduce also e(t) > ti+.
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The ron-local Fisher KPP equation
Conclusions and related topics
> New results for nonlocal KPP © |

> Keep in mind the local-in-time Harnack inequality for later ... ©

> This lead to study more precisely travelling waves and delay for ...

w=umtu(1=4( (%)),

u(0, x) = up

Theorem (B., Henderson ('21))

@ If r > 3, then the delay is % log t.
© If r =3, then the delay is (1+ 3+/1+ 4A) log t.
© Ifr € (1,3), then the delay is 0,ATH t%, with ©, = 1(0), where 1) solves

W=ﬁ—wmﬁwh—ﬁw

¢ ((L+n) = (1+4) 7(”') S
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The non-local Fisher-KPP equation

Propagation in nonlocal reaction-diffusion models

2 - Cane toads equation and related topics
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The non-local Fisher-KPP equation

In short...

o We will discuss non-local reaction-diffusion-mutation models inspired by
evolution in cane toads populations in Australia.

@ Important feature : the propagation is actively influenced by a microscopic
structure of the population : the leg-length/motility.

e Aim: We seek a precise description of the propagation, in particular,
estimates of finite or infinite speeds of propagation.
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The non-local Fisher-KPP equation

Evolution of dispersal in cane toads populations (e.g.)

>50 kmiyr

4550

15's|
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QUEENSLAND

SOUTH AUSTRALIA

© Speed increased by 5.

@ At the edge, faster toads in
majority.

NEW SOUTHWALES

*}«}

We need models with both space and dispersion variables.

© Spatial sorting : Dynamic
selection of traits along the
invasion.

Reference. M. Urban et al (2008).
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The non-local Fisher-KPP equation

Data of acceleration

Data from Urban et al. (Am. Nat. 2008): 1.63 + 0.13.
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Figure: Position of the front with years - Section Gordonvale-Timber Creek, for which
spatial sorting is presumably the main effect.

Reference. M. Urban et al (2008).
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The cane toads equation

Modelling the cane toads invasion

t € RT: time, x € R: space variable, 0 € ©: dispersal ability.

mutations, reproduction rate.
ne = Ony, + rangg +rn(l—p), (t,x,0) eRT xR x O,
= Jgn(t,x,0)do", (t,x) e RT x R.
Neumann boundary conditions in © := [Q,ﬂ C (0, q].

Crucial difference with standard Fisher - KPP:

No full maximum/comparison principles available

References. Desvillettes et al. ('04), Champagnat et al. ('07), Bénichou et al. ('12)
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Propagation for the Cauchy problem with bounded traits

Theorem (B., Henderson, Ryzhik ('16))
Assume that © is bounded and ny ~ 1|_ ojxe- Then there exists mq such that

for all ¢ € (0, mg), there is a positive constant C. such that

liminf inf n(t,x) > mg — ¢,
t—=00 x<c.t— 53— log(t)—Ce

lim sup sup n(t,x) <e.
t=00  x>c, t— 53— log(t)+C:

it — 53 log(t) + C

Xy

See also. B. - Calvez ('14) (travelling waves).
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Acceleration result: local case
From now on © in unbounded: © = [#, c0). Consider first the local cane toads

counterpart:
ne = Ony + rangg + rn(1 —n)

Theorem (B., Henderson, Ryzhik ('15))

Let n the unique solution of the LOCAL cane toads equation. Fix any constant
m € (0,1).

im max{x € R: 30 € ©,n(t, x,0) = m} _ ﬂral/“.
t—o0 f3/2 3

Proof hinges on: linearized equation and comparison principle (NOT available
for non-local problem)

See also. Berestycki et al. ('15) : same result with probability techniques.
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The cane toads equation

The trajectories

The only natural scaling to make in the linearised cane toads equation is

t x 0 € 2 € 2 € €
(t,x,G)H(E,m,g> = ewy = 0wy, + e wjy + we.

Hopf-Cole transformation w® = exp (—%5), so that
0 + 0105 + |051? + 1 = e85, + 05,
and obtain, in the formal limit as € — 0, the Hamilton-Jacobi equation

@1 + 0lox]® + o> +1=0.

We obtain...
> an explicit formula for ¢,

1
p(t,x,0) = 7 (0+ Z(x, 0)°) —t,  where Z3 +30Z +3x = 0.

> explicit Lagrangian trajectories.

Reference. B. et. al. 2012.
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The cane toads equation

Upper and lower bounds

Upper bound: explicit super-solution (somewhat miraculously)

C(a)e!tTm L

> Take an optimal Lagrangian trajectory
given by the HJ equation,

> Slide a suitable bump over this trajectory,

> Use “time-dependent” Dirichlet principal
eigenelements to maintain enough mass in
the bump.
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The cane toads equation

Acceleration result for the nonlocal equation

Theorem (B., Henderson, Ryzhik ('15))

Let u the unique solution of the cane toads equation. Fix any constant m € (0,1).

ra*/* < limsup max{x R ;Z(t’X) =m < ﬂrozl/‘l.
3v/3V3 t—o00 t 3

Not sharp in two ways:

@ Only limsup : comes from proof by contradiction argument
4 8
° - —

~ .16 : can (should?) not follow previous optimal trajectories !
37 335 ( ) p P )

Improved later by Calvez et al. refining the trajectories to take into account the
nonlinearity: the nonlocal nonlinearity slows down the propagation!

See also. Berestycki et al. ('15) : propagation in a modified cane toads model with a windowed
non-linearity.

Emeric Bouin (Université Paris-Dauphine)
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A model with a mortality trade-off

We take into account a penalization of very large traits on the
reproduction rate (via a mortality trade-off).

t € RT: time, x € R: space variable, 0 € ©: dispersal ability.
ne = Ony, + rangg +m (1 —m(0) —p), (t,x,0) ERT xR x O,
p(t.x) = [on(t,x,0")do’, (t,x) e RT x R.
with Neumann boundary conditions in 6 € © := [0, +00) C R

m(0) = 0, m is increasing, . |iT m(0) = +oo.
— 400

See also. Chan et al ('15)

Emeric Bouin (Université Paris-Dauphine) Soutenance d'habilitation 22/2/22 - 2pm 21/48



The cane toads equation with mortality trade-off

The spreading result

Denote by v the principal Neumann eigenvalue of aQgg + (1 — m)Q.
Theorem (B., Chan, Henderson, Kim ('17))

® Yo <0 == Extinction
® Yoo >0 = Propagation

> . lim # >0 == Finite speed of propagation, (explicit speed,
—r+oo
travelling waves, linear spreading).

m(60)

> T2 N\« 0 == Acceleration. There exist a, a such that,
6—+oc0
liminf inf  p(t,x) >0 and lim sup n(t,x,-)=0.
t=00 x<an(t)3/2 t=oo x>an(t)3/2

where fon(t) /m(s)ds = t.

Emeric Bouin (Université Paris-Dauphine)
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. . 1 2
Numerics with m ~ 0P, p = 3 P=3

Theorem: p < 1 = Acceleration regime: we have 7)(t) ~ Ctz%, and thus the
Cauchy problem spreads at t205

Figure: Cauchy problem at times (from top to bottom) t = 10, t = 30, t = 50. Left
column: p = 1. Right column: p = 2. Propagation at a super-linear rate.
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The cane toads equation with mortality trade-off

Numerics with m~ 0P, p=1, p= %

3

Theorem: p > 1 — Linear regime : travelling wave solutions and the Cauchy
problem spreads linearly.

s
5

]

50 100 150 EN 250 an
50 100 150 £ 20 a0
50 00 130 n 250 an

0

] 0

0

0

Figure: Cauchy problem at times t = 10, t = 30, t = 50. Left column: p = 1. Right
column: p = %. Propagation at a linear rate.
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Upper and lower bounds

Upper bound: Li-Yau estimates. The Lagrangian

¢= inf /t |41 + @ +m(2Zz) | ds
Z2(0)=(y,n),Z(t)=(x,0),zeco*([0,t]) | Jo \ 422 4 '

allows to estimate from above and gives for 8 < n(t),

ugexp{C —%}

The Hamilton-Jacobi solution is not necessarily a supersolution!
Lower bound: the moving ball technique.

0

#Step 2

. Main difference with standard toads:

() Explicit trajectories not available,

taking a reasonable path is fine.

Reference. P. Li, S.T. Yau, (1986).
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The cane toads equation with mortality trade-off

Perspectives and related topics

> We got quantitative estimates on acceleration phenomena appearing in
biology. More information on the (flattening) profiles?

> Related but different, we got with Coville and Legendre quantitative
acceleration results (rates and flattening) on

b= P.V. (/R[u(t,y) ()| (x — y) dy) + P (1= u),

where J is a jump operator with a fat-tailed measure J: J(z) ~ W%

Theorem (B., Coville, Legendre ('21))
Assume that 1
1+ ——70-.
p<l+ 2s—1

Then for any X € (0,1), the level line x)(t) accelerates with the following rate,

B
X)\(t) = t2(B-1),
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Scaling limits and hypocoercivity in kinetic theory
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Introduction

In short...

o We will talk about kinetic theory. More precisely, long time behaviour of
linear kinetic equations coming originally from physics but that have now
plenty of applications.

@ Schematically, imagine that we observe a density of particules that "run"
with some velocity, and "reorientate" due to internal processes or interaction
with the environment.

@ The specificity of the models we look at is that particules ...
© will not be confined in space ©,

@ will change their velocity to a high velocity with a "large" probability.
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Introduction

An example: the run and tumble process of E. Coli.

Persistent motion, with two phases,
alternately:

— straight run (deterministic),
X=V,

— change of velocity (random).
Run:

Every T (Poissonian time), random
Tumble: *‘ choice of V following a density M.

The main equation of this process is a kinetic equation.

Of +v -V, f = %Ad [F(VIYM(v) — F(v)M(V')] dv'

Free transport Reorientation
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The models at hand

Density of particules 7(t, x, v): time t € RT, position x € R? and velocity v € R¢.
Of +v -V, f =Lf,
F(0,,) = F"

Three types of reorientation operators:
o the generalized Fokker-Planck

Lf=V, (MV,(M7'f)),
@ the linear Boltzmann operator, or scattering collision operator
£f = [ B W) MO) — £ M o'
o the fractional Fokker-Planck operator of exponent s € (0, 2).
LF=AZf+V, (EF),

All satisfy

Ker £ = Span(M) ‘
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Introduction

Two crucial parameters...

First one: M decays algebraically with an exponent a.
Vv eR?), M(v)=cylv] 9" where |[v]=(1+]|v[?)z.
Second one: The operator £ looses a weight .

o Weighted coercivity inequality

~Re(to by Ao = ([ )l1av ) m 2

Lz(M‘ﬁM‘l).

o Write formally as B[f] — v(v) f and define —3 as the exponent at infinity of
the function v.

Fokker-Planck Scattering Levy-Fokker-Planck
Brp =2 [b(v, V) M(V')dv' ~ |v|~Pse BLrp =5 —
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Introduction

Scaling limits and hypocoercivity in kinetic theory

1- Scaling limits
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Introduction

Fractional limit, of not fractional limit, that is the question!

Claim: Take an initial data " € L2(M~ldxdv) and rescale space and time:
0(e)0:fe +ev - Vif. = LF.

Formally,
f. — Mp.

What we want to do:

— Find the relevant time change 6 such that p satisfies a proper limit equation.

— Study quantitatively the macroscopic limit e — 0. Provide rates of
convergence and explicit constants.

— Have a unified approach (as much as possible...) working for a wide type of
L's.

Emeric Bouin (Université Paris-Dauphine) Soutenance d'habilitation 22/2/22 - 2pm 33/48



A result on the macroscopic limit

Existing works ...

o Take a Gaussian M and a scattering operator. Then
O(s) ~?| (and x~e?t)
and leads to a diffusion equation for p:

Orp = V- (AVxp).

Larsen—Keller'74, Degond—Goudon—Poupaud’00.

@ Roughly, if M is a power law and has enough moments the limit is still
diffusive. If not, the diffusion matrix A is infinite!

@ More precisely Mellet, Mischler and Mouhot considered

Lf(v) = » [F(VIM(v) — F(V)M(V)] [v] P v/ P dvav’

with 8> 0 and @ € (0,2 + 3). Then

_a+tB

¢
(c) = 5= and Orp = KAZ p.

@ Result reproved with different methods : Mellet'10 (moment method), Ben
Abdallah—Mellet—Puel'11 (modified Hilbert expansion).
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A result on the macroscopic limit

Fokker-Planck, around Puel et al. and Fournier et al.

New activity from mid-2010s on around M. Puel & collaborators and around
Fournier and Tardif with probabilistic methods. Take

Lf(v) =V, (MVV (&))

@ Case v > 4 in Nasreddine—Puel'15 (standard diffusion),

o Critical case & = 4 in Cattiaux—Nasreddine—Puel'19 (standard diffusion with
time scaling £2|In¢|) by probabilistic method

e Case a € (0,4) in dimension d = 1 (fractional diffusion) in Lebeau—Puel'19 by
PDE method and the study of a spectral problem reminiscent of
Ellis—Pinsky'75 seminal work,

@ Case o € (0,4) in dimension d = 1 in Fournier-Tardif '19 and then dimension
d > 2 treated in Fournier-Tardif '20 (fractional diffusion).

(and  x~e 1)
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A result on the macroscopic limit

Scaling function and diffusion coefficient

Define the diffusion exponent

2 when a € [2+ 3, +o0]
ng(avﬂ) = ?_—:__B Whena€[0,2+6)7

sy

and the scaling function

£ when a € (=8, 4] \ {0,2 + 5},
¢ _
o(e) = e%|Ine]  when a =2+ 4,
¢

—_— when o = 0,
|Inel

Note that the threshold o = 2 + 3 between standard and fractional diffusion
corresponds to whether or not || “?M has finite variance.

Emeric Bouin (Université Paris-Dauphine)
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The abstract result

Theorem (B., Mouhot '20)

Take a weak solution f € L°([0,400); L2 ,(M™1))
with initially, say,
£

|00 ~>H_ﬁ <0 |

sIi_r}n0 r-(0,-) := r(0,-) in H=S(R?).

)

fe
M(O’ " )

Under some assumptions presented later on, on
[0, 7],

.t <
lim -5 = r, where r solves O;r = KAZr,
e—=0 M

with explicit topologies, rates of convergence and
coefficients.

Emeric Bouin (Université Paris-Dauphine) Soutenance d'habilitation
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Ideas of the proof ...

Prepare a smart attack... : construction of a fluid mode

With a structural hypothesis on L, for 7 € (0,10) there is a unique eigenpair,
Eigenvector ¢, € L2(|-]7°M) Eigenvalue u(n) € (0, ro)
solving, with Lh := M~1L(Mh),

~L0y = in(v - ), = ()] oy with [0, VM) de = 1.

Moreover, the branch (¢,, 11(n)) connects to (1,0) as  — 0, with

oy =1l < pln)2.
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Ideas of the proof ...

that you can explain on a small picture!
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Ideas of the proof ...

The main computation...

Following a strategy a /a Ellis-Pinsky and Lebeau-Puel,
Denote h, = 1= € L% ,(M). Fourier-transform in x to get on ho(t, €, v)
0()dch. = Lh. + ic(v - €)h..

Denote £ =: [£]o and 7 := €||. Test (in v) against M¢,),

00 S (hern) = (Lhe (v b, 6y) = (hes U (6,) +ic(v - )5,
= =) (b, V176 ).
Then,
<BE, M—5> — # + small, </“16,¢,7> = (1,,) P + small

and thus, roughly, 0;F =~ — lim._¢ ( (( 5))) F.

Scaling of ;1 determines 6 and then the limit equation!
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Ideas of the proof ...

Heuristics about the scaling ...

Start from

po) = [ (v @) im(s, M) do.

@ Either you can phone your dearest friend Lebesgue ...

)~ [ (v-) (1m0 ) iy o

n—0 n

@ Or you can't, since there is a "sliding hump phenomenon", and you rescale!

@,(u) == &y (77 u)

and then
) 0 [ (o) (im0 a0) ) - v
Re n—0

Final comment: hypothesis are (in particular) on the size of ®,,.
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Ideas of the proof ...

Scaling limits and hypocoercivity in kinetic theory

2 - Decay to zero and hypocoercivity
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Ideas of the proof ...

What is the question?

Claim: If the initial data has finite mass, f" € [}(dxdv), then the only integrable
equilibrium (i.e. L(dxdv)) to

Oef +v - Vif = LF
F(0,-,-) ="
isf=0.

What we want to do:

— Study quantitatively the convergence to zero. Provide rates of convergence
and explicit constants.

— Have a flexible method for this kind of problems as a preliminary brick to
nonlinear problems.

Emeric Bouin (Université Paris-Dauphine) Soutenance d'habilitation
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A result on rates of convergence to zero

A result (among a few similar others)

Theorem (B., Dolbeault, Lafleche ('20))
Let d > 2, a > 0 and assume that 3 and « are such that

a+p8>0, a+8#2.
For any k € (0,a),

-4 in .
(1 + t) ¢ ||f-l ||i2(M_1)ﬁL1 if ,8 < O,

Hf”%z(M*ldxdv) S {d . }
—ming =, 7aT i
(1+1) P oliZ2yipg—yns i B> 0.

Remarks

— d =1 also covered with a slight change.
— Any a, 3, with @ > 0 and a + 8 > 0 covered.
— Use of L2(|v]“M~1dx dv) norms only (no Sobolev).

Emeric Bouin (Université Paris-Dauphine)
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But roughly, what is and why is hypocoercivity?

Start with the basic L2(M~1) energy estimate:

1 d 2 / n—p3 !’ ?
35t o < A= ([ etvav1bav ) m

LZ(M*’SMA).

‘ One cannot get any sort of decay strictly from here! ‘

Started by Villani’s memoir and with now a large literature (Villani, Mouhot,
Neumann, Dolbeault, Schmeiser ....):

the intertwist between £ and v - V, allows to recover a decay.
How: Re-casting the Dolbeault - Mouhot - Schmeiser method !

1
1112 (m-1) ~ §\|f||f2(,v,,1) + 0 Re(Af, f)
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The strategy and ingredients of the proof

© Mode by mode analysis. Take Fourier in x.
of+i(v-Ff =LF,
© Mode by mode hypocoercivity functional. Define a new operator A by
1L (vl
V12 1+ [v]2IP=AligR
and the entropy functional by H¢[f] := %\|f||2 + dRe(AF, F).
© Mode by mode and then full energy estimate

_%H[f] = —(f,Lf) +6/Rd Re[f] d¢

AE =

with . ) )
Re[f] 2 Ka(€) INFII2 — K2(&) 11 — MF]3 .
© Conservation of weighted L? norms and interpolation yields to an ODE of the
form:

H < —¢(t)HC.
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A summary (and other results)

> These results are part of other results with spatial confinement (mainly weak)

Emeric Bouin (Université Paris-Dauphine)

Soutenance d'habilitation

U V=0 | Veryln(x]) || Vx| Ve jxfe
ae(0,1) a>1
M < e~V -4 -1 e~ At e~ At
BDMMS BDLS Cao DMS
M= e 1% | g=min(5.%)
ae(0,1) BDL
—7d &
M= [v]=9= |t mo(€57)
a>0 BDL




Thank you for your attention !

MICHAEL W.GARZA

EXP
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