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Introduction : model and questions

Velocity-jump processes

Persistent motion, with two phases,
alternately:

→ straight run,

→ random change of velocity.

(This is the case for the most common bacteria, E. coli)

Biological reference. H.C. Berg, E. coli in Motion, (2004).
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Introduction : model and questions

The (non-)linear kinetic BGK equation

The Chapman-Kolmogorov equation of this process is a kinetic equation.

Scattering + Reorientation + Growth with saturation (KPP type nonlinearity):

∂t f + v · ∇x f︸ ︷︷ ︸
Scattering

= (M(v)ρ− f )︸ ︷︷ ︸
Reorientation

+ rρ (M(v)− f )︸ ︷︷ ︸
Growth with saturation

Kinetic density f (t, x , v): time t ∈ R+, position x ∈ Rn and velocity v ∈ V .

ρ :=
∫
V
f (v) dv, V = B(0, vmax), vmax ≤ +∞.

Here, M is a given distribution which satisfies∫
V

M(v) dv = 1,
∫
V

v M(v) dv = 0,
∫
V

|v |2 M(v) dv = θ.
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Introduction : model and questions

The diffusive limit when r = 0

M has zero mean & finite variance → parabolic scaling (t, x , v) 7→
(

t
ε2 ,

x
ε , v
)
.

ε2∂t f + εv∂x f = M(v)ρ− f .

Then,
lim
ε→0

f ε(t, x , v) = M(v)ρ(t, x),

and the macroscopic density satisfies the heat equation,

∂tρ = θ∂xxρ.

Can we study large deviations for the velocity-jump process ?

References
G. Blankenship and G. C. Papanicolaou, Stability and control of stochastic systems with
wide-band noise disturbance, SIAM J. Appl. Math. 34 (1978), 437-476.
E. Larsen and J. B. Keller, Asymptotic solutions of neutron transport problems, J. Math. Phys.
15 (1974), 75-81.
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Introduction : model and questions

Large deviations for the heat equation

Hyperbolic scaling: (t, x)→
(
t
ε ,

x
ε

)
,

ε∂tρ
ε = ε2θ∆ρε .

Perform the Hopf-Cole transformation ρε = exp
(
−ε−1uε

)
to find

∂tu
ε + θ|∇xu

ε|2 = εθ∆uε.

When ε→ 0, the sequence uε converges towards the viscosity solution of the
following Hamilton-Jacobi equation

∂tu + θ|∇xu|2 = 0 .

We seek a similar result for the kinetic equation.

References W.H. Fleming, Exit Probabilities and Optimal Stochastic Control, (1978).
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Introduction : model and questions

Diffusive limit when r > 0

Macroscopic limit: (t, x) 7→
(

t
ε2 ,

x
ε

)
and r 7→

(
rε2
)
:

The Fisher-KPP equation: ∂tρ = θ∂xxρ+ rρ(1− ρ).

Theorem (Kolmogorov, Petrovsky, Piskunov, 1937)

There exists a minimal speed c∗ := 2
√
rθ such that for all speed c ≥ c∗,

there exists a travelling wave solution ( ρ(t, x) := ρ̄ (x − ct) ) of speed c .
If the initial data has compact support then the front propagates with the
minimal speed c∗.
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Introduction : model and questions

Sharp front limit (≈ large deviations) for Fisher-KPP

Hopf-Cole transformation ρε = exp
(
− uε

ε

)
:

∂tu
ε + θ|∇xu

ε|2 + r = εθ∆uε + rρε.

When ε→ 0, the sequence uε converges towards the viscosity solution of the
following constrained Hamilton-Jacobi equation

min
(
∂tu + θ|∇xu|2 + r , u

)
= 0.

If u(0, x) =

{
0 if x = 0
+∞ else

, then u(t, x) = max
(

x2

4θt − rt, 0
)
.

The nullset of u gives the information about the propagation:

u(t, x) = 0 =⇒ |x | ≤ 2
√
rθ t = c∗t.

We seek a similar result for the kinetic equation.

References. M.I. Freidlin (1986), L.C. Evans and P.E. Souganidis (1989).
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Introduction : model and questions

Aim of this talk

What we want to do :

→ Study qualitatively and quantitatively large deviations (r = 0)/propagation
phenomena (r > 0) in kinetic reaction-transport equations of the type

∂t f + v · ∇x f = Mρ− f + rρ (M − f ) .

→ Does it make any difference with the macroscopic limit ?

In this talk, we stick to the 1d case for both space and velocity :
x ∈ R, v ∈ V = [−vmax, vmax].
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Bounded velocities: large deviations and finite speed propagation
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Bounded velocities: large deviations and finite speed propagation

Large deviations in the kinetic framework

Hyperbolic scaling : (t, x , v)→
(
t
ε ,

x
ε , v
)

ε (∂t f
ε + v∂x f

ε) = Mρε − f ε + rρε (M − f ε) .

Hopf-Cole transform :

f ε(t, x , v) = e−
uε(t,x,v)

ε .

New equation for uε :

∂tu
ε + v∂xu

ε − 1 = −(1 + r)

∫
V

M(v)e
uε(v)−uε(v′)

ε dv ′ + rρε,

→ Question : can we pass to the limit ? Does it make a difference with the
macroscopic case ?
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Bounded velocities: large deviations and finite speed propagation

Passing to the limit

Theorem (B. & Calvez (2012),B. (2014))

Let V = [−vmax, vmax] bounded. Assume M > 0 and uε(0, x , v) = u0(x). Then
(uε)ε converges locally uniformly towards u, where u does not depend on v .
Moreover u is the unique viscosity solution of the constrained Hamilton-Jacobi
equationmin

{
∂tu + (1 + r)H

(
∇xu
1+r

)
+ r , u

}
= 0, ∀(t, x) ∈ R∗+ × R,

u(0, x) = u0(x), x ∈ R.

The Hamiltonian solves the relation∫
V

M(v ′)

1 +H(p)− v ′p
dv ′ = 1.

We combine kinetic equations and viscosity solutions!

See also a Lagrangian viewpoint in the finite velocity case and r = 0 (Faggionato
et al (2008)). If M vanishes, see Caillerie (2016).
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Bounded velocities: large deviations and finite speed propagation

Sketch of proof

∂tu
ε + v · ∇xu

ε − 1 = −(1 + r)

∫
V

M(v)e
uε(v)−uε(v′)

ε dv ′ + rρε,

1 Uniform Lipschitz estimates give the locally uniform convergence of uε (up to
extraction).

2 The boundedness of ∫
V

M(v)e
uε(v)−uε(v′)

ε dv ′

implies in the limit

(∀v , v ′ ∈ V ) u(v)− u(v ′) ≤ 0,

and this implies the independence of v in the limit ε→ 0.
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Bounded velocities: large deviations and finite speed propagation

About the Hamiltonian

Now, write formally (we then use the perturbed test function method)

uε(t, x , v) = u(t, x)− ε ln (Q(t, x , v)) +O(ε),

One gets, at least formally,(
1− ∂tϕ0 − v · ∇xϕ

0)Q(v) = (1 + r)

∫
V

M(v ′)Q(v ′)dv ′

Being given ∇xu, find ∂tu as an eigenvalue of a cell problem in the velocity space.

Implicit equation in this case:∫
V

M(v ′)

1 +H(∇xu)− v ′∇xu
dv ′ = 1.

Similar to homogenization theory : x slow variable, v fast variable.
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Bounded velocities: large deviations and finite speed propagation

The procedure can be written with a more general setting [B. 2014]:

Mρ− f −→ P(f ).

where P has a maximum principle.

The equation writes

min {∂tu +H (∇xu) + r , u} = 0,

The Hamiltonian is obtained after solving a spectral problem in the velocity
variable via a Krein-Rutman type argument :
"For all p ∈ Rn, there exists a unique H(p) such that there exists a positive
normalized eigenvector Qp ∈ L1(V ) such that

∀v ∈ V , L(Qp)(v) + (v · p)Qp(v) = H(p)Qp(v).”

H satisfies |H′(p)| ≤ vmax : It keeps in mind the finite speed of
propagation at the kinetic level.

Reminder : Performing the diffusion limit first gives θ|p|2 + r .

References. Non L1 case: Caillerie (2016).
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Bounded velocities: large deviations and finite speed propagation

Existence of travelling wave solutions

1 Perturbative approach in the parabolic limit (t, x , r) 7→
(

t
ε2 ,

x
ε , rε

2
)

Theorem (Cuesta, Hittmeir, Schmeiser 2012)

Assume that V is compact. Take c ≥ 2
√
rθ. For ε small enough, there exists a

travelling wave solution of speed c .

2 Existence result in the kinetic regime (for all ε, optimal (no TW below c∗)):

Theorem (B., Calvez, Nadin 2013)

Assume that V is compact. Suppose that M is continuous and positive. Define

c∗ = inf
p>0

H(p)

p

There exists a travelling wave f solution of speed c for all c ∈ [c∗, vmax).
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Bounded velocities: large deviations and finite speed propagation

Further properties

Spreading at finite speed (a la Aronson-Weinberger)

1 For all c > c∗,

(∀v ∈ V ) lim
t→+∞

(
sup
x≥ct

f (t, x , v)

)
= 0 ,

2 For all c < c∗,

(∀v ∈ V ) lim
t→+∞

(
sup
x≤ct
|M(v)− f (t, x , v)|

)
= 0 ,
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Bounded velocities: large deviations and finite speed propagation

But why V has to be compact ?!

The dispersion relation that one has to solve to compute the Hamiltonian H is

∫
V

M(v ′)

1 +H(p)− v ′p
dv ′ = 1.

This equation has no solution meeting the constraint of
non-negativity when V is unbounded (vmax = +∞)

Remark
Up to here, the strategy would be exactly the same in any velocity dimension.
However, now, the integrability condition reads differently depending on the
dimension and different effects might appear (see Caillerie (2016)).
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Unbounded velocities: acceleration for the Cauchy problem
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Unbounded velocities: acceleration for the Cauchy problem

The Cauchy problem with unbounded velocities

Consider now the case V = R.{
∂t f + v∂x f = M(v)ρ− f + rρ (M(v)− f ) ,

f (t = 0, x , v) = M(v)1x≤0.

Question : what is the speed of propagation ?
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Unbounded velocities: acceleration for the Cauchy problem

Approximation of vmax = +∞ : speed as a function of time

M(v) = C (vmax) exp
(
− v2

2

)
1|v |≤vmax

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

Conjecture :

c(t) ≈
√
t =⇒ x(t) ≈ t 3

2
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Unbounded velocities: acceleration for the Cauchy problem

Infinite speed of propagation

Assume that : ∀v ∈ R, M(v) > 0.

Theorem (B., Calvez, Nadin)

Assume that there exists γ ∈ (0, 1) such that

∀x ≤ 0, f (0, x , v) ≥ γM(v).

Then, one has, for all c > 0,

lim
t→+∞

sup
x≤ct
|M(v)− f (t, x , v)| = 0 .

Sketch of proof.

limvmax→+∞ c∗ (vmax) = +∞ and a sub-solution using the truncated problem.
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Unbounded velocities: acceleration for the Cauchy problem

Rate of acceleration when M is a Gaussian on V = R
Using a sub- and super- solutions technique, we prove

Theorem (B., Calvez, Nadin)

Let M(v) = 1√
2π

exp
(
− v2

2

)
. Under suitable hypothesis on the initial data, there

exist two explicit constants c1 and c2 such that

lim
t→+∞

(
inf

x≤c1t3/2
ρ(t, x)

)
≥ 1

2
, lim

t→+∞

(
sup

x≥c2t3/2
ρ(t, x)

)
= 0 .

Proposition

c1 :=

(
r

r + 3
2

) 3
2

≤
( 2

3 r
) 3
2

1 + r︸ ︷︷ ︸
Expected constanta

≤
√
2r =: c2 .

aSee later.
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Unbounded velocities: acceleration for the Cauchy problem

Construction of the sub-solution

1 Start with the initial data γM(v)1x≤0.

γM(v) 0
x
=

0
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Unbounded velocities: acceleration for the Cauchy problem

Construction of the sub-solution

Start with the initial data γM(v)1x≤0.
Transport very few particles with very high velocity at the edge of the front.

γM(v)

dispersion (+ loss)

γM(v)e−
x

v

0

x
=

0

v = 0

x
=
vt

Partial mass contained in the branch v > x
t :

µ1(t, x) = γ

∫ ∞
x
t

M(v)e−
x
v dv ≥ 1

r2(x)
exp

(
−3
2
x2/3

)
, if x < t3/2.
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Unbounded velocities: acceleration for the Cauchy problem

Construction of the sub-solution

Start with the initial data γM(v)1x≤0.
Transport very few particles with very high velocity at the edge of the front.
Redistribute and grow the previous density.

γM(v)

dispersion (+ loss)

scattering + growthγM(v)e−
x
v

µ2(t, x)M(v)

0

x
=

0

v = 0

x =
vt

Estimation of µ2 for x ∈
{
x : x ≤ (αt)3/2

}
:

µ2(t, x) &
1√
t
exp

(
−3
2

(
(αt)3/2

)2/3
)
er(1−α)t .
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Unbounded velocities: acceleration for the Cauchy problem

Conclusions

Bounded velocities :
Minimal speed of propagation,
Profiles given by a spectral problem,
Linear spreading.

Qualitatively similar to the Fisher-KPP equation,
but quantitative differences!

Unbounded velocities :
Accelerated propagation,
Almost exact rate in the Gaussian case (∼ t

3
2 ),

Unexpected result since the diffusive
limit is the Fisher-KPP equation.
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Unbounded velocities: large deviations framework
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Unbounded velocities: large deviations framework

A large deviation framework with unbounded velocities

(M is still a Gaussian)

The hyperbolic scaling is not relevant.

The relevant scaling is

(t, x , v) =

(
t ′

ε
,

x ′

ε3/2
,
v ′

ε1/2

)
.

Consider first r = 0. The equation to solve is

∂tu
ε + v · ∇xu

ε = 1− 1√
2πε

∫
Rn

exp
(
uε(v)− uε(v ′)− |v |2/2

ε

)
dv ′.
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Unbounded velocities: large deviations framework

Towards a limit system...

∂tu
ε + v · ∇xu

ε = 1− 1√
2πε

∫
Rn

exp
(
uε(v)− uε(v ′)− |v |2/2

ε

)
dv ′

Uniform bounds imply, as ε→ 0,

(∀v , v ′) u(v) ≤ u(v ′) +
|v |2

2
=⇒ u(v) ≤ min

v′∈R
u(v′) +

|v |2

2
Non-local constraint!

→ The minimum value is attained at v = 0.
→ Free transport in the unconstrained area:

∂tu + v · ∇xu − 1 = 0 .

This gives the first part of the system:

max
(
∂tu + v · ∇xu − 1, u − min

w∈Rn
u − |v |

2

2

)
= 0 ,

Problem: dynamics of the minimum value minv u(t, x , v)?
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Unbounded velocities: large deviations framework

Numerical illustration

It can vary only if there is another minimum point, v∗ 6= 0, in the
unsaturated area !.

Time snapshots of the velocity profile (fixed x)
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Unbounded velocities: large deviations framework

Information about minv u(t, x , v) ?

Heuristic : minv u(t, x , v) encodes the mass at (t, x) !

Lemma

Let I ⊂ Rn. One has, locally uniformly in (t, x) ∈ R+ × Rn,

lim
ε→0

−ε ln
(∫

I

e−
uε(t,x,v′)

ε dv ′
)

︸ ︷︷ ︸
=
√
ερε

 = min
w∈I

u(t, x ,w).

We thus use mass conservation at the f ε level to get the information :

ε (∂t f
ε + v · ∇x f

ε) = Mε(v)ρε − f ε,
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Unbounded velocities: large deviations framework

Integrate in velocity over B(0, δ) ⊂ Rn:

− ε∂t

(∫
B(0,δ)

f εdv

)
+

∫
B(0,δ)

(v · ∇xu
ε) f εdv

=

∫
B(0,δ)

f εdv −

(∫
B(0,δ)

Mε(v)dv

)
ρε,

∂t

(
−ε ln

(∫
B(0,δ)

e−
uε(v)

ε dv

))
+

∫
B(0,δ)

(v · ∇xu
ε)

f εdv∫
B(0,δ) f

ε(v ′)dv ′

= 1−

(∫
B(0,δ)

Mε(v)dv

)
ρε∫

B(0,δ) f
εdv

,

From this we deduce the last part of the system :
∂t

(
min

w∈B(0,δ)
u = min

w∈Rn
u
)
≤ 0 ,

∂t

(
min
w∈Rn

u

)
= 0 , if argmin(u)(t, x) = {0} .
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Unbounded velocities: large deviations framework

Typical dynamics of solutions

min u(t; x; •)

m
in
u
+
v
2
=2

m
in
u
+
v
2=2

@tu + v ·rxu = 1

@tmin u = 0

min u(t; x; •)

m
in
u
+
v
2
=2

m
in
u
+
v
2=2

@tu + v ·rxu = 1

@tmin u ≤ 0

Figure: Typical dynamics of solutions

34 / 40



Unbounded velocities: large deviations framework

Proposition (B.,Calvez,Grenier,Nadin 2016)

Assume r = 0. Then the limit system when ε→ 0 shall be :

max
(
∂tu + v · ∇xu − 1, u − min

w∈Rn
u − |v |

2

2

)
= 0 ,

∂t

(
min
w∈Rn

u

)
≤ 0 ,

∂t

(
min
w∈Rn

u

)
= 0 , if argmin(u)(t, x) = {0} .

u(0, x , v) = u0(x , v) .

In which sense ?!
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Unbounded velocities: large deviations framework

Cauchy theory and convergence

We need to introduce a suitable notion of sub- and super- solutions !

Theorem (Comparison principle)

(Suitably defined,) let u (resp. u) be a viscosity sub-solution (resp.
super-solution) on [0,T )× R2n. Assume that u and u are such that

u − |v |2/2 , u − |v |2/2 ∈ L∞
(
[0,T )× R2n) .

Then u ≤ u on [0,T )× R2n.

We can extend this uniqueness result to solutions with at most quadratic growth
(in space) at infinity.

Theorem (Convergence)

Take u0 ∈ |v |
2

2 + L∞. Then uε converges locally uniformly towards u, which is the
unique viscosity solution of the limit system, as ε→ 0.
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Unbounded velocities: large deviations framework

Particular solution of the limit system

Initial data:
u(0, x , v) = 0x=0 + 0v=0 .

The minimum value satisfies:

min
v

u(t, x , v) = min
0≤s≤t

(
x2

2s
+ s

)
=


3
2
|x |2/3 if |x | ≤ t3/2

|x |2

2t2
+ t if |x | ≥ t3/2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

Time snapshots of the minimum value minv u(t, x , v)
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Unbounded velocities: large deviations framework

Limit system when r > 0.

The equation is :

∂tu
ε + v · ∇xu

ε = 1− (1 + r)

∫
Rn

1√
2πε

e
uε(v)−uε(v′)−|v|2/2

ε dv ′ +
r√
ε

∫
Rn

e−
uε(v′)

ε dv ′.

Constraint coming from the nonlinear problem : minv∈R u(t, x, v) ≥ 0.

Limit system:
1 If minw∈Rn u(t, x ,w) = 0 then, for all v ∈ Rn, one has u = |v |2

2 .
2 If minw∈Rn u(t, x ,w) > 0,

max
(
∂tu + v · ∇xu − 1, u − min

w∈Rn
u − |v |

2

2

)
= 0 ,

∂t

(
min
w∈Rn

u

)
≤ −r ,

∂t

(
min
w∈Rn

u

)
= −r , if argmin(u)(t, x) = {0} .

(1)

3 u(0, ·, ·) = u0(·, ·).
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Unbounded velocities: large deviations framework

Acceleration rate when r > 0.

We conjecture that we can proceed as for the Fisher-KPP equation case:

We truncate the fundamental solution of the linearized limit
system such that is satisfies the constraint.

Recall that the minimum value satisfies:

min
v

u(t, x , v) =


3
2
|(1 + r)x |2/3 − rt if |x | ≤ (1 + r)

1
2 t3/2

|x |2

2t2
+ t if |x | ≥ (1 + r)

1
2 t3/2

We obtain

min
v∈R

u = 0 =⇒ 3
2

((1 + r)x)
2
3 = rt =⇒ x =

( 2
3 r
) 3

2

1 + r
t
3
2 .
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Thank you for your attention ... !
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