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We consider the followinginetic equation with BGK relaxation operator

ohf+v-Vof=Mwp—f, ({tz,v)e R, xR"xV, (1)

wheref(t, z,v) denotes the density of particles moving with speed V" at timet and
positionz. The functionp(t, ) denotes the macroscopic density of particules:

)
p(t,m):/vf(t,:c,v)dv, (t,z) € Ry x R".

HereV denotes a bounded symmetric subseRdf The Maxwellian}M I1s symmetric
and satisfies:

/v M(v)dv = 1. /V o M(v)dv = 0,

/ v M (v)dv = 6%
.

The hydrodynamic limit of the BGK eguation

We focus on thdarge scale hyperbolic limitt, =) — (£,%), ¢ — 0. The kinetic
equation (1) reads as follows in the new scaling:

1

ﬁtngrv-szg:g(M(v)pg—fg), (t,z,v) e R, x R" x V. (2)

We introduce of the following Hopf-Cole transformation:

¢ (t,x0)

fe(t,xz,v) = M(v)e -

wherewe expect the phase to become independent ofase — 0.

The Hamilton-Jacobi equation

Theorem 1.Let V C R” be bounded and symmetric, and M € L'(V') be nonnegative
and symmetric. Then ¢ converges (locally) uniformly towards ", where " does not
depend on v. Moreover ¢ is the viscosity solution of the following Hamilton-Jacobi
equation:

dav=1,

M (v
/v 1 — OpV(t, x) —( 3 -V, (t, x) (t,z) € Ry x R™. (3)

The denominator of the integrand is positive for all v € V.

[ The last observation in Theoremslnot compatible with an unbounded velocity s]et.
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Explicit computations of the effective Hamiltonian. I

Using the implicit function theorem, equation (3) rewritesd," + H (V,¢") = 0,
whereH Is the effective Hamiltonian. The effective Hamiltonian is convex
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e WhenM (v) = £ (&, + §_4), though it is not aL' function, we are able to obtain the

relativistic hamiltoniant (p) = H;pQ_l.

Kinetic Eikonal vs Classical Eikonal |

We obtain a Hamilton-Jacobi equation which differs fromalsessical eikonal equation
see the Figure below. This is unexpected since the form#l dhequation (2) at order
O(e) is the heat equation with small diffusivity:

O,p° = et N,p°, (t,x) € R. x R".

It Is well-known that the phas¢ = —c< log p° satisfies in the limit — 0 the classical
elkonal equation in the sense of viscosity solutions [4, 3]

0id” + 0|V, = 0. (4)

We only have asymptotic equivalence between the two appesator smallp| by
Taylor expansionH (p) ~ 67|p|*.

Elements of the proof I

Step 1. Existence and uniform bounds.

Proposition 1.Let V' C R" be a bounded subset. Assume M < LYV) and ¢, €
Wlee(R™). The kinetic equation has a unique solution ¢° € W1 (R, x R" x V)
uniformly in ¢ (locally in time).

Step 2. Viscosity solution procedure.

1.Locally uniform convergence. We can extract from the famillyy°)_ a locally uni-
formly converging subsequence. We denotetyhe limit. We prove thaty” does
not depend om.

2.Viscosity solution and correcting term. Let )’ € C* (R, x R") be a test function
such thaty" — ¢ has a local maximum &t", z"). We define a corrective termnot
depending om, as in the Evans perturbed test function method §2]= " + en.

3.Maximum principle. We prove the subsolution property thanks to an adapted maxi-
mum principle.
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e \We can compute the effective Hamiltoni&nn one dimension for a constant Maxwellian

M =:ionV =(-1,1). We obtainH (p) = p—tanhip)

tanh(p)
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COMPARISON BETWEEN THE KINETIC EIKONAL EQUATION(3) AND THE CLASSICAL EIKONAL EQUATION (4),
L WITH A CONSTANT MAXWELLIAN ON V = (—1,1). y
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