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We consider the followingkinetic equation with BGK relaxation operator

∂tf + v · ∇xf =M(v)ρ− f , (t, x, v) ∈ R+ × R
n × V , (1)

wheref (t, x, v) denotes the density of particles moving with speedv ∈ V at timet and
positionx. The functionρ(t, x) denotes the macroscopic density of particules:

ρ(t, x) =

∫

V

f (t, x, v) dv , (t, x) ∈ R+ × R
n .

HereV denotes a bounded symmetric subset ofR
n. The MaxwellianM is symmetric

and satisfies:
∫

V

M(v)dv = 1 ,

∫

V

vM(v)dv = 0 ,

∫

V

v2M(v)dv = θ2 .

The hydrodynamic limit of the BGK equation

We focus on thelarge scale hyperbolic limit(t, x) →
(

t
ε
, x
ε

)

, ε → 0. The kinetic
equation (1) reads as follows in the new scaling:

∂tf
ε + v · ∇xf

ε =
1

ε
(M(v)ρε − f ε) , (t, x, v) ∈ R+ × R

n × V . (2)

We introduce of the following Hopf-Cole transformation:

f ε(t, x, v) =M(v)e−
ϕε(t,x,v)

ε .

wherewe expect the phaseϕε to become independent ofv asε→ 0.

The Hamilton-Jacobi equation

Theorem 1. Let V ⊂ R
n be bounded and symmetric, and M ∈ L1(V ) be nonnegative

and symmetric. Then ϕε converges (locally) uniformly towards ϕ0, where ϕ0 does not
depend on v. Moreover ϕ0 is the viscosity solution of the following Hamilton-Jacobi
equation:

∫

V

M(v)

1− ∂tϕ0(t, x)− v · ∇xϕ0(t, x)
dv = 1 , (t, x) ∈ R+ × R

n . (3)

The denominator of the integrand is positive for all v ∈ V .

The last observation in Theorem 1is not compatible with an unbounded velocity set.

Explicit computations of the effective Hamiltonian.

Using the implicit function theorem, equation (3) rewritesas∂tϕ0 + H
(

∇xϕ
0
)

= 0,
whereH is the effective Hamiltonian. The effective Hamiltonian is convex.

•We can compute the effective HamiltonianH in one dimension for a constant Maxwellian
M ≡ 1

2 onV = (−1, 1). We obtainH(p) = p−tanh(p)
tanh(p) .

•WhenM(v) = 1
2 (δ1 + δ−1), though it is not aL1 function, we are able to obtain the

relativistic hamiltonianH(p) =

√
1+4p2−1

2 .

Kinetic Eikonal vs Classical Eikonal

We obtain a Hamilton-Jacobi equation which differs from theclassical eikonal equation,
see the Figure below. This is unexpected since the formal limit of equation (2) at order
O(ε) is the heat equation with small diffusivity:

∂tρ
ε = εθ2∆xρ

ε , (t, x) ∈ R+ × R
n .

It is well-known that the phaseφε = −ε log ρε satisfies in the limitε → 0 the classical
eikonal equation in the sense of viscosity solutions [4, 3]:

∂tφ
0 + θ2|∇xφ

0|2 = 0 . (4)

We only have asymptotic equivalence between the two approaches for small|p| by
Taylor expansion:H(p) ∼ θ2|p|2.

Elements of the proof

Step 1. Existence and uniform bounds.

Proposition 1. Let V ⊂ R
n be a bounded subset. Assume M ∈ L1(V ) and ϕ0 ∈

W 1,∞ (Rn). The kinetic equation has a unique solution ϕε ∈ W 1,∞ (R+ × R
n × V )

uniformly in ε (locally in time).

Step 2. Viscosity solution procedure.

1.Locally uniform convergence. We can extract from the familly(ϕε)ε a locally uni-
formly converging subsequence. We denote byϕ0 the limit. We prove thatϕ0 does
not depend onv.

2.Viscosity solution and correcting term. Let ψ0 ∈ C2 (R+ × R
n) be a test function

such thatϕ0 − ψ0 has a local maximum at
(

t0, x0
)

. We define a corrective termη not
depending onε, as in the Evans perturbed test function method [2]:ψε = ψ0 + εη.

3.Maximum principle. We prove the subsolution property thanks to an adapted maxi-
mum principle.
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COMPARISON BETWEEN THE KINETIC EIKONAL EQUATION(3) AND THE CLASSICAL EIKONAL EQUATION (4),
WITH A CONSTANT MAXWELLIAN ON V = (−1, 1).


