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A kinetic model for the Fisher-KPP equation

We consider the followingkinetic model

ε2∂tf + εv ·∇xf = (M(v)ρ− f )
︸ ︷︷ ︸

Scattering

+ε2 rρ (M(v)− f )
︸ ︷︷ ︸
Monostable growth

, (t, x, v) ∈ R+×R
n×V , (1)

wheref (t, x, v) denotes the density of particles moving with speedv ∈ V at timet and
positionx. The functionρ(t, x) denotes the macroscopic density of particules:

ρ(t, x) =

∫

V

f (t, x, v) dv , (t, x) ∈ R+ × R
n .

HereV denotes a symmetric subset ofR
n. The MaxwellianM is symmetric and satis-

fies: ∫

V

M(v)dv = 1 ,

∫

V

vM(v)dv = 0 ,

∫

V

v2M(v)dv = D .

The formal macroscopic limitε → 0 is the classicalFisher-KPP equation:

∂tρ−D∂xxρ = rρ (1− ρ) . (2)

Traveling waves whenV is bounded, w.l.o.gV = [−1; 1].

Definition 1. We say that a functionf (t, x, v) is a traveling front solutionof speed
c ∈ R

+ of equation(1) if it can be writtenf (t, x, v) = µ (ξ = x− ct, v), wherethe
profileµ ∈ C2 (R× V ) is nonnegative, satisfiesµ (−∞, ·) = M , µ (+∞, ·) = 0, andµ
solves

ε(v − cε)∂ξµ = (M(v)ν − µ) + rε2ν (M(v)− µ) , ξ ∈ R, v ∈ V. (3)

whereν is the macroscopic density associated toµ, that isν (ξ) =
∫

V
µ (ξ, v) dv.

Theorem 1.Assume thatε > 0 and thatSupp(M) = [−1, 1]. There exists aminimal
speedc∗(ε) ∈ (0, 1

ε
) such thatthere exists a traveling wave solution of (1) of speed c

for c ∈
[
c∗(ε), 1

ε

]
. Moreover, this traveling wave isnonincreasing with respect tox.

This isnot a perturbative result from the Fisher-KPP equation.

Finding the speed :Dispersion relation

As for the Fisher-KPP equation, the rate of exponential decay in space and the speed are
given by the linearized problem at the edge of the front. Yields the followingspectral
problem : For allλ, find c(λ) such that there exists a MaxwellianQλ such that

∀v ∈ V, (1 + ελ (c(λ)ε− v))Qλ(v) = (1 + rε2)

∫

V

M(v)Qλ(v)dv. (4)

Proposition 1.For all ε > 0, the minimal speedc∗(ε) is given byc∗(ε) = minλ>0 c(λ)
wherec(λ) is for all λ a solution of the followingdispersion relation:

(1 + rε2)

∫

V

M(v)

1 + ελ(c(λ)ε− v)
dv = 1 . (5)

This relation isnot compatible with and unbounded velocity set.

We can provide estimates for the critical speedc∗(ε). In particular,

Proposition 2.Assume that Supp(M) = [−1, 1], thenc∗(ε) −→
ε→0

2
√
rD := cKPP.

The fronts arestable in suitable Lebesgue spaces.

UnboundedV : Front acceleration ( w.l.o.g.ε = 1 ).

In the Figures below, we plot the evolution of the value of thespeed of the front, for
different values ofVmax. We deduce thatc∗ increases withVmax.
Moreover, we observe that the envelop of the curves ( which represents theinstanta-
neous speedof the front with an unboundedV ) behaves liket

1

2.

It yields thatthe densityρ propagates likesx ∝ t
3

2 .
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"BELL" INITIAL CONDITION .
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HEAVISIDE INITIAL CONDITION .

EVOLUTION OF THE SPEED OF THE FRONT FOR DIFFERENT VALUES OF THEMAXIMAL SPEED . THE MAXWELLIAN HERE IS A GAUSSIAN : M(v) = C (Vmax) exp
(

−v2

2

)

.
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