Propagation in models of kinetic type in biology

Emeric Bouin

UMPA - ENS de Lyon

Stanford Applied Maths Seminar - March 4th 2015

- Presentation of the talk
- 2 Part 1 Motivation and setting.
- 3 Part 1 Travelling waves and accelerating fronts.
- 4 Part 1 Geometric optics for kinetic equations.
- 5 Part 2 Study of dispersal evolution.

Presentation of the talk

- We focus on propagation phenomena arising in biology.
- Important feature : In all situations, it is noticed that the propagation is actively influenced by a microscopic **structure** of the population.

2 parts / 2 kind of structures :

- Reaction-kinetic models inspired by bacterial dispersal,
 - \Longrightarrow Structuring variable = velocity.
- Reaction-diffusion-mutation models inspired by evolution in cane toads populations.
 - \implies Structuring variable = phenotype.

Biologically quite far, but in fact mathematically quite close!

- Presentation of the talk
- Part 1 Motivation and setting.
- 3 Part 1 Travelling waves and accelerating fronts.
- 4 Part 1 Geometric optics for kinetic equations.
- 5 Part 2 Study of dispersal evolution.

Motion of an individual bacteria

The bacteria E. Coli moves with a so-called *run and tumble* process :

straight swimming for 1s and change of direction for 0.1s.

⇒ Ballistic trajectory.

Reference. Berg, H.C., E. coli in Motion, (2004).

Collective migration: Bacterial travelling pulses

Kinetic models are needed to describe accurately the pulses.

<u>Question</u>: Can we study mathematically propagation at the kinetic level? Does it show new effects and makes a significant difference with macroscopic models?

Reference. J. Saragosti et al, Directional persistence of ..., (2011).

Propagation in kinetic models

- Kinetic shock profiles (from physics)
 - Caflisch, Nicolaenko: Shock profiles solutions of the Boltzmann equation (1982),
 - Golse: Perthame-Tadmor profiles for scalar conservation laws (1998),
 - Liu, Yu: Boltzmann: Positivity of shock profiles (2004),
 - Cuesta, Schmeiser: Kinetic shock profiles for BGK equations (2006-2007-2009),

(among others...)

- Kinetic-reaction transport equations
 - Schwetlick: Travelling fronts for multidimensional nonlinear transport equations (2000),
 - Cuesta, Schmeiser, Hittmeir: Kinetic Fisher-KPP equation (2012),

Kinetic reaction transport equations

- Density of bacteria f(t, x, v) at time t, position x and velocity v. Space density $\rho := \int_V f(v) dv$.
- The velocity set : $V = [-v_{\text{max}}, v_{\text{max}}]$, with $v_{\text{max}} \le +\infty$.

The model (Schwetlick 2000 - Cuesta, Hittmeir, Schmeiser 2012):

$$\underbrace{\partial_t f + v \partial_x f}_{\text{Free run}} = \underbrace{\left(M(v)\rho - f\right)}_{\text{Tumbling}} + \underbrace{r\rho\left(M(v) - f\right)}_{\text{Growth with saturation}}$$

where M is a given distribution which satisfies

$$\int_{V} M(v)dv = 1, \qquad \int_{V} vM(v)dv = 0, \qquad \int_{V} v^{2}M(v)dv = \theta.$$

Strong difference with the initial motivation :

Propagation is triggered by growth and not by bias of trajectories.

What we want to do:

- ightarrow Study qualitatively and quantitatively propagation phenomena in kinetic reaction-transport equations.
- \rightarrow Are there special effects due to considering populations at the "mesoscopic" scale ?

We study the propagation from two points of view :

- Study of (non-)existence of travelling wave solutions,
- @ Geometric optics point of view.

- Presentation of the talk
- 2 Part 1 Motivation and setting.
- 3 Part 1 Travelling waves and accelerating fronts.
- 4 Part 1 Geometric optics for kinetic equations.
- 5 Part 2 Study of dispersal evolution.

Kinetic travelling waves

$$\partial_t f + v \partial_x f = (M(v)\rho - f) + r\rho (M(v) - f)$$

Definition

A travelling wave solution is of the form

$$f(t,x,v) = \mu \left(\xi = x - ct, v \right),\,$$

Speed:
$$c \in \mathbb{R}^+$$
, Profile: $\mu \in C^2(\mathbb{R} \times V, \mathbb{R}^+)$.

Far field conditions :
$$\mu\left(-\infty,\cdot\right)=M, \qquad \mu\left(+\infty,\cdot\right)=0.$$

Main equation :

$$(\mathbf{v} - \mathbf{c})\partial_{\xi}\mu = (M(\mathbf{v})\nu - \mu) + r\nu(M(\mathbf{v}) - \mu), \qquad \xi \in \mathbb{R}, \ \mathbf{v} \in V.$$

where ν is the macroscopic density associated to μ , that is $\nu\left(\xi\right)=\int_{V}\mu\left(\xi,v\right)dv$.

Why should we expect travelling waves?

Macroscopic limit: We look at the situation when reorientations are much more frequent than reaction:

$$\mathbf{r}\mapsto (\mathbf{r}\varepsilon^2)$$
.

M is unbiased \rightarrow Parabolic scaling $(t,x)\mapsto \left(rac{t}{arepsilon^2},rac{x}{arepsilon}
ight)$:

$$\varepsilon^{2} \partial_{t} f + \varepsilon v \partial_{x} f = (M(v)\rho - f) + r \varepsilon^{2} \rho (M(v) - f).$$

Then formally,

$$\lim_{\varepsilon\to 0} f^{\varepsilon}(t,x,v) = M(v)\rho(t,x),$$

The macroscopic limit is (at least formally) the Fisher-KPP equation $\partial_t \rho = \theta \partial_{xx} \rho + r \rho (1 - \rho)$

Travelling waves for the Fisher-KPP equation (1937)

Combining reaction and diffusion creates propagation :

Theorem (Kolmogorov, Petrovsky, Piskunov, 1937)

- There exists a minimal speed $c^* := 2\sqrt{r\theta}$ such that for all speed $c \ge c^*$, there exists a travelling wave solution $(\rho(t,x) := \bar{\rho}(x ct))$ of speed c.
- If the initial data has compact support then the front propagates with the minimal speed c^* .

(Fisher, KPP, Kanel, Fife and McLeod, Aronson and Weinberger ...)

The minimal speed c^* :

The front is created by small populations at the edge that reproduce almost exponentially. Seeking exponential decay in the linearized equation :

$$c(\lambda) = \theta \lambda + \frac{r}{\lambda} \ge 2\sqrt{r\theta} := c^*$$
.

References. R.A. Fisher, The advance of advantageous genes, (1937),

D.G. Aronson et al. Nonlinear diffusion in population genetics ..., 1975.

A.N. Kolmogorov et al. Etude de l'équation de la diffusion ..., (1937)

Existence of travelling waves for the kinetic model

• Perturbative approach in the parabolic limit $(t, x, r) \mapsto \left(\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon}, r\varepsilon^2\right)$

Theorem (Cuesta, Hittmeir, Schmeiser)

Assume that V is compact. Let the wave speed satisfy $c \geq 2\sqrt{r\theta}$. For ε small enough, there exists a travelling wave solution of speed c.

Existence result in the kinetic regime:

Theorem (B., Calvez, Nadin)

Assume that V is compact. Suppose that M is continuous and positive.

- There exists a speed $c^* \in (0, v_{\text{max}})$ such that there exists a travelling wave f solution of speed c for all $c \in [c^*, v_{\text{max}})$.
- The travelling wave is nonincreasing with respect to the space variable.
- **3** There exists no travelling wave of speed $c \in [0, c^*)$.

Elements of proof

9 Find the minimal speed c^* : Given a spatial decay $\lambda \in \mathbb{R}^+$, we seek solutions of the linearized problem of type

$$f(t,x,v) = e^{-\lambda(x-c(\lambda)t)}Q_{\lambda}(v).$$

Associated speed : $c(\lambda) \in \mathbb{R}^+$, Expected profile at the edge : $Q_{\lambda}(v)$.

Proposition

We have $c^* = \min_{\lambda > 0} c(\lambda)$, where $c(\lambda)$ is a solution of

$$\int_{V} \underbrace{\frac{(1+r)M(v)}{1+\lambda(c(\lambda)-v)}}_{=Q_{\lambda}(v)} dv = 1.$$

2 Key tool : Comparison principle.

We can define, thanks to the dispersion relation, for $c \in (c^*, v_{max})$, an explicit couple of sub- and super- solutions.

Further properties

- Spreading at finite speed (a la Aronson-Weinberger)
 - $\bullet \quad \text{For all } c > c^*,$

$$(\forall v \in V)$$
 $\lim_{t \to +\infty} \left(\sup_{x \ge ct} f(t, x, v) \right) = 0,$

$$(\forall v \in V)$$
 $\lim_{t \to +\infty} \left(\sup_{x \le ct} |M(v) - f(t, x, v)| \right) = 0,$

② Dynamical stability of the waves : Rather explicit weight $\phi(\xi, v)$ such that a travelling wave profile is weakly linearly stable in $L^2\left(e^{-2\phi(\xi,v)}d\xi dv\right)$.

Obstruction

The dispersion relation for $\lambda \in \mathbb{R}^+$

$$\int_{V} \frac{(1+r)M(v)}{1+\lambda(c(\lambda)-v)} dv = 1.$$

has **no solution** when V is unbounded $(v_{max} = +\infty)$.

Obstruction

The dispersion relation for $\lambda \in \mathbb{R}^+$

$$\int_{V} \frac{(1+r)M(v)}{1+\lambda(c(\lambda)-v)} dv = 1.$$

has **no solution** when V is unbounded $(v_{max} = +\infty)$.

So what ?

Approximation of $v_{max} = +\infty$: speed as a function of time

$$ightarrow$$
 Gaussian equilibrium : $M(v) = C\left(v_{\mathsf{max}}\right) \exp\left(-rac{v^2}{2}\right) \mathbf{1}_{|v| \leq v_{\mathsf{max}}}$

Conjecture:

$$\mathbf{c}(\mathbf{t}) pprox \sqrt{\mathbf{t}} \qquad \Longrightarrow \qquad \mathbf{x}(\mathbf{t}) pprox \mathbf{t}^{rac{3}{2}}$$

Acceleration phenomena

- → Fisher-KPP with initial decay slower than exponential : F. Hamel, L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, (2010).
- \rightarrow Accelerated propagation in fractionnal diffusion equations :
 - X. Cabré, J.-M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, (2009).
 - X. Cabré, J.-M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, (2013).
 - A.-C. Coulon, J.-M Roquejoffre, *Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations*, (2012).
- → Acceleration in integro-differential equations with slowly decaying kernel : J. Garnier, Accelerating solutions in integro-differential equations, (2011).

Infinite speed of propagation

Assume that : $\forall v \in \mathbb{R}$, M(v) > 0.

Theorem (B., Calvez, Nadin)

Assume that there exists $\gamma \in (0,1)$ such that

$$\forall x \leq 0, \qquad f(0, x, v) \geq \gamma M(v).$$

Then, one has, for all c > 0,

$$\lim_{t\to+\infty}\sup_{x\leq ct}|M(v)-f(t,x,v)|=0.$$

Sketch of proof.

 $\lim_{v_{\mathsf{max}} \to +\infty} c^* \left(v_{\mathsf{max}}\right) = +\infty$ and a sub-solution using the truncated problem.

Rate of acceleration when M is a Gaussian on $V = \mathbb{R}$

Theorem (B., Calvez, Nadin)

Let $M(v) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{v^2}{2}\right)$. Under suitable hypothesis on the initial data,

9 Propagation bounded from above by $t^{\frac{3}{2}}$: There exists C_1 such that

$$\lim_{t\to+\infty} \left(\sup_{x\geq C_1 t^{3/2}} \rho(t,x) \right) = 0.$$

9 Propagation bounded from below by $t^{\frac{3}{2}}$: There exists C_2 such that

$$\lim_{t\to+\infty} \left(\inf_{x\leq C_2 t^{3/2}} \rho(t,x)\right) \geq \frac{1}{2}.$$

Conclusions

- Bounded velocities :
 - Minimal speed of propagation,
 - Profiles given by a spectral problem,
 - Linear spreading.

As for the Fisher-KPP equation.

- Unbounded velocities :
 - Accelerated propagation,
 - Almost exact rate in the Gaussian case ($\sim t^{\frac{3}{2}}$),

Unexpected result since the diffusive limit is the Fisher-KPP equation.

- Presentation of the talk
- 2 Part 1 Motivation and setting.
- 3 Part 1 Travelling waves and accelerating fronts.
- 4 Part 1 Geometric optics for kinetic equations.
- 5 Part 2 Study of dispersal evolution.

Hamilton-Jacobi approach

A method based on Hamilton-Jacobi equations has been used to study

- Front propagation in models structured only by the space variable:
 - Authors: Barles, Evans, Souganidis ... (89-94)
- Oynamics of most favorable traits in populations structured only by a structural variable:

Authors: Barles, Champagnat, Diekmann, Jabin, Lorz, Mirrahimi, Mischler, Perthame ...

Aim: Use this method to describe propagation phenomena in kinetic equations (populations structured by both space variable and velocity).

Geometric point of view - Fisher-KPP case

Hyperbolic scaling:
$$(t,x) \rightarrow (\frac{t}{\varepsilon}, \frac{x}{\varepsilon})$$
:

$$(KPP_{\varepsilon}) \qquad {\varepsilon} \partial_t \rho^{\varepsilon} = {\varepsilon}^2 \theta \partial_{xx} \rho^{\varepsilon} + r \rho^{\varepsilon} (1 - \rho^{\varepsilon}).$$

Hopf-Cole :
$$\rho^{\varepsilon} = \exp\left(-\frac{\varphi^{\varepsilon}}{\varepsilon}\right)$$
.

Equation for φ^{ε} :

$$\partial_t \varphi^{\varepsilon} + \theta |\partial_x \varphi^{\varepsilon}|^2 + r = \varepsilon \theta \partial_{xx} \varphi^{\varepsilon} + r \rho^{\varepsilon}.$$

When $\varepsilon \to 0$, the sequence φ^{ε} converges towards the viscosity solution of the following constrained Hamilton-Jacobi equation

$$\min \left(\partial_t \varphi^0 + \theta |\partial_x \varphi^0|^2 + r, \, \varphi^0 \right) = 0.$$

The nullset of φ^0 gives the information about the propagation. Locally on

- Int $(\varphi^0 = 0)$, $\lim_{\varepsilon \to 0} \rho^{\varepsilon} = 1$.
- Int $(\varphi^0 > 0)$, $\lim_{\varepsilon \to 0} \rho^{\varepsilon} = 0$.

References. M.I. Freidlin, Geometric optics approach ..., (1986)

L.C. Evans and P.E. Souganidis, A PDE approach to geometric [2.3], (1989) () > ()

In the kinetic framework with bounded velocities.

Hyperbolic scaling : $(t,x,v) o \left(rac{t}{arepsilon},rac{x}{arepsilon},v
ight)$

$$\varepsilon \left(\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon}\right) = L(f^{\varepsilon}) + r \rho^{\varepsilon} \left(M(v) - f^{\varepsilon}\right),$$

The *linear* operator *L*:

- Acts only on the velocity variable and is mass preserving,
- Ker(L) = Span(M),
- Of the form

$$\forall v \in V, \qquad L(f)(v) = P(f)(v) - \Sigma(v)f(v),$$

where *P* satisfies a **maximum principle**.

Example

- $L(f) = P(f) = \Delta f, \ \Sigma \equiv 0.$
- $P(f) = \int_V K(v, v') f(v') dv' \text{ and } \Sigma(v) = \int_V K(v', v) dv'.$

By analogy with Fisher-KPP, our kinetic WKB ansatz writes

$$f^{\varepsilon}(t,x,v)=M(v)e^{-\frac{\varphi^{\varepsilon}(t,x,v)}{\varepsilon}}.$$

New equation for φ^{ε} :

$$\partial_t \varphi^{\varepsilon} + v \cdot \nabla_x \varphi^{\varepsilon} + r = -rac{\mathcal{L}\left(M(v)e^{-rac{\varphi^{\varepsilon}}{arepsilon}}
ight)}{M(v)e^{-rac{\varphi^{\varepsilon}}{arepsilon}}} + r
ho^{arepsilon},$$

where

$$\mathcal{L}(f) = L(f) + r(M(v)\rho - f).$$

ightarrow Can we pass to the limit ? Does it make a difference with the macroscopic case ?

Passing to the limit.

Theorem (B.)

Let $V = [-v_{\text{max}}, v_{\text{max}}]$. Suppose that the initial data is well-prepared,

$$\forall (x, v) \in \mathbb{R}^n \times V, \qquad \varphi^{\varepsilon}(0, x, v) = \varphi_0(x),$$

and that some structural hypothesis on $\mathcal L$ are satisfied. Then $(\varphi^{\varepsilon})_{\varepsilon}$ converges locally uniformly towards φ^0 , where φ^0 does not depend on v. Moreover φ^0 is the unique viscosity solution of the constrained Hamilton-Jacobi equation

$$\begin{cases} \min\left\{\partial_t \varphi^0 + \mathcal{H}\left(\nabla_x \varphi^0\right) + r, \varphi^0\right\} = 0, & \forall (t, x) \in \mathbb{R}_+^* \times \mathbb{R}^n, \\ \varphi^0(0, x) = \varphi_0(x), & x \in \mathbb{R}^n. \end{cases}$$

About the Hamiltonian.

• The Hamiltonian is obtained after solving a **spectral problem** in the velocity variable via a Krein-Rutman argument :

"For all $p \in \mathbb{R}^n$, there exists a unique $\mathcal{H}(p)$ such that there exists a positive normalized eigenvector $Q_p \in L^1(V)$ such that

$$\forall v \in V, \qquad \mathcal{L}(Q_p)(v) + (v \cdot p) Q_p(v) = \mathcal{H}(p)Q_p(v).$$
"

- Looks like homogenization theory : x slow variable, v fast variable.
- Striking conclusion :

 \mathcal{H} is **Lipschitz** with respect to p: It keeps in mind the finite speed of propagation at the kinetic level. Performing the diffusion limit first gives $\theta|p|^2$.

• As an example, when $L(f) = M(v)\rho - f$ in one dimension :

$$M \equiv \frac{1}{2}$$
 on $V = (-1,1)$ \Longrightarrow $\mathcal{H}(p) = \frac{p}{\tanh\left(\frac{p}{1+r}\right)} - (1+r)$.

Why φ^0 is independent of v: Particular case

Assume for simplicity $L(f) = M(v)\rho - f$:

$$\partial_t \varphi^{\varepsilon} + v \cdot \nabla_x \varphi^{\varepsilon} + r = -(1+r) \int_V M(v) e^{\frac{\varphi^{\varepsilon}(v) - \varphi^{\varepsilon}(v')}{\varepsilon}} dv' + r \rho^{\varepsilon},$$

- Uniform Lipschitz estimates give the locally uniform convergence of φ^{ε} (up to extraction).
- The boundedness of

$$\int_{V} M(v) e^{\frac{\varphi^{\varepsilon}(v) - \varphi^{\varepsilon}(v')}{\varepsilon}} dv'$$

implies the independence of ν in the limit $\varepsilon \to 0$.

Viscosity super- solution step.

Let $\psi^0 \in C^2(\mathbb{R}^+ \times \mathbb{R}^n)$ be a test function such that $\varphi^0 - \psi^0$ has a strict local minimum a (t^0, x^0) with $t^0 > 0$.

We define the corrected test functions :

$$\psi^{\varepsilon}(t,x,v) := \psi^{0}(t,x) - \varepsilon \ln \left(\frac{Q_{[\nabla_{x}\psi^{0}(t,x)]}(v)}{M(v)} \right).$$

② Using the spectral problem and the maximum principle satisfied by ${\cal P}$:

$$\partial_t \psi^{\varepsilon} + \mathcal{H}\left(\nabla_x \psi^{\varepsilon}\right) + r \geq \frac{\mathcal{P}\left(Q_{p^{\varepsilon}}\right)}{Q_{p^{\varepsilon}}} - \frac{\mathcal{P}\left(Q_{\nabla_x \psi^{\mathbf{0}}\left(t^{\varepsilon}, x^{\varepsilon}\right)}\right)}{Q_{\nabla_x \psi^{\mathbf{0}}\left(t^{\varepsilon}, x^{\varepsilon}\right)}},$$

at the point $(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$ (approximated minimas), with $p^{\varepsilon} = \nabla_x \psi^{\varepsilon}(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$.

3 The sequence v^{ε} is **bounded**, we pass to the limit.

References.

Crandall, M. G., Some Properties of Viscosity Solutions of H-J Equations, (1984),

Evans, L.C., The perturbed test function method for viscosity solutions of nonlinear PDE, (1989)

Conclusions and perspectives

- We can derive a limiting (macroscopic) Hamilton-Jacobi equation, the effective Hamiltonian is Lipschitz.
- We would like to do the same with $V = \mathbb{R}$, when r = 0, $L(f) = M(v)\rho f$ and M is a Gaussian. The relevant equation to solve is

$$\partial_t \varphi^{\varepsilon} + v \cdot \nabla_{\mathsf{x}} \varphi^{\varepsilon} = 1 - \frac{1}{\sqrt{2\pi\varepsilon}} \int_{\mathbb{R}^n} \exp\left(\frac{\varphi^{\varepsilon}(v) - \varphi^{\varepsilon}(v') - v^2/2}{\varepsilon}\right) dv',$$

The limit system when $\varepsilon \to 0$ shall be :

$$\begin{cases} \max\left(\partial_t \varphi^0 + v \cdot \nabla_x \varphi^0 - 1, \varphi^0 - \min_{w \in \mathbb{R}^n} \varphi^0 - \frac{v^2}{2}\right) = 0\,, \\ \\ \partial_t \left(\min_{w \in \mathbb{R}^n} \varphi^0\right) \leq 0\,, \\ \\ \partial_t \left(\min_{w \in \mathbb{R}^n} \varphi^0\right) = 0\,, \qquad \text{if} \quad \operatorname{argmin}(\varphi^0)(t,x) = \{0\}\,\,, \\ \\ \varphi^0(0,x,v) = \varphi_0(x,v)\,. \end{cases}$$

This is work in progress ...

- Presentation of the talk
- 2 Part 1 Motivation and setting.
- 3 Part 1 Travelling waves and accelerating fronts.
- 4 Part 1 Geometric optics for kinetic equations.
- 5 Part 2 Study of dispersal evolution.

Evolution of dispersal in cane toads populations (e.g.)

- \rightarrow Speed increased by 5.
- → At the edge, faster toads in majority.
- → Spatial sorting : Dynamic selection of traits along the invasion.

We need models with both space and dispersion variables.

<u>Question</u>: Can we study propagation in such models and recover biological conclusions?

Reference. M. Urban et al, A toad more traveled: the heterogeneous , (2008).

Modelling the cane toads invasion

 $t \in \mathbb{R}^+$: time, $x \in \mathbb{R}$: space variable, $\theta \in \Theta$: dispersal ability.

Mutations, Reproduction.

$$\begin{cases} \partial_t f = \frac{\theta}{\theta} \partial_{xx} f + \alpha \partial_{\theta\theta} f + r f (1 - \rho), & (t, x, \theta) \in \mathbb{R}^+ \times \mathbb{R} \times \Theta, \\ \rho(t, x) = \int_{\Theta} f(t, x, \theta') d\theta', & (t, x) \in \mathbb{R}^+ \times \mathbb{R}. \end{cases}$$

with Neumann boundary conditions in $\theta \in \Theta := [\theta_{min} > 0, \theta_{max} < +\infty].$

Crucial difference: No full maximum/comparison principles available.

References.

- L. Desvillettes et al., Infinite dimensional reaction-diffusion ..., (2004)
- N. Champagnat et al., Invasion and adaptive evolution ..., (2007)
- O. Bénichou et al., Front acceleration ..., (2012)

Edge of the front

Linear problem at infinity:

Ansatz :
$$\mu(\xi, \theta) = \exp(-\lambda(x - c(\lambda)t))Q_{\lambda}(\theta)$$
,

$$(S) \begin{cases} \alpha \partial_{\theta\theta}^2 Q_{\lambda}(\theta) + \left(-\lambda c(\lambda) + \theta \lambda^2 + r\right) Q_{\lambda}(\theta) = 0 \,, \\ \partial_{\theta} Q_{\lambda}(\theta_{\mathsf{min}}) = \partial_{\theta} Q_{\lambda}(\theta_{\mathsf{max}}) = 0 \,, \\ Q_{\lambda}(\theta) > 0 \,. \end{cases}$$

Unique solution by the Krein-Rutman theorem iff Θ is bounded :

For all $\lambda>0$, there exists a unique $c(\lambda)\in\mathbb{R}^+$, such that there exists $Q_\lambda(\theta)>0$ satisfying (S).

The existence of waves is a theorem.

Spatial sorting at the edge of the front.

The eigenvector $Q_{\lambda}(\theta)$ gives the distribution of the motilities at the edge of the front going with speed $c(\lambda)$.

 $Q_{\lambda}(\theta)$ is increasing! =

At the edge of the front, more toads with the biggest dispersal ability.

 $Q_{\lambda}(\theta)$ concentrates to $\delta_{\theta=\theta_{\max}}$ when $\alpha \to 0$.

Reference. R. Shine and al, *An evolutionary process that assembles phenotypes through space rather than through time*, (2011)

Prediction about unbounded $\Theta = (0, +\infty)$?

A WKB approach can (formally) show an acceleration of the front!

The only natural scaling to make is:

$$(t, x, \theta) \mapsto \left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon^{\frac{3}{2}}}, \frac{\theta}{\varepsilon}\right)$$

The limit satisfies formally in the small population regime (min $\varphi^0 > 0$):

$$\partial_t \varphi^0 + \theta |\partial_x \varphi^0|^2 + \alpha |\partial_\theta \varphi^0|^2 + r = 0.$$

Starting with a Dirac mass at $(x, \theta) = (0, 0)$, the point at the far edge satisfies

$$x(t) \approx \frac{4}{3} \left(r^{3/4} \alpha^{1/4} \right) t^{3/2}$$

Comparison with data.

Data from Urban et al. (Am. Nat. 2008): 1.63 ± 0.13 .

Figure: Position of the front with years - Section Gordonvale-Timber Creek, for which spatial sorting is presumably the main effect.

Reference. M. Urban et al, A toad more traveled: the heterogeneous ..., (2008).

Thank you for your attention !

